
CONVEX AND STRUCTURED NONCONVEX OPTIMIZATION FOR MODERN
MACHINE LEARNING: COMPLEXITY AND ALGORITHMS

A Dissertation
Presented to

The Academic Faculty

By

Digvijay Pravin Boob

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Algorithms, Combinatorics, and Optimization

Georgia Institute of Technology

July 2020

Copyright c© Digvijay Pravin Boob 2020

CONVEX AND STRUCTURED NONCONVEX OPTIMIZATION FOR MODERN
MACHINE LEARNING: COMPLEXITY AND ALGORITHMS

Approved by:

Dr. Guanghui Lan, Advisor
Department of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Santanu S. Dey, Advisor
Department of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Arkadi Nemirovski
Department of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Renato Monteiro
Department of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Santosh Vempala
School of Computer Science
Georgia Institute of Technology

Date Approved: July TBD, 2020

To my parents

ACKNOWLEDGEMENTS

I am immensely grateful for consistent support of my advisors Guanghui (George) Lan and

Santanu Dey throughout my PhD. George was always patient and kind with me, especially in the

beginning of my PhD when I was getting introduced to advanced concepts in nonlinear optimiza-

tion. Santanu has always been mentoring me through different phases of my PhD life and being

with him has trained me on how to convey complex ideas in simple words. Discussions with both

of them have always boosted my morale to do good quality research. Apart from this, I would

also like to thank Rachel Cummings and Praneeth Netrapalli for their support as well as help for

my job applications. I am grateful to Renato Monteiro, Arkadi Nemirovski and Santosh Vempala

for being part of my thesis committee. I would also like to express my gratitude towards my col-

laborators: Rachel Cummings, Qi Deng, Yu Gao, Santanu S. Dey, Guanghui Lan, Richard Peng,

Saurabh Sawlani, Amaresh Ankit Siva, Uthaipon Tantipongpipat, Charalampos E. Tsourakakis,

Chris Waites, Di Wang, Junxing Wang.

I was fortunate to have spent time with good friends at Georgia Tech and I am thankful to

Matthew Fahrbach, Sara Kaboudvand, William Kong, Georgios Kotsalis, Arvind Krishna, Kevin

Lai, Yulia Lut, Samantha Petti, Adrian Rivera, Samira Samadi, Saurabh Sawlani, Yasaman Shahi,

and Peng Zhang. I am also grateful to seniors: Prateek Bhakta, Ben Cousins, Sarah Cannon,

Crostobal Guzman, Asteroid Santana, Alfredo Torrico, Aurko Roy, and Sadra Yazdanbod. Finally,

I would like to thank my parents for their unwavering support and belief in me.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Computational Complexity . 1

1.2 Complexity Theory for Convex Optimization . 3

1.2.1 Composite convex optimization . 6

1.3 Convex Optimization under a Stochastic First-order Oracle 8

1.3.1 Unified method for stochastic composite convex optimization 9

1.4 Advances in Convex Function Constrained Optimization 11

1.5 Advances in Composite Nonconvex Optimization 13

1.6 Organization of the Thesis . 15

Chapter 2: Complexity of Training ReLU Neural Network 17

2.1 Introduction to Neural Networks . 17

2.2 Complexity of training neural networks . 18

2.2.1 Complexity of training neural network with rectified linear unit (ReLU)
activation function . 18

vi

2.2.2 Our Contributions . 20

2.3 Notation and Definitions . 21

2.4 Main Results . 23

2.5 Training 2-ReLU NN is NP-hard . 25

2.5.1 Reduction . 26

2.6 Discussion . 32

2.7 Proofs of Auxiliary Results . 32

2.7.1 Proof of Theorem 2.4.3 . 32

2.7.2 Proof of Proposition 2.4.4 . 34

2.7.3 Proof of Lemma 2.5.6 . 35

2.7.4 Proof of Lemma 2.5.5 . 36

2.7.5 Proof of Proposition 2.5.8 . 37

2.7.6 Proof of Proposition 2.7.2 . 38

2.7.7 Proof of Lemma 2.5.9 . 40

2.7.8 Proof of Corollary 2.5.11 . 41

Chapter 3: Stochastic First-order Method for Convex Function Constrained Optimiza-
tion . 42

3.1 Convex Function Constrained Optimization Problem 42

3.1.1 Algorithms for solving convex function constrained optimization 43

3.1.2 Unified algorithm for composite convex function constrained optimization . 44

3.2 Notation and Terminologies . 46

3.3 Constraint Extrapolation Method . 47

3.4 Convergence analysis of the ConEx method . 60

vii

Chapter 4: Stochastic Proximal Point method for Structured Nonconvex Function Con-
strained Optimization . 82

4.1 Structured Nonconvex Function Constrained Optimization 82

4.1.1 Algorithms in the literature . 83

4.1.2 New method for solving structured nonconvex function constrained opti-
mization . 84

4.1.3 Notation and terminologies . 86

4.2 Proximal Point Methods for Nonconvex Function Constrained Problems 88

4.2.1 Exact proximal point method . 90

4.2.2 Inexact proximal point method . 103

4.3 Proofs of Auxiliary Results . 114

4.3.1 Proof of Proposition 4.2.1 . 114

Chapter 5: Level Proximal Point Method for Nonconvex Sparse Constrained Opti-
mization . 117

5.1 Nonconvex Sparse Constrained Optimization . 117

5.1.1 Existing models . 118

5.1.2 A new model for nonconvex sparse constrained optimization 119

5.1.3 New algorithm for the proposed new model 119

5.1.4 Existing methods similar to the proposed algorithm 121

5.2 Level Constrained Proximal Point Method . 122

5.3 Convergence Analysis . 125

5.3.1 Asymptotic convergence of LCPP method and boundedness of the optimal
dual . 125

5.3.2 Complexity of LCPP method . 126

viii

5.4 Numerical Experiments . 129

5.5 Auxiliary results . 132

5.5.1 Existence of KKT points . 132

5.5.2 Proof of Theorem 5.3.1 . 133

5.5.3 Proof of Theorem 5.3.2 . 134

5.5.4 Explicit and specialized bounds on the dual 135

5.5.5 Proof of Theorem 5.3.3 . 144

5.5.6 Proof of Corollary 5.3.5 . 150

5.5.7 Convergence for the (stochastic) convex case 150

5.5.8 Proof for the projection algorithm for problem (5.11) 151

5.5.9 Supermartingale convergence theorem . 152

Chapter 6: Faster Width-dependent Algorithm for Mixed Packing and Covering LPs . 154

6.1 Mixed Packing and Covering LPs . 154

6.1.1 Previous work . 155

6.1.2 Our contributions . 156

6.2 Notation and Definitions . 157

6.3 Technical overview . 158

6.3.1 The `8 barrier . 160

6.4 Area Convexity for Mixed Packing Covering LPs 162

6.4.1 Saddle Point Formulation for MPC . 163

6.4.2 Area Convexity with Saddle Point Framework 164

6.4.3 Choosing an area convex function . 167

ix

6.5 Proof of auxiliary results . 169

6.5.1 Proof of Lemma 6.3.1 . 170

6.5.2 Proof of Lemma 6.4.2 . 170

6.5.3 Proof of Lemma 6.4.4 . 171

6.5.4 Proof of Lemma 6.4.5 . 171

6.5.5 Proof of Proposition 6.4.6 . 172

6.5.6 Proof of Lemma 6.4.7 . 172

6.5.7 Proof of Lemma 6.4.8 . 173

6.5.8 Proof of Theorem 6.4.9 . 173

6.5.9 Proof of Lemma 6.4.10 . 174

6.5.10 Proof of Lemma 6.4.12 . 175

6.5.11 Proof of width reduction for the MPC problem 176

References . 189

Vita . 190

x

LIST OF TABLES

3.1 Different convergence rates of the ConEx method for 44

5.1 Convergence rates of LCPP for problem (5.5) when the objective can be either
convex or nonconvex, smooth or nonsmooth and deterministic or stochastic 121

5.2 Examples of constraint function gpxq “ λ‖x‖1 ´ hpxq. 123

5.3 Dataset description. mnist is formulated as a binary problem to classify digit 5
from the other digits. real-sim is randomly partitioned into 70% training data
and 30% testing data. 130

6.1 Comparison of runtimes of ε-approximation algorithms for the mixed packing cov-
ering problem. 157

xi

LIST OF FIGURES

1.1 Complexity classes P, NP, NP-complete, and NP-hard 2

2.1 Difference between ReLU model studied in [65, 25] and typical fully connected
counterpart . 20

2.2 (2,1)-ReLU Neural Network. Also called 2-ReLU NN after dropping ‘1’. Here
ReLU function is presented in each node to specify the type of activation function
at the output of each node. 22

2.3 Gadget: Blue points represent set T1 and red points represent set T0. 27

2.4 X-axis in figures above is output of the first layer of 2-ReLU NN i.e. w1

“

l1pπq
‰

`
`

w2

“

l2pπq
‰

`
. Y-axis is the output of second hidden layer node. Since output of first

hidden layer goes to input of second hidden layer, we are essentially trying to fit
ReLU node of second hidden layer. In particular, red and blue dots represent output
of first hidden layer on data points with label 1 and 0 respectively. In fig (a) we see
that hard-sorted input can be classified as 0{1 by a ReLU function. In fig (b) and
(c) we see that input which is not hard-sorted cannot be classified exactly as 0{1 by
a ReLU function. 29

5.1 Graphs for various constraints along with `1. For `pp0 ă p ă 1q, we have ε “ 0.1 . . 123

5.2 Objective value vs. running time (in seconds). Left to right: mnist (η “ 0.1d),
real-sim (η “ 0.001d), rcv1.binary (η “ 0.05d) and gisette (η “
0.05d). d stands for the feature dimension. 130

5.3 Testing error vs number of nonzeros. From left to right: mnist, real-sim,
rcv1.binary and gisette. 132

5.4 Plot of zpγq for SCAD function where λ “ 1, θ “ 5. z : r0, 3s Ñ Rě0 where
zp0q “ zp3q “ 0 otherwise z is strictly positive. 138

xii

5.5 All figures are plotted for λ “ 1 and θ “ 5. From left to right: η1 “ 3, η2 “ 2.8

and η3 “ 3.2. Then η1 “
λ2pθ`1q

2
“ 3. In first figure, we see that for |x| ě 5, the

MFCQ assumption is violated since only x-axis is feasible. Similar observation
holds for y-axis as well. However, in second and third figure such claims are no
longer valid. 139

5.6 Plot of function zpαq on y-axis and α on x-axis for λ “ 1, θ “ 5. The largest
possible value gpuq is λ2pθ`1q

2
“ 3 is achieved for u ě λθ “ 5 and lower bound

zp3q “ 0. Hence, setting u ě λθ maximizes the gpuq and minimizes zpαq “ zpgpuqq.141

6.1 Auxiliary view . 168

6.2 Level set γpx, yq ď ´0.5 . 168

6.3 Sublevel set for area convex function γβ . 168

xiii

SUMMARY

In this thesis, we investigate various optimization problems motivated by applications in modern-

day machine learning. In the first part, we look at the computational complexity of training ReLU

neural networks. We consider the following problem: given a fully-connected two hidden layer

ReLU neural network with two ReLU nodes in the first layer and one ReLU node in the second

layer, does there exists weights of the edges such that neural network fits the given data? We show

that the problem is NP-hard to answer. The main contribution is the design of the gadget which

allows for reducing the Separation by Two Hyperplane problem into ReLU neural network training

problem.

In the second part of the thesis, we look at the design and complexity analysis of algorithms for

function constrained optimization problem in both convex and nonconvex settings. These prob-

lems are becoming more and more popular in machine learning due to their applications in multi-

objective optimization, risk-averse learning among others. For the convex function constrained

optimization problem, we propose a novel Constraint Extrapolation (ConEx) method, which uses

linear approximations of the constraint functions to define the extrapolation (or acceleration) step.

We show that this method is a unified algorithm that achieves the best-known rate of conver-

gence for solving different function constrained convex composite problems, including convex or

strongly convex, and smooth or nonsmooth problems with a stochastic objective and/or stochastic

constraints. Many of these convergence rates were obtained for the first time in the literature. Be-

sides, ConEx is a single-loop algorithm that does not involve any penalty subproblems. Contrary

to existing dual methods, it does not require the projection of Lagrangian multipliers onto a (possi-

bly unknown) bounded set. Moreover, in the stochastic function constraint setting, this is the first

method that requires only bounded variance of the noise; a major relaxation over the restrictive

assumption of subgaussian noise in the existing algorithms.

In the third part of this thesis, we investigate a nonconvex nonsmooth function constrained op-

timization problem, where we introduce a new proximal point method which transforms the initial

xiv

nonconvex problem into a sequence of convex function constrained subproblems. For this algo-

rithm, we establish the asymptotic convergence as well as the rate of convergence to KKT points

under different constraint qualifications. For practical use, we present inexact variants of this algo-

rithm, in which approximate solutions of the subproblems are computed using the aforementioned

ConEx method and establish their associated rate of convergence under a strong feasibility con-

straint qualification.

In the fourth part, we identify an important class of nonconvex function constrained problem

for statistical machine learning applications where sparsity is imperative. We consider various

nonconvex sparsity-inducing constraints. These are tighter approximations of `0-norm compared

to `1-norm convex relaxation. For this class of problems, we relax the requirement of strong feasi-

bility constraint qualification to a weaker and a well-known constraint qualification and still prove

convergence to KKT points at the rate of gradient descent for nonconvex regularized problems.

This work performs a systematic study of the structure of nonconvex sparsity inducing constraints

to obtain bounds over Lagrange multipliers and solve certain subproblems faster to achieve con-

vergence rate that matches the rates of nonconvex regularized version under a relaxed constraint

qualification which is satisfied by almost all the time.

In the fifth part, we present a faster algorithm for solving mixed packing and covering (MPC)

linear programs. The proposed algorithm is from a family of primal-dual type algorithm, similar

to ConEx. Here, the main challenge comes from the feasible set of the primal variables which is

`8 ball for a general MPC. The diameter of the ball is at least Ωp
?
nq, where n is the dimension of

LP. This huge diameter also costs in the complexity. We give specialized treatment to this problem

and use a new regularization function which is weaker than the strongly convex function and still

obtains accelerated convergence rate. Using this regularizer, we replace the polypnq term in the

complexity to a logarithmic term.

xv

CHAPTER 1

INTRODUCTION

In this chapter, we introduce some background on computational complexity as well as complexity

theory for convex optimization which motivated the systematic study of decision and optimization

problems.

1.1 Computational Complexity

Computational complexity theory focuses on systematically classifying computational problems

into various complexity classes based on their inherent difficulty. A computational problem is

solved by a computer and is solvable by the application of predefined mathematical steps, i.e., an

algorithm. The notion of inherent difficulty is formalized by the amount of resources needed to

solve them, such as time and storage, which is known as time complexity and space complexity,

respectively. A complexity class is a set of problems with related complexity. The role of compu-

tational complexity theory is to determine the practical limits of what computers can and cannot

do.

A detailed study of various models of computation is beyond the scope of this chapter. Here,

we just state a brief overview of some key complexity classes and the formalism that determines

whether a problem belongs to a particular complexity class. In particular, we are interested in

four complexity classes for this introduction: P, NP, NP-complete, and NP-hard. Informally, P is a

class of problems that can be solved given a deterministic set of rules in Oppolypnqq computations

where n is the size of the input, defined appropriately for each problem. The problems in class

P are supposed to be efficiently solvable problems. NP is a class of problems that can be solved

by the non-deterministic set of rules in time Oppolypnqq. It is clear from the description that P is

contained in NP. NP-complete is a set of problems that are the hardest in the NP class. This class of

problems was introduced by Cook-Levin theorem. To discuss this theorem, the notion of reduction

1

Figure 1.1: Complexity classes P, NP, NP-complete, and NP-hard

becomes important.

Suppose that Problem X and Problem Y are the two classes of problems. We say that Problem

Y can be reduced to Problem X if there is a deterministic polynomial-time method that converts

a general instance of Problem Y into a specific instance of Problem X, which is mathematically

denoted as YďP X. Naturally, if there is an algorithm to solve Problem X in polynomial time, then

there is an algorithm to solve any general instance of Problem Y. In other words, Y ďP X implies

that Problem X is at least as hard as Problem Y. Cook and Levin independently showed that any

problem in NP can be reduced to a set of problems that are called today as NP-complete. Hence,

the NP-complete class is the set of hardest problems in the complexity class NP.

NP-hard class is the set of problems that are at least as hard as any problem in NP. Note that

they may not be in NP at all. By this description, the simplest way to prove that Problem X is NP-

hard is to reduce a general instance of a known NP-complete problem to a particular instance of

Problem X in polynomial time. We will use this simple procedure to prove that a certain decision

problem related to the training of a neural network is NP-hard. It should be noted that many

problems in NP-hard are known to be solved up to some constant approximation ratio or even up

to any approximation ratio in polynomial-time. Please refer to Figure 1.1 which summarizes our

discussion of the complexity classes.

2

1.2 Complexity Theory for Convex Optimization

In the previous section, we presented computational complexity theory whose mathematical mod-

els of computation are useful for decision problems or sometimes even search problems. How-

ever, continuous optimization problems require different models of computation for analyzing their

complexity in a meaningful way. In this section, we will look at the complexity theory for general

convex optimization problems and understand the limits of what is achievable with commonly used

oracles for convex optimization.

A general convex optimization problem can be written as

f˚ :“ min
xPX

f0pxq

subject to fipxq ď 0, i “ 1, . . . ,m,

(1.1)

where X Ă Rn is a convex compact set with nonempty interior, the objective f0 and constraints

fi, i “ 1, . . . ,m, are convex continuous functions overX . Let us also assume that convex program

(1.1) is feasible and class of such problems is denoted by CmpXq. Then feasibility assumption

along with compactness of X implies optimal value of (1.1) must be attained at some feasible

solution, i.e., (1.1) is solvable. We identify an instance of CmpXq by I “ rX, f0, f1, . . . , fms. A

first order oracle G for the class of convex programs, takes an instance I and a point x P intX ,

outputs the values and subgradients of the objective and constraints at the point x. In particular, G

can be defined as a map from X to Rpn`1qˆpm`1q given by

xÑ Gpx; Iq “ rf0pxq, f
1
0pxq; f1pxq, f

1
1pxq; . . . ; fmpxq, f

1
mpxqs.

Suppose that a solution mechanismM, applied to instance I, calls the oracle G sequentially

with input xi, the i-th search point. In the first iteration, the search point x1 is generated without

any information but the i-th search point is generated using accumulated information of the search

points already visited. The mechanism can also perform a termination test during the run. How-

3

ever, the test must depend on the information given by the oracle, G. The final output of mechanism

M on instance I is denoted by sxpI,Mq. Now that we have introduced sufficient notation, we are

ready to talk about complexity for convex optimization. The total number of steps performed by

mechanismM, applied to instance I, is called the iteration complexity. By iteration complexity,

we mean that each iteration involving the evaluation of G at a certain point, and then doing some

simple computation to get the next iterate is considered to be the unit cost. This mode of compu-

tation is commonplace for complexity measures involving iterative methods of which mechanism

M is an instance. In fact, the use of iterative methods is so mainstream that we denote iteration

complexity by just complexity whenever we talk about continuous optimization. We denote the

complexity of M on instance I by CompxpM, Iq. This quantity can be `8 if the mechanism

does not terminate on instance I. Accordingly, we define the complexity of M on the family

CmpXq as

CompxpMq :“ sup
IPCmpXq

CompxpM, Iq.

Note that algorithms for convex optimization cannot solve problem (1.1) exactly. However, they

can obtain an approximate solution that is reasonably close to the optimal. The closeness to the

optimality is denoted by an accuracy measure. Let us denote the accuracy of the solution x P X

for instance I by,

εpx; Iq :“ max
! f0pxq ´ f

˚

maxyPX f0pyq ´ f˚
,

“

f1pxq
‰

`

maxyPX
“

f1pyq
‰

`

, . . . ,

“

fmpxq
‰

`

maxyPX
“

fmpyq
‰

`

)

, (1.2)

where
“

¨
‰

`
:“ maxtx, 0u. We define the accuracy ofM applied to instance I by the accuracy of

its output sxpM, Iq, i.e.,

AccurcpM, Iq :“ εpsxpM, Iq; Iq,

and the accuracy of mechanismM applied to the whole family CmpXq by

AccurcpMq :“ sup
IPCmpXq

εpsxpM, Iq; Iq.

4

Finally, the complexity of the family CmpXq is defined as the best complexity of a mechanism

based on oracle G, for solving problems from this family with a given accuracy, i.e.,

Compxpεq “ min
M
tCompxpMq : AccurcpMq ď εu.

Now we look at the lower and upper bounds on the complexity. A lower bound on Compxpεq

means for whatever algorithm solving problems in CmpXq, there always exists a ‘bad’ problem

instance such that number of iterations performed by these algorithms is at least Compxpεq. An

upper bound on Compxpεq is the number of steps of a particular algorithm that returns a solution

of given accuracy for all problems in CmpXq.

To discuss a major result providing a lower bound for problem class CmpXq, we introduce

one more notion, called as asphericity κ of X . This term essentially tells how X differs from an

Euclidean ball. In particular, the asphericity κ is defined as the smallest ratio of radii of two con-

centric Euclidean balls Vi and Vo such that Vi Ď X Ď Vo. Below we state the result by Nemirovski

and Yudin [76] that provides lower and upper bounds for solving general convex programming

problems.

Theorem 1.2.1 The complexity of the family CmpXq of general convex programming problems

with m constraints over a convex compact set X P Rn of asphericity κ can be bounded by

min

"

n,

Z

1

p2κεq2

^*

ď Compxpεq ď
R

4κ2

ε2

V

, 0 ă ε ă 1.

We now make the following comments about the above result. First, the upper bound on Compxpεq

is obtained by the simple subgradient method. For fixed κ, this upper bound is dimension inde-

pendent. Second, for high-dimensional problems, i.e., n ě
Y

1
p2κεq2

]

, the lower bound is only a

constant factor smaller than the upper bound. Therefore the subgradient method is already optimal

for large-scale convex programming problems CmpXq. The only way to improve the performance

of an algorithm is to develop specialized algorithms for important subclasses of CmpXq. In the

next subsection, we will see an optimal method for convex optimization.

5

1.2.1 Composite convex optimization

In this section, we discuss the convex optimization problem

min
xPX
tψpxq :“ fpxq ` χpxqu, (1.3)

where we impose the requirement that f : X Ñ R has Lipschitz continuous gradients, i.e.,

‖∇fpxq ´∇fpyq‖˚ ď L‖x´ y‖

for all x, y P X . Here, ‖¨‖˚ denotes the dual norm and χ is a convex, possible nonsmooth function

satisfying

|χpxq ´ χpyq| ďM‖x´ y‖˚.

Hence, (1.3) is a general nonsmooth convex optimization problem. However, there is an additional

structure to the problem since we assume that, f , a component of the objective function is Lips-

chitz smooth. Lipschitz smooth means gradients are Lipschitz continuous. Since the objective is

composed of two convex components hence, we say that this is a composite convex optimization

problem.

Observe that problem (1.3) covers several important classes of convex programming problems

as certain special cases. For the sake of simplicity, we assume in the following discussion that the

domain X is a standard Euclidean ball.

Non-smooth convex optimization: Suppose that the smooth component f “ 0 in ψ. Then,

problem (1.3) becomes the generic non-smooth convex optimization problem that has been well-

studied in the literature. According to Nemirovski and Yudin [76], if the dimension n is sufficiently

large, then the complexity of any iterative algorithm satisfied the lower bound

Compxpεq ě
M2

ε2
.

6

Moreover, the simple subgradient descent method can achieve, up to a constant factor, the above

lower bound. Nemirovski and Yudin [76] also developed the mirror descent algorithm that can

be advantageous over the subgradient descent method when X is not a Euclidean ball by using a

prox-function (also called Bregman’s distance. More on this will come later).

Smooth convex optimization: Suppose that the non-smooth component χ “ 0 in ψ. Then,

problem (1.3) becomes the smooth convex optimization problem. In [76], Nemirovski and Yudin

show that, if the dimension n is sufficiently large, then the complexity of any iterative algorithm

can be lower bounded by

Compxpεq ě
ˆ

L

ε

˙1{2

.

In a major work, Nesterov [Neste] showed an upper bound on the complexity which at most con-

stant factor worse than the aforementioned lower bound. Hence, it is an optimal method. Nes-

terov’s method was further studied using Bregman distance in [blah]. However, it is unclear

whether the method converges in presence of nonsmooth component χ.

Finally, note that subgradient method when applied to composite convex optimization has the

complexity upper bound

Compxpεq ď
L2 `M2

ε2
,

whose dependence on Lipschitz constant L is suboptimal. In particular, a trivial lower bound on

complexity of (1.3) from [76] is

Compxpεq ě
ˆ

L

ε

˙1{2

`
M2

ε2
.

This motivated study of a specialized method that has unified convergence for composite problem

(1.3) which we will look in Section 1.3.1. Nesterov’s optimal method for smooth problems In the

next section, we look at convex optimization with stochastic first-order oracle.

7

1.3 Convex Optimization under a Stochastic First-order Oracle

In the previous section, we reviewed some important results for convex optimization under exact

first-order information. In many situations, the information returned by the first-order oracle is

inexact. One prominent example is given in the following stochastic programming problem:

min
xPX
tfpxq :“ ErF px, ξqsu, (1.4)

where ξ is a random vector whose probability distribution P is supported on set Ξ Ă Rd and

F : X ˆ Ξ Ñ R. We assume that for every ξ P Ξ, the function F p¨, ξq is convex on X , and that

the expectation

ErF px, ξqs “
ż

Ξ

F px, ξqdP pξq (1.5)

is well defined and finite valued for every x P X . It follows that the function fp¨q is convex and

finite valued onX . Moreover, we assume that f is continuous onX . With these assumptions, (1.4)

becomes a convex programming problem.

A difficulty of solving stochastic convex problem (1.4) is that the objective is written as an

expectation function for which exact zeroth and first-order oracles may not exist. Moreover, eval-

uating integral in (1.5) cannot be computed efficiently to the required accuracy for high dimension

d. Hence, a common notion is to assume existence of stochastic oracle SO, which we describe

next. At iteration t of the algorithm, xt P X being the input, the SO outputs a vector Gpxt, ξtq,

where tξtutě1 is a sequence of i.i.d. random variables (also independent of search points xt) whose

probability distribution P is supported on Ξ Ď Rd. Following assumptions are made on Borel

functions Gpx, ξtq.

For any x P X , we have

ErGpx, ξtqs “ gpxq P Bfpxq,

E
“

‖Gpx, ξtq ´ gpxq‖2
˚

‰

ď σ2,

8

where Bfpxq denotes the subdifferential of f at x. Note that we assume that we can obtain an

unbiased estimator of the subgradient whose second moment is uniformly bounded.

There exist two competing approaches for solving (1.4): stochastic approximation (SA) and

sample average approximation (SAA), both of which have a long history. Given the vast amount

of literature, we focus on just one work which is relevant for our discussion here. Recently, [74]

demonstrated that a properly modified SA method with iterate averaging can be competitive and

even outperform SAA approach for a certain class of stochastic problems. Moreover, this algorithm

exhibits unimprovable rate of convergence ErfpxNq ´ f˚s ď O
´

M`σ?
N

¯

where M is the modulus

of Lipschitz continuity of f . Note that the term M?
N

inside the convergence rate is equivalent to M2

ε2

upper bound on the complexity Compxpεq.

In the last section, we briefly discussed that subgradient method converges optimally for gen-

eral nonsmooth problems however has suboptimal dependence on Lipschitz constant for Lipschitz

smooth component of the composite optimization problem. In the next subsection, we describe

another method which exhibits unified convergence complexity for both smooth and nonsmooth

components which can be stochastic as well. Such unified complexity results show the benefits of

a systematic study of complexity analysis. Indeed the search for methods with faster convergence

such as Nesterov’s optimal method for smooth convex optimization or unified complexity results

in the upcoming section were motivated by the lower bound on the complexity as described in

Nemirovski and Yudin [76].

1.3.1 Unified method for stochastic composite convex optimization

Here, we consider the composite optimization problem (1.3) along with stochastic first-order oracle

information for function ψ satisfying the aforementioned assumptions of SO. This problem is

referred to as stochastic composite optimization problem.

In the following, we describe Lan’s accelerated stochastic approximation (AC-SA) [Lan-ACSA]

algorithm which exhibits unified and optimal convergence complexity for stochastic composite op-

timization problem. Note that the complexity for stochastic composite optimization can be lower

9

bounded by

Compxpεq ě
ˆ

L

ε

˙1{2

`
M2 ` σ2

ε2
,

where we change the notion of accuracy in (1.2) to the expectation notion

εpx, Iq :“ Efpxq ´ f˚,

where the expectation over x, assumed to be the output of a stochastic algorithm. Note that ex-

pected optimality gap is a natural criterion for error in stochastic convex optimization. since the

solution output by a stochastic algorithm is essentially a random variable. For the time being, we

also ignore the function constraints in the definition of accuracy. AC-SA method achieved an upper

bound on the complexity which is at most a constant factor worse than the lower bound mentioned

above.

AC-SA method is motivated by two different algorithms which were developed separately

for solving two different classes of problem. First inspiration comes from Mirror Descent SA

which is optimal for nonsmooth and stochastic convex optimization, and secondly from Nesterov’s

accelerated method which is optimal for smooth convex optimization. Without further ado, let us

see the AC-SA algorithm.

Accelerated Stochastic Approximation (AC-SA) method:

0. Let xag1 “ x1 P X . Set t “ 1.

1. xmdt “ 2
t`1
xt `

t´1
t`1
xagt .

2. Call SO to compute Gpxmdt , ξtq. Compute pxt`1, x
ag
t`1q P X ˆX as

xt`1 “ argmin
xPX

2

t` 1
γxGpxmdt , ξtq, xy `

1

2
‖x´ xt‖2

2,

xagt`1 “
2

t` 1
xt`1 `

t´ 1

t` 1
xagt .

10

3. Set tÐ t` 1 and go to step 1.

The main convergence result for AC-SA method is the following:

Theorem 1.3.1 Suppose γ in AC-SA algorithm is set to γ “ min
!

1
2L
,

?
6DX

pN`2q3{2p4M2`σ2q1{2

)

, where

DX “ maxx,yPX‖x´ y‖2 and N is a fixed in advance number of iterations. Then, we have

ErψpxagN`1q ´ ψ
˚
s ď

4LD2
X

NpN ` 2q
`

4DX

?
4M2 ` σ2

?
N

.

It is not difficult to observe that the upper bound on the complexity, i.e.,Nε for obtaining ErψpxagN`1q´

ψ˚s ď ε is at most

Compxpεq ď Nε ď Op1q

#

ˆ

L

ε

˙1{2

`
M2 ` σ2

ε2

+

.

Note that the problem addressed by AC-SA does not contain function constraint. In fact, tra-

ditionally most studies on function constrained optimization (with possibly nonconvex objective

and constraints) were focused on obtaining an asymptotic convergence result. We will look at this

quite general case in Section 1.5. However, there are some convergence results for convex function

constrained optimization which we will discuss briefly in the next section.

1.4 Advances in Convex Function Constrained Optimization

There are various methods for solving convex function constrained optimization with provable

convergence guarantees. We divided them into three separate categories.

