ACO Comprehensive Exam March 17 and 18, 2014

1. Computability, Complexity and Algorithms

(a) Let G(V, E) be an undirected unweighted graph. Let C' C V be a vertex cover of G. Argue
that V' \ C' is an independent set of G.

(b) Minimum cardinality vertex cover and maximum cardinality independent set are well known
NP-complete problems. Suppose that you have a polynomial time approximation algorithm that,
on input an undirected unweighted graph G(V, E), outputs a vertex cover C' whose cardinality is
at most 20PT. Is the cardinality of the independent set V' \ C' a constant factor approximation
algorithm for maximum independent set? If yes give a proof, if no give a counter example.

(c) Give a polynomial time algorithm that, on input an undirected unweighted bipartite graph
G, outputs a minimum cardinality vertex cover of G.

Solution: (a) C' is a vertex cover of G, therefore for every edge {u,v} € E it is the case that
either u € C, or v € C, or both u and v belong to C. To argue that I = V' \ C' is an independent
set, we need to show that, for every pair of vertices ' € I and v’ € I, it is the case that
{v';v'} ¢ E. This is obviously true, since if {v/,v'} € E, then either v’ € C, or v € C, or both,
contradicting the assumption that both «' and v’ belong to I =V '\ C.

(b) The anwer is no. Counter example. Suppose G(V, E) is the complete bipartite graph,
with V.= LUR, |L| = |R| = |V|/2, and all edges having exactly one endpoint in L and the
other endpoint in R. Clearly L is a minimum cardinality vertex cover and it has cardinality
|V|/2, and R is a maximum cardinality independent set and has cardinality |V|/2. Clearly, a
factor 2 approximation algorithm for vertex cover may output C' =V = L U R which satisfies
|C| = |V| < 20PT. However, the complement of C'is I =V \ C = ), with |I| = 0, which is not
a constant approximation for the cardinality of the minimum independent set |R| = |V|/2.

(c) Here is an algorithm:

Input: undirected, unweighted bipartite graph G(V, E') with vertex bipartition classes L and R.
Construct the standard flow network corresponding to G: G' = (V' E'),s,t,c=1Ve € E .

S is a mincut in G’, which can be found in polynomial time using standard maxfow.

Let Ly :=LNS, Ly:=L\S, R :=RNS,Ry =R\ S.

Let B be the set of vertices in Ry that have neighbors in L;.

C .= L2 U Rl U B.

output C'.

Fact C' is a vertex cover of G.

Proof. The set C' covers all edges that have one endpoint in either Ly or Ry, because C' includes
all of Ly and R;. All remaining edges must have one endpoint in L; and the other endpoint in
Ry. These edges are then clearly covered by B.

Fact G has no vertex cover of cardinality smaller than |C/.

Proof. Let k be the capacity of the cut S. Then k = |Lo| + |R1| + |edged(Ly, Ry)|, consequently
k > |Ls| 4+ |R1| + |B| = |C|. But S is a mincut of G’, thus k is equal to the mincut of G, which
is equal to the maxiflow in G’, which is equal to the size of the maximum cardinality matching
of G. This means that G has a matching of size k, and therefore every vertex cover of G must
have cardinality at least & > |C/|.
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2. Analysis of Algorithms

1. The ezact matching problem is the following: Given a bipartite graph G = (U, V| F) and an
integer k < n, with |U| = |V| = n and with a subset £’ C E of the edges colored red, an exact
matching is a perfect matching with exactly k red edges. Give randomized polynomial-time
algorithms for:

(a) Testing if G has an exact matching.

(b) If so find one.

2. Next consider an extension of this problem where two disjoint subsets £ and Es of edges are
colored red and blue, respectively, and two integers k1, ko are specified with k; + ko < n. Now we
seek a perfect matching with k; red edges and ks blue edges. Repeat the two previous questions
for this extended notion.

Solution: Let A be the n x n adjacency matrix for G. Corresponding to each red edge (i, j),
replace A(Z, j) by the variable x. Let A, be the resulting matrix. Now G has an exact matching
iff the permanent of A has the monomial cx*, where ¢ > 0. However, permanent is hard to
compute. Instead, multiply each entry of A, by a randomly and independently picked number
in the range [0, 2n?] to obtain the matrix A’, say.

