
ACO Comprehensive Exam October 12 and 13, 2015

1. Computability, Complexity and Algorithms

Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed
cycles that cover all vertices of the graph.

1. Show that there is a polynomial-time algorithm to find a cycle cover of a directed graph if
one exists.

2. Show that deciding if a directed graph has a cycle cover with at most k cycles, for any
fixed integer k ≥ 1, is NP-complete.

3. Show that deciding if a directed graph has a cycle cover where each cycle has at least 1%
of the vertices is NP-complete.

2. Analysis of Algorithms

The following LP-relaxation is exact for the maximum weight matching problem in bipartite
graphs but not in general graphs. Give a primal–dual algorithm, relaxing complementary slack-
ness conditions appropriately, to show that the integrality gap of this LP is ≥ 1/2. What is the
best upper bound you can place on the integrality gap?

maximize
∑

e

wexe (1)

subject to
∑

e: e incident at v

xe ≤ 1, v ∈ V

xe ≥ 0, e ∈ E

3. Theory of Linear Inequalities

Let P ⊆ [0, 1]n be an integral polytope contained in the 0/1 cube, i.e., the polytope as 0/1
vertices. The goal is to maximize an objective c ∈ Zn over P . You are given a feasible integral
solution x̄ ∈ P and access to the polytope P is restricted to querying the following oracle:

ℓ1-penalty oracle:

Input: x0 ∈ P integral, λ ∈ R+, objective c ∈ Zn

Output: x ∈ P integral with

c(x− x0)− λ‖x− x0‖1 > 0,

if such an x exists, otherwise return INFEASIBLE.

Consider the following simple scaling algorithm, where C := ‖c‖∞.
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1. Initialize λ← 2C and x0 ← x̄.

2. Repeat

(a) Query oracle with x0, c, λ.

(b) IF the oracle returns a point x, then set x0 ← x.

(c) ELSE if the oracle returns INFEASIBLE, then set λ ← λ/2.

3. Until λ < 1/n.

4. Return x0.

Task.

• Prove that the algorithm optimizes c over P with O(n log nC) oracle calls.

• Bonus: Can you further reduce the number of oracle calls to O(n logC), via a small modi-
fication to the algorithm?

Hint. Suppose that for a given choice λ ∈ R+ the oracle returns INFEASIBLE. Then in particular,
also for the integral solution x∗ ∈ P that maximizes c, it holds:

c(x∗ − x0)

‖x∗ − x0‖1

≤ λ

4. Combinatorial Optimization

In the (fractional) multi-commodity flow problem, we are given a directed graph G = (V, E)
and pairs (s1, t1), . . . , (sk, tk) of vertices of G, a capacity function c : E → Q≥0, and demands
d1, . . . , dk, and we seek to find for each i = 1, . . . , k an si − ti-flow xi ∈ QE

≥0 so that xi has value

di and so that for each arc e of G:
∑k

i=1
xi(e) ≤ c(e).

Question 1. Show with Farkas’ Lemma that the multicommodity flow problem has a solution if
and only if for each ‘length’ function l : E → Q≥0 one has:

∑k

i=1
didistl(si, ti) ≤

∑
e∈E l(e)c(e).

(Here distl(s, t) denotes the length of a shortest s− t path with respect to l.)

Question 2. The cut condition states that for each W ⊆ V , the capacity of δout(W ) is not less
than the demand of W , where the capacity of δout(W ) is cap(δout(W )) :=

∑
(c(e) : e ∈ δout(W ))

and the demand of W is
∑

(di : si ∈ W and ti 6∈ W ). Interpret the cut condition as a special
case of the condition in Question 1.
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5. Graph Theory

We are given two square sheets of paper, each of area 2015. Each sheet is divided into 2015
polygons of area 1 (the divisions may be different). One sheet is placed on top of the other.
Show that we can place 2015 pins in such a way that the interior of each of the 4030 polygons is
pierced.

6. Probabilistic methods

Consider the random graph G := Gn,p with p := p(n) = 1/(6
√

n), and let S be a fixed subset
of k ≥ 2 vertices of G, where (k/6000 lnk)2 ≤ n. Let Y be the maximum size of a set of edge-
disjoint triangles in G such that every triangle in the set has at least two vertices in S. Prove
that for every positive integer t

Pr(Y ≥ t) ≤ (30k ln k)t

t!
,

and deduce that
Pr(Y ≥ 120k ln k) < k−3k .

You may assume that k is sufficiently large.
Remark. The constant “3” in the last expression may be improved, but to do so may require a
calculator. The stated bound can be derived using mental arithmetic only.

7. Algebra

Which of the following rings are isomorphic? Justify your answers.

1. R0 = F5[X]/(X2)

2. R1 = F5[X]/(X2 − 1)

3. R2 = F5[X]/(X2 − 2)

4. R3 = F5[X]/(X2 − 3)