First, there are primal methods that do not involve Lagrange multipliers of the constraints

functions. A notable example of this category is the level-set method due to Nesterov [61, 81]

which considers the case of nonsmooth and smooth deterministic function constrained optimization

problem separately. More recently, [lin2020] extended level-set method for nonsmooth stochas-

tic problems. Another type of primal method includes cooperative subgradient method which

was first introduced by Polyak [86] and later extended for stochastic problems in [60]. Note that

in both [lin2020, 60], the stochastic oracle requires a subgaussian tail which is a quite restric-

11

tive assumption than the bounded second moment oracle used in AC-SA. Moreover, these primal

methods don’t make the best use of smooth components of the objective/constraints and hence can-

not achieve a unified complexity result like AC-SA with accelerated convergence for the smooth

part. This problem resembles that of the subgradient method which is optimal for nonsmooth op-

timization problems but has worse than optimal dependence on Lipschitz constant when a smooth

component is present.

The second category consists of augmented Lagrangian and penalty methods. The first non-

asymptotic convergence result for these methods was shown in a series of papers [54, 55] for linear

constraints and general convex objective. This linearity assumption on constraints was relaxed in

[110]. However. all of these methods deal with smooth deterministic optimization problems and

hence, the problem class is quite restrictive.

The Third category consists of primal-dual methods, Here, the constrained optimization prob-

lem is converted into an equivalent saddle point reformulation and is solved using primal-dual

methods such as mirror-prox [75] or a recent primal-dual method proposed in [45]. In particular,

for problem (1.1) the Lagrangian saddle point reformulation has the following form:

min
xPX

max
yě0

Lpx, yq :“ f0pxq `
řm
i“1yifipxq

(

. (1.6)

The main challenge in the use of these algorithms is that they may not converge directly for the

saddle point formulation in (1.6) since the domain of the dual variable, y, is unbounded. In particu-

lar, for general convex-concave saddle point problem, primal-dual type algorithms converge under

the assumption that

‖∇xLpx1, yq ´∇xLpx2, yq‖˚ ď L‖x1 ´ x2‖,

for all x1, x2 P X and y ě 0. It is clear that a constant L satisfying uniform upper bound above

for saddle point problem (1.6) does not exist for any nonlinear convex function since domain of y

is unbounded. Hence, primal-dual method require bounding the dual feasible such that at least one

optimal dual solution of (1.6) is contained sufficiently inside the dual feasible set, which may not

12

be possible in general. Moreover, primal-dual methods are not known to converge for nonsmooth

or stochastic function constrained optimization problem.

In Chapter 3, we will see a primal-dual method which just modifies an existing slightly and

answers quite a few open problems regarding general function constrained optimization. It gives a

unified complexity result, a first for (1.1) with accelerated convergence for Lipschitz smooth com-

ponents. It also gives convergence under bounded second moment oracle for stochastic component

and its convergence rate on the stochastic component is optimal. Moreover, this method does not

require the aforementioned boundedness of the dual feasible set and can directly deal with the (1.6)

as well as nonsmooth problems. We will see more elaborate discussion in Chapter 3.

Another closely related problem for is that when instead of the dual feasible set, the primal fea-

sible set is quite large. This problem arises in certain linear programs associated with fundamental

problems in combinatorial optimization. In particular, when primal set X in (1.6) is an `8 ball

then the diameter of this set cannot be ignored. For such problems, even though convergence can

be obtained using standard method, the diameter of `8 ball adds another
?
n factor, where n is the

dimension of LP. This can be a huge factor for most LPs of practical interest. Here, we need more

specialized attention to deal with this well-known `8-barrier. We will look at this problem in more

detail in Chapter 6.

For now, we shift our focus back to the brief overview of nonconvex optimization.

1.5 Advances in Composite Nonconvex Optimization

In this section, we consider the following composite optimization problem:

min
xPX

ψ0pxq :“ f0pxq ` χ0pxq

s.t. ψipxq :“ fipxq ` χipxq ď 0, i “ 1, . . . ,m,

(1.7)

where f0 : X Ñ R and fi : X Ñ R, i “ 1, . . . ,m are continuous functions which are not

necessarily convex but satisfy that gradients are Lipschitz continuous and χi : X Ñ R are convex,

13

possibly nonsmooth functions.

The past few years has also seen a resurgence of interest in the design of efficient algorithms

for nonconvex stochastic optimization, especially for stochastic and finite-sum problems due to

their importance in machine learning. Most of these studies need to assume that the constraints are

convex, and focus on the analysis of iteration complexity, i.e., the number of iterations required

to find an approximate stationary point, as well as possible ways to accelerate such approximate

solutions.

If the nonconvex function constraints do not appear, one type of approach for solving (4.1) is to

directly generalize stochastic gradient descent type methods (see [38, 40, 89, 1, 35, 119, 105, 119,

105, 84, 53]) for solving problems with nonconvex objective functions. An alternative approach is

to indirectly utilize convex optimization methods within the framework of proximal-point methods

which transfer nonconvex optimization problems into a series of convex ones (see [44, 13, 36, 26,

50, 58, 87, 82]). While direct methods are simpler and hence easier to implement, indirect methods

may provide stronger theoretical performance guarantees under certain circumstances, e.g., when

the problem has a large conditional number, many components and/or multiple blocks [58].

However, if nonconvex function constraints ψipxq ď 0 do appear in (4.1), the study on its so-

lution methods is scarce. While there is a large body of work on the asymptotic analysis and the

optimality conditions of penalty-based approaches for general constrained nonlinear programming

(for example, see [11, 71, 4, 3, 29]), only a few works discussed the complexity of these methods

for solving problems with nonconvex function constraints [21, 104, 33]. However, these techniques

are not applicable to our setting because they cannot guarantee the feasibility of the generated solu-

tions, but a certain local non-increasing properties for the constraint functions. On the other hand,

the feasibility of the nonconvex function constraints appear to be important in certain problems of

interest.

In chapter 4, we will see some new algorithm for nonconvex algorithm. We will show asymp-

totic as well as rate of convergence results of this algorithm to a KKT-point. In order to talk about

KKT-condition, we will also introduce a subdifferential for nonsmooth nonconvex problem (1.7).

14

We analyze convergence result under various constraint qualifications. The details of this algorithm

are bit involved so we will discuss them in more details in Chapter 4.

1.6 Organization of the Thesis

The thesis is organized as follows.

In Chapter 2, we explore some basic questions on the complexity of training neural networks

with ReLU activation function. We show that it is NP-hard to train a two-hidden layer feedforward

ReLU neural network. If the dimension of the input data and the network topology is fixed then

we show that there exists a polynomial-time algorithm for the same training problem. We also

show that if sufficient over-parameterization is provided in the first hidden layer of ReLU neural

network then there is a polynomial-time algorithm that finds weights such that output of the over-

parameterized ReLU neural network matches with the output of the given data.

In Chapter 3, we present a novel Constraint Extrapolation (ConEx) method for solving convex

function constrained problems, which utilizes linear approximations of the constraint functions to

define the extrapolation (or acceleration) step. We show that this method is a unified algorithm

that achieves the best-known rate of convergence for solving different function constrained convex

composite problems, including convex or strongly convex, and smooth or nonsmooth problems

with a stochastic objective and/or stochastic constraints. Many of these rates of convergence were

in fact obtained for the first time in the literature. Besides, ConEx is a single-loop algorithm that

does not involve any penalty subproblems. Contrary to existing primal-dual methods, it does not

require the projection of Lagrangian multipliers onto a (possibly unknown) bounded set.

In Chapter 4, we study the nonconvex function constrained optimization problem. We first

introduce a new proximal point method which transforms the initial nonconvex problem into a

sequence of convex function constrained subproblems. We establish the convergence and rate of

convergence of this algorithm to KKT points under different constraint qualifications. For practical

use, we present inexact variants of this algorithm, in which approximate solutions of the subprob-

lems are computed using the aforementioned ConEx method and establish their associated rate of

15

convergence.

In Chapter 5, we study a constrained model for inducing sparsity. This model consists of a

general convex or nonconvex objective and a variety of continuous nonconvex (and nonsmooth)

sparsity-inducing constraints. For this constrained model, we propose a novel proximal point al-

gorithm that solves a sequence of convex subproblems with gradually relaxed constraint levels.

Each subproblem, having a proximal point objective and a convex surrogate constraint, can be effi-

ciently solved based on a fast routine for projection onto the surrogate constraint. We establish the

asymptotic convergence of the proposed algorithm to the Karush-Kuhn-Tucker (KKT) solutions.

We also establish new convergence complexities to achieve an approximate KKT solution when

the objective can be smooth/nonsmooth, deterministic/stochastic, and convex/nonconvex with the

complexity that is on a par with gradient descent when applied to nonconvex regularized prob-

lems. To the best of our knowledge, this is the first study of the first-order methods with complex-

ity guarantee for nonconvex sparse-constrained problems. We perform numerical experiments to

demonstrate the effectiveness of our new model and the efficiency of the proposed algorithm for

large scale problems.

In Chapter 6, we give a faster width-dependent algorithm for mixed packing-covering LPs.

Mixed packing-covering LPs are fundamental to combinatorial optimization in computer science

and operations research. Our algorithm finds a 1`ε approximate solution in timeOpNw{εq, where

N is number of nonzero entries in the constraint matrix, andw is the maximum number of nonzeros

in any constraint. This algorithm is faster than Nesterov’s smoothing algorithm which requires

OpN
?
nw{εq time, where n is the dimension of the problem. The current best width-independent

algorithm for this problem runs in time OpN{ε2q [Young-arXiv-14] and hence has worse running

time dependence on ε. Many real life instances of mixed packing-covering problems exhibit small

width and for such cases, our algorithm can report higher precision results when compared to

width-independent algorithms.

16

CHAPTER 2

COMPLEXITY OF TRAINING RELU NEURAL NETWORK

In this chapter, we study the computational complexity of training ReLU neural networks. First,

we provide a brief introduction of neural networks and ReLU neural networks.

2.1 Introduction to Neural Networks

Deep neural networks (DNNs) are functions computed on a graph parameterized by its edge

weights. More formally, the graph corresponding to a DNN is defined by input and output di-

mensions w0, wk P Z`, number of hidden layers k P Z`, and a sequence of k natural numbers

w1, w2, . . . , wk representing the number of nodes in each of the hidden k-layers. The function

computed on the DNN graphs is:

f :“ τ ˝ ak ˝ ¨ ¨ ¨ ˝ a2 ˝ τ ˝ a1,

where ˝ is function composition, τ is a nonlinear function (applied componentwise) called as the

activation function, and ai : Rwi´1 Ñ Rwi are affine functions. Given the input and corresponding

output data, the problem of training a deep neural network can be thought of as determining the

edge weights of the directed layered graph for which output of the neural network matches the

output data as closely as possible. Formally, given a set of input and output data tpxi, yiquNi“1

where pxi, yiq P Rw0 ˆ Rwk , and a loss function l : Rwk ˆ Rwk Ñ Rě0 (e.g., l can be the square

loss function), the task is to determine the weights that define the affine function ai’s such that

N
ÿ

i“1

lpfpxiq, yiq (2.1)

is minimized.

17

Some commonly studied activation functions are: threshold function, sigmoid function and

ReLU function. ReLU is one of the important activation functions used widely in applications.

However, the problem of complexity of training multi-layer fully-connected ReLU neural network

remained open. This is where we add our contributions. Before formally stating our results, we

take a look at the current state-of-the-art in the literature.

2.2 Complexity of training neural networks

First, we provide a brief overview of the complexity results for training neural networks with

threshold activation function. The threshold (sign) function is given by

sgnpxq :“

$

’

’

&

’

’

%

1 if x ą 0

´1 if x ă 0

.

It was shown by Blum et al. [15] that the problem of training a simple two layer neural network

with two nodes in the first layer and one node in the second layer while using threshold activation

function at all the nodes is NP-complete. The problem turns out to be equivalent to separation by

two hyperplanes which was shown to be NP-complete by Megiddo [72]. There are other hardness

results such as crypto hardness for intersection of k-hyperplanes which apply to neural networks

with threshold activation function [92, 49].

2.2.1 Complexity of training neural network with rectified linear unit (ReLU) activation function

Theoretical worst case results presented above, along with limited empirical successes led to

DNN’s going out of favor by late 1990s. However, in recent times, DNNs became popular again

due to the success of first-order gradient based heuristic algorithms for training. This success

started with the work of [46] which gave an empirical evidence that if DNNs are initialized prop-

erly then we can find good solutions in reasonable runtime. This work was soon followed by

series of early successes of deep learning in natural language processing [24], speech recognition

[73] and visual object classification [52]. It was empirically shown by [114] that a sufficiently

18

over-parameterized neural network can be trained to global optimality.

These gradient-based heuristics are not useful for neural networks with threshold activation

function as there is no gradient information. Even networks with sigmoid activation function fell

out of favor because gradient information is not valuable when input values are large[47]. The

popular neural network architecture uses ReLU activations on which the gradient based methods

are useful. Formally, the ReLU function is given by: rxs` :“ maxpx, 0q.

Related literature As discussed before, most hardness results so far are for neural networks with

threshold activation function[15, 49, 92]. There are also limited results for ReLU that we discuss

next: Recently, [65] examined ReLU activations from the point of view that two connected ReLU

nodes, when appropriately designed, yield an approximation to threshold function. Hence training

problem for such a class of ReLU network should be as hard as training a neural network with

threshold activation function. Similar results are shown by [25]. In both these papers, in order to

approximate the threshold activation function, the neural network studied is not a fully connected

network. More specifically, in the underlying graph of such a neural network, each node in the

second hidden layer is connected to exactly one distinct node in the first hidden layer, weight of

the connecting edge is set to ´1 with the addition of some positive bias term. Figure 2.1 shows

the difference between ReLU network studied by [65, 25] and fully connected ReLU network.

The architecture artificially restricts the form of the affine functions in order to prove NP-hardness.

In particular, it requires connecting hidden layer matrix to be a square diagonal matrix. Due to

this restriction, it was unclear whether allowing non-diagonal entries of the matrix to be non-zero

would make problem easy (more parameters hence higher power to neural network function) or

hard (more parameters so more things to decide).

Another line of research in understanding the hardness of training ReLU neural networks as-

sumes that the data is coming from some distribution. More recent works in this direction include

[93] which shows a smooth family of functions for which the gradient of squared error function

is not informative while training neural network over Gaussian input distribution. Another study

19

(a) ReLU network studied in [65, 25] (b) Fully connected ReLU

Figure 2.1: Difference between ReLU model studied in [65, 25] and typical fully connected coun-
terpart

in this line of work considers Statistical Query (SQ) framework [97] (which contains SGD algo-

rithms) and shows that there exists a class of special functions generated by single hidden layer

neural network for which learning will require exponential number of queries (i.e. sample gradient

evaluations) for the data coming from the product measure of the real valued log-concave distribu-

tion. These are interesting studies in their own right and generally consider hardness with respect

to the algorithms that use stochastic gradient queries and require that such algorithm must perform

minimization of the (expectation) objective functions. In comparison, we consider the framework

of NP-hardness which takes into account the complete class of the polynomial time algorithms,

generally assumes that the data is given and requires an optimal solution to the corresponding

empirical objective.

Recently, [6] showed that a single hidden layer ReLU network can be trained in polynomial

time when dimension of input, w0, is constant.

Based on the above discussion, we see that the status of the complexity of training the multi-

layer fully-connected ReLU neural network remains open. Given the importance of the ReLU NN,

this is an important question. In this chapter, we take the first steps in resolving this question.

2.2.2 Our Contributions

• NP-hardness: We show that the training problem for a simple two hidden layer fully-connected

NN which has two nodes in the first layer, one node in the second layer and ReLU activa-

tion function at all nodes is NP-hard (Theorem 2.4.1). Underlying graph of this network is

exactly the same as that in Blum et al. [15] but all activation functions are ReLU instead

20

of threshold function. Techniques used in the proof are different from earlier work in the

literature because there is no combinatorial interpretation to ReLU as opposed to threshold

function.

• Polynomial-time solvable cases: We present two cases where the training problem with

ReLU activation function can be solved in polynomial-time. The first case is when the

dimension of the input is fixed (Theorem 2.4.3). This result generalizes the result from [6]

and uses the hyperplane arrangement theorem for its proof.

We also observe that when the number of nodes in the first layer of the network is equal to

the number of input data points (Proposition 2.4.4) then there exists a polynomial time algo-

rithm. The proof of this fact follows from a simple observation that reduces the problem to

fitting a single hidden layer neural network and then applying the polynomial time algorithm

result for single hidden layer neural network in the work of [114] This is the highly over-

parameterized neural network setting. This result leads to some interesting open questions

that we discuss later.

2.3 Notation and Definitions

We use the following standard set notation rns :“ t1, . . . , nu. Let apxq “ cT1 x ` c2 be an affine

function, then we denote a as pc1, c2q wherever such a notation is necessary. For any scalar α, we

naturally denote affine function αa as pαc1, αc2q. The letter d generally denotes the dimension of

input data, N denotes the number of data-points and unless explicitly specified, the output data is

one dimensional.

The main training problem of interest for the paper corresponds to a neural network with 3

nodes. The underlying graph is a layered directed graph with two layers. The first layer contains

two nodes and the second layer contains one node. The network is fully connected feedforward

network. One can write the function corresponding to this neural network as follows:

F pxq “
“

w0 ` w1

“

a1pxq
‰

`
` w2

“

a2pxq
‰

`

‰

`
, (2.2)

21

where ai : Rd Ñ R for i P t1, 2u are real valued affine functions, and w0, w1, w2 P R. The

Figure 2.2: (2,1)-ReLU Neural Network. Also called 2-ReLU NN after dropping ‘1’. Here ReLU
function is presented in each node to specify the type of activation function at the output of each
node.

output of the two affine maps a1, a2 are the inputs to the two ReLU nodes in first hidden layer of

network. The weights tw0, w1, w2u denote affine map for ReLU node in second layer. We refer to

the network defined in (2.2) as (2,1)-ReLU Neural Network(NN). As its name suggests, it has 2

ReLU nodes in first layer and 1 ReLU node in second layer.

We will refer to pk, jq-ReLU NN as a generalization of p2, 1q-ReLU NN where there are k

ReLU nodes in first layer and j ReLU nodes in second layer. Note that the output of pk, jq-ReLU

NN lies in Rj .

If there is only one node in the second layer, we will often drop the “1” and refer it as a 2-ReLU

NN or k-ReLU NN depending on whether there are 2 or k nodes in the first layer, respectively.

Figure 2.2 shows 2-ReLU NN.

Observation 2.3.1 Note that

wrax` bs` ” sgnpwqr|w|pax` bqs` “ sgnpwqrãx` b̃s,

so without loss of generality we will assume w1, w2 P t´1, 1u in (2.2).

Now we formally state the definition of the decision version of the training problem.

Definition 2.3.1 (Decision-version of the training problem) Given a set of training data pxi, yiq P

Rd ˆ t1, 0u for i P S, do there exist edge weights so that the resulting function F satisfies

F pxiq “ yi for i P S.

22

The decision version of the training problem in Definition 2.3.1 is asking if it is possible to find

edge weights to obtain zero loss function value in the expression (2.1), assuming l is a norm i.e.

lpa, bq “ 0 iff a “ b.

2.4 Main Results

Theorem 2.4.1 It is NP-hard to solve the training problem for 2-ReLU NN.

An immediate corollary of Theorem 2.4.1 is the following:

Corollary 2.4.2 Training problem of (2,j)-ReLU NN is NP hard, for all j ě 1.

The proof of Theorem 2.4.1 is obtained by reducing the 2-Hyperplane Separability Problem to the

training problem of 2-ReLU NN. Details of this reduction and the proof of Theorem 2.4.1 and

Corollary 2.4.2 are presented in Section 2.5.

After this work was finished, two more studies [70, 27] considered the computational com-

plexity of training a single ReLU node and proved that it is a NP-hard problem. [70] also showed

that it is NP-hard to train one hidden layer neural network with two nodes and ReLU activa-

tion at each node. This network basically removes the second layer ReLU activation and affine

constant w0 in (2.2) so that neural network function of their case can be rewritten as F pxq “

w1

“

a1pxq
‰

`
` w2

“

a2pxq
‰

`
. These are different network architectures and hence hardness of train-

ing any one of them does not necessarily imply hardness of training for remaining neural networks.

Megiddo [72] shows that the separability with fixed number of hyperplanes (generalization of

2-hyperplane separability problem) can be solved in polynomial-time in fixed dimension. There-

fore 2-hyperplane separability problem can be solved in polynomial time given dimension is con-

stant. Based on the reduction used to prove Theorem 2.4.1 , a natural question to ask is “Can one

solve the training problem of 2-ReLU NN problem in polynomial time under the same assump-

tion?”. We answer this question in the affirmative.

23

Theorem 2.4.3 Under the assumption that the dimension of input, d and the number of nodes in

the first layer, k, are constant, then there exists a poly(N)-time solution to the training problem of

k-ReLU neural network, where N is the number of data-points.

The high-level idea of the proof is the following: each data point “passes through” the three ReLU

nodes and the activation function in these nodes is “turned on” or “turned off” (i.e., the output

is 0 or not). We will enumerate all possible combinations of the data points being turned on or

not, which we show is poly(N) assuming d and k is fixed (by use of the Hyperplane Arrangement

Theorem). Then we show that for each of these combinations and for each possible sign pattern of

the weights defining the affine function applied at the second layer, corresponding optimal affine

functions can be calculated via solving one convex program of poly size. Finally, we select the best

optimal affine function which minimizes the loss function. Technique of Hyperplane Arrangement

Theorem to enumerate partition was used in [6] for proving poly(N)-time algorithms for single

hidden layer neural networks. We extend this result for k-ReLU neural network which is a two

hidden layer network. The complication due to second layer ReLU node are handled by solving

a convex program of poly size. We show the precise proof of Theorem 2.4.3 in Section 2.7.1.

We also study this problem under over-parameterization. Structural understanding of 2-ReLU NN

yields an easy algorithm to solve training problem for N-ReLU neural network over N data points.

In fact, the problem can be easily reduced to a single hidden layer NN.

Proposition 2.4.4 Given data, txi, yiuiPrNs (where we assume that xis are distinct), then the train-

ing problem for N -ReLU NN has a poly(N,d)-time randomized algorithm, where N is the number

of data-points and d is the dimension of input.

Proof of this proposition first reduces the problem to training a single hidden layer network with

N nodes on dataset of size N . Then applies polynomial time algorithm for interpolating the data

from [114]. The precise details are in Section 2.7.2.

24

2.5 Training 2-ReLU NN is NP-hard

In this section we give details about the NP-hardness reduction for the training problem of 2-ReLU

NN. We begin with the formal definition of 2-Hyperplane Separability Problem.

Definition 2.5.1 (2-Hyperplane Separability Problem) Given a set of points txiuiPrNs P Rd and

a partition of rN s into two sets: S1, S0, (i.e. S1 X S0 “ H, S1 Y S0 “ rN s) decide whether there

exist two hyperplanes H1 “ tx : αT1 x` β1 “ 0u and H2 “ tx : αT2 x` β2 “ 0u where α1, α2 P Rd

and β1, β2 P R that separate the set of points in the following fashion:

1. For each point xi such that i P S1, both αT1 x
i ` β1 ą 0 and αT2 x

i ` β2 ą 0.

2. For each point xi such that i P S0, αT1 x
i ` β1 ă 0 or αT2 x

i ` β2 ă 0.

The 2-hyperplane separability problem is NP-complete [72]. Note the difference between con-

ditions 1 and 2 above. First one is an “AND” statement and second is an “OR” statement. Ge-

ometrically, solving 2-hyperplane separability problem means that finding two affine hyperplanes

tα1, β1u and tα2, β2u such that all points in set S1 lie in one quadrant formed by two hyperplanes

and all points in set S0 lie outside that quadrant. Due to this geometric intuition, the problem is

called separation by 2-hyperplane separability. We will construct a polynomial reduction from

this NP-complete problem to training 2-ReLU NN, which will prove that training 2-ReLU NN is

NP-hard.

Remark 2.5.1 (Variants of 2-hyperplane separability) Note here that some sources also define

2-hyperplane separability problem with minor difference. In particular, the change is that strict

inequalities, ‘ą’, in Definition 2.5.1.1 are diluted to inequalities, ‘ě’. In fact, these two problems

are equivalent in the sense that there is a solution for the first problem if and only if there is a

solution for the second problem. Solution for the first problem implies solution for the second

problem trivially. Suppose there is a solution for the second problem, that implies there exist

tα1, β1u and tα2, β2u such that for all i P S0 we have either αT1 x
i ` β1 ă 0 or αT2 x

i ` β2 ă 0.

25

This implies ε :“ min
iPS0

maxt´α1x
i ´ β1,´α2x

i ´ β2u ą 0. So if we shift both planes by 1
2
ε i.e.

βi Ð βi `
1
2
ε then this is a solution to the first problem.

Assumption: 0 P S1 (Here 0 P Rd is a vector of zeros.) Suppose we are given a generic instance

of 2-hyperplane separability problem with data-points txiuiPrNs from Rd and partition S1 and S0 of

the set rN s. Since the answer of 2-hyperplane separability instance is invariant under coordinate

translation, we shift the origin to any xi for i P S1, and therefore assume that the origin belongs to

S1 henceforth.

2.5.1 Reduction

Now we create a particular instance for 2-ReLU NN problem from a general instance of 2-hyperplane

separability. We add two new dimensions to each data-point xi. We also create a label, yi, for each

data-point. Moreover, we add a constant number of extra points to the training problem. Exact

details are as follows:

Consider training set tpxi, 0, 0q, yiuiPrNs where yi “

$

’

’

&

’

’

%

1 if i P S1

0 if i P S0

.

Add additional 12 data points to the above training set as follows:

tp1 ” tp0, 1, 1q, 1u, p2 ” tp0, 2, 1q, 1u, p3 ” tp0, 1, 2q, 1u, p4 ” tp0, 2, 2q, 1u,

p5 ” tp0, 0.75, 1.5q, 1u, p6 ” tp0, 2.25, 1.5q, 1u, p7 ” tp0, 1.5, 0.75q, 1u, p8 ” tp0, 1.5, 2.25q, 1u,

p9 ” tp0, 1,´1q, 0u, p10 ” tp0, 2,´1q, 0u, p11 ” tp0, 3,´1q, 0u,

p12 ” tp0,´1, 1q, 0u, p13 ” tp0,´1, 2q, 0u, p14 ” tp0,´1, 3q, 0u,

p15 ” tp0,´1, 0q, 0u, p16 ” tp0, 0,´1q, 0uu,

p17 ” tp0,´1, 5q, 0u, p18 ” tp0, 5,´1q, 0uu.

Let’s call the set of additional data points with label 1 as T1 and additional data points with label

0 as T0. These additional data points (we refer to these points as the “gadget points”) are of fixed

size. So this is a polynomial time reduction.

Figure 2.3 shows the gadget points. Note that origin is added to the gadget because there exists

i P S1 such that xi “ 0. Hence training set has the data-point tp0, 0, 0q, 1u.

26

Figure 2.3: Gadget: Blue points represent set T1 and red points represent set T0.

Let’s call the training problem of fitting 2-ReLU NN to this data as (P). In the context of the

training problem (P), we abuse the notation and call the set of points pxi, 0, 0q with label 1 as S1

and the set of points pxi, 0, 0q with label 0 as S0. In particular, there is a direct correspondence

between the sets S1, S0 defined in 2-hyperplane separability problem and sets S1, S0 defined for

2-ReLU NN training problem (P). Use of our notation is generally clear from the context.

Now what remains is to show that the general instance of 2-hyperplane separability has a solu-

tion if and only if the constructed instance of 2-ReLU NN has a solution. In order to understand

our approach better, we introduce the notion of “hard-sorting”. Hard-sorting is formally defined

below, and its significance is stated in Lemma 2.5.5.

Definition 2.5.2 (Hard-sorting) We say that a set of points tπiuiPS , partitioned into two sets

Π0,Π1 can be hard-sorted with respect to Π1 if there exist two affine transformations l1, l2 and

scalars w1, w2, c such that the following condition is satisfied:

w1

“

l1pπq
‰

`
` w2

“

l2pπq
‰

`

$

’

’

&

’

’

%

“ c for all π P Π1

ă c for all π P Π0

(2.3)

27

Being able to hard-sort implies that after passing the data through two nodes of the first hidden

layer, the scalar input to the second hidden layer node must have a separation of the data-points in

Π1 and the data-points in Π0, moreover, scalar input for all data points in Π1 must be a constant.

Remark 2.5.2 If there exists scalars w1, w2, c and affine transformations l1, l2 such that

w1

“

l1pπq
‰

`
` w2

“

l2pπq
‰

`
“

$

’

’

&

’

’

%

“ c for all π P Π1

ą c for all π P Π0.

then ´w1,´w2,´c, l1, l2 satisfy condition (2.3) of hard-sorting.

Remark 2.5.3 Let Π0 Ă Π0 and Π1 Ă Π1. Then hard-sorting of Π0 Y Π1 with respect to Π1 ñ

hard-sorting of Π0 Y Π1 with respect to Π1.

Remark 2.5.4 Without loss of generality, we may assume that w1, w2 P t´1, 1u.

It is not difficult to see that hard-sorting implies (P) has a solution. We show that hard-sorting is

also required for solving training problem. This is formally stated in lemma below.

Lemma 2.5.5 The 2-ReLU NN training problem (P) has a solution if and only if data-points S1 Y

T1 Y S0 Y T0 are hard-sorted with respect to S1 Y T1.

The proof of Lemma 2.5.5 can be found in Section 2.7.4 .

Figure 2.4 below explains geometric interpretation of Lemma 2.5.5 We use the hard-sorting

characterization of the solution of the training problem (P) extensively. We first show the forward

direction of the reduction in the lemma below. This is also the easier direction.

Lemma 2.5.6 If 2-hyperplane separability problem has a solution then problem (P) has a solution.

The proof of Lemma 2.5.6 can be found in Section 2.7.3.

To prove reverse direction we need to show that if a set of weights solve the training problem (P)

then we can generate a solution to the 2-hyperplane separability problem. In the rest of the proof

28

(a) Input is hard-sorted. This can
give a perfect fit.

(b) Since there are two red points
so input is not hard-sorted. This
cannot give a perfect fit.

(c) Since blue points lies on differ-
ent side of red points so input is
not hard-sorted. This cannot give
a perfect fit.

Figure 2.4: X-axis in figures above is output of the first layer of 2-ReLU NN i.e. w1

“

l1pπq
‰

`
`

w2

“

l2pπq
‰

`
. Y-axis is the output of second hidden layer node. Since output of first hidden layer

goes to input of second hidden layer, we are essentially trying to fit ReLU node of second hidden
layer. In particular, red and blue dots represent output of first hidden layer on data points with label
1 and 0 respectively. In fig (a) we see that hard-sorted input can be classified as 0{1 by a ReLU
function. In fig (b) and (c) we see that input which is not hard-sorted cannot be classified exactly
as 0{1 by a ReLU function.

we will argue that the only way to solve the training problem (P) for 2-ReLU NN or equivalently

hard-sort data-points is to find two affine function a1, a2 : Rd`2 Ñ R such that i) a1pxq ď 0 and

a2pxq ď 0 for all x P S1Y T1 and ii) a1pxq ą 0 or a2pxq ą 0 for all x P S0Y T0. If such a solution

exists then there exists a solution to 2-hyperplane separability problem after dropping coefficients

of last two dimensions of affine functions ´a1 and ´a2. Note that changing ‘ă’ to ‘ď’ in 2-affine

separability problem is valid in view of Remark 2.5.1.