Compute |A’|. By Schwartz’s Lemma, if G has an exact matching, then with high probability,
the monomial with 2* will have a non-zero coefficient and that will be proof of existence of exact
matching. If G has no exact matching, then the determinant will not have this monomial. If
yes, the exact matching can be found using self-reducibility.

For the second part, in A, replace red edges by variable x and blue edges by variable y and
again multiply each entry by a randomly and independently picked number in the range [0, 2n?]
to obtain the matrix A”, say. Now with high probability in |A”| the monomial z*¢y*? will have a
non-zero coefficient iff G has an exact matching. If yes, again it can be found via self-reducibility.

3. Theory of Linear Inequalities

For a system Az < b of m rational linear inequalities and a set S C {1,...,m} let
AS{L’ = bs, Agl’ S bg (1)

denote the system obtained by setting each inequality in .S to equality while keeping each in-
equality in S = {1,...,m} \ S as an inequality.

Suppose the system (1) has no solution for some specified set S. Then, by Farkas’s Lemma, there
exists a vector (ys,yg) such that

yebs +yibg < 0, ysAs +yLAg =0, yg > 0. (2)
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Due to the equality constraints, the vector yg might have negative components. Notice, however,
that we may scale (yg,yg) so that it satisfies

ysbs +ybs <0, y§As +yEAs =0, ys > —1, yg > 0. (3)

Now (2) necessarily has an integral solution (since it has a rational solution), but (3) may not
be solvable in integers. We say that the infeasibility of (1) can be proven integrally if (3) does in
fact have an integral solution.

Prove the following theorem.

Theorem 1 Let A be an integral matriz and let b be a rational vector such that Ax < b has at
least one solution. Then Ax < b is totally dual integral if and only if

(i) the rows of A form a Hilbert basis
and

(ii) for each subset S of inequalities from Ax < b, if (1) is infeasible, then this can be proven
integrally.

Solution is available upon request.

4. Combinatorial Optimization

Recall that a graph G is factor critical if for all v € V(G), G — v has a perfect matching. A near
perfect matching is a matching covering all but one vertex of the graph. It is known that every
2-connected factor critical graph G contains pairwise edge-disjoint subgraphs Gy, Hy, ..., H
satisfying the following. For j =1,....k, let G; = Gy UJ_, H;.

a. Gy is an odd cycle and G = Gy,

b. H; is an odd length path with both ends in G;_; and no internal vertex in V(G;_1).
Specifically, the endpoints of H; are distinct.

You may use this assertion without proof. Show that every 2-connected factor critical graph G
contains at least |E(G)| distinct near perfect matchings.

Solution. Let Gg, Hi, ..., H}, be the decomposition we get from the statement of the problem,
and let G; = Go U J; H;. We will inductively show that G; has |E(G;)| distinct near perfect
matchings for all 7. As G is an odd cycle, the statement clearly holds for Gj.

Fix [ > 1, let m = |E(G))|, and assume G, has m distinct near perfect matchings. Label the
matchings M, ..., M,,. Let H;;; be an odd length path with vertices vy, ..., v, for some even
integer a. For every 1 < ¢ < m, the near perfect matching M; can be extended to a near perfect
matching M of G4 by including alternating edges of the path H; ;. Note that since M; must
cover at least one of the endpoints v; and v, of H;,4, it is not the case that both the edges v;v9
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and v,_1v, are contained in M. For every 2 < i < a — 1, we can find a perfect matching (call
it N;) of H.1 — v; by using alternating edges from the path H;,; and adding a near perfect
matching of G; avoiding one of the two endpoints of H;;;. Note that each M/ covers every
vertex of H;y; except possibly one of the endpoints vy or v,. Thus, M{,..., M/  Na, ..., No_q
are m + (a — 2) = |E(Gy41)| — 1 distinct near perfect matchings of G ;.

