ACO Comprehensive Exam Fall 2022

Aug 17, 2022

1 Design and Analysis of Algorithms

In a combinatorial auction there is a set N of n = |N| bidders and a set M of m = |M|
items. Bidder i € N has a monotone valuation v;(-) where v;(S) is their value for item set
S C M (here “monotone” means that v;(SUT) > v;(S) for all S,T° C M). The goal of this
problem is to find a disjoint set of subsets where bidder i gets subset A; of items (A;NA =0
for i # k) to maximize the total welfare >, vi(4;).

1. (Configuration LP, 2 points) Prove that the value of the following linear program
(called the configuration LP) gives an upper bound on the total welfare of the optimal
allocation.
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2. (XOS Function, 3 points) A monotone set function v(-) : 2" — Ry is called an XOS
function if there exist monotone linear set functions a(+) : 2¥ — Rsq s.t. for all
S C M we have v(S) = maxy ax(S) (i.e., v(-) can be written as the maximum of linear
functions where a function ay(-) is linear if it satisfies ax(S UT) = ax(S) + ax(T) for
all disjoint S,T° C M). Given a set S C M, prove that if we select a random subset
R C S from a probability distribution that contains each item in S with probability
at least p (different items could be correlated), then the expected value of v(R) is at
least p - v(S).

3. (Rounding) Suppose we are given an optimal (fractional) solution z ¢ to the configu-
ration LP!. To“round” this fractional solution to integral allocations A;, each bidder

IThis can be computed in polynomial time using a “demand oracle” but we will assume that it is given.
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1 € N first chooses a random tentative item set T; independent of other bidders, where
T; = S with probability z7 4 (the LP constraint ) ¢, ;¢ = 1 ensures that this is
a valid probability distribution). Since in this tentative allocation an item j might
appear in multiple tentative sets, in the final allocation {A;}; we allocate each item
Jj € M to one of the tentative bidders (i.e., bidders i with j € T;) chosen uniformly at
random.

(a) (3 points) Prove that conditioned on Tj, bidder i receives each item j € T; with
at least a constant probability, where the probability is taken over the random
tentative sets Ty chosen by other bidders k # .

(b) (2 points) Using (2), prove that if all valuations v; are monotone XOS then the
expected welfare of this rounded solution is at least a constant fraction of the
optimal LP value » ;.\ > gc),vi(S) - 75, and so we get a constant factor ap-
proximation to the optimal welfare.
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2 Combinatorial Optimization

Let M = (U,Z) be a matroid with rank function 7 : 2V — R and let B and B’ be two dis-
joint bases of M. Let Y; and Y5 be a partition of B. The problem is to prove the following
statement:

There exists a partition Z; and Z, of B’ such that Y; U Z; and Y5 U Z5 are both bases of M.

To show this statement, prove the following steps (or give an alternative direct proof).

1. (1 point) We can assume without loss of generality that U = BU B'.

2. (2 points) Let M; = (M \ Y1)/Ys and My = (M*\ Y7)/Y2. Here M* is the dual
matroid of M and M/Y denotes the matroid obtained by contracting elements in Y.
What are the rank functions of M; and M and, in particular, what are the ranks of
these matroids?

3. (5 points) Show that there is a common independent set Z of size |Y;| of both these
matroids.

4. (2 points) Show that Zy = Z suffices to prove the statement.

Page 3



3 Probabilistic Combinatorics

(10 points)

For a graph G, let maxcut(G) denote the maximum number of edges in a cut in G. Let
G ~ G(n,p) be the Erdés-Rényi random graph with edge probability p = p(n) € [0,1] (so
the edge probability is a function of n). Show that

2

E[maxcut(G)] — | = O(y/pn*?).

(The implied constants in the big-O notation should not depend on p.)
Remark. You may receive partial credit if you prove the result for only some range of values
of p.

4 Solution: Algorithms

1. (a) Since this is a maximization LP, to prove the upper bound it suffices to show
a feasible solution to the LP with value equal to the optimal welfare. Suppose
in the optimal allocation bidder i gets item set A’ and the optimal welfare is
> ien VilA7). Now consider the fractional solution z} ¢ where 7} g = 1 if S = A}
and ;g = 0 otherwise. This x4, 5" is feasible for the configuration LP since by
definition ) ¢, ;¢ = 1 for all i € N and since {A]}; is an item partitioning we
have D¢ >ien g < 1forall j € M. The objective value of this solution is
Y oien 2osca VilS) - @i g = > ey vi(Af), which equals the optimal welfare.

(b) We know v(S) = maxy ai(S). Consider the linear function a,(-) that achieves this
maximum for S, i.e., a,(S) = v(S). We know by definition of XOS function that
v(T) > ay(T) for every set T'C M. Hence, to prove that E[v(R)] > p - v(95), it
suffices to show that E[a,(R)] > p-v(S) = p- ae(S). This last inequality is true
by linearity of expectation since ay(-) is a linear function and each element in S
appears in R with probability at least p.