We will first show that we can hard-sort the gadget points only under the properties of a1 and

a2 mentioned above. This implies that a solution to (P) which hard-sorts all points (including

the gadget points) must have same properties of a1 and a2. This follows from counter-positive

of Remark 2.5.3 i.e. if subset of data-points cannot be hard-sorted then all data-points cannot be

hard-sorted. Henceforth, we will focus on the gadget data-points (or the last two dimensions of the

data).

Gadget Points and Hard-Sorting

In the following lemma, we show a necessary condition on a1, a2 satisfying hard-sorting of gadget

data points T1 Y T0 Y t0u with respect to T1 Y t0u.

29

Lemma 2.5.7 Suppose affine functions a1, a2 : Rd`2 Ñ R and scalars w1, w2, c satisfy hard-

sorting of the data-points T1 Y T0 Y t0u with respect to T1 Y t0u then all points in T1 must satisfy

a1pxq ď 0, a2pxq ď 0. Moreover, we must have w1 “ w2 “ ´1 and c “ 0.

Note that in view of Lemma 2.5.7 and counter-positive of Remark 2.5.3, we have that affine func-

tion a1, a2 : Rd`2 Ñ R and scalars w1, w2, c satisfying hard-sorting of S1 Y T1 Y S0 Y T0 with

respect to S1 Y T1 must satisfy

´
“

a1pxq
‰

`
´
“

a2pxq
‰

`

$

’

’

&

’

’

%

“ 0 if x P S1;

ă 0 if x P S0

.

The above condition is equivalent to the requirement that a1pxq ď 0, a2pxq ď 0 for all x P S1 and

a1pxq ą 0 or a2pxq ą 0 for x P S0. After dropping the last two dimensions of ´a1 and ´a2, we

obtain the solution for 2-affine separability problem. Now that we have reduced the problem to the

key lemma above, the main purpose of this section is to prove Lemma 2.5.7.

Note that for each data point in the gadget T1 Y T0t0u, the first d elements are always 0. So

for the sake of gadget, we may assume that a1, a2 : R2 Ñ R and the gadgets lies in R2. They

can be thought of as the projection of the original ai : Rd`2 Ñ R and 0 P Rd`2 to last two

dimension which are relevant for gadget data points T1 Y T0. Due to this observation, we assume

that a1, a2 : R2 Ñ R henceforth for this subsection and provide a proof of Lemma 2.5.7 under this

assumption.

The proof of Lemma 2.5.7 is divided into the following sequence of results.

Proposition 2.5.8 Suppose that a1, a2 satisfy hard-sorting of T1Y T0 with respect to T1 then there

exists x P T1 such that a1pxq ď 0, a2pxq ď 0.

Proof of Proposition 2.5.8 can be found in Section 2.7.5.

Next we show one more simple proposition which is critical in proving the final result. The

proof of this proposition can be found in Section 2.7.7.

30

Proposition 2.5.9 Affine functions a1, a2 and weights w1, w2 satisfy hard-sorting of T1Y T0Y t0u

with respect to T1 Y t0u then w1, w2 must satisfy w1 “ w2 “ ´1.

We are now ready to present the prove Lemma 2.5.7.

Proof of Lemma 2.5.7. Since a1, a2 satisfy hard-sorting of the data points T1 Y T0 Y t0u with

respect to T1 Y t0u then, in view of Proposition 2.5.8 and Proposition 2.5.9, we have

1. Dx P T1 such that a1pxq ď 0, a2pxq ď 0.

2. w1 “ w2 “ ´1.

Then we have that´
“

a1pxq
‰

`
´
“

a2pxq
‰

`
“ 0 for all x P T1, due to condition (2.3) of hard-sorting.

This implies a1pxq ď 0, a2pxq ď 0 for all x P T1. So we conclude the proof. ˝

In the next section, we show that this result on the gadget data-points gives us the solution to the

original 2-hyperplane separability problem.

From Gadget Data to Complete Data

Lemma 2.5.10 If there is a solution to the problem (P), then there is a solution to corresponding

2-hyperplane separability problem.

Proof. Note that if there is a solution to problem (P), then by Lemma 2.5.5, we must have a1, a2 :

Rd`2 Ñ R and w1, w2, c hard-sorting S1YT1YS0YT0 with respect to S1YT1. In view of Lemma

2.5.7 and counter-positive of Remark 2.5.3, we have

1. w1 “ w2 “ ´1.

2. w1

“

a1pxq
‰

`
` w2

“

a2pxq
‰

`
“ 0 for all x P S1 Y T1 due to requirement (2.3) of hard-sorting.

Since w1 “ w2 “ ´1, so 2 above implies a1pxq ď 0 and a2pxq ď 0 for all x P S1 Y T1. Moreover,

we require a1pxq ą 0 or a2pxq ą 0 for all x P S0 Y T0 because condition (2.3) of hard-sorting.

Now as discussed earlier, ´a1,´a2 after ignoring coefficients of last two dimensions will yield

solution to 2-hyperplane separability problem. Hence we conclude the proof. ˝

31

Now we are ready to prove the main NP-hardness theorem.

Proof of Theorem 2.4.1. Using Lemma 2.5.6 and Lemma 2.5.10, we conclude the proof. ˝

Below we state an immediate corollary of Theorem 2.4.1 whose proof can be found in Section

2.7.8.

Corollary 2.5.11 Training problem of (2,j)-ReLU NN is NP hard.

2.6 Discussion

We showed that the problem of training 2-ReLU NN is NP-hard. Given the importance of ReLU

activation function in neural networks, in our opinion, this result resolves a significant gap in

understanding complexity class of the problem at hand. On the other hand, we show that the

problem of training N -ReLU NN is in P. So a natural research direction is to understand the

complexity status when input layer has more than 2 nodes and strictly less than N nodes. A

particularly interesting question in that direction is to generalize the gadget we used for 2-ReLU

NN to the case of k-ReLU NN.

2.7 Proofs of Auxiliary Results

In this section, we provide proof of all auxiliary results.

2.7.1 Proof of Theorem 2.4.3

Suppose we partition the set rN s into sets Qj and Qj such that all points in Qj satisfy ajpxq ě 0

and all points in Qj satisfy ajpxq ă 0 for all j P rks. Given a set S Ď rks, we define T pSq :“
´

Ş

jPS Qj

¯

X

´

Ş

jPS̄ Q̄j

¯

where S “ rkszS. Let z “ pa1, . . . , ak, w0, w1, . . . , wkq. Then the

objective function can be written as

fpzq “
ÿ

SĎrks

ÿ

iPT pSq

´

“

w0 `
ÿ

jPS

wjajpx
i
q
‰

`
´ yi

¯2

.

32

Now we can partition T pSq into sets T pSq1 and T pSq2 for each S Ď rks, S ‰ φ. For T pSq1, the

ReLU term in the objective, w0 `
ř

jPS

wjajpxq (note that this is an affine function), is constrained

to be non-negative and for T pSq2 the ReLU terms is constrained to be non-positive. We need

not enumerate partitions of T pφq since ReLU terms for T pφq do not depend on data-points. The

key observation is that the partition of T pSq into sets T pSq1 and T pSq2 is a partition due to a

hyperplane.

Number of combinations: According to the Hyperplane Arrangement Theorem, given a set

of points txiuiPN in Rd, the number of distinct partitions created by linear separators is OpNdq.

Moreover, due to [31], we can enumerate all possible partitions created by linear separators in

OpNdq time. Therefore, there are a total of OpNkdq possible combinations of Qj, j P rks. For

each such Qj, j P rks, there are 2k non-empty subsets T pSq Ď rN s. For each T pSq, S ‰ φ, there

are Op|T pSq|dq “ OpNdq possible ways to partition T pSq into T pSq1 and T pSq2. So number of

product combinations is OpN p2k´1qdq. Hence there are a total of OpN pkd`p2k´1qdqq combinations.

Number of convex programs: By Observation 2.3.1 it suffices to check for w1, . . . , wk “ ˘1.

We will divide the optimization problem in two cases w0 ě 0 and w0 ď 0. So there are a total of

2k`1 convex programs for each possible combination of Qj , T pSq1 for all S Ď rks of the following

form:

min
ÿ

SĎrks,
S‰φ

#

ÿ

iPT pSq1

´´

w0 `
ÿ

jPS

wjajpx
i
q

¯

´ yi

¯2

`
ÿ

iPT pSq2

p0´ yiq
2

+

`
ÿ

iPTφ

´

“

w0

‰

`
´ yi

¯2

subject to constraints

ajpx
i
q ě 0, @j, i P Qj

ajpx
i
q ď 0, @j, i P Qj

(2.4)

w0 `
ÿ

jPS

wjajpx
i
q ě 0, @S Ď rks, S ‰ φ, i P T pSq1

w0 `
ÿ

jPS

wjajpx
i
q ď 0, @S Ď rks, S ‰ φ, i P T pSq2

(2.5)

33

Moreover, we add constraintw0 ě 0 orw0 ď 0 and change the
“

w0

‰

`
term in objective withw0 or 0

respectively. Every program has kpd`1q`1 variables in a1, . . . , ak, w0. Total number of constraints

is at most kN ` N ` 1. Note that, for constraints of type (2.4), for each j, number of constraints

equals |Qj Y Qj| “ N . Hence total number of constraints of type (2.4) are kN . Similarly, for

constraints of type (2.5), for each S Ď rks, we have total of |T pSq1YT pSq2| “ |T pSq| constraints.

Hence total constraints of type (2.5) are
ř

SĎrks,
S‰φ

|T pSq| ď N (This follows due to observation that

T pSq, S Ď rks is a partition of rN s). One more constraint is on w0. Hence total number of

constraints is pk ` 1qN ` 1. Since number of constraints and variables are polypk, d,Nq and

objective is convex quadratic so we conclude that this program can be solved in polypN, k, dq

time.

Finally, the total number of convex programs to be solved is Op2k`1 ¨Nkd`p2k´1qdq.

2.7.2 Proof of Proposition 2.4.4

Before proving this proposition, we state a polynomial time algorithm (Theorem 1 of [114]) for

training single hidden layer neural network.

Proposition 2.7.1 There exists a poly(N, d)-time algorithm to train a single hidden layer neural

network with N nodes and ReLU activations which can represent any function on sample of size

N in dimension d.

Now we are ready to prove Proposition 2.4.4.

Note that a N-ReLU NN can be written as cpxq “
“

N
ř

j“1

wj
“

ajpxq
‰

`
` w0

‰

`
. Suppose y “

ry1, . . . , yN sT P RN be a vector of labels. We may assume that y ě 0 since otherwise we can

add a constant term to each label in y. Then we need to find weights wi, i “ 0, . . . , N and affine

functions aj, j “ 1, . . . , N such that cpxiq “ yi for all i P rN s. Since y ě 0 so we have fpxiq “ yi

where fpxq “
N
ř

j“1

wj
“

ajpxq
‰

`
`w0. Now note that function f with w0 “ 0 is a single hidden layer

ReLU NN used in [114]. Using the fact that number of nodes in f matches number of data points,

N , then applying Proposition 2.7.1, we obtain the result.

34

2.7.3 Proof of Lemma 2.5.6

Suppose pα1, β1q and pα2, β2q are solution satisfying condition for 2-hyperplane separability. Note

that there is a data-point 0 P S1 so we obtain β1, β2 ą 0. Without loss of generality we can assume

β1 “ β2 “ 0.5. This is due to the fact that scaling the original solution by any positive scalar yields

a valid solution. Now we show that the solution of 2-hyperplane separability problem can be used

to show hard-sorting of S0YT0YS1YT1 with respect to S1YT1. Hence in view of Lemma 2.5.5,

we obtain existence of existence of solution for problem (P).

Setw1 “ w2 “ ´1, c “ 0. Moreover, for px, y, zq P Rd`2, consider the affine map l1px, y, zq “

´αT1 x´y´β1 and l2px, y, zq “ ´αT2 x´ z´β2. We claim that w1, w2, c, l1, l2 satisfy hard-sorting

condition (2.3) for S0 Y T0 Y S1 Y T1 with respect to S1 Y T1. In particular, note that

1. For x P S1, we have

´
“

´ αT1 x´ β1

‰

`
´
“

´ αT2 x´ β2

‰

`
“ 0 “ c.

2. For x “ p0, l,mq P T1, we have

´
“

´ β1 ´ l
‰

`
´
“

´ β2 ´m
‰

`
“ 0.

This follows since β1 “ β2 “ 1{2 and l,m P r0.75, 2.25s so the two ReLU terms inside are

both zero for all x P T1.

3. For x P S0, we have

´
“

´ αT1 x´ β1

‰

`
´
“

´ αT2 x´ β2

‰

`
ă 0.

This follows since at least one of αT1 x ` β1 and αT2 x ` β2 is strictly negative for x P S0 as

pα1, β1q and pα2, β2q are solution for 2-hyperplane separability problem.

35

4. For x “ p0, l,mq P T0, we have

´
“

´ β1 ´ l
‰

`
´
“

´ β2 ´m
‰

`
ă 0.

This follows since β1 “ β2 “ 1{2 and either l or m equals ´1 for x P T0.

This proves hard-sorting of S0 Y T0 Y S1 Y T1 with respect to S1 Y T1 and hence we have the

existence of solution for training problem (P).

2.7.4 Proof of Lemma 2.5.5

We first prove the forward direction. Suppose points are hard-sorted as required by the lemma.

Then define ε :“ min
xPS0YT0

´w1

“

l1pxq
‰

`
´ w2

“

l2pxq
‰

`
` c. By definition, we have ε ą 0. Then

neural network fpxq “ 2
ε

“

w1

“

l1pxq
‰

`
`w2

“

l2pxq
‰

`
´ c` ε{2

‰

`
solves training problem. This can

be easily checked from the fact that

w1

“

l1pxq
‰

`
` w2

“

l2pxq
‰

`
´ c

$

’

’

&

’

’

%

“ 0 if x P S1 Y T1;

ă ´ε if x P S0 Y T0,

which holds under the assumption of hard-sorting.

Now we assume that points cannot be hard-sorted and conclude that there does not exist weight

assignment solving training problem of 2-ReLU NN, hence proving the backward direction. Since

the points cannot be hard-sorted so there does not exist any l1, l2, w1, w2, c satisfying condition

(2.3). This fact along with Remark 2.5.2 implies that for all possible weights we either have

a) w1

“

l1pxq
‰

`
` w2

“

l2pxq
‰

`
is not constant for all x P S1 Y T1 or

b) If w1

“

l1pxq
‰

`
` w2

“

l2pxq
‰

`
“ c for all x P S1 Y T1 and some constant c, then same expression

evaluated on x P S0 Y T0 is not strictly on same side of c.

If we choose l1, l2, w1, w2, c such that a) happens, then such weights will not solve training

problem as their output of 2-ReLU NN for points p P S1 Y T1 will be at least two distinct num-

bers which is an undesirable outcome. Specifically, we want
“

w0 ` w1

“

l1pxq
‰

`
` w2

“

l2pxq
‰

`

‰

`

36

to evaluate to 1 for all x P S1 Y T1. Hence w1

“

l1pxq
‰

`
` w2

“

l2pxq
‰

`
must be a constant for all

x P S1 Y T1. This requirement is violated in case a).

If we choose l1, l2, w1, w2, c such that b) happens, then we can setw0, θ such thatF pxq “ θ
“

w1

“

l1pxq
‰

`
`

w2

“

l2pxq
‰

`
` w0

‰

`
, w0 ` c ą 0 and θ “ 1

w0`c
. Here we introduced another parameter θ ą 0

in the definition of F for sake of convenience of argument but note that θ can be absorbed in

the definition of l1 and l2 to obtain the original neural network function defined (2.2). Since

not all x P S0 Y T0 are strictly on one side, we conclude there exist x1 P S0 Y T0 such that

w1

“

l1px
1q
‰

`
` w2

“

l2px
1q
‰

`
“ c1 ě c hence F px1q :“ θ

“

w1

“

l1px
1q
‰

`
` w2

“

l2px
1q
‰

`
` w0

‰

`
ě 1

which is an undesirable outcome for a point with label 0.

Since all choices of l1, l2, w1, w2, c satisfy either a) or b), we conclude that there does not exist

weights solving training problem of 2-ReLU NN.

2.7.5 Proof of Proposition 2.5.8

In order to prove Proposition 2.5.8, we need to prove one more technical result stated below. Proof

of this new proposition is deferred to Section 2.7.6 but here we state it and proceed with the proof

of Proposition 2.5.8.

Proposition 2.7.2 Let c be an arbitrary constant. Suppose affine functions a1, a2 : R2 Ñ R satisfy

w1a1pxq ` w2a2pxq “ c for all x P R2, then such a1, a2 cannot satisfy hard-sorting of the data

points T1 Y T0 Y t0u with respect to T1 Y t0u.

Remark 2.7.3 A key corollary of Proposition 2.7.2 is that if a1, a2 satisfy hard-sorting of gadget

data points T1 Y T0 Y t0u with respect to T1 Y t0u then set L :“ tx|w1a1pxq ` w2a2pxq “ cu

is a line for all c P R. Henceforth, in the proofs of subsequent propositions, we will refer L as

w1a1 ` w2a2 “ c hiding the input variable, x, for ease of notation.

Now we are ready to prove Proposition 2.5.8.

Let a1, a2 satisfy hard-sorting of T1 Y T0 Y t0u with respect to T1 Y t0u. Then due to Remark

2.5.3, we have that a1, a2 satisfy hard-sorting of T1 Y T0 with respect to T1. We will show that any

a1, a2 satisfying the above condition must satisfy the requirement of Proposition 2.5.8.

37

Let us partition the set of points R2 into four partitions S0,0, S`,0, S0,` and S`,` based on sign

of
“

a1

‰

`
and

“

a2

‰

`
. Then, we have to show that at least on element in T1 lies in the partition S0,0.

For sake of contradiction, assume that T1 X S0,0 “ H. Then, using pigeonhole principle, we

have that at least one of S`,0, S0,` and S`,` must contain three points from the set T1. Note that

any three points in the set T1 are not collinear. Moreover, the function w1

“

a1

‰

`
`w2

“

a2

‰

`
is affine

in all three regions, S`,0, S0,` and S`,` of R2 and is non-constant in view of Proposition 2.7.2.

Hence, we cannot satisfy hard-sorting since those three points in T1 will break the requirement in

condition (2.3) for hard-sorting. Hence, we obtain a contradiction.

2.7.6 Proof of Proposition 2.7.2

First observe that if a1, a2 : R2 Ñ R satisfy hard-sorting of T1YT0Yt0u with respect to T1Yt0u,

then neither of them can be a constant function. In particular, it is straightforward to see that both

of them cannot be constant. If only one of them is constant, then data needs to be linearly separable

which is not the case for gadget data-points T1 Y T0 Y t0u. Therefore, we will assume that both of

them are affine functions with non-zero normal vectors.

Note that in view of Remark 2.5.4 and the fact that w1a1pxq `w2a2pxq “ c for all x P R2, we may

assume that magnitude of the normal to these lines is equal i.e. }∇a1} “ }∇a2} ‰ 0. For the sake

of this proof, we extend the definition of hard-sorting to include the condition

w1

“

a1pxq
‰

`
` w2

“

a2pxq
‰

`

$

’

’

&

’

’

%

“ c for all x P T1 Y t0u;

ą c for all x P T0,

along with condition (2.3). Due to this extended definition and in view of Remark 2.5.2, we just

need to check for case pw1, w2q “ p1, 1q and pw1, w2q “ p1,´1q. More specifically, pw1, w2q “

p´1,´1q yields a hard-sorting solution iff there exists a hard-sorting solution for pw1, w2q “ p1, 1q.

Equivalent argument can be made about the case pw1, w2q “ p´1, 1q and pw1, w2q “ p1,´1q.

Then, we have two possible situations here: a1, a2 satisfy 1) a1pxq ` a2pxq “ c, @ x P R2 when

normals point in opposite directions and 2) a1pxq ´ a2pxq “ c, @x P R2 when normals point in

38

same direction. We will consider both these cases separately and show that expression w1

“

a1

‰

`
`

w2

“

a2

‰

`
, for the choices of w1, w2 mentioned above, cannot hard-sort the data as required.

Case 1: Normals point in the opposite directions. Here w1 “ w2 “ 1 and we assume a1 ` a2 “ c.

Suppose c ě 0. Then it can be verified that

“

a1pxq
‰

`
`
“

a2pxq
‰

`
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

c if c ě a1pxq ě 0

a1pxq if a1pxq ě c

c´ a1pxq if a1pxq ď 0.

By extended hard-sorting requirement, we need all points in T1 Y t0u should be contained in the

set tx : a1pxq P r0, csu and all points in T0 should not be in this set. Now observe that if c “ 0, then

the set tx : a1pxq “ 0u is one dimensional, and therefore cannot contain all the points of T1 Y t0u.

Hence we must have c ą 0 and all points in T1 Y t0u lie inside the region of two parallel lines

a1pxq “ 0 and a1pxq “ c as
“

a1pxq
‰

`
`
“

a2pxq
‰

`
evaluates to the constant c in this region. It can

be seen that this separation of T1 Y t0u from T0 is impossible to achieve by two parallel lines.

Similarly when c ă 0, then it can be verified that

“

a1pxq
‰

`
`
“

a2pxq
‰

`
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if c ď a1pxq ď 0

a1pxq if a1pxq ě 0

c´ a1pxq if a1pxq ď c

Again, for extended hard-sorting, as in the previous case, we need all points in T1 Y t0u should be

in set tx : a1pxq P rc, 0su and all points in T0 should not be in this set which cannot be achieved.

Case 2: Normals point in the same direction. Then a1pxq ´ a2pxq “ c. Suppose c ě 0. Then it

39

can be verified that

“

a1pxq
‰

`
´
“

a2pxq
‰

`
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

a1pxq if c ě a1pxq ě 0

c if a1pxq ě c

0 if a1pxq ď 0

If c “ 0 then
“

a1pxq
‰

`
´
“

a2pxq
‰

`
“ 0 for all x P R2. So this cannot hard-sort data. Hence for

hard-sorting we definitely need c ą 0. Moreover, we need either 1) T1 Y t0u Ă tx : a1pxq ď 0u

and T0 Ă tx : a1pxq ą 0u or 2) T1 Y t0u Ă tx : a1pxq ě cu and T0 Ă tx : a1pxq ă cu. So

essentially the points in T1 Y T0 Y t0u must be separable by a line. This is not possible.

Note that when c ă 0, one can write a2 ´ a1 “ ´c and write similar functional form for
“

a2

‰

`
´

“

a1

‰

`
.

Since in both cases, we were unable to achieve hard-sorting T1 Y T0 Y t0u w.r.t. T1 Y t0u, so we

conclude the proof.

2.7.7 Proof of Lemma 2.5.9

Proposition 2.5.8 yields that any hard-sorting a1, a2 must satisfy a1pxq ď 0, a2pxq ď 0 for at least

one x P T1.

Now, suppose sign of w1, w2 is different. Suppose w1 “ 1, w2 “ ´1. Since a1 and a2 satisfy

hard-sorting of gadget so we have
“

a1pxq
‰

`
´
“

a2pxq
‰

`
“ c, @ x P T1. Due to Proposition 2.5.8,

we obtain c “ 0. Then to fulfill hard-sorting condition, we need
“

a1pxq
‰

`
´
“

a2pxq
‰

`
ă 0 @x P T0.

(The case for w1 “ ´1, w2 “ 1 will have same proof with all a2 exchanged by a1 in next 3 lines.)

This implies a2pxq ą 0 for all x P T0. However note that T1 Ă convpT0q. So we get a contradiction

to the assumption that sign of weights w1, w2 is different. Now note that if sign of w1, w2 is same

then we cannot set w1 “ w2 “ 1 due to requirement (2.3) of hard-sorting. Hence we have that

w1 “ w2 “ ´1.

40

2.7.8 Proof of Corollary 2.5.11

The reduction is similar except the labels need to be changed from R to Rj . Simply add j ´ 1

zeros to original output labels. Now output of j ´ 1 nodes is 0 for all data-points so these are

redundant. In particular, for k P rjs, every k-th node in the second layer is connected to 2 nodes

in the first layer by distinct edges whose weights are parameterized by wk,1, wk,2 and bias weight

wk,0. We can set wk,1 “ wk,2 “ ´1 and wk,0 “ 0 for all k P rjszt1u. This yields the output

0 at all nodes k P rjszt1u, irrespective of the affine functions a1, a2 in the first layer. Now, first

node satisfied to global optimality will yield solution a1, a2, w1,1, w1,2, w1,0. By the reduction, we

know that´a1,´a2 after ignoring last two co-ordinates yield solution to 2-hyperplane separability

problem.

41

CHAPTER 3

STOCHASTIC FIRST-ORDER METHOD FOR CONVEX FUNCTION CONSTRAINED

OPTIMIZATION

In the previous chapter, we saw convergence complexity for training neural networks. Henceforth,

we will focus on algorithmic developments for function constrained optimization problems. In

this chapter, our main focus will be on the development of efficient and simple algorithms for con-

vex function constrained optimization. We will consider various settings of the convex function

constrained problem, e.g., convex or strongly convex and Lipschitz smooth or nonsmooth objec-

tive and/or constraints which can be either stochastic or deterministic. We will present a novel

algorithm that exhibits a unified convergence and reduces the impact of Lipschitz constants.

3.1 Convex Function Constrained Optimization Problem

In this paper, we study the following composite optimization problem with function constraints:

min
xPX

ψ0pxq :“ f0pxq ` χ0pxq

s.t. ψipxq :“ fipxq ` χipxq ď 0, i “ 1, . . . ,m.

(3.1)

Here, X Ď Rn is a convex compact set, fi : X Ñ R, i “ 0, . . . ,m are continuous functions which

are convex or strongly convex and χi : X Ñ R, i “ 0, . . . ,m are proper convex lower semicon-

tinuous functions. Problem 3.1 covers different convex and strongly convex settings depending on

the assumptions on fi and χi, i “ 0, . . . ,m.

In particular, we assume that fi, i “ 0, . . . ,m, are either smooth, nonsmooth or the sum of

smooth and nonsmooth components. We also assume that χi, i “ 0, . . . ,m, are “simple” functions

in the sense that, for any given vector v P Rn and non-negative weight vector w P Rm, a certain

proximal operator associated with the function χ0pxq `
řm
i“1wiχipxq ` xv, xy can be computed

42

efficiently. For such problems, Lipschitz smoothness properties of χi’s is of no consequence due

to the simplicity of this proximal operator.

3.1.1 Algorithms for solving convex function constrained optimization

There exists a variety of literature on solving convex function constrained optimization problems

(3.1). One research line focuses on primal methods without involving the Lagrange multipliers

including the cooperative subgradient methods [86, 60] and level-set methods [61, 81, 64, 5, 63].

One possible limitation of these methods is the difficulty to directly achieve accelerated rate of

convergence when the objective or constraint functions are smooth.

Constrained convex optimization problems can also be solved by reformulating them as saddle

point problems which will then be solved by using primal-dual type algorithms (see [75, 45]).

The main hurdle for existing primal-dual methods exists in that they require the projection of dual

multipliers inside a ball whose diameter is usually unknown.

Other alternative approaches for constrained convex problems include the classical exact penalty,

quadratic penalty and augmented Lagrangian methods [11, 54, 55, 109]. These approaches how-

ever require the solutions of penalty subproblems and hence are more complicated than primal and

primal-dual methods.

Recently, research effort has also been directed to stochastic optimization problems with func-

tion constraints [60, 5]. In spite of many interesting findings, existing methods for solving these

problems are still limited: a) many primal methods solve only stochastic problems with determin-

istic constraints [60], and the convergence for accelerated primal-dual methods [75, 45] has not

been studied for stochastic function constrained problems; and b) a few algorithms for solving

problems with expectation constraints require either a constraint evaluation step [60], or stochastic

lower bounds on the optimal value [5], thus relying on a light-tail assumption for the stochastic

noise and conservative sampling estimates based on Bernstein inequality. Some other algorithms

require even more restrictive assumptions that the noise associated with stochastic constraints has

to be bounded [113].

43

3.1.2 Unified algorithm for composite convex function constrained optimization

In this chapter, we attempt to address some of the aforementioned significant issues associated

with both convex and nonconvex function constrained optimization.

Firstly, for solving convex function constrained problems, we present a novel primal-dual type

method, referred to as the Constraint Extrapolation (ConEx) method. One distinctive feature of this

method from existing primal-dual methods is that it utilizes linear approximations of the constraint

functions to define the extrapolation (or acceleration/momentum) step. As a consequence, con-

trary to the well-known Nemirovski’s mirror-prox method [75] and a primal-dual method recently

developed by Hamedani and Aybat [45], ConEx does not require the projection of Lagrangian

multipliers onto a (possibly unknown) bounded set. In addition, ConEx is a single-loop algorithm

that does not involve any penalty subproblems. Due to the built-in acceleration step, this method

can explore problem structures and hence achieve better rate of convergence than primal meth-

ods. In fact, we show that this method is a unified algorithm that achieves the best-known rate

of convergence for solving different convex function constrained problems, including convex or

strongly convex, and smooth or non-smooth problems with stochastic objective and/or stochastic

constraints.

Table 3.1: Different convergence rates of the ConEx method for

Strongly convex (3.1) Convex (3.1)

Cases Smooth Nonsmooth Smooth Nonsmooth

Deterministic Op1{
?
εq Op1{εq Op1{εq Op1{ε2q

Semi-stochastic Op1{εq Op1{εq Op1{ε2q Op1{ε2q

Fully-stochastic Op1{ε2q Op1{ε2q Op1{ε2q Op1{ε2q

Table 3.1 provides a brief summary for the iteration complexity of the ConEx method for dif-

ferent problem settings such as strongly convex/convex, and smooth/nonsmooth objective and/or

constraints. Deterministic means both objective and constraints are deterministic, semi-stochastic

means objective is stochastic but constraints are deterministic, fully-stochastic means both objec-

44

tive and constraints are stochastic. For the strongly convex case, ConEx can obtain convergence to

an ε-approximate solution (i.e., optimality gap and infeasibility are Opεq) as well as convergence

of the distance of the last iterate to the optimal solution. The complexity bounds provided in Table

3.1 for the strongly convex case hold for both types of convergence criteria. For semi-stochastic

and fully-stochastic cases, we use the notion of expected convergence instead of exact convergence

used in the deterministic case. It should be noted that in Table 3.1, we ignore the impact of var-

ious Lipschitz constants and/or stochastic noises for the sake of simplicity. In fact, the ConEx

method achieves quite a few new complexity results by reducing the impact of these Lipschitz

constants. Moreover, to the best of our knowledge, it attains for the first time the optimal iteration

and sampling complexity for solving general stochastic constrained problems without requiring the

boundedness or light-tail assumptions on the stochastic subgradients (see Theorems 3.3.1 and 3.3.3

and discussions afterwards).

Even though ConEx is a primal-dual type method, we can show its convergence irrespective

of the knowledge of the optimal Lagrange multipliers as it does not require the projection of mul-

tipliers onto the ball. In particular, convergence rates of the ConEx method for nonsmooth cases

(either convex or strongly convex) in Table 3.1 holds irrespective of the knowledge of the opti-

mal Lagrange multipliers. For smooth cases, if certain parameters of ConEx method are not big

enough (compared to the norm of optimal Lagrange multipliers), then it converges at the rates for

nonsmooth problems of the respective case. As one can see from Table 3.1, such a change would

cause a suboptimal convergence rate in terms of ε only for the deterministic case, but complexity

will be the same for both semi- and fully-stochastic cases.

It is worth mentioning that faster convergence rates for the smooth deterministic case can still

be attained by incorporating certain line search procedures. ConEx method is arguably the first

algorithm in the literature solving all different types of convex function constrained problems in an

optimal and unified manner.