To complete the proof, we need to find one more near perfect matching in Gy,1. Let J; be
a near perfect matching in G; covering every vertex but v;. Let Jy be a near perfect matching
in GG; covering every vertex except for v,. Then J; U Jy has components which are even length
cycles, single matching edges, and an even length path P from v, to v,. Let v' be the neighbor
of v; on P. By taking alternating edges of P which are not incident to any of the three vertices
U1, Vg, Or V', we see that there exists a matching J in G; which covers every vertex except vy, v,,
and v’. By adding alternating edges of H;,1, we can extend J to a near perfect matching J' of
G141 covering every vertex except v’. Note that by construction, the edges vivy and v,v,_1 are
both contained in J'. Thus, J’ is distinct from Mj, ..., M/ , Na, ..., No_o, completing the proof.

5. Graph Theory

Prove that for every integer £k > 1 there exists an integer N such that if the subsets of
{1,2,..., N} are colored using k colors, then there exist disjoint non-empty sets X, Y C {1,2,..., N}
such that X, Y and X UY receive the same color.

Hint. You may want to consider intervals.

Solution: By Ramsey’s theorem there exists an integer N such that for every k-coloring of 2-
element subsets of {1,2,..., N 4 1} there exists a 3-element set A C {1,2,..., N 4+ 1} such that
all 2-element subsets of A receive the same color. We claim that N satisfies the requirements
of the problem. For i,j € {1,2,...,N 4+ 1} with i < j we color the set {4, j} using the color
of the set {i,i +1,...,7 — 1}. By the choice of N there exist i,j,k € {1,2,...,N + 1} such
that i« < j < k and the sets {i,7}, {J,k} and {i,k} receive the same color. Then the sets
X ={i,i+1,...,j—1}and X :={j,7+1,...,k — 1} are as desired.

6. Probabilistic methods

A proper list-coloring of a graph G = (V, E) from lists {L, C N | v € V'} is a function ¢: V — N
such that ¢ (v) € L, for all v € V and ¢ (u) # ¢ (v) for all {u,v} € E.

Let 7 be a natural number. Prove that if for all v € V' we have |L,| = 10r and for all j € L,
there are at most r neighbors u € V' of v such that j € L,, then G admits a proper list-coloring
from these lists.

Solution: Consider a random list-coloring ¢ of GG, where each ¢ (v) is selected from L, indepen-
dently and equiprobably. For an edge e = {u,v} € E and a color j € L, N L,, let EJ be the
event that ¢(u) = c¢(v) = j. The event E/ is independent of £} when e and f are disjoint or
when j ¢ Leny, so EY is only dependent of at most d =2 (r — 1) - 10r other events. Since

20r(r—1)+1) e
< -<1
10072 ) 7

e(d+1)Pr[Eg]:6(
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by the local lemma, Pr [ﬂe i Eé] > 0, implying that there is a proper list-coloring of G from the
given lists.

7. Algebra

Two polynomials f, g € R[t] over a commutative ring R with identity are called relatively prime
over R if f and g generate the unit ideal in R[t]. Let f, g € Z[t] be non-constant monic polyno-
mials such that f and g are relatively prime over Q and the residues of f and ¢ modulo p are
relatively prime over Z/pZ for all prime numbers p. Prove that f and g are relatively prime over
Z.

Solution: Since f and g are relatively prime over Q, there exist rational numbers «, 3 such that
af + (Bg = 1. Clearing denominators, we find that there exist integers a, b and a positive integer
d such that

af +bg =d. (4)

Without loss of generality, we may assume that d is the minimal positive integer for which there
is a relation of the form given in (4). We would like to show that d = 1.

Suppose for the sake of contradiction that d > 1, and let p be a prime number dividing d.
Then af + bg = 0 in (Z/pZ)[t], which implies that

af = —bg. (5)

Since Z/pZ is a field, (Z/pZ)[t] is a Unique Factorization Domain, and since f, g are monic and
non-constant, f and g are not units in (Z/pZ)[t]. Thus (5) implies that @ = b = 0, which means
that p | @ and p | b. But then p | d as well, and dividing both sides of (4) by p contradicts the
minimality of d. Thus d = 1 as claimed, which means that f, g are coprime over Z.