(¢c) i. The expected number of bidders k& # ¢ that contain item j € T; in their
tentative set equals >, i > 55 Ths < 1. So, by Markov’s inequality, the
probability that at least 2 bidders contain item j is at most 1/2, so with
probability at least 1/2 at most one bidder k # ¢ contains item j, in which
case i receives item j with probability at least 1/2 in the uniformly random al-
location. Overall, bidder i receives item j € T; with probability at least Pr[<
1 tentative bidder k # i for j]x Pr[i gets item j |< 1 tentative bidder k # i for j] >
1/2x1/2=1/4.

ii. We first observe that if each bidder is assigned the random tentative set Tj,
the expected welfare of bidder i equals E[v;(T3)] = > gc ), 77 svi(S), and the
total expected welfare equals the optimal LP value. However, {T;}; is not a
valid allocation since an item 7 € M might appear in multiple 7;. In our final
allocation {A4;}; we uniformly randomly allocate any item j € T; to one of the
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tentative bidders. So, by (2), to prove that we get least a constant fraction
of the LP value, it suffices to prove after conditioning on 7; that bidder ¢
receives each item j € T; with at least 1/4 probability, which we have proved
above.

Solution: Combinatorial Optimization

. Removing elements not in B U B’ does not affect the statement of the result.

. First observe that the ground set of both M; and M, are exactly B’. For any set
Z C B', we have

11(Z) = rmy (ZUY2) =1y (Y2) = 7(ZUY2) —r(Y2) = r(ZUY3) — [Yal.
Similarly, we have

r9(Z) = Tapen (ZUY2) = rapy (Ya)
= rp(ZUYs) —ra(Y2)
= [ZUYo|+r(U\ (Y2U 2Z)) = r(U) = (|Ya| + r(U \ Y2) = r(U))
= [Z|+r(Mu(B'\ 2)) —r(Y1UB)
riu(B'\ 2)) - |B'\ Z|
where we have used the formula for the rank function of a contracted matroid, dual

matroid and Observe that r(B’) = r(B'UY3) — |Ya| = | B’| — |Y2| = |Y1| where we use
the fact that |Y1| + |Y2| = |B| = |B’|.

Also, we have ry(B’) = r(Y1) = |Y1|. Thus the rank of both matroids is |Y7].

. We show there is a common independent set of size |Y;| for these matroids. The maxi-
mum size of the common independent set of M; and M, is exactly the mingcp 7 (2)+
ro(B’'\ Z). But for any Z C B’ we have

r(Z)+ro(B'\ Z) = r(ZUYs) — Yo +r(Y1UZ) — |Z]
r(ZUY1UYs) 4+ r(Z) = |Ya| = |Z]
= Y1 + [Ya| + |Z] — |Ya| — | Z]
a

v

as required.

. Let Z be the maximum common independent set of M; and M,. We claim Y, U Z is
a basis of M. Indeed we have Z € M implies that Z U Y5 is independent in M \ Y}
and thus in M. Moreover, Z is independent in My and thus Z U Y5 is independent in
M*\'Y; and thus in M*. In particular U \ (ZUY32) =Y, U (U \ Z) is independent in
M as required.
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6 Solution: Probabilistic Combinatorics

To establish a lower bound on E[maxcut(G)], we recall that maxcut(G) > |E(G)|/2 for every
graph G, and hence

E[maxcut(G)] > %EHE(G)H _ g(g) > P O(pm).

Since pn < ,/pn®?, this gives the right lower bound.

In the sequel we bound E[maxcut(G)] from above.

Case 1: p < 1600/n. (Of course, 1600 here is just an arbitrary large constant.) In this case
we make the trivial observation that maxcut(G) < |E(G)|, which implies that

n

E[maxcut(G)] < E[|E(G)|] = p(2

) = O(pn®).
It follows that the desired upper bound holds, since pn? < 40,/pn®? for p < 1600/n.
Case 2: p > 1600/n. For a partition V(G) = AU B, let e(A, B) denote the number of edges

of G joining A to B. Then maxcut(G) is the maximum of e(A4, B) taken over all partitions
of V(G).
pn?

Claim. P [maxcut(G) > +10,/pn®?| < e,

Proof. Consider any partition V(G) = AL B. Notice that e(A, B) is a binomial random
variable with |A||B| trials and success probability p. Since |A||B| < n?/4, the Chernoff
bound yields

2 2 2
P [e(A, B)>(1 +6)]%] < exp (—% %) forall 0 <0 < 1.

Taking 6 = 40/,/pn (note that 6 < 1 since p > 1600/n) yields

i 400
P {e(A, B) >+ 10\/;‘9713/2] < exp (_?n) Ty

There are 2"~ ! ways to partition V(G) into two subsets, so the union bound gives

pn?

P [maxcut(G) >

+10\/ﬁn3/2:| S 2n71 . 67100n < 6750n7

as desired. ]
Since maxcut(G) < n?/4 for all G, we can use the above claim to write
2 2 2
E[maxcut(G)] < ]% +10/pn? + nz = ]% +O(/pn®?),

which completes the solution.
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