45

3.2 Notation and Terminologies

Throughout the paper, we use the following notations. Let

rms :“ t1, . . . ,mu,

ψpxq :“ rψ1pxq, . . . , ψmpxqs
T ,

fpxq :“ rf1pxq, . . . , fmpxqs
T ,

χpxq :“ rχ1pxq, . . . , χmpxqs
T ,

(3.2)

and the constraints in (3.1) be expressed as ψpxq ď 0. Here bold 0 denotes the vector of elements

0. Size of the vector is left unspecified whenever it is clear from the context. ‖¨‖ denotes a general

norm and ‖¨‖˚ denotes its dual norm defined as ‖z‖˚ :“ suptzTx : ‖x‖ ď 1u. From this definition,

we obtain the aT b ď ‖a‖‖b‖˚. Euclidean norm is denoted as ‖¨‖2 and standard inner product is

denoted as x¨, ¨y. Let B2prq :“ tx : ‖x‖2 ď ru be the Euclidean ball of radius r centered at origin.

Nonnegative orthant of this ball is denoted as B2
`prq.

“

x
‰

`
:“ maxtx, 0u for any x P R. For any

vector x P Rk, we define
“

x
‰

`
as element-wise application of the operator

“

¨
‰

`
. The i-th element

of vector x is denoted as xi.

A function rp¨q is λ-Lipschitz smooth if the gradient ∇rpxq is a λ-Lipschitz function, i.e. for

some λ ě 0

‖∇rpxq ´∇rpyq‖˚ ď λ‖x´ y‖, @x, y P dom r.

For a convex function r, an equivalent form of the above is:

0 ď rpxq ´ rpyq ´ x∇rpyq, x´ yy ď λ
2
‖x´ y‖2, @x, y P dom r.

In many cases, it is possible that a convex function r is a combination of Lipschitz smooth and

nonsmooth functions. Let ω : X Ñ R be continuously differentiable with Lω Lipschitz gradient

46

and 1-strongly convex with respect to ‖¨‖. We define the prox-function associated with ωp¨q as

W py, xq :“ ωpyq ´ ωpxq ´ x∇ωpxq, y ´ xy, @x, y P X. (3.3)

Based on the smoothness and strong convexity of ωpxq, we have the following relation

W py, xq ď Lω
2
}x´ y}2 ď LωW px, yq, @x, y P X. (3.4)

Moreover, we say that a function rp¨q is β-strongly convex with respect to W p¨, ¨q if

rpxq ě rpyq ` x∇rpyq, x´ yy ` βW px, yq, @x, y P X. (3.5)

For any convex function h, we denote the subdifferential as Bh which is defined as follows: at a

point x in the relative interior of X , Bh is comprised of all subgradients h1 of h at x which are in

the linear span of X´X . For a point x P Xz rintX , the set Bhpxq consists of all vectors h1, if any,

such that there exists xi P rintX and h1i P Bhpxiq, i “ 1, 2, . . . , with x “ lim
iÑ8

xi, h
1 “ lim

iÑ8
h1i.

With this definition, it is well-known that, if a convex function h : X Ñ R is Lipschitz continuous,

with constantM, with respect to a norm ‖¨‖, then the set Bhpxq is nonempty for any x P X and

h1 P Bhpxq ñ |xh1, dy| ďM‖d‖, @d P lin pX ´Xq,

which also implies

h1 P Bhpxq ñ ‖h1‖˚ ďM,

where ‖¨‖˚ is the dual norm. See [10] for more details.

3.3 Constraint Extrapolation Method

In this section, we present a novel constraint extrapolation (ConEx) method for solving problem

(3.1). To motivate our proposed method, observe that the KKT point of (3.1) coincides with the

47

solution of the following saddle point problem:

min
xPX

max
yě0

Lpx, yq :“ ψ0pxq `
řm
i“1y

piqψipxq
(

. (3.6)

In other words, px˚, y˚q is a saddle point of the Lagrange function Lpx, yq such that

Lpx˚, yq ď Lpx˚, y˚q ď Lpx, y˚q, (3.7)

for all x P X, y ě 0, whenever the optimal dual, y˚, exists. Throughout this chapter, we assume

the existence of y˚ satisfying (3.7). The following definition describes a widely used optimality

measure for the convex problem (3.1).

Definition 3.3.1 A point sx P X is called a pδo, δcq-optimal solution of problem (3.1) if

ψ0psxq ´ ψ
˚
0 ď δ0 and ‖

“

ψpsxq
‰

`
‖2 ď δc.

A stochastic pδo, δcq-approximately optimal solution satisfies

Erψ0psxq ´ ψ
˚
0 s ď δ0 and Er‖

“

ψpsxq
‰

`
‖2s ď δc.

As mentioned earlier, for the convex composite case, we assume that χi, i “ 0, . . . ,m, are “simple”

functions in the sense that, for any vector v P Rn and nonnegative w P Rm, we can efficiently

compute the following prox operator

proxpw, v, rx, ηq :“ argmin
xPX

χ0pxq `
řm
i“1wiχipxq ` xv, xy ` ηW px, rxq

(

. (3.8)

ConEx is a single-loop primal-dual type method for function constrained optimization. It

evolves from the primal-dual methods for solving bilinear saddle point point problems (e.g., [22,

23, 59, 56, 53]). Recently Hamedani and Aybat [45] show that these methods can also handle more

general function coupling term. However, as discussed earlier, existing primal-dual methods [75,

48

45] for general saddle point problems, when applied to function constrained problems, require the

projection of dual multipliers onto a possibly unknown bounded set in order to ensure the bound-

edness of the multipliers, as well as the proper selection of stepsizes. One distinctive feature of

ConEx is to use value of linearized constraint functions in place of exact function values when

defining the operator of the saddle point problem and the extrapolation/momentum step. With this

modification, we show that the ConEx method still converges even though the feasible set of y in

problem (3.6) is unbounded.

In addition, we show that the ConEx is a unified algorithm for solving function constrained

optimization problems in the following sense. First, we establish explicit rate of convergence

for the ConEx method for solving function constrained stochastic optimization problems where

either the objective and/or constraints are given in the form of expectation. Second, we consider

the composite constrained optimization problem in which objective function f0 and/or constraints

fi, i “ 1, . . . ,m can be nonsmooth. Third, we consider the two cases of convex or strongly convex

objective, f0. For strongly convex objective, we also establish the convergence rate of the distance

between last iterate to the optimal solution x˚.

Before proceeding to the algorithm, we introduce the problem setup in more details. First, we

assume that f0 satisfies the following Lipschitz smoothness and nonsmoothness condition:

f0px1q ´ f0px2q ´ xf
1
0px2q, x1 ´ x2y ď

L0

2
‖x1 ´ x2‖2

`H0‖x1 ´ x2‖ (3.9)

for all x1, x2 P X and for all f 10px2q P Bf0px2q. For constraints, we make a similar assumption as

in (3.9). Moreover, we make an additional assumption that the constraint functions are Lipschitz

continuous. In particular, we have

fipx1q ´ fipx2q ´ xf
1
ipx2q, x1 ´ x2y ď

Li
2
‖x1 ´ x2‖2

`Hi‖x1 ´ x2‖, (3.10)

49

for all x1, x2 P X and for all f 1ipx2q P Bfipx2q, i “ 1, . . . ,m, and

fipx1q ´ fipx2q ďMf,i‖x1 ´ x2‖, @x1, x2 P X, i “ 1, . . . ,m,

χipx1q ´ χipx2q ďMχ,i‖x1 ´ x2‖, @x1, x2 P X, i “ 1, . . . ,m.

(3.11)

Note that the Lipschitz-continuity assumption in (3.11) is common in the literature when fi, i P

rms, are nonsmooth functions. If fi, i P rms, are Lipschitz smooth then their gradients are bounded

due to the compactness of X . Hence (3.11) is not a strong assumption for the given setting. Also

note that due to definition of subgradient for convex function defined in Section 3.2, we have

‖f 1ip¨q‖˚ ďMf,i which implies |f 1ipx2q
T px1 ´ x2q| ď ‖f 1ipx2q‖˚‖x1 ´ x2‖ ďMf,i‖x1 ´ x2‖.

Using this relation and noting relations (3.10) and (3.11), we have the following four relations:

‖fpx1q ´ fpx2q‖2 ďMf‖x1 ´ x2‖,

‖χpx1q ´ χpx2q‖2 ďMχ‖x1 ´ x2‖,

‖fpx1q ´ fpx2q ´ f
1
px2q

T
px1 ´ x2q‖2 ď

Lf
2
‖x1 ´ x2‖2

`Hf‖x1 ´ x2‖,

‖f 1px2q
T
px1 ´ x2q‖2 ďMf‖x1 ´ x2‖,

(3.12)

for all x1, x2 P X . Here f 1p¨q :“ rf 11p¨q, . . . , f
1
mp¨qs P Rnˆm and constants Mf ,Mχ, Hf and Lf are

defined as
Mf :“ p

řm
i“1M

2
f,iq

1{2, Mχ :“ p
řm
i“1M

2
χ,iq

1{2,

Hf :“ p
řm
i“1H

2
i q

1{2, Lf :“ p
řm
i“1L

2
i q

1{2.

(3.13)

We denote α “ pα1, . . . , αmq
T as the vector of moduli of strong convexity for χi, i P rms, and

α0 as the modulus of strong convexity for χ0. We say that problem (3.1) is a convex composite

smooth (also referred to as composite smooth) function constrained minimization problem if (3.10)

is satisfied with Hi “ 0 for all i “ 1, . . . ,m and (3.9) is satisfied with H0 “ 0. Otherwise, (3.1)

is a nonsmooth problem. To be succinct, problem (3.1) is composite smooth if Hf “ H0 “ 0,

otherwise it is a nonsmooth problem.

50

We assume that we can access the first-order information of functions f0, fi and zeroth-order

information of function fi using a stochastic oracle (SO). In particular, given x P X , SO outputs

G0px, ξq, Gipx, ξq, and F px, ξq such that

ErG0px, ξqs “ f 10pxq,

ErGipx, ξqs “ f 1ipxq, i “ 1, . . . ,m,

ErF px, ξqs “ fpxq,

E
“

‖G0px, ξq ´ f
1
0pxq‖2

˚

‰

ď σ2
0,

E
“

‖Gipx, ξq ´ f
1
ipxq‖2

˚

‰

ď σ2
i , i “ 1, . . . ,m,

Er‖F px, ξq ´ fpxq‖2
2s ď σ2

f ,

(3.14)

where ξ is a random variable which models the source of uncertainty and is independent of the

search point x. Note that the last relation of (3.14) is satisfied if we have individual stochastic

oracles Fipx, ξq such that ErpFipx, ξq ´ fipxqq
2s ď σ2

f,i. In particular, we can set σ2
f “

řm
i“1σ

2
f,i.

We call Gi, i “ 0, . . . ,m, as stochastic subgradients of functions fi, i “ 0, . . . ,m at point x,

respectively. We use stochastic subgradients Gipxt, ξtq, i “ 0, . . . ,m, in the t-th iteration of the

ConEx method where ξt is a realization of random variable ξ which is independent of the search

point xt.

We denote `t´1
f pxtq a linear approximation of fp¨q at point xt with

`t´1
f pxtq :“ fpxt´1q ` f

1
pxt´1q

T
pxt ´ xt´1q,

where f 1pxt´1q “ rf 11pxt´1q, . . . , f
1
mpxt´1qs as defined earlier. For ease of notation, we denote

`t´1
f pxtq as `f pxtq. We can do this, since for all t, we approximate fpxtq with linear function

approximation taken at xt´1. We use a stochastic version of `f in our algorithm, which is denoted

as `F . In particular, we have

`F pxtq :“ F pxt´1, sξt´1q `Gpxt´1, sξt´1q
T
pxt ´ xt´1q,

51

where Gpxt´1, sξt´1q :“ rG1pxt´1, sξt´1q, . . . , Gmpxt´1, sξt´1qs P Rnˆm. Here, we used sξt as an

independent (of ξt) realization of random variable ξ. In other words, Gipxt, sξtq and Gipxt, ξtq

are conditionally independent estimates of f 1ipxtq for i “ 1, . . . ,m under the condition that xt is

fixed. As we show later, independent samples of ξ are required to show that `F pxtq is an unbiased

estimator of `f pxtq.

We are now ready to formally describe the constraint extrapolation method (see Algorithm 1).

As mentioned earlier, the `F pxtq term in Line 3 of Algorithm 1 can be shown to be an unbiased

Algorithm 1 Constraint Extrapolation (ConEx) Method

Input: px0, y0q, tγt, τt, ηt, θtutě0, T.
1: px´1, y´1q Ð px0, y0q, F px´1q Ð F px0, sξ0q and `F px´1q Ð `F px0q

2: for t “ 0, . . . , T ´ 1 do
3: st Ð p1` θtqrχpxtq ` `F pxtqs ´ θtrχpxt´1q ` `F pxt´1qs.
4: yt`1 Ð

“

yt `
1
τt
st
‰

`
.

5: xt`1 Ð prox
`

yt`1, G0pxt, ξtq `
ř

iPrmsGipxt, ξtqy
piq
t`1, xt, ηt

˘

.
6: end for
7: return sxT “

`
řT´1
t“0 γt

˘´1
T´1
ř

t“0

γtxt`1.

estimator of `f pxtq. Moreover, the term χpxtq ` `f pxtq is an approximation to χpxtq ` fpxtq “

ψpxtq. Essentially, Line 3 represents a stochastic approximation for the term ψpxtq ` θtpψpxtq ´

ψpxt´1qq which is an extrapolation of the constraints, hence justifying the name of the algorithm.

Line 4 is the standard prox operator of the form argminyě0x´st, yy`
τt
2
‖y´yt‖2

2. Line 5 also uses

a prox operator defined in (3.8) which uses Bregman divergence W instead of standard Euclidean

norm. The final output of the algorithm in Line 7 is the weighted average of all primal iterates

generated. If we choose σf “ σ0 “ σi “ 0 for i “ 1, . . . ,m then we recover the deterministic

gradients and function evaluation. Henceforth, we assume general non-negative values for such

σ’s and provide a combined analysis for these settings. Later, we substitute appropriate values of

σ’s to finish the analysis for the following three different cases.

a) Deterministic setting where both the objective and constraints are deterministic. Here σ0 “

σi “ σψ “ 0 for all i P rms.

52

b) Semi-stochastic setting where the constraints are deterministic but the objective is stochastic.

Here, σψ “ σi “ 0 for all i P rms. However, σ0 ě 0 can take arbitrary values.

c) Fully-stochastic setting where both function and gradient evaluations are stochastic. Here,

all σψ, σ0, σi ě 0 can take arbitrary values.

Below, we specify a stepsize policy and state the convergence properties of Algorithm 1 for

solving problem (3.1) in the strongly convex setting. The proof of this result is involved and will

be deferred to Section 3.4.

Theorem 3.3.1 Suppose (3.9), (3.10), (3.11) and (3.14) are satisfied. Let B ě 1 be a constant,

t0 :“
4pL0`BLf q

α0
` 2,M :“ maxt2Mf ,Mχ `Mfu, and σX,f :“ pσ2

f ` D2
X‖σ‖2

2q
1{2. Set y0 “ 0

and tγt, θt, ηt, τtu in Algorithm 1 according to the following:

γt “ t` t0 ` 2, ηt “
α0pt`t0`1q

2
,

τt “
1
t`1

maxt32M2

α0
,

384‖σ‖22T
α0

,
σX,fT

3{2

Bpt0`2q1{2
u, θt “

t`t0`1
t`t0`2

.
(3.15)

Then for T ě 1, we have

Erψ0psxT q ´ ψ0px
˚
qs ď

α0pt0`1qpt0`2qD2
X

T 2 `
12BσX,f pt0`1qpt0`2q1{2

T 3{2 `
16pζ2`H2

0 q

α0T
`

8Bpt0`2q1{2σX,f
T 1{2 .

(3.16)

and

E
∥∥∥“ψpsxT q‰`∥∥∥2

ď
192pt0`2qp‖y˚‖2`1q2M2

α0T 2 `
α0pt0`1qpt0`2qD2

X

T 2 `
13BσX,f pt0`1qpt0`2q1{2

T 3{2

`
16pζ2`H2

˚`144pt0`2qp‖y˚‖2`1q2‖σ‖22q
α0T

`
 6pt0`2q1{2p‖y˚‖2`1q2σX,f

B
`

26Bpt0`2q1{2σX,f
3

(

1
T 1{2 , (3.17)

53

where

H˚ :“ H0 ` p‖y˚‖2 ` 1qHf `
LfDX r‖y˚‖2`1´Bs`

2
,

ζ :“ 2e
!

“

σ2
0 ` 12pt0 ` 3q‖σ‖2

2‖y˚‖2
2 ` 96pt0 ` 2qB2‖σ‖2

2 `
H2
˚

2
`

3α0BσX,f pt0`2q3{2

2

‰

)1{2

.

Moreover, we obtain the last iterate convergence

ErW px˚, XT qs ď
192pt0`2qp‖y˚‖2`1q2M2

α2
0T

2 `
pt0`1qpt0`2qD2

X

T 2 `
12BσX,f pt0`1qpt0`2q1{2

α0T 3{2

`
16pζ2`H2

˚`144pt0`2qp‖y˚‖2`1q2‖σ‖22q
α2
0T

`
pt0`2q1{2‖y˚‖22σX,f

Bα0

1
T 1{2 `

8Bpt0`2q1{2σX,f
α0T 1{2 . (3.18)

An immediate corollary of the above theorem is the following:

Corollary 3.3.2 We obtain an pε, εq-optimal solution of problem (3.1) in Tε iterations, where

Tε “max
!´

5α0pt0`2qpt0`1qD2
X

ε
`

960pt0`2qp‖y˚‖2`1q2M2

α0ε

¯1{2

,
`65BσX,f pt0`2q3{2

ε

˘2{3
,

80pζ2`H2
˚`144pt0`2qp‖y˚‖2`1q2‖σ‖22q

α0ε
,
`30p‖y˚‖2`1q2σX,f

B

˘

t0`2
ε2
,
`130BσX,f

3

˘2 t0`2
ε2

)

.

(3.19)

Moreover, we obtain ErW px˚, xT qs ď ε in at most

max
!´

5pt0`2qpt0`1qD2
X

ε
`

960pt0`2qp‖y˚‖2`1q2M2

α2
0ε

¯1{2

,
`60BσX,f pt0`2q3{2

α0ε

˘2{3
,

80pζ2`H2
˚`144pt0`2qp‖y˚‖2`1q2‖σ‖22q

α2
0ε

,
`5‖y˚‖22σX,f

Bα0

˘2 t0`2
ε2
,
`40BσX,f

α0

˘2 t0`2
ε2

)

(3.20)

iterations.

Proof. Using (3.17) and (3.19), we have E
∥∥∥“ψpsxT q‰`∥∥∥2

ď ε
5
` ε

5
` ε

5
` ε

5
` ε

5
“ ε. Similarly, using

(3.16) and (3.19), it is easy to observe that Erψ0psxT q ´ ψ0px
˚qs ď ε. Using (3.18) and (3.20), we

have ErW px˚, xT qs ď ε
5
` ε

5
` ε

5
` ε

5
` ε

5
“ ε. Hence we conclude the proof. ˝

Theorem 3.3.1 and Corollary 3.3.2 provide unified iteration complexity bounds for solving

54

strongly convex function constrained optimization problems. These results will also be used

later for solving subproblems arising from the proximal point method for nonconvex problems

in Section 4.2. Below we derive from (3.19) the convergence rate of Algorithm 1 for both nons-

mooth problems, i.e., either Hf or H0 is strictly positive, and (composite) smooth problems, i.e.,

Hf “ 0, H0 “ 0.

Let us start with nonsmooth problems for which (3.9) is satisfied with H0 ą 0 or (3.10) is

satisfied with Hi ą 0 for at least one i P rms. In this case, we have

H˚ “ p‖y˚‖2 ` 1qHf `H0 `
LfDX r‖y˚‖2`1´Bs`

2
ą 0

irrespective of the value of B. Then, using (3.19), we obtain the iteration complexity of

O
´

1?
ε

`

pL0`BLf qDX
?
α0

`

?
L0`BLfBM

α0

˘

`
H2
˚

α0ε

¯

for the deterministic case. For the semi-stochastic case, the iteration complexity becomes

O
´

1?
ε

`

pL0`BLf qDX
?
α0

`

?
L0`BLfBM

α0

˘

`
pH2
˚`σ

2
0q

α0ε

¯

.

Similarly, for the fully-stochastic case, the iteration complexity is given by

O
´

1?
ε

`

pL0`BLf qDX
?
α0

`

?
L0`BLfBM

α0

˘

`
pH2
˚`ζ

2q

α0ε
` 1

ε2

 B2pL0`BLf qpσ
2
0`D

2
X‖σ‖22q

α0

(

¯

.

Observe that, due to the built-in acceleration scheme of the ConEx method, the Lipschitz constant

L0 will barely impact the convergence since it appears only in the Op1{
?
εq term. Similarly, the

impact of the Lipschitz constant Lf will be minimized for a large enough B (i.e., B ě ‖y˚‖2` 1).

To the best of our knowledge, these complexity results with separate impact of Lipschitz constants

appear to be new for function constrained optimization. Moreover, the iteration (and sample)

complexity for the fully-stochastic case, i.e., general stochastic constrained problems requiring

55

only bounded second moments on nosies, has not been obtained before in the literature.

Now let us consider smooth problems for which (3.9) and (3.10) are satisfied with H0 “ 0

and Hi “ 0 for all i “ 1, . . . ,m, respectively. We distinguish two different scenarios depending

on whether B ě ‖y˚‖2 ` 1. First, if B ě ‖y˚‖2 ` 1, then H˚ “ H0 ` Hf p‖y˚‖2 ` 1q `

LfDXr‖y˚‖2` 1´Bs`{2 “ 0 and the iteration complexity in (3.19) can be simplified as follows.

For the deterministic case, the iteration complexity in (3.19) reduces to

O
´

1?
ε

`

pL0`BLf qDX
?
α0

`

?
L0`BLfBM

α0

˘

¯

. (3.21)

Moreover, the complexity bounds for the semi- and fully-stochastic cases are given by

O
´

1?
ε

`

pL0`BLf qDX
?
α0

`

?
L0`BLfBM

α0

˘

`
σ2
0

α0ε

¯

, (3.22)

O
´

1?
ε

`

pL0`BLf qDX
?
α0

`

?
L0`BLfBM

α0

˘

`
ζ2

α0ε
` 1

ε2

 B2pL0`BLf qpσ
2
0`D

2
X‖σ‖22q

α0

(

¯

, (3.23)

respectively, where ζ2 “ Opσ2
0 `B

2pL0 `BLf q‖σ‖2
2{α0q. It is worth noting that a similar bound

to 3.21 has been obtained in [45] with a slightly different termination criterion1. On the other hand,

the complexity bounds in 3.22 and 3.23 for the semi-stochastic and fully-stochastic cases seem to

be new in the literature.

Second, if B ă ‖y˚‖2 ` 1 for the smooth case, thenH˚ ą 0 and the ConEx method converges

at the rate of nonsmooth problems in all these three settings described above. Hence, the ConEx

method still converges albeit at a slower rate without knowing exact bound on ‖y˚‖2. On the

other hand, existing primal-dual methods require correct estimation of ‖y˚‖2 in order to define

the projection operator and properly select stepsize. Observe that one can possibly perform a line

search for right value of B when specifying τt in the ConEx method in order to obtain a faster

convergence rate, especially for the deterministic and semi-stochastic cases where the constraint

1The infeasibility in [45] is measured by y˚
“

ψpsxT q
‰

`
, and hence may vanish for constraints with y˚

i “ 0.

56

violations ‖
“

ψp¨q
‰

`
‖2 can be measured precisely.

It is worth mentioning that for the complexity results discussed above, we do not require the

constraints ψi, i “ 1, . . . ,m, to be strongly convex. From (3.15), we can see that α0 ą 0 is enough

to ensure the selection of stepsize policy which yields accelerated convergence rates. In particular,

if αi “ 0 for all i P rms (implying ψi’s are merely convex functions) then ηt in relation (3.34) is

required to satisfy the following more stringent relation: γtηt ď γt´1pηt´1 ` α0q. Note that our

stepsize policy already satisfies this relation. Hence Algorithm 1 exhibits accelerated convergence

rates even if the constraints are merely convex.

Now we provide another theorem which states the stepsize policy and the resulting conver-

gence properties of the ConEx method for solving problem (3.1) without any strong convexity

assumptions. The proof of this result can be found in Section 3.4.

Theorem 3.3.3 Suppose (3.9), (3.10), (3.11) and (3.14) are satisfied. Let B ě 1 be a given

constant, M, σX,f and H˚ be defined as in Theorem 3.3.1. Set y0 “ 0 and tγt, θt, ηt, τtu in

Algorithm 1 according to the following:

γt “ 1, ηt “ L0 `BLf ` η,

θt “ 1, τt “ τ,
(3.24)

where

η :“ max

?
2T rH2

˚`σ
2
0`48B2‖σ‖22s
DX

,
6BmaxtM,4‖σ‖2u

DX

(

,

τ :“ max

?
96TσX,f
B

,
2DX maxtM,4‖σ‖2u

B

(

.

Then, we have

Erψ0psxT q ´ ψ0px
˚
qs ď

pL0`BLf qD
2
X`maxt6M,24‖σ‖2uBDX

T
` 1?

T

?
2pζ2`H2

0 qDX?
H2
˚`σ

2
0`48B2‖σ‖22

`

?
3BσX,f?

2

(

(3.25)

57

and

Er‖
“

ψpsxT q
‰

`
‖2s ď

pL0`BLf qD
2
X`maxt6M,24‖σ‖2uDX

`

B`
p‖y˚‖2`1q2

B

˘

T

` 1?
T

!

r
12
?

6p‖y˚‖2`1q2

B
` 13B

4
?

6
sσX,f

`
?

2DX

“

b

H2
˚ `B

2σ2
0 ` 48‖σ‖2

2 `
ζ2`H2

˚?
H2
˚`σ

2
0`48B2‖σ‖22

‰

)

, (3.26)

where

ζ :“ 2e

σ2
0 ` ‖σ‖2

2p14‖y˚‖2
2 ` 123B2

q ` 2
?

3‖σ‖2p2BH˚ `Bσ0q
(1{2

.

As a consequence, the number of iterations performed by Algorithm 1 to find an pε, εq-optimal

solution of problem (3.1) can be bounded by

max
!

3pL0`BLf qD
2
X`maxt36M,144‖σ‖2up‖y˚‖2`1qDX

ε
, r

36
?

6p‖y˚‖2`1q2

B
` 13

?
3B

4
?

2
s
2 σ

2
X,f

ε2
,

18
ε2

“

DX

b

H2
˚ ` σ

2
0 ` 48B2‖σ‖2

2 `
DXpζ

2`H2
˚q?

H2
˚`σ

2
0`48B2‖σ‖22

‰2
)

.
(3.27)

Theorem 3.3.3 provides unified iteration complexity bounds for solving convex function con-

strained optimization problems. Below we derive from (3.27) the convergence rate of Algorithm

1 for solving both nonsmooth problems, i.e., either Hf or H0 is strictly positive, and (composite)

smooth problems, i.e., Hf “ 0, H0 “ 0.

Let us start with the more general nonsmooth problems. Since Hi ą 0 for some i “ 0, . . . ,m,

we have H˚ ą 0. Then, the complexity bound in (3.27) for the deterministic, semi-stochastic and

fully-stochastic cases, respectively, will reduce to

O
`L0`BDXpLfDX`Mq

ε
`

D2
XH2

˚

ε2

˘

,

O
`L0`BDXpLfDX`Mq

ε
`

D2
XpH

2
˚`σ

2
0q

ε2

˘

,

58

and

O
´

L0`BDXpLfDX`Mq

ε
`

B2pσ2
f`D

2
X‖σ‖22q`D2

Xpσ
2
0`H2

˚q

ε2

¯

. (3.28)

Similarly to the strongly convex case, the separate impact of the Lipschitz constants (L0 and Lf)

on these complexity bounds have not been obtained before. Moreover, the iteration (and sampling)

complexity for the fully-stochastic case, i.e., general stochastic constrained problems requiring

only bounded second moments on nosies, appears to be new in the literature.

Now let us consider smooth problems for which Hf “ H0 “ 0. We distinguish two different

scenarios depending on whether B ě ‖y˚‖2 ` 1. First, if B ě ‖y˚‖2 ` 1, then H˚ “ 0 and

the complexity bound in (3.27) for the deterministic, semi-stochastic and fully-stochastic cases,

respectively, will reduce to

O
`L0`BDXpLfDX`Mq

ε

˘

, (3.29)

O
`L0`BDXpLfDX`Mq

ε
`

σ2
0D

2
X

ε2

˘

, (3.30)

and

O
´

L0`BDXpLfDX`Mq

ε
`

B2pσ2
f`D

2
X‖σ‖22q`D2

Xσ
2
0

ε2

¯

, (3.31)

where last bound is obtained from (3.27) by noting that ζ2 “ Opσ2
0 ` 48B2‖σ‖2

2q and replacing

σ2
X,f “ σ2

f ` D2
X‖σ‖2

2. Note that similar bound as in (3.29) has been obtained before by using

more complicated algorithms (e.g., penaly method) or different criterrions. On the other hand the

complexity bounds in (3.30) and (3.31) appear to be new in the literature. Second, ifB ă ‖y˚‖2`1,

then H˚ ą 0 and as a result, the ConEx method still converges but at the rate of nonsmooth

problems in all these three settings described above.

It should be noted that, different from the strongly convex case (c.f. (3.15)), the stepsize scheme

in (3.24) depends onH˚, implying that we need to estimate whether B ą ‖y˚‖2` 1. However, we

59

can replaceH˚ in the definition of η byHB :“ H0`BHf . In this way, similar complexity bounds

will be obtained for most cases, including nonsmooth deterministic, nonsmooth semi-stochastic,

nonsmooth fully-stochastic, as well as smooth semi-stochastic and smooth fully-stochastic prob-

lems. In particular, with this modification the last term in (3.27) will change to

18
ε2

“

DX

b

H2
B ` σ

2
0 ` 48B2‖σ‖2

2 `
DXpζ

2`H2
˚q?

H2
B`σ

2
0`48B2‖σ‖22

‰2
.

The only exception that this modification would not work is for smooth deterministic problems. In

this case, since HB “ 0 but H˚ ą 0, the stepsize scheme (3.24) set according to replacing H˚ by

HB does not yield convergence. In particular, the last term in the infeasibility bound (3.26) would

change toH2
˚{HB which is undefined. One possible solution for this is to artificially setHB ą 0 in

the definition of η to be some large positive number and forego of the faster convergence ofOp1{εq.

After this change, we would obtain a convergence rate of Op1{ε2q. An alternative approach would

be to design a line search procedure onHB for the right value ofH˚, since there exists a verifiable

condition based on the constraint violation ‖
“

ψp¨q
‰

`
‖2.

