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1. Theory of Linear Inequalities

For each k = 0, . . . , n, let Uk denote the set of all vectors x ∈ Rn such that x has exactly k coordinates
equal to 1/2 and all other coordinates of x are either 0 or 1. Let P ⊆ {x ∈ Rn : 0 ≤ x ≤ 1} be a
polyhedron and let P ′ denote its Chvátal closure. Show that if Uk ⊆ P for some k < n, then Uk+1 ⊆ P ′.

2. Combinatorial Optimization

Let G = (V,E) be a complete graph. For a vertex v ∈ V let δ(v) denote the set of edges having v as
an end; for S ⊂ V let γ(S) denote the set of edges having both ends in the set S; for a set F ⊂ E let
x(F ) denote

∑
(xe : e ∈ F ).

A Hamiltonian circuit in G is an integer solution to the following linear system:

x(δ(v)) = 2, for all v ∈ V

x(γ(S)) ≤ |S| − 1, for all S 6= V, |S| ≥ 3

0 ≤ xe ≤ 1, for all e ∈ E.

By a comb we refer to a non-empty handle H ⊆ V,H 6= V and 2k +1 pairwise disjoint, non-empty teeth

T1, T2, ..., T2k+1 ⊆ V , for k at least 1. We require each tooth Ti to have at least one vertex in common
with the handle and at least one vertex not in the handle.

Show that the comb inequality

x(γ(H)) +
2k+1∑

i=1

x(γ(Ti)) ≤ |H|+
2k+1∑

i=1

(|Ti| − 1)− (k + 1).

is satisfied by all Hamiltonian circuits of G by deriving the inequality as a Chvátal cut for the above
linear system.

NOTE: No credit is given for an alternative proof that comb inequalities are satisfied by Hamiltonian
circuits. Such a proof is given, for example, on page 988 of Schrijver’s Combinatorial Optimization.

3. Analysis of Algorithms

We say that a 4-CNF formula is strongly satisfiable if it has an assignment that satisfies at least 2
literals in each clause. Design a polynomial time randomized algorithm that given a 4-CNF formula Ψ
which is strongly satisfiable, finds a satisfying assignment (in the usual sense) of Ψ. The algorithm is
not required to find a satisfying assignment if the input formula is not strongly satisfiable (even if it is
satisfiable in the usual sense).
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4. Graph Algorithms

Design a polynomial-time algorithm for the following problem and prove its correctness.
INPUT: A graph G and edges e1, e2 ∈ E(G).
QUESTION: Do there exist disjoint cycles C1, C2 in G such that ei ∈ E(Ci)?
Note. To receive full credit a complete proof is required; not just a statement of a theorem from the
literature.

4. Approximation Algorithms

Consider the weighted vertex cover problem on a graph G(V,E) over vertices V =[n], with corresponding
costs ci >0, i ∈ [n]. Show that, for any ǫ ∈ [0, 1), the following hold:
(a) The algorithm below is a factor 2/(1−ǫ) approximation algorithm for weighted vertex cover.
(b) The analysis of (a) cannot be improved beyond factor (2−ǫ)/(1−ǫ).
Note: You may answer the question for ǫ=0 for partial credit strictly greater than zero.

Algorithm
1. Initialization:

U ← E (all edges are uncovered)
∀e ∈ E, ye ← 0
C ← ∅ (no vertices have been added to the vertex cover)
∀u ∈ V = [n], δu ← cu

2. While U 6= ∅ (thus while C is not a vertex cover) do:
Pick an uncovered edge e∈U , and let the endpoints of e be e=(u, v)
µ = min(δu, δv)
ye ← µ
δu ← δu − µ
δv ← δv − µ
Include in C all vertices having δi ≤ ǫ ci and update U :

∀i ∈ V = [n], if δi ≤ ǫ ci then C ← C ∪ {i}
U ← U \

⋃
(i,j)∈E:i∈C{(i, j)}

3. Output C.

5. Graph Theory

Let G be a simple graph on n vertices and m edges. Prove that it has at least m
3n

(4m− n2) triangles.
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6. Probability

A superinversion of a permutation σ on {1, . . . , n} is a pair (i, j) satisfying the following two conditions:

(i) j − i >
n

4

(ii) σ(i) − σ(j) >
n

4
.

Let Xn be the number of superinversions of a permutation chosen uniformly at random from all n!
permutations on n elements.
(a): Compute, up to first order, E(Xn).
(b): Let ǫ be fixed and arbitrary. Show that

P ((1− ǫ)E(Xn) < Xn < (1 + ǫ)E(Xn)) = 1− o(1)

as n tends to infinity.

7. Algebra

Let R be an integral domain and suppose that R[x] is a principal ideal domain. Show that R is a field.