3.4 Convergence analysis of the ConEx method

In this section, we provide a combined analysis of Theorem 3.3.1 and Theorem 3.3.3. Note that

Algorithm 1 is essentially a dual type method. In order to analyze this algorithm, we define a

primal-dual gap function for the equivalent saddle point problem (3.6). In particular, given a pair

of feasible solution z “ px, yq and sz “ psx, syq of (3.6), we define the primal-dual gap function

Qpz, szq as

Qpz, szq :“ Lpx, syq ´ Lpsx, yq. (3.32)

One can easily see from (3.7) that Qpz, z˚q ě 0 and Qpz˚, zq ď 0 for all feasible z. We use the gap

function of the saddle point formulation (3.6) to bound the optimality and feasibility of the convex

problem (3.1) separately, in terms of Definition 3.3.1. We first develop an important upper-bound

on the gap function in terms of primal, dual variables and randomness. This bound holds for all

60

nonnegative γt, ηt and τt. The precise statement is provided in Lemma 3.4.2.

The following technical result provides a simple form of the three-point theorem (see, e.g.,

Lemma 3.5 of [53]) and will be used in the proof of Lemma 3.4.2.

Lemma 3.4.1 Assume that g : X Ñ R satisfies

gpyq ě gpxq ` xg1pxq, y ´ xy ` µW py, xq, @x, y P S (3.33)

for some µ ě 0, where S is convex set in Rn. If

sx “ argmin
xPS

tgpxq `W px, rxqu,

then

gpsxq `W psx, rxq ` pµ` 1qW px, sxq ď gpxq `W px, rxq, @x P S.

Proof. It follows from the definition ofW thatW px, rxq “ W psx, rxq`x∇W psx, rxq, x´sxy`W px, sxq.

Using this relation, (3.33) and the optimality condition for sx, we have

gpxq `W px, rxq “ gpxq ` rW psx, rxq ` x∇W psx, rxq, x´ sxy `W px, sxqs

ě gpsxq ` xg1psxq, x´ sxy ` µW px, sxq ` rW psx, rxq ` x∇W psx, rxq, x´ sxy `W px, sxqs

ě gpsxq `W psx, rxq ` pµ` 1qW px, sxq.

Hence we conclude the proof. ˝

Lemma 3.4.2 Suppose (3.9), (3.10), (3.11) and (3.14) are satisfied. Let B ě 0 be a constant and

61

assume that tγt, ηt, τt, θtu is a non-negative sequence satisfying

γtθt “ γt´1,

γtτt ď γt´1τt´1,

γtηt ď γt´1pηt´1 ` α0,t´1q,

(3.34)

and

p2Mf q
2 θt
θt´1

ď
τtpηt´2´L0´BLf q

12
, θtpMf `Mχq

2 ď
τtpηt´1´L0´BLf q

12
,

p2Mf q
2 1
θT´1

ď
τtpηt´2´L0´BLf q

12
, pMf `Mχq

2 ď
τT´1pηT´1´L0´BLf q

12
,

(3.35)

where α0,t :“ α0`α
Tyt`1 and Mf ,Mχ, Lf are constants as defined in (3.13). Then, for all T ě 1

and z P tpx, yq : x P X, y ě 0u, we have

řT´1
t“0 γtQpzt`1, zq `

řT´1
t“0 γtrxδ

G
t , xt ´ xy ´ xδ

F
t`1, yt`1 ´ yys

ď γ0η0W px, x0q ´ γT´1pηT ` α0,T´1qW px, xT q `
γ0τ0

2
‖y ´ y0‖2

2 ´
γT´1τT´1

12
‖y ´ yT‖2

2

`
řT´1
t“0

2γt
ηt´L0´BLf

“

‖δGt ‖2
˚ ` pH0 `Hf‖y‖2 `

LfDX
2
r‖y‖2 ´Bs`q

2
‰

`
řT´1
t“1

3γtθ2t
2τt
‖qt ´ sqt‖2

2 `
3γT´1

2τT´1
‖qT ´ sqT‖2

2. (3.36)

Here qt :“ `F pxtq ´ `F pxt´1q ` χpxtq ´ χpxt´1q, sqt :“ `f pxtq ´ `f pxt´1q ` χpxtq ´ χpxt´1q,

δFt :“ `F pxtq ´ `f pxtq and δGt :“ G0pxt, ξtq `
ř

iPrmsGipxtqy
piq
t`1 ´ f

1
0pxtq ´

řm
i“1f

1
ipxtqy

piq
t`1.

Proof. Note that yt`1 “ argmin
yě0

x´st, yy `
τt
2
‖y ´ yt‖2

2. Hence, using Lemma 3.4.1, we have for

all y ě 0,

´xst, yt`1 ´ yy ď
τt
2

“

‖y ´ yt‖2
2 ´ ‖yt`1 ´ yt‖2

2 ´ ‖y ´ yt`1‖2
2

‰

. (3.37)

Let us denote vt :“ f 10pxtq `
ř

iPrmsf
1
ipxtqy

piq
t`1 and Vt :“ G0pxt, ξtq `

ř

iPrmsGipxt, ξtqy
piq
t`1. Then,

due to the strong convexity of χ0 and χi, i “ 1, . . . ,m, the optimality of xt`1, Lemma 3.4.1 and

62

the definition of α0,t, we have for all x P X ,

xVt, xt`1 ´ xy ` χ0pxt`1q ´ χ0pxq `
ř

iPrmspχipxt`1q ´ χipxqqy
piq
t`1

ď ηtrW px, xtq ´W pxt`1, xtqs ´ pηt ` α0,tqW px, xt`1q.

(3.38)

Due to the convexity of f0 and fi, (3.9), the definition of `f and the fact that yt`1 ě 0, we have

xvt, xt`1 ´ xy “ xf
1
0pxtq `

ř

iPrmsf
1
ipxtqy

piq
t`1, xt`1 ´ xy

“ xf 10pxtq, xt`1 ´ xt ` xt ´ xy ` xf
1
pxtqyt`1, xt`1 ´ xt ` xt ´ xy

ě f0pxtq ´ f0pxq ` f0pxt`1q ´ f0pxtq ´
L0

2
‖xt`1 ´ xt‖2

´H0‖xt`1 ´ xt‖

` xyt`1, `f pxt`1q ´ fpxtqy ` xyt`1, fpxtq ´ fpxqy

“ f0pxt`1q ´ f0pxq ` x`f pxt`1q ´ fpxq, yt`1y ´
`

L0

2
‖xt`1 ´ xt‖2

`H0‖xt`1 ´ xt‖
˘

Ot`1

, (3.39)

where Ot`1 :“ L0

2
‖xt`1 ´ xt‖2 ` H0‖xt`1 ´ xt‖ is a ‘Lipschitz’-like term for the objective.

Combining (3.38), (3.39), noting that δGt “ Vt ´ vt and using ψ0 “ f0 ` χ0, ψ “ f ` χ, we have

ψ0pxt`1q ´ ψ0pxq ` x`f pxt`1q ` χpxt`1q ´ ψpxq, yt`1y ` xδ
G
t , xt`1 ´ xy

ď ηtW px, xtq ´ ηtW pxt`1, xtq ´ pηt ` α0,tqW px, xt`1q `Ot`1.

(3.40)

Noting the definition of Qp¨, ¨q in (3.32) and, adding (3.37) and (3.40), we obtain

Qpzt`1, zq ´ xψpxt`1q, yy ` x`f pxt`1q ` χpxt`1q, yt`1y ´ xst, yt`1 ´ yy ` xδ
G
t , xt`1 ´ xy

ď τt
2

“

‖y ´ yt‖2
2 ´ ‖yt`1 ´ yt‖2

2 ´ ‖y ´ yt`1‖2
2

‰

` ηtW px, xtq ´ ηtW pxt`1, xtq ´ pηt ` α0,tqW px, xt`1q `Ot`1. (3.41)

In view of (3.10),

fipxt`1q ´ `fipxt`1q ď
Li
2
‖xt`1 ´ xt‖2

`Hi‖xt`1 ´ xt‖.

63

Then, using Cauchy-Schwarz inequality and noting definitions of Lf , Hf , we have

xy, fpxt`1q ´ `f pxt`1qy ď ‖y‖2

“Lf
2
‖xt`1 ´ xt‖2

`Hf‖xt`1 ´ xt‖
‰

Ct`1

,

where Ct`1 :“
Lf
2
‖xt`1 ´ xt‖2 ` Hf‖xt`1 ´ xt‖ is a ‘Lipschitz’-like term for the constraints.

Noting the above relation and definitions of qt and δFt`1, we have

x`f pxt`1q ` χpxt`1q, yt`1y ´ xψpxt`1q, yy ´ xst, yt`1 ´ yy

ě x`f pxt`1q ` χpxt`1q, yt`1y ´ x`f pxt`1q ` χpxt`1q, yy ´ xst, yt`1 ´ yy ´ ‖y‖2Ct`1

“ x`f pxt`1q ` χpxt`1q ´ st, yt`1 ´ yy ´ ‖y‖2Ct`1

“ x`f pxt`1q ` χpxt`1q ´ `F pxtq ´ χpxtq ´ θtqt, yt`1 ´ yy ´ ‖y‖2Ct`1

“ xqt`1, yt`1 ´ yy ´ θtxqt, yt ´ yy ´ θtxqt, yt`1 ´ yty ´ xδ
F
t`1, yt`1 ´ yy ´ ‖y‖2Ct`1. (3.42)

Let B ě 0 be a constant. Then

‖y‖2Ct`1 “
Lf
2
p‖y‖2 ´Bq‖xt`1 ´ xt‖2

`
BLf

2
‖xt`1 ´ xt‖2

` ‖y‖2Hf‖xt`1 ´ xt‖

ď
Lf
2
r‖y‖2 ´Bs`‖xt`1 ´ xt‖2

`
BLf

2
‖xt`1 ´ xt‖2

` ‖y‖2Hf‖xt`1 ´ xt‖

ď
BLf

2
‖xt`1 ´ xt‖2

`
`

‖y‖2Hf `
LfDX

2
r‖y‖2 ´Bs`

˘

‖xt`1 ´ xt‖. (3.43)

By (3.41), (3.42), and (3.43), noting the definition of Ot`1 and using the relation 1
2
‖a ´ b‖2 ď

W pa, bq, we have

Qpzt`1, zq ` xqt`1, yt`1 ´ yy ´ θtxqt, yt ´ yy ` xδ
G
t , xt ´ xy ´ xδ

F
t`1, yt`1 ´ yy

ď θtxqt, yt`1 ´ yty ´ xδ
G
t , xt`1 ´ xty

` ηtW px, xtq ´ pηt ` α0,tqW px, xt`1q `
τt
2

“

‖y ´ yt‖2
2 ´ ‖yt`1 ´ yt‖2

2 ´ ‖y ´ yt`1‖2
2

‰

´ pηt ´ L0 ´BLf qW pxt`1, xtq `
`

H0 ` ‖y‖2Hf `
LfDX

2
r‖y‖2 ´Bs`

˘

‖xt`1 ´ xt‖. (3.44)

64

Multiplying (3.44) by γt, summing them up from t “ 0 to T ´ 1 with T ě 1, we obtain

řT´1
t“0 γtQpzt`1, zq `

řT´1
t“0 rγtxqt`1, yt`1 ´ yy ´ γtθtxqt, yt ´ yys `

řT´1
t“0 γtrxδ

G
t , xt ´ xy ´ xδ

F
t`1, yt`1 ´ yys

ď
řT´1
t“0 rγtθtxqt ´ sqt, yt`1 ´ yty ` γtθtxsqt, yt`1 ´ yty ` xγtδ

G
t , xt ´ xt`1ys

`
řT´1
t“0

“

γtτt
2
‖y ´ yt‖2

2 ´
γtτt

2
‖y ´ yt`1‖2

2

‰

´
řT´1
t“0

γtτt
2
‖yt`1 ´ yt‖2

2

`
řT´1
t“0 rγtηtW px, xtq ´ γtpηt ` α0,tqW px, xt`1qs

´
řT´1
t“0

“

γtpηt ´ L0 ´BLf qW pxt`1, xtq ´ γt
`

H0 ` ‖y‖2Hf `
LfDX

2
r‖y‖2 ´Bs`

˘

Hpy,Bq

‖xt`1 ´ xt‖
‰

,

(3.45)

where Hpy,Bq :“ H0 ` ‖y‖2Hf `
LfDX

2
r‖y‖2 ´ Bs`. Now we focus our attention to handle the

inner product terms of (3.45). Noting the definition of sqt, we have

‖sqt‖2 “ ‖`f pxtq ´ `f pxt´1q ` χpxtq ´ χpxt´1q‖2

ď ‖fpxt´1q ` f
1
pxt´1q

T
pxt ´ xt´1q ´ fpxt´2q ´ f

1
pxt´2q

T
pxt´1 ´ xt´2q‖2 ` ‖χpxtq ´ χpxt´1q‖2

ď ‖fpxt´1q ´ fpxt´2q‖2 ` ‖f 1pxt´1q
T
pxt ´ xt´1q‖2 ` ‖f 1pxt´2q

T
pxt´1 ´ xt´2q‖2 `MH‖xt ´ xt´1‖

ď 2Mf‖xt´1 ´ xt´2‖ ` pMf `MHq‖xt ´ xt´1‖, (3.46)

where the last relation follows due to (3.12). Using the above relation, we obtain

γtθtxsqt, yt`1 ´ yty ´
γtτt

3
‖yt`1 ´ yt‖2

2 ´
γt´2pηt´2´L0´BLf q

4
W pxt´1, xt´2q ´

γt´1pηt´1´L0´BLf q

4
W pxt, xt´1q

ď γtθt‖sqt‖2‖yt`1 ´ yt‖2 ´
γtτt

3
‖yt`1 ´ yt‖2

2

´
γt´2pηt´2´L0´BLf q

4
W pxt´1, xt´2q ´

γt´1pηt´1´L0´BLf q

4
W pxt, xt´1q

ď 2Mfγtθt‖xt´1 ´ xt´2‖‖yt`1 ´ yt‖2 ´
γtτt

6
‖yt`1 ´ yt‖2

2 ´
γt´2pηt´2´L0´BLf q

4
W pxt´1, xt´2q

` pMf `MHqγtθt‖xt ´ xt´1‖‖yt`1 ´ yt‖2 ´
γtτt

6
‖yt`1 ´ yt‖2

2 ´
γt´1pηt´1´L0´BLf q

4
W pxt, xt´1q

ď 0, (3.47)

65

where the last inequality follows by applying the relation W px, yq ě 1
2
‖x´y‖, Young’s inequality

(2ab ď a2 ` b2) applied twice, once with

a “
`

γtτt
6

˘1{2‖yt`1 ´ yt‖, b “
`γt´2pηt´2´L0´BLf q

8

˘1{2‖xt´1 ´ xt´2‖

and second time with

a “
`

γtτt
6

˘1{2‖yt`1 ´ yt‖, b “
`γt´1pηt´1´L0´BLf q

8

˘1{2‖xt ´ xt´1‖,

and the fact that

p2Mf qγtθt ď
 γtγt´2τtpηt´2´L0´BLf q

12

(1{2
ô p2Mf q

2 θt
θt´1

ď
τtpηt´2´L0´BLf q

12
,

pMf `MHq
2γ2
t θ

2
t ď

γtγt´1τtpηt´1´L0´BLf q

12
ô pMf `MHq

2θt ď
τtpηt´1´L0´BLf q

12
,

where equivalences follow due to (3.34).

Using Young’s inequality, Cauchy-Schwarz inequality and the relation uTv ď ‖u‖‖v‖˚, we have

γtθtxqt ´ sqt, yt`1 ´ yty ´
γtτt

6
‖yt`1 ´ yt‖2

2 ď
3γtθ2t
2τt
‖qt ´ sqt‖2

2,

xγtδ
G
t , xt ´ xt`1y ´

γtpηt´L0´BLf q

4
W pxt`1, xtq ď

2γt
ηt´L0´BLf

‖δGt ‖2
˚,

γtHpy,Bq‖xt`1 ´ xt‖ ´ γtpηt´L0´BLf q

4
W pxt`1, xtq ď

2γt
ηt´L0´BLf

Hpy,Bq2.

(3.48)

Using (3.47) and (3.48) for t “ 0, . . . , T ´ 1 inside (3.45) and noting (3.34), we have

řT´1
t“0 γtQpzt`1, zq ` γT´1xqT , yT ´ yy `

řT´1
t“0 γtrxδ

G
t , xt ´ xy ´ xδ

F
t`1, yt`1 ´ yys

ď γ0η0W px, x0q ´ γT´1pηt ` α0,T´1qW px, xT q `
γ0τ0

2
‖y ´ y0‖2

2 ´
γT´1τT´1

2
‖y ´ yT‖2

2

`
řT´1
t“0

“3γtθ2t
2τt
‖qt ´ sqt‖2

2 `
2γt

ηt´L0´BLf
‖δGt ‖2

˚ `
2γt

ηt´L0´BLf
Hpy,Bq2

‰

´
γT´2pηT´2´L0´BLf q

4
W pxT´1, xT´2q ´

γT´1pηT´1´L0´BLf q

2
W pxT , xT´1q, (3.49)

where in the left hand side of the above relation, we used the fact that q0 “ `F px0q ´ `F px´1q `

χpx0q ´ χpx´1q “ 0. Similarly, we see that sq0 “ 0. Hence we can ignore ‖q0 ´ sq0‖2
2 term in the

right hand side of the above relation.

66

Using (3.46), we have

´ γT´1xsqT , yT ´ yy ´
γT´1τT´1

3
‖y ´ yT‖2

2

´
γT´2pηT´2´L0´BLf q

4
W pxT´1, xT´2q ´

γT´1pηT´1´L0´BLf q

2
W pxT , xT´1q

ď pMf `MHqγT´1‖xT ´ xT´1‖‖yT ´ y‖2 ´
γT´1τT´1

12
‖y ´ yT‖2

2 ´
γT´1pηT´1´L0´BLf q

2
W pxT , xT´1q

` 2MfγT´1‖xT´1 ´ xT´2‖‖yT ´ y‖2 ´
γT´1τT´1

6
‖y ´ yT‖2

2 ´
γT´2pηT´2´L0´BLf q

4
W pxT´1, xT´2q

´
γT´1τT´1

12
‖yT ´ y‖2

2

ď ´
γT´1τT´1

12
‖yT ´ y‖2

2, (3.50)

where the last relation follows from (3.35), Young’s inequality and the fact that

p2Mf qγT´1 ď
 γT´2γT´1τT´1pηT´2´L0´BLf q

12

(1{2
ô p2Mf q

2 1
θT´1

ď
τtpηt´2´L0´BLf q

12
,

pMf `MHqγT´1 ď
 γ2T´1τT´1pηT´1´L0´BLf q

12

(1{2
ô pMf `MHq

2 ď
τT´1pηT´1´L0´BLf q

12
.

Moreover, again using Young’s inequality and Cauchy-Schwarz inequality, we have

´γT´1xqT ´ sqT , yT ´ yy ´
γT´1τT´1

6
‖y ´ yT‖2

2 ď
3γT´1

2τT´1
‖qT ´ sqT‖2

2. (3.51)

Using (3.50) and (3.51) in relation (3.49), noting that q0 ´ sq0 “ 0 and replacing the definition of

Hpy,Bq, we obtain (3.36). ˝

We now aim to convert the bound on the primal-dual gap function Q in Lemma 3.4.2 into a

bound on the optimality and infeasibility according to Definition 3.3.1. For proving this lemma,

we need one more simple result which is stated below.

Lemma 3.4.3 Let ρ0, . . . , ρj be a sequence of elements in Rn and let S be a convex set in Rn.

Define the sequence vt, t “ 0, 1, . . . , as follows: v0 P S and

vt`1 “ argmin
xPS

xρt, xy `
1
2
‖x´ vt‖2

2.

67

Then for any x P S and t ě 0, the following inequalities hold

xρt, vt ´ xy ď
1
2
‖x´ vt‖2

2 ´
1
2
‖x´ vt`1‖2

2 `
1
2
‖ρt‖2

2, (3.52)

řj
t“0xρt, vt ´ xy ď

1
2
‖x´ v0‖2

2 `
1
2

řj
t“0‖ρt‖2

2. (3.53)

Proof. Using Lemma 3.4.1 with gpxq “ xρt, xy, W py, xq “ 1
2
‖y ´ x‖2

2, rx “ vt and µ “ 0, we

have, due to the optimality of vt`1,

xρt, vt`1 ´ xy `
1
2
‖vt`1 ´ vt‖2

2 `
1
2
‖x´ vt`1‖2

2 ď
1
2
‖x´ vt‖2

2,

is satisfied for all x P S. The above relation and the fact

xρt, vt ´ vt`1y ´
1
2
‖vt`1 ´ vt‖2

2 ď
1
2
‖ρt‖2

2,

imply that

xρt, vt ´ xy ď
1
2
‖x´ vt‖2

2 ´
1
2
‖x´ vt`1‖2

2 `
1
2
‖ρt‖2

2,

for all x P S. Summing up the above relations from t “ 0 to j and noting the nonnegativity of

‖¨‖2
2, we obtain (3.53). Hence we conclude the proof. ˝

Now we are ready to prove the lemma converting bound on the primal-dual gap to infeasibility

and optimality gap.

Lemma 3.4.4 Suppose all assumptions in Lemma 3.4.2 are satisfied. Then, for T ě 1, we have

Erψ0psxT q ´ ψ0px
˚
qs ď 1

ΓT

“

γ0η0W px
˚, x0q `

γ0τ0
2
‖y0‖2

2

`
řT´1
t“0

2γt
ηt´L0´BLf

`

Er‖δGt ‖2
˚s `H

2
0

˘

`
`
řT´1
t“1

12γtθ2t
τt

`
12γT´1

τT´1

˘

pσ2
f `D

2
X‖σ‖2

2q
‰

,

(3.54)

68

γT´1pηT´1`α0,T´1qErW px˚, xT qs ď γ0τ0
2
‖y˚ ´ y0‖2

2 ` γ0η0W px
˚, x0q

`
`
řT´1
t“1

12γtθ2t
τt

`
12γT´1

τT´1

˘

pσ2
f `D

2
X‖σ‖2

2q

`
řT´1
t“0

2γt
ηt´L0´BLf

Er‖δGt ‖2
˚s ` pH0 ` ‖y˚‖2Hf ` r‖y˚‖2 ´Bs`q

2
(

,

(3.55)

and

Er‖
“

ψpsxT q
‰

`
‖2s ď

1
ΓT

”

γ0τ0‖y0‖2
2 ` 3p‖y˚‖2 ` 1q2γ0τ0 ` γ0η0W px

˚, x0q

`
řT´1
t“0

2γt
ηt´L0´BLf

“

Er‖δGt ‖2
˚s ` pH0 ` p‖y˚‖2 ` 1qHf `

LfDX r‖y˚‖2`1´Bs`
2

q2
‰

`
`
řT´1
t“1

12γtθ2t
τt

`
řT´1
t“0

γt
τt
`

12γT´1

τT´1

˘

pσ2
f `D

2
X‖σ‖2

2q

ı

. (3.56)

where ΓT :“
řT´1
t“0 γt

Proof. Notice that conditional random variables rG0pxt, ξtq|ξrt´1s, sξrt´2ss and rGipxt, ξtq|ξrt´1s, sξrt´2ss

satisfy properties of SO in (3.14) because xt is a constant conditioned on random variables ξrt´1s :“

pξ0, . . . , ξt´1q and sξrt´2s :“ psξ0, . . . , sξt´2q. Also, observe that, yt`1 is a constant conditioned on

random variables ξrt´1s and sξrt´1s. In particular, using (3.14), we have

ErxδGt , xt ´ xys “ ExE|ξrt´1s,sξrt´1s
rδGt s, xt ´ xy “ 0, (3.57)

for any non-random x. This follows due to the following relation

E|ξrt´1s,sξrt´1s
rδGt s

“ E|ξrt´1s,sξrt´1s
rG0pxt, ξtq ´ f

1
0pxtqs ` E

řm
i“1y

piq
t`1E|ξrt´1s,sξrt´1s

rGipxt, ξtq ´ f
1
ipxtqs “ 0.

Similarly, using (3.14), we have

Er
@

δFt`1, yt`1 ´ y
D

s “ Er
@

E|ξrts,sξrt´1s
rδFt`1s, yt`1 ´ y

D

s “ 0, (3.58)

69

for any non-random y. Here, we note that

E|ξrts,sξrt´1s
rδFt`1s “ E|ξrts,sξrt´1s

rF pxt, sξtqs ´ fpxtq

`
`

E|ξrts,sξrt´1s
rGpxt, sξtqs ´ f

1
pxtq

˘T
pxt`1 ´ xtq “ 0,

(3.59)

where the first term in RHS is 0 due to the third relation in (3.14) applied to sξt, the second term

is 0 due to the second relation of (3.14) applied to sξt and the common fact for both the terms that

xt, xt`1 are constants for given ξrts, sξrt´1s. We note that

Er‖δFt ‖2
2s ď 2Er‖F pxt´1, sξt´1q ´ fpxt´1q‖2

2s ` 2Er‖rGpxt´1, sξt´1q ´ f
1
pxt´1qs

T
pxt ´ xt´1q‖2

2s

ď 2σ2
f ` 2Er

řm
i“1

pGipxt´1, sξt´1q ´ f
1
ipxt´1qq

T pxt ´ xt´1q
(2
s

ď 2σ2
f ` 2Er

řm
i“1‖Gipxt´1, sξt´1q ´ f

1pxt´1q‖2
˚‖xt ´ xt´1‖2s

ď 2σ2
f ` 2D2

X‖σ‖2
2. (3.60)

Then, in view of above relation and definitions of qt, sqt, we have

Er‖qt ´ sqt‖2
2s “ Er‖`F pxtq ´ `f pxtq ` `F pxt´1q ´ `f pxt´1q‖2

2s

ď 2Er‖δFt ‖2
2s ` 2Er‖δFt´1‖2

2s ď 8pσ2
f `D

2
X‖σ‖2

2q.

(3.61)

Taking expectation on both sides of (3.36) and using relation (3.57), (3.58) and (3.61), we have for

all non-random2 z P tpx, yq : x P X, y ě 0u,

Er
řT´1
t“0 γtQpzt`1, zqs ď

γ0τ0
2
‖y ´ y0‖2

2 ` γ0η0W px, x0q `
`
řT´1
t“1

12γtθ2t
τt

`
12γT´1

τT´1

˘

pσ2
f `D

2
X‖σ‖2

2q

`
řT´1
t“0

2γt
ηt´L0´BLf

“

Er‖δGt ‖2
˚s ` pH0 ` ‖y‖2Hf `

LfDX r‖y‖2´Bs`
2

q2
‰

´ γT´1pηT´1 ` α0,T´1qErW px, xT qs, (3.62)

where we dropped ‖y ´ yT‖2
2. Using the convexity of ψ0p¨q and ψp¨q, and noting the definition of

2This x, y is required to be non-random because we are dropping the inner product terms of the left hand side of
(3.36).

70

ΓT , we have for all non-random y ě 0 and x P X ,

ΓTE
“

ψ0psxT q ` xy, ψpsxT qy ´ ψ0pxq ´ xsyT , ψpxqy
‰

ď Er
řT´1
t“0 γtQpzt`1, zqs. (3.63)

Combining (3.62) and (3.63), then choosing x “ x˚, y “ 0 (which are non-random) throughout

the combined relation, observing that r0 ´ Bs` “ 0 for any B ě 0, ignoring W px, xT q term and

noting that ψpx˚q ď 0 and syT ě 0 implies xsyT , ψpx˚qy ď 0, we have (3.54).

Now, we prove a bound on ErW px˚, xT qs. Put z “ z˚ :“ px˚, y˚q in (3.62). Then we have that

Qpzt`1, z
˚q ě 0 for all t “ 0, . . . , T ´ 1. Hence, using z “ z˚ in (3.62), dropping summation of

Q-terms and taking expectation on both sides, we obtain (3.55).

Now, we focus our attention to the infeasibility bound. First, define R :“ ‖y˚‖2 ` 1. Second,

define an auxiliary sequence tyvt u in the following way: yv0 “ y0 and for all t ě 0, define

yvt`1 :“ argmin
yPB2

`pRq

1
τt´1
xδFt , yy `

1
2
‖y ´ yvt ‖2

2,

where we recall that B2
`pRq “ tx P Rn : ‖x‖2 ď R, x ě 0u. Then in view of Lemma 3.4.3, in

particular relation (3.52), for all y P B2
`pRq we have

1
τt
xδFt`1, y

v
t`1 ´ yy ď

1
2
‖y ´ yvt`1‖2

2 ´
1
2
‖y ´ yvt`2‖2

2 `
1

2τ2t
‖δFt`1‖2

2. (3.64)

Multiplying (3.64) by γtτt, taking a sum from t “ 0 to T ´ 1 and noting the second relation in

(3.34), we obtain

řT´1
t“0 γtxδ

F
t`1, y

v
t`1 ´ yy ď

γ0τ0
2
‖y ´ yv1‖2

2 `
řT´1
t“0

γt
2τt
‖δFt`1‖2

2, (3.65)

71

for all y P B2
`pRq. Summing (3.65) and (3.36), we obtain

řT´1
t“0 γtQpzt`1, zq `

řT´1
t“0 γtrxδ

G
t , xt ´ xy ´ xδ

F
t`1, yt`1 ´ y

v
t`1ys

ď
γ0τ0

2
r‖y ´ y0‖2

2 ` ‖y ´ yv1‖2
2s ` γ0η0W px, x0q `

řT´1
t“1

3γtθ2t
2τt
‖qt ´ sqt‖2

2 `
3γT´1

2τT´1
‖qT ´ sqT‖2

2

`
řT´1
t“0

“

2γt
ηt´L0´BLf

t‖δGt ‖2
˚ ` pH0 ` ‖y‖2Hf `

LfDX r‖y‖2´Bs`
2

q2u `
γt
2τt
‖δFt`1‖2

2

‰

, (3.66)

for all z P

px, yq : x P X, y P B2
`pRq

(

. Note that given ξrts and sξrt´1s, we have yt`1, y
v
t`1, xt`1

and xt are constants. Hence we have

ErxδFt`1, yt`1 ´ y
v
t`1ys “ ErxE|ξrts,sξrt´1s

rδFt`1s, yt`1 ´ y
v
t`1ys “ 0, (3.67)

where second equality follows from (3.59). Choosing z “ pz :“ px˚, pyq in (3.66) where py :“

p‖y˚‖2`1q
“

ψpsxT q
‰

`
‖
“

ψpsxT q
‰

`
‖2
´1
P B2

`pRq, taking expectation on both sides and noting (3.67),

(3.60), (3.61), first relation in (3.57), we have

Er
řT´1
t“0 γtQpzt`1, pzqs ď

γ0τ0
2
Er‖py ´ y0‖2

2 ` ‖py ´ yv1‖2
2s ` γ0η0W px

˚, x0q

`
řT´1
t“0

2γt
ηt´L0´BLf

Er‖δGt ‖2
˚s `

`

H0 ` p‖y˚‖2 ` 1qHf `
LfDX r‖y˚‖2`1´Bs`

2

˘2(

`
`
řT´1
t“1

12γtθ2t
τt

`
řT´1
t“0

γt
τt
`

12γT´1

τT´1

˘

pσ2
f `D

2
X‖σ‖2

2q. (3.68)

Noting the convexity of Q in first argument, we obtain

ErQpszT , pzqs ď 1
ΓT

Er
řT´1
t“0 γtQpzt`1, pzqs. (3.69)

Now observe that

LpsxT , y˚q ´ Lpx˚, y˚q ě 0

ñ ψ0psxT q ` xy
˚, ψpsxT qy ´ ψ0px

˚
q ě 0,

72

which in view of the relation

xy˚, ψpsxT qy ď xy
˚,
“

ψpsxT q
‰

`
y ď ‖y˚‖2‖

“

ψpsxT q
‰

`
‖2,

implies that

ψ0psxT q ` ‖y˚‖2‖
“

ψpsxT q
‰

`
‖2 ´ ψ0px

˚
q ě 0. (3.70)

Moreover,

QpszT , pzq “ LpsxT , pyq ´ Lpx˚, syT q ě LpsxT , pyq ´ Lpx˚, y˚q “ ψ0psxT q ` p‖y˚‖2 ` 1q‖
“

ψpsxT q
‰

`
‖2 ´ ψ0px

˚
q,

along with (3.70) implies that

QpszT , pzq ě ‖
“

ψpsxT q
‰

`
‖2.

The above relation, (3.69) and (3.68) together yield

Er‖
“

ψpsxT q
‰

`
‖2s ď

1
ΓT

”

γ0τ0
2
Er‖py ´ y0‖2

2 ` ‖py ´ yv1‖2
2s ` γ0η0W px

˚, x0q

`
řT´1
t“0

2γt
ηt´L0´BLf

Er‖δGt ‖2
˚s `

`

H0 ` p‖y˚‖2 ` 1qHf `
LfDX r‖y˚‖2`1´Bs`

2

˘2(

`
`
řT´1
t“1

12γtθ2t
τt

`
řT´1
t“0

γt
τt
`

12γT´1

τT´1

˘

pσ2
f `D

2
X‖σ‖2

2q

ı

.

Noting the bound ‖py ´ yv1‖2 ď 2R and ‖py ´ y0‖2
2 ď 2‖y0‖2

2 ` 2‖py‖2
2 ď ‖y0‖2

2 ` 2R2 in the above

relation and recalling that R “ ‖y˚‖2 ` 1, we obtain (3.56). Hence we conclude the proof. ˝

Note that we still need to bound Er‖δGt ‖2
˚s. Below, we provide a simple lemma which is used

to show such a bound.

Lemma 3.4.5 Let tatutě0 be a nonnegative sequence, m1,m2 ě 0 be constants such that a0 ď m1

and the following relation holds for all t ě 1:

at ď m1 `m2

řt´1
k“0ak.

73

Then we have at ď m1p1`m2q
t.

Proof. We prove this lemma by induction. Clearly, it is true for t “ 0. Suppose it is true for at.

Then, using inductive hypothesis on ak for k “ 0, . . . , t, we have

at`1 ď m1 `m2

řt
k“0at

ď m1

“

1`m2

řt
k“0p1`m2q

k
‰

ď m1

“

1`m2
p1`m2q

t`1´1
m2

‰

“ m1p1`m2q
t`1.

Hence, we conclude the proof. ˝

Now, under some assumptions, we show a bound on Er‖δGt ‖2
˚s.

Lemma 3.4.6 Assume that tγt, τt, ηtu satisfy

96‖σ‖22
τtpηt´L0´BLf q

ă 1 (3.71)

for all t ď T ´ 1 and constants R1 and R2 satisfying the following conditions exist.

R1 ě

´

1´
96‖σ‖22

τtpηt´L0´BLf q

¯´1”

2σ2
0 `

48‖σ‖22
γtτt

!

γ0η0W px
˚, x0q `

γ0τ0
2
‖y˚ ´ y0‖2

2 `
γtτt
12
‖y˚‖2

2

`
řt
i“0

2γi
ηi´L0´BLf

`

H0 `Hf‖y˚‖2 `
LfDX r‖y˚‖2´Bs`

2

˘2

`
`
řt
i“1

12γiθ
2
i

τi
`

12γt
τt

˘

pσ2
f `D

2
X‖σ‖2

2q

)ı

(3.72)

for all t ď T ´ 1 and

R2 ě

´

1´
96‖σ‖22

τtpηt´L0´BLf q

¯´1
96‖σ‖22γi

γtτtpηi´L0´BLf q
(3.73)

for all t ď T ´ 1 and i ď t´ 1. Then, we have

Er‖δGt ‖2
˚s ď R1p1`R2q

t, (3.74)

74

for all t ď T ´ 1. In particular, if ‖σ‖2 “ 0, then we can set R1 “ 2σ2
0 and R2 “ 0 implying

Er‖δGt ‖2
˚s ď 2σ2

0 .

Proof. Observe that Qpzt`1, z
˚q ě 0 for all t “ 0, . . . , T ´ 1 where z˚ “ px˚, y˚q. Choosing

z “ z˚ in (3.36) for T substituted by t` 1pě 1q, taking expectation, using (3.57) with x “ x˚ and

(3.58) with y “ y˚ and noting (3.61), we have

γtτt
12

E‖y˚ ´ yt`1‖2
2 ď γ0η0W px

˚, x0q `
γ0τ0

2
‖y˚ ´ y0‖2

2

`
řt
i“0

2γi
ηi´L0´BLf

“

E‖δGi ‖2
˚ ` pH0 `Hf‖y˚‖2 `

LfDX r‖y˚‖2´Bs`
2

q2
‰

`
`
řt
i“1

12γiθ
2
i

τi
`

12γt
τt

˘

pσ2
f `D

2
X‖σ‖2

2q. (3.75)

Now, let us define δGt,i :“ Gipxt, ξtq ´ f 1ipxtq for i “ 0, . . . ,m. As a consequence, we have

δGt “ δGt,0 `
řm
i“1y

piq
t`1δ

G
t,i. Then, we have

Er‖δGt ‖2
˚s “ Er‖δGt,0 `

řm
i“1y

piq
t`1δ

G
t,i‖2

˚s

(i)
ď 2Er‖δGt,0‖2

˚s ` 2E
“

‖
řm
i“1y

piq
t`1δ

G
t,i‖2

˚

‰

ď 2Er‖δGt,0‖2
˚s ` 2E

“

p
řm
i“1‖y

piq
t`1δ

G
t,i‖˚q2

‰

(ii)
ď 2

σ2
0 ` E

“

‖yt`1‖2
2

`
řm
i“1‖δGt,i‖2

˚

˘‰(

(iii)
ď 2

σ2
0 ` E

“

‖yt`1‖2
2

`
řm
i“1E|ξrt´1s,sξrt´1s

r‖δGt,i‖2
˚s
˘‰(

(iv)
ď 2

σ2
0 ` Er‖yt`1‖2

2

řm
i“1σ

2
i s
(

“ 2pσ2
0 ` ‖σ‖2

2E‖yt`1‖2
2q

ď 2σ2
0 ` 4‖σ‖2

2

`

‖y˚‖2
2 ` E‖yt`1 ´ y

˚‖2
2

˘

. (3.76)

Here, relation (i) follows due to the fact that ‖a ` b‖2
˚ ď p‖a‖˚ ` ‖b‖˚q2 ď 2‖a‖2

˚ ` 2‖b‖2
˚,

relation (ii) follows due to Cauchy-Schwarz inequality, relation (iii) follows dues the fact that

yt`1 is a constant conditioned on random variables ξrt´1s, sξrt´1s and relation (iv) follows from

fourth and fifth relation in (3.14) and the fact that xt is a constant conditioned on random variables

ξrt´1s, sξrt´1s.

75

Adding γtτt
12
‖y˚‖2

2 to both sides of (3.75), then multiplying it by 48‖σ‖22
γtτt

and observing (3.76), we

have

Er‖δGt ‖2
˚s ď 2σ2

0 `
48‖σ‖22
γtτt

!

γ0η0W px
˚, x0q `

γ0τ0
2
‖y˚ ´ y0‖2

2 `
γtτt
12
‖y˚‖2

2

`
řt
i“0

2γi
ηi´L0´BLf

pH0 `Hf‖y˚‖2 `
LfDX r‖y˚‖2´Bs`

2
q2

`
`
řt
i“1

12γiθ
2
i

τi
`

12γt
τt

˘

pσ2
f `D

2
X‖σ‖2

2q

)

`
řt
i“0

96‖σ‖22γi
γtτtpηi´L0´BLf q

E‖δGi ‖2
˚.

In view of (3.71), we have that the coefficient of the δGt term on the right hand side of the above

relation is strictly less than 1. Moving the δGt term to the left hand side and noting the conditions

imposed on constants R1, R2, we have

Er‖δGt ‖2
˚s ď R1 `R2

řt´1
i“0Er‖δGi ‖2

˚s,

for all t ď T ´ 1. Using Lemma 3.4.5 for the above relation, we have (3.74). Hence we conclude

the proof. ˝

Note that bound in (3.74) is still a function of stepsize parameters since R1 are R2 need to satisfy

relations (3.72) and (3.73), respectively. Now, we need to show that there exists a possible selection

of stepsize parameters for which we can compute a uniform upper bound on Er‖δGt ‖2
˚s for all t ď

T ´ 1, in particular, we can obtain constants R1 and R2 satisfying (3.72) and (3.73), respectively.

Moreover, selected stepsize policy is meaningful in the sense that it yields convergence according

(3.54) and (3.56). Below, we show that the stepsize policy in (3.15) of Theorem 3.3.1 and (3.24)

of Theorem 3.3.3 are specified in a way such that (3.34), (3.35) and (3.71) are satisfied. Moreover,

a uniform upper bound according to (3.74) for all t ď T ´ 1 can be obtained and it also leads to

the convergence according to (3.54) and (3.56). In particular, we show the proof of Theorem 3.3.1

and Theorem 3.3.3 below.

First, we focus on the setting in which (3.1) is strongly convex, i.e., α0 ą 0 and show the proof

of Theorem 3.3.1 below.

76

Proof of Theorem 3.3.1. Note that tγt, θt, ηt, τtu set according to (3.15) satisfy (3.34). It is easy

to verify the first two relations in (3.34). To verify the third relation, note that

γt´1pηt´1 ` α0,t´1q ě γt´1pηt´1 ` α0q

“ pt` t0 ` 1q
`

α0pt`t0q
2

` α0

˘

“ α0

2
pt` t0 ` 1qpt` t0 ` 2q “ γtηt.

Note that (3.35) is satisfied if 4
3
M2 ď

τtpηt´2´L0´BLf q

12
. This follows due to the fact that tηtu is an

increasing sequence, 3
4
ď θt ă 1 and the definition ofM. Indeed we have,

τtpηt´2´L0´BLf q

12
ě 32M2

12α0pt`1q

`

α0pt`t0´1q
2

´
α0pt0´2q

4

˘

“
2p2t`t0qM2

3pt`1q
ě 4M2

3
,

where the last inequality follows from t0 ě 2 by definition. Also note that

τtpηt ´ L0 ´BLf q ě
384‖σ‖22T
α0pt`1q

`

α0pt`t0`1q
2

´
α0pt0´2q

4

˘

“
96p2t`t0`4q‖σ‖22T

t`1
ě 192‖σ‖2

2

for all t ě 0. Then the above relation implies that

96‖σ‖22
τtpηt´L0´BLf q

ď 1
2
, (3.77)

for all t ě 0. Finally, we need to show the existence of constants R1 and R2 satisfying (3.72) and

(3.73), respectively. Using the fact that τt ě
384‖σ‖22T
α0pt`1q

, we observe

96‖σ‖22γi
γtτtpηi´L0´BLf q

ď
384‖σ‖22pi`t0`2q

α0p2i`t0`4q
α0pt`1q

384‖σ‖22pt`t0`2qT
ď 1

T
, (3.78)

for all i ě 0, t ě 0. Noting (3.77), (3.78) and (3.73), we can set

R2 :“ 2
T
. (3.79)

Noting (3.72) along with definition ofH˚ in the theorem statement, setting y0 “ 0, using (3.77),(3.61),

77

and applying the following relations

γtτt ě max
 384‖σ‖22T

α0
,
σX,fT

3{2

Bpt0`2q1{2

(

,

řt
i“0

γi
ηi´L0´BLf

ď
4pt`1q
α0

,

řt
i“1

γiθ
2
i

τi
`

γt
τt
ď

Bpt0`2q1{2

σX,fT 3{2

“

pt`1q3

3
`
pt`1q2pt0`2q

2
`
pt`1qp9t0`10q

6
´ pt0 ` 1q

‰

,

we can observe that have for all t ď T ´ 1, RHS of (3.72) is at most

2
”

2σ2
0 ` 48‖σ‖2

2

!

`

t0`2
2
` 1

12

˘

‖y˚‖2
2 `

8TH2
˚

α0

T
T`t0`1

α0

384‖σ‖22T

`
12σ2

X,fBpt0`2q1{2

σX,fT 3{2

´

Bpt0`2q1{2

σX,fT 3{2
T 3

3
` α0

384‖σ‖22T

`

T 2pt0`2q
2

`
T p9t0`10q

6
´ pt0 ` 1q

˘

¯)ı

.

Then, noting 1
T
ď 1 and ignoring ´pt0 ` 1q term, we can set

R1 :“ 2
”

2σ2
0`24pt0`3q‖σ‖2

2‖y˚‖2
2`H2

˚`4ˆ48pt0`2qB2‖σ‖2
2`3α0BσX,f pt0`2q3{2

ı

. (3.80)

Then using Lemma 3.4.6 and noting (3.79), we have for all t ď T ´ 1

Er‖δGt ‖2
˚s ď

$

’

’

&

’

’

%

2σ2
0 if ‖σ‖2 “ σf “ 0;

R1

`

1` 2
T

˘T´1
ď R1e

2 otherwise.
.

Noting the above relation, (3.80) and the definition of ζ , we have

Er‖δGt ‖2
˚s ď ζ2, @ t ď T ´ 1. (3.81)

So according to (3.54) with y0 “ 0 and using (3.81), we have

Erψ0psxT q ´ ψ0px
˚
qs ď 2

T pT`2t0`3q

“

αhpt0`1qpt0`2q
2

W px˚, x0q `
8pζ2`H2

0 qT

α0

` 12Bpt0 ` 2q1{2σX,f

T 1{2pT`2q
3

`
pt0`1qT´1{2pT`3q

2

(‰

.

78

Here we used the bound

γt
ηt´L0´BLf

ď 4
α0

for all t ě 0,

řT´1
t“1

γtθ2t
τt
`

γT´1

τT´1
ď

Bpt0`2q1{2

σX,fT 3{2

“

T 2pT`2q
3

` pt0 ` 1qT pT`3q
2

‰

.

(3.82)

Noting the bound on W px˚, x0q in the earlier relation, we obtain (3.16). Using (3.56), (3.81) and

the bounds in (3.82), we have

E
∥∥∥“ψpsxT q‰`∥∥∥2

ď 2
T pT`2t0`3q

“

3pt0 ` 2qp‖y˚‖2 ` 1q2 max

32M2

α0
,
σX,fT

3{2

Bpt0`2q1{2
,

384‖σ‖22T
α0

(

`
α0pt0`1qpt0`2q

2
W px˚, x0q ` 13Bpt0 ` 2q1{2σX,f

T 1{2pT`2q
3

`
pt0`1qT´1{2pT`3q

2

(

` 8T
α0

ζ2
`
“

H0 ` p‖y˚‖2 ` 1qHf `
LfDX r‖y˚‖2`1´Bs`

2

‰2(‰
. (3.83)

Noting the bound on W px˚, x0q in (3.83), the definition ofH˚, using the fact that T
1{2pT`2q

3
ď T 3{2

and combining the T 3{2 order terms, we obtain (3.17). From (3.55), we have

ErW pxT , x˚qs ď 2
α0pT`t0`1qpT`t0`2q

“

pt0`2q‖y˚‖22
2

max

32M2

α0
,
σX,fT

3{2

Bpt0`2q1{2
,

384‖σ‖22T
α0

(

`
α0pt0`1qpt0`2q

2
W px˚, x0q ` 12Bpt0 ` 2q1{2σX,f

T 1{2pT`2q
3

`
pt0`1qT´1{2pT`3q

2

(

` 8T
α0

ζ2
`
“

H0 ` ‖y˚‖2Hf `
LfDX r‖y˚‖2´Bs`

2

‰2(‰
.

With similar replacements in the above relation as in (3.83), we obtain (3.18). Hence we conclude

the proof. ˝

Proof of Theorem 3.3.3. It is easy to verify that tγt, θt, ηt, τtu set according to (3.24) satisfy (3.34)

with α0 “ 0. Note that (3.35) is satisfied ifM2 ď
τtpηt´2´L0´BLf q

12
. This follows due to the fact

that tηtu is an non-decreasing sequence, θt “ 1 for all t ě 0 and the definition ofM. Then we

have
τtpηt´2´L0´BLf q

12
ě 6MB

DX

2MDX
B

ˆ 1
12
“M2.

79

Also, since pηt ´ L0 ´BLf q ě
24B‖σ‖2
DX

and τt ě
8DX‖σ‖2

B
, we have

τtpηt ´ L0 ´BLf q ě 192‖σ‖2
2

for all t ě 0. In view of the above relation, we have

96‖σ‖22
τtpηt´L0´BLf q

ď 1
2
, (3.84)

hence (3.71) is satisfied. We also need to show the existence of R1 and R2 satisfying (3.72) and

(3.73), respectively. Using the fact that γt, ηt and τt are constants for all t ě 0, τη ě 96TσX,f‖σ‖2
DX

and noting (3.84), we obtain

`

1´
96‖σ‖22

τtpηt´L0´BLf q

˘´1 96‖σ‖22γi
γtτtpηi´L0´BLf q

ď 2
96‖σ‖22
τη

ď 2
‖σ‖2DX
TσX,f

ď 2
T
,

where in the last relation, we used the fact that σX,f ě DX‖σ‖2. In view of the above relation and

(3.73), we can set

R2 :“ 2
T
. (3.85)

Noting (3.72) along with the fact that H˚ ě H0 ` Hf‖y˚‖2 `
LfDX r‖y˚‖2´Bs`

2
, setting y0 “ 0,

using (3.84), (3.61), γtτt “ τ ě
?

96TσX,f ,
řt
i“0

γi
ηi´L0´BLf

“ t`1
η
ď

?
TDX?

2rH2
˚`σ

2
0`48B2‖σ‖22s

, and
řt
i“1

γiθ
2
i

τi
`

γt
τt
“ t`1

τ
ď T

τ
for all t ď T ´ 1, we can see that the RHS of (3.72) is at most

2
“

2σ2
0 ` 48‖σ‖2

2

7
12
‖y˚‖2

2 `
η
τ
D2
X `

?
2TDXH2

˚?
H2
˚`σ

2
0`48B2‖σ‖22

B?
96TσX,f

` 12σ2
X,f

T
τ2

(‰

ď 2
“

2σ2
0 ` 48‖σ‖2

2

7
12
‖y˚‖2

2 `
η
τ
D2
X `

DXBH˚?
48σX,f

` 12Tσ2
X,f

B2

96Tσ2
X,f

(‰

ď 2
“

2σ2
0 ` 48‖σ‖2

2

7
12
‖y˚‖2

2 `
DX
σX,f

`

B

b

rH2
˚`σ

2
0`48B2‖σ‖22s

48
`

BH˚?
48

˘

`
6 maxtM,4‖σ‖2uBDX

2 maxtM,4‖σ‖2u
B
DX
` B2

8

(‰

ď 2
“

2σ2
0 ` 28‖σ‖2

2‖y˚‖2
2 ` 75B2‖σ‖2

2 `
?

48‖σ‖2r2BH˚ ` pBσ0 `
?

48B2‖σ‖2qs
‰

where in the last inequality, we used the fact that ‖σ‖2DX
σX,f

ď 1. Note that the last term in the above

80

sequence of relations is a constant satisfying the requirement in (3.72). Hence we can set

R1 :“ 2
“

2σ2
0 ` 28‖σ‖2

2‖y˚‖2
2 ` 75B2‖σ‖2

2 `
?

48‖σ‖2r2BH˚ ` pBσ0 `
?

48B2‖σ‖2qs
‰

. (3.86)

Then using Lemma 3.4.6 and noting (3.85), we have for all t ď T ´ 1

Er‖δGt ‖2
˚s ď

$

’

’

&

’

’

%

2σ2
0 if ‖σ‖2 “ σf “ 0;

R1

`

1` 2
T

˘T´1
ď R1e

2 otherwise.
.

Noting the above relation, (3.86) and the definition of ζ , we have

Er‖δGt ‖2
˚s ď ζ2, @ t ď T ´ 1. (3.87)

So according to (3.54) with y0 “ 0 and using (3.87), we have

Erψ0psxT q ´ ψ0px
˚
qs ď 1

T

“

pη ` L0 `BLf qW px
˚, x0q `

2pζ2`H2
0 qT

η
` 12σ2

X,f
T
τ

‰

.

Using the bound W px˚, x0q ď D2
X , we obtain (3.25). From (3.56) and (3.87), we have for T ě 1

E
∥∥∥“ψpsxT q‰`∥∥∥2

ď 1
T

“

3p‖y˚‖2 ` 1q2τ ` pη ` L0 `BLf qW px
˚, x0q `

2pζ2`H2
˚qT

η
`

13σ2
X,fT

τ

‰

.

Using bounds W px˚, x0q ď D2
X , we obtain (3.26). Using (3.26) and (3.27), we have

E
∥∥∥“ψpsxT q‰`∥∥∥2

ď ε
3
` ε

3
` ε

3
“ ε,

Similarly, using (3.25) and (3.27), it is easy to observe that Erψ0psxT q ´ ψ0px
˚qs ď ε. Hence we

conclude the proof. ˝

81

CHAPTER 4

STOCHASTIC PROXIMAL POINT METHOD FOR STRUCTURED NONCONVEX

FUNCTION CONSTRAINED OPTIMIZATION

In the previous chapter, we looked at ConEx method as a unified algorithm for solving the convex

composite function constrained optimization problem. In this chapter, we will look at the prox-

imal point method for nonconvex function constrained optimization. We assume that nonconvex

functions have a minimal structure such that the original problem can be reduced to solving a se-

quence of convex composite function constrained subproblems. The algorithm and the analysis

techniques are motivated by proximal point methods for unconstrained optimization. We will look

at the convergence of the newly proposed proximal point method to the KKT point under various

constraint qualifications. We will also consider stochastic or large-scale cases where an exact so-

lution to the convex subproblems cannot be obtained. We will employ the aforementioned ConEx

method for solving the subproblems inexactly and show its convergence under various constraint

qualifications.

4.1 Structured Nonconvex Function Constrained Optimization

We study the following composite optimization problem with function constraints:

min
xPX

ψ0pxq :“ f0pxq ` χ0pxq

s.t. ψipxq :“ fipxq ` χipxq ď 0, i “ 1, . . . ,m,

(4.1)

whereX Ď Rn is a convex compact set, f0 : X Ñ R and fi : X Ñ R, i “ 1, . . . ,m are continuous

functions which are not necessarily convex, χ0 : X Ñ R is a proper convex lower semicontinuous

function, and χi : X Ñ R, i “ 1, . . . ,m are convex and continuous functions. Problem 4.1 covers

different nonconvex settings depending on the assumptions on fi and χi, i “ 0, . . . ,m.

82

We assume that fi, i “ 0, . . . ,m, are smooth functions, which are not necessarily convex, but

satisfying a certain lower curvature condition (c.f. (4.2)). However, we do not put the simplicity

assumption about the proximal operator associated with convex functions χi, i “ 0, . . . ,m, as

we did in the previous chapter, covering a broader class of nonconvex problems. This includes

problems with non-differentiable objective functions or constraints.

4.1.1 Algorithms in the literature

The past few years has also seen a resurgence of interest in the design of efficient algorithms for

nonconvex stochastic optimization, especially for stochastic and finite-sum problems due to their

importance in machine learning. Most of these studies need to assume that the constraints are

convex, and focus on the analysis of iteration complexity, i.e., the number of iterations required

to find an approximate stationary point, as well as possible ways to accelerate such approximate

solutions.

If the nonconvex function constraints do not appear, one type of approach for solving (4.1) is to

directly generalize stochastic gradient descent type methods (see [38, 40, 89, 1, 35, 119, 105, 119,

105, 84, 53]) for solving problems with nonconvex objective functions. An alternative approach is

to indirectly utilize convex optimization methods within the framework of proximal-point methods

which transfer nonconvex optimization problems into a series of convex ones (see [44, 13, 36, 26,

50, 58, 87, 82]). While direct methods are simpler and hence easier to implement, indirect methods

may provide stronger theoretical performance guarantees under certain circumstances, e.g., when

the problem has a large conditional number, many components and/or multiple blocks [58].

However, if nonconvex function constraints ψipxq ď 0 do appear in (4.1), the study on its so-

lution methods is scarce. While there is a large body of work on the asymptotic analysis and the

optimality conditions of penalty-based approaches for general constrained nonlinear programming

(for example, see [11, 71, 4, 3, 29]), only a few works discussed the complexity of these methods

for solving problems with nonconvex function constraints [21, 104, 33]. However, these techniques

are not applicable to our setting because they cannot guarantee the feasibility of the generated solu-

83

tions, but a certain local non-increasing properties for the constraint functions. On the other hand,

the feasibility of the nonconvex function constraints appear to be important in certain problems of

interest.

4.1.2 New method for solving structured nonconvex function constrained optimization

In this chapter, we aim to extend the ConEx method for the nonconvex setting and present a new

framework of proximal point method for solving the nonconvex function constrained optimization

problems, which otherwise seem to be difficult to solve by using direct approaches.

The key component of our method is to exploit the structure of the nonconvex objective and

constraints ψi, i “ 0, . . . ,m, thereby turning the original problem into a sequence of function

constrained subproblems with a strongly convex objective and strongly convex constraints. We

show that when the initial point is strictly feasible, then all the subsequent points generated in the

algorithm remain strictly feasible. Hence by Slater condition, there exists Lagrange multipliers

attaining strong duality for each subproblem. Furthermore, we analyze the conditions under which

the dual variables are bounded, and show asymptotic convergence of the sequence to the KKT

points of the original problem. Moreover, we provide the first iteration complexity of this proximal

point method under certain regularity conditions. More specifically, we show that this method

requires Op1{εq iterations to obtain an appropriately defined ε-KKT point.

For practical use, we propose an inexact proximal point type algorithm for which only ap-

proximate solutions of the subproblems are given. To develop the convergence analysis of the

proposed method, we present different termination criterions for controlling the accuracy for solv-

ing the subproblems, either based on the distance to the optimal solution, or in terms of function

optimality gap and constraint violation, depending on different types of constraint qualifications.

We then establish the convergence or complexity of the inexact proximal point method for solving

nonconvex function constrained problems. We also present the overall complexity of the inexact

proximal point method when the ConEx method is used to solve the subproblems under appro-

priate constraint qualification conditions (see Theorem 4.2.14, Corollary 4.2.16 and discussions

84

afterwards).

Almost at the same time this work was completed, Ma et. al. [67] also worked independently

on the analysis of the proximal-point methods for nonconvex function constrained problems. In

spite of some overlap, there exist a few essential differences between this work and [67]. First,

this work establishes the convergence/complexity of the proximal point method under a variety

of constraint qualification conditions, including Mangasarian-Fromovitz constraint qualification

(MFCQ), strong MFCQ, and strong feasibility, and hence covers a broader class of nonconvex

problems, while [67] only consider a uniform Slater’s condition. Strong feasibility condition is

stronger than the uniform Slater’s condition but is easier to verify. Second, [67] uses a different

definition of subdifferential than the one proposed here and the definition of the KKT conditions

in [67] comes from convex optimization problems. While it is unclear under what constraint qual-

ification this KKT condition is necessary for local optimality of nonsmooth nonconvex problems

they consider, it is possible to put their problem into our structured composite framework in 3.1

and compute the subdifferential that provably yields our KKT condition under the aforementioned

MFCQ. Third, for solving the convex subproblems, we will use ConEx method presented in Chap-

ter 3, that can achieve the best-known rate of convergence for solving different problem classes,

including deterministic, semi-stochastic and fully-stochastic, smooth and nonsmooth problems. On

the other hand, different methods were suggested for solving different types of problems in [67].

In particular, a variant of the switching subgradient method, which was firstly presented by Polyak

in [86] for the general convex case, and later extended by [60] for the stochastic and strongly con-

vex cases, was suggested for solving deterministic problems. For the stochastic case they directly

apply the algorithm in [113] and hence require stochastic gradients to be bounded. These nons-

mooth subgradient methods do not necessarily yield the best possible rate of convergence if the

objective/constraint functions are smooth or contain certain smooth components.

Now we shift our focus to the details of proximal point method for structured nonconvex func-

tion constrained optimization.

85

4.1.3 Notation and terminologies

We borrow the useful notation in (3.2) from Chapter 3 and the constraints in (3.1) be expressed

as ψpxq ď 0. ‖¨‖ denotes a general norm and ‖¨‖˚ denotes its dual norm defined as ‖z‖˚ :“

suptzTx : ‖x‖ ď 1u. From this definition, we obtain the aT b ď ‖a‖‖b‖˚. Euclidean norm is

denoted as ‖¨‖2 and standard inner product is denoted as x¨, ¨y. Let B2prq :“ tx : ‖x‖2 ď ru be

the Euclidean ball of radius r centered at origin. Nonnegative orthant of this ball is denoted as

B2
`prq. For a convex set X , we denote the normal cone at x P X as NXpxq and its dual cone

as N˚
Xpxq, interior as intX and relative interior as rintX . For a scalar valued function f and

a scalar t, the notation tf ď tu stands for the set tx : fpxq ď tu. The “`” operation on sets

denotes the Minkowski sum of the sets. We refer to the distance between two sets A,B Ă Rn as

dpA,Bq :“ minaPA,bPB‖a´ b‖.
“

x
‰

`
:“ maxtx, 0u for any x P R. For any vector x P Rk, we define

“

x
‰

`
as elementwise

application of the operator
“

¨
‰

`
. The i-th element of vector x is denoted as xi unless otherwise

explicitly specified a different notation for certain special vectors.

A function rp¨q is λ-Lipschitz smooth if the gradient ∇rpxq is a λ-Lipschitz function, i.e. for

some λ ě 0

‖∇rpxq ´∇rpyq‖ď˚ λ‖x´ y‖, @x, y P dom r.

An equivalent form is:

´λ
2
‖x´ y‖2

ď rpxq ´ rpyq ´ x∇rpyq, x´ yy ď λ
2
‖x´ y‖2, @x, y P dom r.

A refined version of the above property differentiates between negative and positive curvature. In

particular, we have

rpyq ` x∇rpyq, x´ yy ´ ν
2
‖x´ y‖2

ď rpxq, @x, y P dom r. (4.2)

Here, we say that r satisfies (4.2) with parameter ν with respect to ‖¨‖. In many cases, it is

86

possible that a convex function r is a combination of Lipschitz smooth and nonsmooth functions.

Let ω : X Ñ R be continuously differentiable with Lω Lipschitz gradient and 1-strongly convex

with respect to ‖¨‖. We define the prox-function associated with ωp¨q as

W py, xq :“ ωpyq ´ ωpxq ´ x∇ωpxq, y ´ xy, @x, y P X. (4.3)

Based on the smoothness and strong convexity of ωpxq, we have the following relation

W py, xq ď Lω
2
}x´ y}2 ď LωW px, yq, @x, y P X. (4.4)

Moreover, we say that a function rp¨q is β-strongly convex with respect to W p¨, ¨q if

rpxq ě rpyq ` x∇rpyq, x´ yy ` βW px, yq, @x, y P X. (4.5)

For any convex function h, we denote the subdifferential as Bh which is defined as follows: at a

point x in the relative interior of X , Bh is comprised of all subgradients h1 of h at x which are in

the linear span of X´X . For a point x P Xz rintX , the set Bhpxq consists of all vectors h1, if any,

such that there exists xi P rintX and h1i P Bhpxiq, i “ 1, 2, . . . , with x “ lim
iÑ8

xi, h
1 “ lim

iÑ8
h1i.

With this definition, it is well-known that, if a convex function h : X Ñ R is Lipschitz continuous,

with constantM, with respect to a norm ‖¨‖, then the set Bhpxq is nonempty for any x P X and

h1 P Bhpxq ñ |xh1, dy| ďM‖d‖, @d P lin pX ´Xq,

which also implies

h1 P Bhpxq ñ ‖h1‖˚ ďM,

where ‖¨‖˚ is the dual norm. See [10] for more details.

87

4.2 Proximal Point Methods for Nonconvex Function Constrained Problems

Our goal in this section is to extend the ConEx method for the nonconvex setting by developing

a general proximal point method for nonconvex function constrained optimization. This proximal

point method transforms the nonconvex function constrained problem (3.1) into a sequence of

convex function constrained subproblems. In Section 4.2.1, we present an exact proximal point

method which carries its name since we assume that convex subproblems are solved exactly. This

method requires a weak assumption on constraint qualification. Section 4.2.2 discusses an inexact

proximal point method where convex subproblems are solved inexactly using the ConEx method

presented in Chapter 3. Convergence of this method requires a stronger but verifiable constraint

qualification.

We first recall the assumptions mentioned briefly in Section 3.1 for the nonconvex case.

1. fi : X Ñ R are nonconvex and Lipschitz-smooth functions satisfying the lower curvature

condition in (4.2) with parameters µi, i “ 0, . . . ,m.

2. χ0 : X Ñ R is a proper convex lower semicontinuous function.

3. χi : X Ñ R, i “ 1, . . . ,m are convex and continuous functions.

Let x˚ P X be a the global optimal solution and ψ˚0 “ ψ0px
˚q be optimal value of problem (3.1).

Given the above assumptions and compactness of X , we have ψ˚0 ą ´8.

It should be noted, however, that solving nonconvex problem (3.1) to the optimality condition

in Definition 3.3.1 is generally difficult. Due to the hardness of the problem, we focus on the

necessary condition for guaranteeing local optimality. For this purpose, we need to generalize the

subdifferential for the objective function ψ0 and constraints ψi because they are possibly nonconvex

and nonsmooth. Let Bχ0 and Bχi, i P rms be the subdifferentials of the convex functions χ0 and

88

χi, i P rms, respectively. We define

Bψ0pxq :“ t∇f0pxqu ` Bχ0pxq

Bψipxq :“ t∇fipxqu ` Bχipxq, i P rms.

Note that Bψi “ t∇fiu when ψ is a “purely” differentiable nonconvex function fi and Bψi “ Bχi

when ψi is a nonsmooth convex function χi.

Using these objects, we can define a Karush-Kuhn-Tucker (KKT) condition for this class of

nonsmooth nonconvex problem (3.1) as follows.

Definition 4.2.1 We say that x˚ P X is a critical KKT point of (3.1) if ψipx˚q ď 0 and D y˚ “

ry˚p1q, . . . , y˚pmqsT ě 0 s.t.

y˚piqψipx
˚
q “ 0, i P rms,

d
`

Bψ0px
˚
q `

řm
i“1y

˚piqBψipx
˚q `NXpx

˚q,0
˘

“ 0.
(4.6)

The parameters ty˚piquiPrms are called Lagrange multipliers. For brevity, we use the notation y˚

and ry˚p1q, . . . , y˚pmqsT interchangeably.

It is well-known that for solving nonlinear optimization problems where functions ψ0 and ψi’s

are continuously differentiable, the KKT condition is necessary for achieving optimality under the

classical Mangasarian-Fromovitz constraint qualification (MFCQ, see [69]). Using the subdiffer-

ential Bψ0 and Bψi defined above, we will show that the KKT condition in (4.6) is a first-order

necessary optimality condition for the composite nonconvex optimization problem in (3.1) under

the following MFCQ type assumption.

Assumption 4.2.1 (MFCQ) There exists a direction z P ´N˚
Xpx

˚q such that

max
vPBψipx˚q

vT z ă 0, i P Apx˚q, (4.7)

where Apx˚q denotes the indicator set of all active constraints.

89

Proposition 4.2.1 below gives a necessary condition for a point to be a locally optimal solution

of the problem (3.1) and its proof is given in Appendix 4.3.1.

Proposition 4.2.1 Let x˚ be a local optimal solution of the problem (3.1). If x˚ satisfies Assump-

tion 4.2.1, then there exists y˚piq ě 0, i P rms such that 4.6 holds.

Due to the hardness of exactly computing even the local optimal solution for the nonconvex

function constrained problem, it is natural to seek an approximate KKT point defined as follows.

Definition 4.2.2 We say that a point px P X is an pε, δq-KKT point for the problem (3.1) if there

exists px, yq such that φpxq ď 0, y ě 0 and

řm
i“1|ypiqψipxq| ď ε,

“

d
`

Bψ0pxq `
řm
i“1y

piqBψipxq `NXpxq,0
˘‰2

ď ε,

‖x´ px‖2
ď δ.

(4.8)

Similarly a stochastic pε, δq-KKT point generated by stochastic algorithms can be defined as a point

px P X such that (4.8) is satisfied under expectation with respect to the random variables involved

in these methods. Note that if δ “ 0 then px coincides with x. In this case, we call px as an ε-

KKT point by dropping δ in the notation. Clearly a 0-KKT point satisfies the KKT condition (4.6)

exactly since both ε “ δ “ 0. The parameter δ in the approximation criterion (4.8) is introduced

to discuss the convergence rate of our algorithm when the constrained convex subproblems in each

iteration are solved inexactly. Termination criterion with δ ą 0 has been used in [58, 26] when

solving the subproblems of the proximal point methods inexactly. However, under exact oracle

for the subproblems, there is no need to use δ and in this case, we work with the stronger ε-KKT

approximation criterion.

4.2.1 Exact proximal point method

The main idea of the proximal point method (see Algorithm 2) is to translate the nonconvex prob-

lem into a sequence of convex subproblems by adding strongly convex terms to the objective and

90

to the constraints. Specifically, each step of the proximal point algorithm involves a convex sub-

problem (4.9). It can be observed that, by adding a strongly convex proximal term, ψ0px;xk´1q is

µ0-strongly convex and ψipx;xk´1q is µi-strongly convex with respect toW p¨, ¨q. Hence, each sub-

problem will have a unique global optimal solution. Our main goal in this subsection is to analyze

Algorithm 2 Exact Constrained Proximal Point Algorithm
Input: Input x0

1: for k “ 1, . . . , K do
2: Set ψ0px;xk´1q :“ ψ0pxq ` 2µ0W px, xk´1q,

ψipx;xk´1q :“ ψipxq ` 2µiW px, xk´1q, i P rms.

3: Obtain xk “ argmin
xPX

ψ0px;xk´1q

s.t. ψipx;xk´1q ď 0, i P rms.
(4.9)

4: If xk´1 “ xk then return xk.
5: end for
6: return xK

the convergence behavior of Algorithm 2. We will first describe some basic properties of Algo-

rithm 2, e.g., monotonic nonincreasing objective values, square summability of distances between

the consecutive iterates, etc. Moreover, by properly imposing constraint qualification assumptions,

we will establish the asymptotic convergence and rate of convergence of this method to compute

an approximate KKT point of problem (3.1).

Theorem 4.2.2 describes some basic properties of Algorithm 2, namely, the square summability

of xk´1 ´ xk and sufficient descent property.

Theorem 4.2.2 Assume that x0 is feasible for (3.1) in Algorithm 2. Then

a) Either the algorithm terminates at x1 “ x0 or all the generated points x1, x2, ..., xk... are

strictly feasible for problem (3.1), and satisfy

řK
k“1‖xk´1 ´ xk‖2 ď 2

3µ0
rψ0px0q ´ ψ0pxKqs, (4.10)

tψ0pxkqu is monotonically decreasing.

91

b) Either there exists a pk such that x
pk “ x

pk´1, and then the algorithm terminates, or tψ0pxkqu

is strictly decreasing and has a limit point rψ0 ą ´8. In that case we have

lim
kÑ`8

‖xk ´ xk´1‖“0.

Proof. We first show part a). Note that x0 is a feasible solution of subproblem (4.9) for k “ 1. By

definition, the optimal solution of this problem is x1. If x1 “ x0 then we have nothing to prove.

We assume that x1 ‰ x0. Since ψipx1;x0q ď 0 for all i P rms. Hence, we have ψipx1q ă 0

for all i P rms implying that x1 is strictly feasible. Moreover, by continuity of ψi, we have that

intptψ ď 0uq ‰ H.

We prove the rest of the claim by induction. Assume that our claim holds for xk´1, i.e., ψipxk´1q ă

0, then xk´1 is strictly feasible for the k-th subproblem (4.9) with objective ψ0p¨;xk´1q and con-

straints ψp¨;xk´1q. If xk “ xk´1, the claim holds by the induction assumption. Otherwise, by the

feasibility of xk for (4.9), we have ψipxkq ă ψipxk;xk´1q ď 0 for all i P rms.

Due to the optimality of xk for solving subproblem (4.9) and noting the strong convexity of objec-

tive function ψ0p¨;xk´1q, we have for all feasible x that ψ0px;xk´1q ě ψ0pxk;xk´1q`µ0W px, xkq.

By inductive hypothesis, we have xk´1 is a feasible solution. Hence, taking x “ xk´1, and using

strong convexity of the distance generating function ωpxq of W p¨, ¨q, we have

‖xk´1 ´ xk‖2
ď 2

3µ0
rψ0pxk´1q ´ ψ0pxkqs. (4.11)

Summing up (4.11) for k “ 1, 2, 3, ...K yields the result in part a).

To show part b), we observe from (4.11) that tψ0pxkqu is a nonincreasing sequence. Moreover,

we have strict monotonicity if xk ‰ xk´1 for all k. In that case we conclude that limkÑ`8 ψ0pxkq “

rψ0 for some rψ0 ě ψ˚0 and limkÑ`8‖xk ´ xk´1‖ “ 0. ˝

Strict feasibility is a common assumption to show the existence of Lagrange multipliers for

convex programming. Henceforth, we will assume that the initial point x0 is a strict feasible

92

solution for the problem (3.1) throughout this section. Then, in view of Theorem 4.2.2, we note that

there exists a strict feasible solution for the subproblem (4.9) for all k ě 1. Therefore, there exists

a KKT point pxk, ykq based on Slater constraint qualification. The following lemma characterizes

an important property of pxk, ykq for such convex nonlinear problems.

Lemma 4.2.3 Let pxk, ykq be a KKT point of the subproblem (4.9). Then

ψ0px;xk´1q ´ ψ0pxk;xk´1q ` xyk, ψpx;xk´1qy ě
`

µ0 ` µ
Tyk

˘

W px, xkq, x P X. (4.12)

Proof. Let ψ10pxkq P Bψ0px
˚q , ψ1ipx

˚q P Bψipx
˚q and z˚ P NXpx

˚q be the subgradients satisfying

the condition (4.6). According to the strong convexity of ψ0p¨;xk´1q, ψip¨;xk´1q, and the fact that

yk ě 0, we have

ψ0px;xk´1q ` xyk, ψpx;xk´1qy ě ψ0pxk;xk´1q ` xψ
1
0pxk;xk´1q, px´ xkqy ` µ0W px, xkq

` xyk, ψpxk;xk´1qy ` x
řm
i“1y

piq
k ψ

1
ipxk;xk´1q, x´ xky ` pµ

TykqW px, xkq

“ ψ0pxk;xk´1q ` xψ
1
0pxk;xk´1q `

řm
i“1y

piq
k ψ

1
ipxk;xk´1q, x´ xky

`
`

µ0 ` µ
Tyk

˘

W px, xkq,

where the last equality follows from the complementary slackness part of KKT condition. More-

over, for all x P X , we have

xψ10pxk;xk´1q `
ř

iy
piq
k ψ

1
ipxk;xk´1q, x´ xky ě 0,

where the inequality follows from the definition of normal cone. Putting the above two inequalities

together, we arrive at relation (4.12). ˝

Note that even though Lemma 4.2.3 is stated for subproblem (4.9), it is applicable for any

strongly convex function constrained problem. Using the above lemma and Theorem 4.2.2, we can

show a bound on the norm of dual variables.

93

Proposition 4.2.4 Assume that x0 is strictly feasible for (3.1) in Algorithm 2. Then for all k ě 1,

there exists yk “ ry
p1q
k , . . . , y

pmq
k sT such that yk ě 0, and

y
piq
k ψipxk;xk´1q “ 0, i “ 1, . . . ,m,

Bψ0pxk;xk´1q `
ř

iPrmsy
piq
k Bψipxk;xk´1q `NXpxkq Q 0.

(4.13)

and we have the following bound on yk:

}yk}1 ď
ψ0pxk´1q´ψ0pxkq

min1ďiďmt´ψipxk´1qu
, k “ 1, 2, 3, . . . (4.14)

Proof. Strict feasibility of x0 along with Part (a) of Theorem 4.2.2 imply that each subproblem

(4.9) in Algorithm 2 satisfies Slater constraint qualification for all k ě 1. Hence, (4.13) follows

from KKT necessary condition with Slater constraint qualification. In particular, first relation in

(4.13) is a direct application of KKT complementary slackness and second relation is an application

of KKT stationarity. Similarly, applying Lemma 4.2.3 and placing x “ xk´1 in (4.12) yields

ψ0pxk´1q ´ ψ0pxkq ě pµ0 ` µ
TykqW pxk´1, xkq ` 2µ0W pxk, xk´1q ´

řm
i“1y

piq
k ψipxk´1q

ě ‖ypiqk ‖1 min
1ďiďm

t´ψipxk´1qu.

Thus relation (4.14) immediately follows. ˝

In view of Proposition 4.2.4, strict feasibility assumption implies a bound on yk for each k ě 1.

As a special case, if xk “ xk´1 for some k ą 1, then the critical KKT point is in the interior of

the inequality constraints and consequently, we have yk “ 0. Conceptually, we hope that the

bound on the sequence tyku and proximity of consecutive elements of the sequence txku leads

to convergence to the KKT condition of the problem (3.1). However, Proposition 4.2.4 does not

precisely describe the limiting behavior of the dual sequence, tyku. For instance, it does not pre-

clude the case that the limit of the sequence ‖yk‖1 tends to infinity, which is possible when xk

94

converges to boundary points. In the latter case, mere existence of the optimal dual multiplier yk of

the subproblem does not necessarily implies convergence to a solution satisfying KKT condition

of the problem (3.1). We indeed need to analyze under what conditions one can definitively say

that for the entire sequence of subproblems generated by Algorithm 2, the optimal dual variables

remain bounded. In what follows, we describe two sufficient conditions under which convergence

to the KKT solutions can be established. We show that the assumptions are relatively weak in the

sense that they are satisfied some variants of MFCQ which is a classical constraint qualification

for function constrained problems.

Assumption 4.2.2 (Subsequence boundedness) Given the sequence of primal variables txku8k“1,

one limit point x˚, and the sequence of optimal dual variables tyku8k“1, if txiku is a subsequence

convergent to x˚, then the subsequence tyiku is bounded.

The following lemma shows that MFCQ implies the subsequence boundedness condition.

Lemma 4.2.5 In Algorithm 2, let x˚ be a limit point of the sequence txku. Assume that there exists

some z P ´N˚
Xpx

˚q such that Assumption 4.2.1 is satisfied, then Assumption 4.2.2 is satisfied.

Proof. We prove by contradiction, that the dual variable associated with the convergent subse-

quence is bounded.

Let x˚ P X be a limit point of the sequence txku. Passing to a subsequence if necessary, we have

limkÑ8 xk “ x˚. For the sake of contradiction, assume that tyku is not bounded. Then there exists

a subsequence tjku such that limkÑ8‖yjk‖1 “ 8. Due to the optimality of xjk , we have

ψ0pxjkq`y
T
jk
ψpxjkq ď ψ0pxq`y

T
jk
ψpxq`2pµ0`µ

TyjkqrW px, xjk´1q´W pxjk , xjk´1qs, @x P X.

(4.15)

Let vjk “ yjk{‖yjk‖1, then ‖vjk‖1 “ 1, hence tvjku must have a convergent subsequence. Without

loss of generality, we assume limkÑ8 vjk “ v˚. Dividing both sides of (4.15) by ‖yjk‖1, taking

k Ñ 8 and using continuity of ψ, we have

v˚Tψpx˚q “ lim
kÑ8

v˚Tψpxjkq ď v˚Tψpxq ` 2µTv˚W px, x˚q, @x P X. (4.16)

95

Given that x˚ is optimal, the first-order necessary condition implies

d
`
ř

iBψipx
˚qv˚piq `NXpx

˚q,0
˘

“ 0. (4.17)

Let Apx˚q be the set of active constraints at x˚. By this definition, for any i R Apx˚q, we have

ψipx
˚q ă 0. Since ψi is continuous and }xjk ´ xjk´1

}2 converges to 0, there exists k0 such that for

all k ą k0, we have ψipxjk ;xjk´1q ă 0. Hence, according to the KKT complementary slackness

condition for the subproblem, ypiqjk “ 0 for k ą k0. Taking k Ñ 8 we obtain v˚piq “ 0 for any

i R Apx˚q. So we can rewrite the equation (4.17) as

d
´

ř

iPApx˚qBψipx
˚qv˚piq `NXpx

˚q,0
¯

“ 0.

Let ψ1ipx
˚q P Bψipx

˚q, i P rms, and u P NXpx
˚q be such that u`

řm
i“1ψ

1
ipx

˚qv˚piq “ 0. Then,

0 “ zTu`
ř

iPApx˚qv
˚piqzTψ1ipx

˚q ď
ř

iPApx˚qv
˚piqzTψ1ipx

˚q

ď
ř

iPApx˚qv
˚piq maxvPBψipx˚q z

Tv ă 0,

where the first inequality follows since z P ´N˚
Xpx

˚q and u P NXpx
˚q hence zTu ď 0, the second

inequality follows due to the fact that v˚piq ě 0 and ψ1ipx
˚q P Bψipx

˚q and the last strict inequality

follows due to Assumption 4.2.1 and v˚piq ą 0 for at least one i P Apx˚q. Hence, we obtain a

contradiction and conclude that tyjku is a bounded sequence and finish the proof. ˝

We are now ready to state our first general convergence result for Algorithm 2.

Theorem 4.2.6 Let x˚ be a limit point of Algorithm 2. If Assumption 4.2.2 holds, then there exists

a vector y˚ ě 0 such that the KKT conditions in (4.6) are satisfied.

96

Proof. From the KKT condition for the k-th subproblem and noting that

Bψ0p¨;xk´1q “ Bψ0p¨q ` 2µ0p∇ωp¨q ´∇ωpxk´1qq,

Bψip¨;xk´1q “ Bψip¨q ` 2µip∇ωp¨q ´∇ωpxk´1qq,

we have

y
piq
k ψipxkq “ ´2y

piq
k µiW pxk, xk´1q, i “ 1, . . . ,m, (4.18)

and

d
`

Bψ0pxkq `
řm
i“1y

piq
k Bψipxkq `NXpxkq,0

˘

ď 2
`

µ0 ` µ
Tyk

˘

‖∇ωpxkq ´∇ωpxk´1q‖

ď 2
?

2Lωpµ0 ` ‖µ‖8‖yk‖1q
a

W pxk´1, xkq.

(4.19)

Applying Lemma 4.2.3 with x “ xk´1, we have

ψ0pxk´1q ´ ψ0pxkq ě 2µ0W pxk, xk´1q ` pµ0 ` µ
TykqW pxk´1, xkq. (4.20)

Together with (4.18) we obtain

řm
i“1|y

piq
k ψipxkq| “ 2

`

µTyk
˘

W pxk, xk´1q ď 2Lω
`

µTyk
˘

W pxk´1, xkq

ď 2Lωrψ0pxk´1q ´ ψ0pxkqs, (4.21)

where the first inequality follows from (4.4).

In view of the convergence of tψ0pxkqu according to Theorem 4.2.2, we have

lim
kÑ8

y
piq
k ψipxkq “ 0, i “ 1, 2, ...,m.

Let txjku be a convergent subsequence to x˚. Based on Assumption 4.2.2, ‖yjk‖ is bounded

above. Passing to a subsequence if necessary, we have limkÑ8 yjk “ y˚. Then y˚ ě 0, ψpx˚q ď 0

97

and

y˚piqψipx
˚
q “ 0, i “ 1, . . . ,m. (4.22)

Moreover, using part two of Theorem 4.2.2 we have limkÑ8 ψ0pxjkq “
rψ0 ą ´8. We will show

ψ0px
˚q “ rψ0. First, due to lower semicontinuity of ψ0, we have ψ0px

˚q ď rψ0. Next, taking k Ñ 8

in (4.15) in Lemma 4.2.5, noting the definition of rψ0 and continuity of ψ, we have

rψ0 ` y
˚Tψpx˚q ď ψ0pxq ` y

˚Tψpxq ` 2pµ0 ` µ
Ty˚qW px, x˚q, @x P X. (4.23)

Plugging the value x “ x˚ in the above relation, we have ψ0px
˚q ě rψ0. Consequently, we have

ψ0px
˚q “ rψ0. Replacing rψ0 by ψ0px

˚q in the condition (4.23), the optimality of x˚ implies

d
`

Bψ0px
˚
q `

řm
i“1y

˚piqBψipx
˚q `NXpx

˚q,0
˘

“ 0. (4.24)

Here note that we dropped the term,∇ωp¨q ´∇ωpx˚q, which evaluates to 0 at x˚. From equations

(4.22), (4.24) and the assertion that y˚ ě 0 and ψpx˚q ď 0, we conclude that px˚, y˚q is a KKT

point of problem (3.1). ˝

Our goal in the remaining part of this subsection is to develop the iteration complexity, i.e., a

bound on the number of iterations performed by Algorithm 2 in order to obtain an ε-KKT point,

as specified in Definition 4.2.2. To achieve this goal, we require a stronger assumption of uniform

bounded dual sequence.

Assumption 4.2.3 (Uniform boundedness) Given the sequence of optimal dual variables tyku of

subproblem (4.9), the whole sequence tyku is bounded:

DB ą 0 s.t. ‖yk‖1 ď B, k “ 1, 2, ..., (4.25)

In the following lemma, we show that uniform boundedness of dual variables can be guaranteed

98

under some mild conditions.

Lemma 4.2.7 If Assumption 4.2.2 holds for every limit point x˚ of Algorithm 2 , then Assumption

4.2.3 also holds.

Proof. The boundedness of yk can be proved by contradiction. Suppose that there exists an un-

bounded subsequence tyiku such that limkÑ8‖yik‖1 “ 8. Since X is a compact set and txiku is

a bounded sequence, there exists a convergent subsequence tjku Ď tiku: limkÑ8 xjk “ x˚. How-

ever, tyjku is bounded according to Assumption 4.2.2. Hence we have a contradiction. ˝

Below, we state an immediate corollary of Lemma 4.2.5 and Lemma 4.2.7 which gives uniform

bounds on the the sequence ‖yk‖1 using a stronger version of MFCQ.

Corollary 4.2.8 Suppose z P ´N˚
Xpx

˚q satisfying (4.2.1) exists for every limit point x˚ of Algo-

rithm 2 then Assumption 4.2.3 holds.

In the corollary above, we used condition (4.2.1) for every limit point, x˚, of Algorithm 2 in order

to show that Assumption 4.2.3 holds. However, it is difficult to verify whether this condition is

satisfied. Alternatively, we provide another verifiable sufficient condition that ensures uniform

boundedness assumption.

Lemma 4.2.9 Let DX :“ maxx,yPX
a

2W px, yq. Suppose there exists sx P X such that

ψipsxq ď ´2µiD
2
X , i “ 1, . . . ,m. (4.26)

Then Assumption 4.2.3 holds, and specifically, we have the following uniform bound:

}yk}1 ď B :“
ψ0psxq´ψ

˚
0`µ0D

2
X

µminD
2
X

, k “ 1, 2, 3, ..., (4.27)

where µmin “ min1ďiďm µi.

99

Proof. Based on (4.26), for subproblem 4.9, we have

ψipsx, xk´1q ď ´2µiD
2
X ` 2µiW psx, xk´1q ď ´µiD

2
X ă 0.

Then the existence of the KKT point pxk, ykq follows from the Slater condition. Moreover, using

x “ sx in Lemma 4.2.3, and noting that yk ě 0, one has

ψ0psxq ` 2µ0W psx, xk´1q ´ ψ0pxkq ´ 2µ0W pxk, xk´1q ě xyk,´ψpsx, xk´1qy.

Combining the above two inequalities together, we successively deduce

µmin‖yk‖1D
2
X ď pµ

TykqD
2
X

ď ´
ř

iy
piq
k ψipsx, xk´1q

ď ψ0psxq ´ ψ0pxkq ` µ0D
2
X , k “ 1, 2, . . . , K.

Finally, since the feasible region of the subproblem 4.9 is smaller than that of Problem 3.1, we

have ψ0pxkq ě ψ˚0 . The result immediately follows. ˝

Note that (4.26) is a local and a verifiable condition and it provides a computable uniform boundB,

as in accordance with the result of Lemma 4.2.9. While it appears that (4.26) is quite distinct from

Assumption 4.2.1, we would like to point out certain similarities between these two conditions. To

understand this connection better, let us assume that ψi is smooth function. Then for all x P X , we

have

ψipsxq ě ψipxq ` x∇ψipxq, sx´ xy ´ µi
2
‖sx´ x‖2

ñ x∇ψipxq, x´ sxy ě ψipxq ´ ψipsxq ´
µi
2
‖sx´ x‖2,

100

which implies that

x∇ψipxq, x´ sxy ě 0, @x P X X tψi ě ´
3

2
µiD

2
Xu. (4.28)

Recall that the existence of a Minty solution, sx, for variational inequality problem on mapping

∇ψi, is the following condition

x∇ψipxq, x´ sxy ě 0, @x P X, (4.29)

which is a stronger condition than (4.28). Hence, ψ satisfying (4.26) is not necessarily quasi-

convex. However, existence of Minty solution, sx, gives an ‘almost’ sufficient condition for ensur-

ing Assumption 4.2.1 in the following way. Set x “ x˚ in (4.29). Then we obtain that z “ sx´ x˚

satisfies Assumption 4.2.1 with strict inequality replaced by nonstrict inequality. Since there is no

implication from (4.28) to (4.29) (in fact, the implication is in the opposite direction), so a direct

comparison for the weaker among the two condition (4.26) and Assumption 4.2.1, can not be made

as such.

Having provided with two sufficient conditions for the uniform boundedness assumption, we

now present the main complexity result of Algorithm 2 in the following theorem.

Theorem 4.2.10 If the dual sequence tyku is bounded, i.e., Assumption 4.2.3 holds such that

}yk}1 ď B, then for pk “ argmin1ďkďK ψ0pxk´1q ´ ψ0pxkq, xpk is an εK-KKT point with

εK “ max

2Lω, 8L
2
ωpµ0 ` ‖µ‖8Bq

(

rψ0px0q´ψ
˚
0 s

K
.

Proof. We derive the complexity to compute an approximate KKT point. By definition of pk,

Krψ0pxpk´1q ´ ψ0pxpkqs ď
řK
k“1rψ0pxk´1q ´ ψ0pxkqs ď ψ0px0q ´ ψ

˚
0 . (4.30)

101

Putting together (4.30), the relation (5.13), (4.20) and (4.44) we conclude that

řm
i“1|y

piq
pk
ψipxpkq| ď

2Lωrψ0px0q´ψ
˚
0 s

K
,

and

d
`

Bψ0pxpkq `
řm
i“1y

piq
pk
Bψipxpkq `NXpxpkq,0

˘2
ď 4

`

µ0 ` pµ
Ty

pkq
˘2
}∇ωpx

pkq ´∇ωpxpk´1q}
2

ď 8L2
ω

`

µ0 ` pµ
Ty

pkq
˘2
W px

pk´1, xpkq

ď 8L2
ω

`

µ0 ` pµ
Ty

pkq
˘“

ψ0pxpk´1q ´ ψ0pxpkq
‰

ď
8L2

ωpµ0`‖µ‖8Bqrψ0px0q´ψ
˚
0 s

K
. (4.31)

Moreover, due to Part (a) of Theorem 4.2.2, we have ψpx
pkq ď 0 and due to Proposition 4.2.4, we

have y
pk ě 0. Hence we conclude the proof. ˝

In view of Theorem 4.2.10, the exact proximal point method finds an ε-KKT point. in Op1{εq

iterations.

Remark 4.2.11 Note that all the results in this section can be easily extended to the case when

ψi, i P rms are convex functions. In that case, we can replace µi “ 0 for all i P rms. This changes

(4.9) of Algorithm 2 to

xk “ argmin
xPX

ψ0px;xk´1q

s.t. ψipxq ď 0, i P rms.
(4.32)

Hence constraints are fixed for all iterations. For Algorithm 2 with (4.9) replaced by (4.32), we can

easily obtain asymptotic convergence result of Theorem 4.2.6 for limits point x˚ satisfying Assump-

tion 4.2.1 with almost the same proof except replace µi by 0 for all i P rms and ψpx;xk´1q “ ψpxq

for all k ě 1. Under Assumption 4.2.1 for every limit point of txku, we obtain rate of convergence

result similar to Theorem 4.2.10 with almost the same proof and similar replacements.

102

It should be noted that we need to assume access to an oracle that solves the convex subprob-

lem (4.9) exactly in Algorithm 2. Such a problem can be efficiently solved by polynomial time

algorithms, e.g., by the ellipsoid method and interior point methods, if the problem dimension is

relatively small to medium. However, there exist scenarios where exact solutions are difficult to

attain, e.g., when the objective or constraints are expectation of stochastic functions. Hence we

turn our attention to an inexact proximal point algorithm which only requires approximate solution

for the subproblem (4.9). We present details in the next subsection.

4.2.2 Inexact proximal point method

In this subsection, we propose an inexact variant of the proximal point method which solves the

subproblem inexactly. To understand our motivation for the analysis of inexact proximal point

method, consider the case when the objective function is given in the form of fpxq “ EξrF px, ξqs,

where F px, ξq is a stochastic function on some random variable ξ and is possibly nonconvex with

respect to the parameter x. Consequently, the objective function in the subproblem (4.9) is given by

EξrF px, ξqs`µ0‖x´sx‖2. As discussed in the previous section, stochastic optimization algorithms

for solving this type of problem will exhibit a sublinear rate of convergence, making it difficult to

attain high-precision solution.

Algorithm 3 Inexact Constrained Proximal Point Algorithm
1: Input x0

2: for k “ 1, . . . , K do
3: xk Ð a (stochastic) approximate solution of subproblem (4.9).
4: end for
5: Randomly choose pk from t1, 2, ..., Ku.
6: return x

pk.

To deal with this type of problem, we propose a (stochastic) inexact proximal point method as

shown in Algorithm 3. The main difference between Algorithm 3 and Algorithm 2 is that the for-

mer permits approximate optimal solutions. To distinct exact and approximate solution, we denote

exact solution as x˚k and corresponding dual solution as y˚k hereafter for this subsection. Since each

subproblem (4.9) is solved inexactly, the sequence generated by Algorithm 3 can become infea-

103

sible with respect to the original problem. If xk´1 is infeasible with respect to (3.1), then we can

not guarantee feasibility of the subproblem (4.9) in general. This also implies obtaining bounds

on Lagrange multipliers is more challenging for inexact case. However, we show that if succes-

sive problems are solved accurately enough then we can obtain strict feasibility of the iterates and

moreover, also show boundedness guarantees on ‖yk‖1 as in the previous subsection.

Throughout the rest of this subsection, we assume that ψ0p¨;xk´1q is Lipschitz continuous

with constant M0, ψip¨;xk´1q is Lipschitz continuous with constant Mi, i P rms, and denote

M “ rM1,M2, ...,Mms
T . Proposition 4.2.12 shows that the sequence txku is strictly feasible

if the subproblem (4.9) is solved accurately enough.

Proposition 4.2.12 Let txku be the sequence generated by Algorithm 3.

a) For the subproblem (4.9), assume that ψpxk´1q ă 0 and x˚k ‰ xk´1. If xk satisfies

b

Mi

µi
}xk ´ x˚k} ` }xk ´ x

˚
k} ă }xk´1 ´ x

˚
k}, for all i P rms, (4.33)

then xk is a strictly feasible point for problem (3.1). If x0 is strictly feasible, then the whole

sequence txku is strictly feasible.

b) Furthermore, if xk satisfies:

b

2M0

µ0
}xk ´ x˚k} ` }xk ´ x

˚
k} ď }xk´1 ´ x

˚
k}, (4.34)

then tψ0pxkqu is monotonically decreasing and converges to a limit point rψ0. Moreover we

have

lim
kÑ8

W pxk, xk´1q, lim
kÑ8

W pxk´1, x
˚
kq “ 0. (4.35)

Proof. Part a). Let us use εk “ }xk ´ x˚k} for brevity. From the definition of ψipx;xk´1q and

feasibility of x˚k , we have

ψipxkq ` 2µiW pxk, xk´1q “ ψipxk;xk´1q ď ψipx
˚
k;xk´1q `Mi}xk ´ x

˚
k} ďMi}xk ´ x

˚
k},

104

where the first inequality follows from Lipschitz continuity of ψipx;xk´1q. Using the triangle

inequality, we have

a

2µiW pxk, xk´1q ě
?
µi}xk ´ xk´1} ě

?
µip}xk´1 ´ x

˚
k} ´ }xk ´ x

˚
k}q

ą

b

Mi}xk ´ x˚k}.

Combining the above two results together, we have ψpiqpxkq ă 0.

Part b). We successively deduce

ψ0pxk´1q “ ψ0pxk´1;xk´1q

ě ψ0px
˚
k;xk´1q ´ xy

˚
k , ψpxk´1;xk´1qy ` pµ0 ` µ

Ty˚kqW pxk´1, x
˚
kq

ě ψ0pxk;xk´1q ´M0εk ` pµ0 ` µ
Ty˚kqW pxk´1, x

˚
kq.

“ ψ0pxkq ` 2µ0W pxk, xk´1q ´M0εk ` pµ0 ` µ
Ty˚kqW pxk´1, x

˚
kq.

Here the first inequality uses Lemma 4.2.3 with x “ xk´1 and replacing the saddle point pxk, ykq

defined in Lemma 4.2.3 by px˚k, y
˚
kq. Together with (4.34), we deduce

ψ0pxkq ` µ0W pxk, xk´1q ` pµ0 ` µ
Ty˚kqW pxk´1, x

˚
kq ď ψ0pxk´1q. (4.36)

We immediately observe that ψ0pxkq is decreasing. Since ψ0 is bounded below, we have the con-

vergence limk ψ0pxkq “ rψ0 for some rψ0 ą ´8. Summing up the above relation for k “ 1, 2, ...,

we have

8
ÿ

k“1

rµ0W pxk, xk´1q ` pµ0 ` µ
Ty˚kqW pxk´1, x

˚
kqs ď ψ0px0q ´

rψ0 ă `8. (4.37)

Therefore, the last result immediately follows. ˝

The following lemma shows that MFCQ (Assumption 4.2.1) along with (4.33) and (4.34) is suffi-

cient to guarantee dual boundedness assumptions for Algorithm 3.

105

Theorem 4.2.13 In Algorithm 3, under all the assumptions of Proposition 4.2.12:

a) If Assumption 4.2.1 holds at a limit point x˚ of the sequence txku, then Assumption 4.2.2

holds for sequence txku and ty˚ku. Moreover, there exists a vector y˚ the KKT conditions in

(4.6) are satisfied.

b) If Assumption 4.2.1 holds at every limit point of txku, then the whole sequence ty˚ku is uni-

formly bounded, i.e. Assumption 4.2.3 holds, i.e., }yk}1 ď B for some constant B ą 0. Then

after K iterations, there exists an pεK , sεKq-KKT point with εK , sεK P Op1{Kq.

Proof. Part a) Let x˚ P X be a limit point of the sequence txku and let txjku be a convergent

subsequence to x˚. Denote tx˚ku the primal optimal solutions for the sequence of subproblems.

Due to Proposition 4.2.12, limkÑ8 x
˚
jk
“ x˚, hence x˚ is also a limit point of sequence tx˚ku.

Using Lemma 4.2.5 we can show y˚jk is bounded, hence concluding that Assumption 4.2.2 holds.

Applying Lemma 4.2.3 with x “ xk´1 and replacing pxk, ykq by px˚k, y
˚
kq, we have

ψ0pxk´1q ´ ψ0px
˚
kq ě 2µ0W px

˚
k, xk´1q ` pµ0 ` µ

Ty˚kqW pxk´1, x
˚
kq. (4.38)

Together with (4.18) we obtain

řm
i“1|y˚k

piqψipxkq| “
řm
i“1|y˚k

piqψipx
˚
kq|`

řm
i“1y

˚
k
piqMi}xk ´ x

˚
k}

ď 2
`

µTy˚k
˘

W px˚k, xk´1q ` pM
Ty˚kq }xk ´ x

˚
k}

ď 2Lω
`

µTy˚k
˘

W pxk´1, x
˚
kq ` pM

Ty˚kq }xk ´ x
˚
k}. (4.39)

Proposition 4.2.12 implies

lim
kÑ8

y˚k
piqψipxkq “ 0, i “ 1, 2, ...,m.

Consider the limit point x˚ of Algorithm 3, with txjku being the subsequence convergent to

x˚. Based on Assumption 4.2.2, ty˚jku is bounded. Passing to a subsequence if necessary, we have

106

limkÑ8 y
˚
jk
“ y˚. Hence we have the complementary slackness:

y˚piqψipx
˚
q “ 0, i “ 1, 2, ...,m.

The rest of the proof is slightly simplified from the proof of Theorem 4.2.6, since we assume that

f is continuous. The KKT condition for the subproblem implies that

ψ0px
˚
jk
q ` y˚jk

Tψpx˚jkq ď ψ0pxq ` y
˚
jk

Tψpxq ` p2µ0 ` µ
Ty˚jkqW px, xjk´1q, @x P X. (4.40)

Taking k Ñ 8 and using the continuity of ψ0 and ψ, we have

ψ0px
˚
q ` y˚Tψpx˚q ď ψ0pxq ` y

˚Tψpxq, @x P X. (4.41)

Based on the optimality of x˚ of minimizing the right hand side, we have 0 P NXpx
˚q`Bψ0px

˚q`

ř

iPrms y
˚piqBψipx

˚q. Hence px˚, y˚q is a KKT point.

Part b). We show the boundedness of tyku by contradiction. If there exists a subsequence tjku

such that limkÑ8 }y
˚
jk
} “ 8. Since txjku is bounded, it has a limit point x˚. However, according

to part a), }y˚jk} is bounded, leading to a contradiction.

Furthermore, due to the KKT condition for (4.9), we have

d
`

Bψ0px
˚
k;xk´1q `

řm
i“1y

˚piq
k Bψipx

˚
k;xk´1q `NXpx

˚
kq,0

˘

Q 0.

Plugging the definition of Bψ0p;xk´1q and Bψip;xk´1q, i P rms, into the above inequality yields

d
`

Bψ0px
˚
kq`

řm
i“1y

˚piq
k Bψipx

˚
kq`2pµ0`µ

Ty˚kqp∇ωpx˚kq´∇ωpxk´1qq`NXpx
˚
kq,0

˘

“ 0. (4.42)

107

Applying inequality (4.36), we deduce

dpBψ0px
˚
kq `

řm
i“1y

˚piq
k Bψipx

˚
kq `NXpx

˚
kq,0q

2

ď pµ0 ` µ
Ty˚kq

2‖∇ωpx˚kq ´∇ωpxk´1q‖2

ď 2L2
ωpµ0 ` µminBqpµ0 ` µ

Ty˚kqW pxk´1, x
˚
kq

ď 2L2
ωpµ0 ` µminBqrψ0pxk´1q ´ ψ0pxkqs. (4.43)

In addition, by KKT condition we have

řm
i“1|y˚k

piqψipx
˚
kq| “ 2

`

µTy˚k
˘

W px˚k, xk´1q ď 2Lω
`

µTy˚k
˘

W pxk´1, x
˚
kq

ď 2Lωrψ0pxk´1q ´ ψ0pxkqs, (4.44)

where the last inequality is due to (4.36).

Furthermore, by the assumption of (4.34) and relation (4.36) we have }xk ´ x˚k}
2 ď }xk´1 ´

x˚k}
2 ď 2

µ0
rψ0pxk´1q ´ ψ0pxkqs. It can be seen that to obtain an approximate KKT solution with

small error, it suffices to bound ψ0pxk´1q ´ ψ0pxkq. Since min1ďkďKrψ0pxk´1q ´ ψ0pxkqs ď

1
K

řK
k“1rψ0pxk´1q ´ ψ0pxkqs ď

ψ0px0q´ψ
˚
0

K
, the result immediately follows. ˝

Note that even though Assumption 4.2.1 along with (4.33) and (4.34) yields sufficient con-

ditions to guarantee the convergence of the inexact proximal point method, the applicability of

Assumption 4.2.1 is limited for the following reasons. First, the optimality criteria of xk, i.e., re-

lations (4.33) and (4.34) are difficult to verify algorithmically in general since one does not know

x˚k . Second, in order to ensure such conditions, one needs to develop algorithms satisfying conver-

gence of xk to x˚k . The ConEx method provided in Section ?? exhibits this type of convergence for

solving strongly convex function constrained problem (4.9).

However, as in the previous subsection, we can use the condition (4.26) to obtain uniform

bounds on ‖y˚k‖1 for Algorithm 3 as well. In particular, the uniform boundedness result of Lemma

108

4.2.9 is applicable for ‖y˚k‖1 of Algorithm 3 as we never used optimality of xk in the proof of

Lemma 4.2.9. In fact, (4.26) ensures feasibility of the subproblem (4.9) for any xk´1 P X . Hence

this condition is sufficient for ensuring two core assumptions required for analyzing convergence

rates of Algorithm 3: feasibility of (4.9) and boundedness of ‖yk‖1. In this case, we only need to

assume that xk satisfies the optimality gap and constraint violation as given in Definition 3.3.1.

We are now ready to show the convergence result for Algorithm 3.

Theorem 4.2.14 In Algorithm 3, suppose that Assumption 4.2.3 holds such that ‖y˚k‖1 ď B. More-

over, assume that the definition of xk in Algorithm 3 is given by

xk Ð a stochasticpδk, sδkq-optimal solution (c.f. Definition 3.3.1) of (4.9). (4.45)

Then x
pk is a stochastic pεK , sεKq-KKT point of Problem (3.1) with

εK “ max

2Lω, 8L
2
ωpµ0 ` µmaxBq

(

ΓK
K
, and sεK “

2
µ0K

ΩK , (4.46)

where µmax :“ maxiPrms µi, ΓK :“ ∆ψ0 ` B s∆0 ` ΩK , ∆ψ0 :“ ψ0px0q ´ minxPX ψ0pxq, s∆0 “

}rψpx0qs`}2 and ΩK “
řK
k“1δk `B

řK
k“1

sδk.

Proof. Let ∆k “ ψ0pxk;xk´1q ´ ψ0px
˚
k;xk´1q and s∆k “ ‖

“

ψpxk;xk´1q
‰

`
‖2. Using Definition

3.3.1 we have Er|∆k|s ď δk and Ers∆ks ď
sδk. In view of Lemma 4.2.3 and the strong convexity of

ψ0p;xk´1q and ψp;xk´1q, we have

ψ0px;xk´1q `
řm
i“1y

˚piq
k ψipx;xk´1q ě ψ0px

˚
k;xk´1q ` pµ0 ` µ

Ty˚kqW px, x
˚
kq

“ ψ0pxk;xk´1q ´∆k `
`

µ0 ` µ
Ty˚k

˘

W px, x˚kq

“ ψ0pxkq ` 2µ0W pxk, xk´1q ´∆k `
`

µ0 ` µ
Ty˚k

˘

W px, x˚kq.

(4.47)

Setting x “ xk in (4.47) yields

ψ0pxk;xk´1q `
řm
i“1y

˚piq
k ψipxk;xk´1q ě ψ0px

˚
k;xk´1q ` pµ0 ` µ

Ty˚kqW pxk, x
˚
kq

109

Setting k “ pk in the above relation and taking expectation, we have

Er‖x
pk ´ x

˚
pk
‖2
s ď 2ErW px

pk, x
˚
pk
qs ď 2

µ0K

řK
k“1Erψ0pxk;xk´1q ´ ψ0px

˚
k; q `

řm
i“1y

˚piq
k ψipxk;xk´1qs

ď 2
µ0K

řK
k“1Erψ0pxk;xk´1q ´ ψ0px

˚
k;xk´1q `

řm
i“1y

˚piq
k rψipxk;xk´1qs`s

ď 2
µ0K

řK
k“1Er∆k `B s∆ks

ď 2
µ0K

řK
k“1pδk `B

sδkq.

where the third inequality above is due to the Cauchy-Schwarz inequality and the boundedness of

}y˚k}2: ‖y˚k‖2 ď ‖y˚k‖1 ď B.

Analogously, by setting x “ xk´1 in (4.47) and noticing ψ0pxk´1;xk´1q “ ψ0pxk´1q we have

ψ0pxk´1q `B s∆k´1 ě ψ0pxk´1;xk´1q ` }y
˚
k}2

s∆k´1

ě ψ0pxk´1;xk´1q `
řm
i“1y

˚piq
k ψipxk´1;xk´1q

ě ψ0px
˚
k;xk´1q `

`

µ0 ` µ
Ty˚k

˘

W pxk´1, x
˚
kq

ě ψ0pxkq ´∆k ` 2µ0W pxk, xk´1q `
`

µ0 ` µ
Ty˚k

˘

W pxk´1, x
˚
kq.

(4.48)

Here the second inequality use the following property: for k ą 1,

řm
i“1y

˚piq
k ψipxk´1;xk´1q ď

řm
i“1ry

˚piq
k ψipxk´1;xk´1qs` ď

řm
i“1y

˚piq
k rψipxk´1;xk´1qs` ď ‖y˚k‖2

s∆k´1,

(4.49)

and
řm
i“1y

˚piq
1 ψipx0;x0q “

řm
i“1y

˚piq
1 ψipx0q ď }y

˚
1 }2

s∆0.

Summing up the inequality (4.48) for k “ 1, . . . , K, we obtain

2µ0

řK
k“1W pxk, xk´1q `

řK
k“1

`

µ0 ` µ
Ty˚k

˘

W pxk´1, x
˚
kq

ď ψ0px0q ´ ψ0pxKq `
řK
k“1∆k `B

řK
k“1

s∆k´1

ď ∆f `
řK
k“1∆k `B

řK
k“1

s∆k´1,

(4.50)

110

Furthermore, due to the KKT condition for (4.9), we have

d
`

Bψ0px
˚
k;xk´1q `

řm
i“1y

˚piq
k Bψipx

˚
k;xk´1q `NXpx

˚
kq,0

˘

“ 0.

Plugging the definition of Bψ0px;xk´1q and Bψipx;xk´1q, i P rms, into the above inequality yields

d
`

Bψ0px
˚
kq`

řm
i“1y

˚piq
k Bψipx

˚
kq`2pµ0`µ

Ty˚kqp∇ωpx˚kq´∇ωpxk´1qq`NXpx
˚
kq,0

˘

“ 0. (4.51)

Let pk be the random index from 1, . . . , K. Then, in view of (4.51), (4.50) and bound on ‖y˚k‖1, we

have

E
“

d
`

Bψ0px
˚
pk
q `

řm
i“1y

˚piq
pk
Bψipx

˚
pk
q `NXpx

˚
pk
q,0

˘2‰

“ 1
K
E
!

řK
k“1dpBψ0px

˚
kq `

řm
i“1y

˚piq
k Bψipx

˚
kq `NXpx

˚
kq,0q

2
)

ď 4
K
E
!

řK
k“1pµ0 ` µ

Ty˚kq
2‖∇ωpx˚kq ´∇ωpxk´1q‖2

)

(4.52)

ď
8L2

ωpµ0`µmaxBq
K

E
!

řK
k“1pµ0 ` µ

Ty˚kqW pxk´1, x
˚
kq

)

ď
8L2

ωpµ0`µmaxBq
K

”

∆f ` s∆0 `
řK
k“1δk `B

řK
k“2

sδk´1

ı

ď
8L2

ωpµ0`µmaxBq
K

ΓK

Moreover, using the complimentary slackness for the subproblem and the relation (4.50), we have

řK
k“1

řm
i“1|y

˚piq
k ψipx

˚
kq| “ 2

řK
k“1pµ

Ty˚kqW px
˚
k, xk´1q (4.53)

ď 2Lω
řK
k“1pµ

Ty˚kqW pxk´1, x
˚
kq

ď 2Lω
“

∆f `
řK
k“1∆k `B

řK
k“1

s∆k´1

‰

.

Therefore

E
”

řm
i“1|y

˚piq
pk
ψipx

˚
pk
q|
ı

“ 1
K
E
”

řK
k“1

řm
i“1|y

˚piq
k ψipx

˚
kq|

ı

ď 2Lω
K

ΓK .

Hence we conclude the proof. ˝

111

Remark 4.2.15 We should note that when ψi, i P rms, are convex functions then we can obtain

a variant of Algorithm 3 where xk is a (stochastic) pδk, sδkq-optimal solution of (4.32). For this

variant of Algorithm 3, we can easily obtain the result of Theorem 4.2.14 under Assumption 4.2.3.

Moreover, since constraints remain same in (4.32) for all k ě 1, we just need Slater condition to

ensure uniform boundedness of ‖yk‖1.

In the following corollary, we state an immediate consequence of Theorem 4.2.14 as well as the

final complexity when using the ConEx method as subroutine to solve subproblem 4.9. Before

proceeding to the details of the corollary, we need to properly redefine B such that it satisfies

B ě maxt‖y˚k‖1, ‖y˚k‖2 ` 1u. This allows the use of B in the sense of Theorem 4.2.14 as well as

in the stepsize policy for the ConEx method in (3.15).

Corollary 4.2.16 Under the assumptions of Theorem 4.2.14, suppose that in Algorithm 3, we set

δk “ csδk for some c ą 0, and sδk “ ε{p2c1c2q, where

c1 “ max

2Lw, 8L
2
wpµ0 ` µmaxBq

(

c2 “ c`B

(4.54)

Then after running at most K “ 2c1p∆f ` B s∆0q{ε iterations, we obtain an pε, 2ε
µ0c1

q-KKT point

of Problem (3.1). In particular, if we run Algorithm 1 for subproblem (4.9), then we obtain an

pε, 2ε
µ0c1

q-KKT point in Op1
ε
Tεq iterations, where Tε is defined in (3.19).

Proof. Suppose δk and sδk are constants throughout Algorithm 3. Then, according to (4.46), we

have εK ď c1ΓK{K. Choosing given values of δk, sδk and K, we have

εK ď c1
ΓK
K
“ c1

”

∆f`B s∆0

K
` pc`Bqsδ

ı

“ c1

”

ε
2c1
` c2

ε
2c1c2

ı

“ ε.

Moreover, we have

sεK “
2

µ0K
ΩK ď

2
µ0K

ΓK ď
2ε
µ0c1

.

112

Now noting that δk “ sδk “ Opεq is a constant and using Corollary 3.3.2, we obtain pδk, sδkq-

approximate solution of subproblem (4.9) in Tε iterations. Noting the definition K in the statement

of the corollary, we conclude the proof. ˝

In the above corollary, we assume that the subproblem (4.9) is solved by using the ConEx

method. In particular, if χipxq is a simple function such that we can compute prox operator in (3.8)

for functions µiW px, xk´1q ` χipxq, i “ 1, . . . ,m, efficiently, then we solve each subproblem in

the smooth strongly convex setting, since fi, i “ 1, . . . ,m are smooth functions. Otherwise, we

must include the nonsmooth convex function χipxq in totality (or part thereof) with fi, and then

we can assume µiW px, xk´1q is a simple function. In this case, we solve the subproblems in a

nonsmooth strongly convex setting. We can derive from Corollary 4.2.16 and the definition of Tε

in (3.19) the final complexity bounds for different problem settings.

• Smooth nonconvex case: In this case, Tε can be bounded Op1{ε1{2q in the deterministic

case, Op1{εq in the semi-stochastic case and Op1{ε2q in the fully-stochastic case. Hence,

in view of Corollary 4.2.16, we can compute an pε, 2ε{pµ0c1qq-KKT point of the nonconvex

problem (3.1) inOp1{ε3{2q, Op1{ε2q, andOp1{ε3q iterations for the deterministic case, semi-

stochastic case and fully-stochastic cases, respectively.

• Nonsmooth nonconvex case: In this case, Tε can be bounded by Op1{εq in the determinis-

tic case, Op1{εq in the semi-stochastic case and Op1{ε2q in the fully-stochastic case. Hence,

in view of Corollary 4.2.16, we can compute an pε, 2ε{pµ0c1qq-KKT point of the noncon-

vex problem (3.1) in Op1{ε2q iterations for the deterministic and semi-stochastic cases, and

Op1{ε3q iterations for the fully-stochastic case.

Note that the dependence of these complexity bounds on different problem parameters can be made

more precise in view of the definition of Tε in (3.19).

113

4.3 Proofs of Auxiliary Results

4.3.1 Proof of Proposition 4.2.1

Let us denote

sψ0pxq :“ ψ0pxq `
µ0
2
‖x´ x˚‖2

2,

sψipxq :“ ψipxq `
µi
2
‖x´ x˚‖2

2.

It is easy to see that sψ0pxq and sψipxq, i P rms, are convex functions. Moreover, their respective

subdifferentials can be written as

B sψ0pxq “ t∇f0pxq ` µ0px´ x
˚
qu ` Bχ0pxq,

B sψipxq “ t∇fipxq ` µipx´ x˚qu ` Bχipxq.

Consider the constrained convex optimization problem:

min
xPX

sψ0pxq (4.55)

s.t. sψipxq ď 0, i P rms.

Note that x˚ is a feasible solution of this problem. For sake of this proof, define Ψkpxq :“ sψ0pxq`

k
2

řm
i“1

“

sψipxq
‰2

`
` 1

2
‖x´ x˚‖2

2. Let S “ tx : ‖x´ x˚‖2 ă εu for some ε ą 0 such that any x P S

which is feasible for (4.55) satisfies sψ0pxq ě sψ0px
˚q. Let xk :“ argminxPSXX Ψkpxq. Note that as

k Ñ 8 then due to the optimality of xk and existence of x˚ P S XX , we have limkÑ8
sψpxkq ď 0.

Since limkÑ8 xk is feasible for (4.55) so we conclude that xk Ñ x˚. Hence there exists sk such

that for all k ą sk, xk P intpSq. So for such k we can write the following first-order criterion for

convex optimization (r sψis2` is a convex function):

0 P NXpxkq ` B sψ0pxkq ` kr sψpxkqs`B sψpxkq ` xk ´ x
˚.

114

This implies that xk is also the optimal solution of

min
xPX

ψ̄0pxq ` k r sψpxkqs
T
`ψpxq `

1
2
}x´ x˚}2.

For simplicity, let us denote vk “ k r sψpxkqs
T
`. Due to the optimality of xk of solving the above, we

have

ψ̄0pxkq ` v
T
k ψ̄pxkq `

1
2
}xk ´ x

˚
}

2
ď ψ̄0pxq ` v

T
k ψ̄pxq `

1
2
}x´ x˚}2, @x P X. (4.56)

We claim that tvku is a bounded sequence. Indeed, if this is true, then we can find a convergent

subsequence tiku with limkÑ8 vik “ v˚. Taking k Ñ 8 in (4.56), we have

lim sup
kÑ8

ψ̄0pxikq ` v
˚T ψ̄px˚q ď ψ̄0pxq ` v

˚T ψ̄pxq ` 1
2
}x´ x˚}2, @x P X. (4.57)

Placing x “ x˚, we have ψ̄0px
˚q ě lim sup ψ̄0pxikq, thus limkÑ8 ψ̄0pxikq “ ψ̄0px

˚q based on the

lower semicontinuity of ψ̄0. In view of this discussion, x˚ optimizes the right side of (4.57). Thus,

applying the first order criterion, we have

0 P Bψ̄0px
˚
q `

ÿ

iPrms

vpiq
˚
Bψ̄px˚q `NXpx

˚
q.

It remains to apply Bψ̄0px
˚q “ Bψ0px

˚q and Bψ̄ipx˚q “ Bψipx˚q.

In addition, to prove complimentary slackness, it suffices to show when ψ̄ipx˚q “ ψipx
˚q ă 0,

we must have vpiq˚ “ 0. Since xk converges to x˚ and ψ̄i is continuous, there exists some Dk0 ą 0,

such that ψ̄ipxikq ă 0 when k ą k0. Hence vpiqik
˚

“ 0 by its definition. Taking the limit, we have

vpiq
˚
“ 0.

It remains to show the missing piece, that tvku is a bounded sequence. We will prove by

contradiction. If this is not true, we may assume limkÑ8 }vk} “ 8, passing to a subsequence if

necessary. Moreover, define yk “ vk{}vk}, since yk is a unit vector, it has some limit point, let us

115

assume limkÑ8 yjk “ y˚ for a subsequence tjku. Dividing both sides of (4.56) by }vk} and then

passing it to the subsequence tjku, we have

ψ̄0pxjkq{}vjk}`y
T
jk
ψ̄pxjkq`

1
2}vjk }

}xjk ´x
˚
}

2
ď ψ̄0pxq`y

T
jk
ψ̄pxq` 1

2}vjk }
}x´x˚}2, @x P X.

Taking k Ñ 8, we have

y˚T ψ̄px˚q ď y˚T ψ̄pxq, @x P X.

Since subsequence xjk converges to x˚ and sψi is continuous, we see that sψipxjkq ă 0 for any

i R Apx˚q for k ě k0. This implies yjk “ jk
“

sψipxjkq
‰

`
“ 0 for all k ě k0 and for all i R Apx˚q.

So we must have 0 P NXpx
˚q `

ř

iPApx˚qy
˚piqBψipx

˚q. Let u P NXpx
˚q and gipx˚q P Bψipx˚q, i P

Apx˚q be such that

u`
ř

iPApx˚qy
˚piqgipx

˚q “ 0.

Then we can derive a contradiction by using Assumption 4.2.1 (MFCQ). Assume that z satisfies

MFCQ (4.2.1). Therefore, we have

0 “ zTu`
ř

iPApx˚qy
˚piqzTgipx

˚q ď
ř

iPApx˚qy
˚piqzTgipx

˚q

ď
ř

iPApx˚qy
˚piq maxvPBψipx˚q z

Tv ă 0,

where first inequality follows since z P ´N˚
Xpx

˚q and u P NXpx
˚q hence zTu ď 0, second

inequality follows due to the fact that y˚piq ě 0 and gipx˚q P Bψipx˚q and last strict inequality

follows since (4.2.1) and y˚piq ą 0 for at least one i P Apx˚q.

116

CHAPTER 5

LEVEL PROXIMAL POINT METHOD FOR NONCONVEX SPARSE CONSTRAINED

OPTIMIZATION

In the previous chapter, we saw an inexact proximal point method for solving nonconvex func-

tion constrained optimization problem. In order to obtain the convergence to a KKT-point, we

required that the sequence of Lagrange multipliers for the convex subproblem generated by prox-

imal point method remain bounded. We resorted to strong feasibility assumption to ensure such a

bound. In essence, strong feasibility assumption gives us a guarantee that all the convex subprob-

lem generated at any point in the set X has a strictly feasible point which can be used to bound

the Lagrange multiplier. In this chapter, we consider a class of problems which lie in the larger

family of nonsmooth nonconvex function constrained optimization problems in Chapter 4 and do

not require this strong feasibility assumption for ensuring a bound on the Lagrange multiplier. In

particular, we will consider constrained optimization problems with nonconvex (and nonsmooth)

sparsity inducing constraints. We will show convergence to a KKT-point for objectives which can

be convex or nonconvex, smooth or nonsmooth and deterministic or stochastic under MFCQ con-

straint qualification without requiring strong feasibility. Our assumptions on the structure of the

constraint is fairly general and are satisfied by variety of sparsity inducing constraints in the liter-

ature. Moreover, our convergence rates will be faster compared to those obtained in Chapter 4 due

to an effective projection mechanism.

5.1 Nonconvex Sparse Constrained Optimization

Recent years have witnessed a great deal of work on the sparse optimization arising from machine

learning, statistics and signal processing. A fundamental challenge in this area lies in finding the

117

best set of size k out of a total of d (k ă d) features to form a parsimonious fit to the data:

min ψpxq, subject to ‖x‖0 ď k, x P Rd. (5.1)

However, due to the discontinuity of ‖¨‖0 norm1, the above problem is intractable when there is no

other assumptions.

5.1.1 Existing models

To bypass the difficulty of handling `0-norm, a popular approach is to replace the `0-norm by the

`1-norm, giving rise to an `1-constrained or `1-regularized problem. A notable example is the Lasso

([101]) approach for linear regression and its regularized variant

min ‖b´ Ax‖2
2, subject to ‖x‖1 ď τ, x P Rd; (5.2)

min ‖b´ Ax‖2
2 ` λ‖x‖1. (5.3)

Due to the Lagrange duality theory, problem (5.2) and (5.3) are equivalent in the sense that there is

a one-to-one mapping between the parameters τ and λ. A substantial amount of literature already

exists for understanding the statistical properties of `1 models ([118, 102, 19, 116, 118]) as well as

for the development efficient algorithms when such models are employed ([32, 8, 80, 107]).

In spite of their success, `1 models can be suboptimal due to the looseness of the convex

relaxation. To overcome this issue, a large body of the recent work proposes to replace the `1-

penalty in (5.3) by a nonconvex function gpxq to obtain sharper approximation of the `0-norm:

min ψpxq ` λgpxq. (5.4)

Despite the favorable statistical properties ([34, 115, 20, 117]), nonconvex models have posed a

great challenge for optimization algorithms and has been increasingly an important issue ([42, 41,

1Note that ‖¨‖0 is not a norm in mathematical sense. Indeed, ‖x‖0 “ ‖tx‖0 for any nonzero t.

118

48, 99]).

5.1.2 A new model for nonconvex sparse constrained optimization

Most of these works studied the regularized version. However, it is often favorable to consider the

following constrained form:

min ψpxq, subject to gpxq ď η, x P Rd (5.5)

because the sparsity of solutions is imperative in many applications of statistical learning and the

constrained form in (5.5) explicitly imposes such a requirement. Therefore, it is natural to ask

whether we can provide an efficient algorithm for problem (5.5). The continuous nonconvex relax-

ation (5.5) of the `0-norm in (5.1), albeit a straightforward one, was not studied in the literature. We

suspect that to be the case due to the difficulty in handling nonconvex constraints algorithmically.

There are two theoretical challenges: First, since the regularized form (5.4) and the constrained

form (5.5) are not equivalent due to the nonconvexity of gpxq, we cannot bypass (5.5) by solv-

ing problem (5.4) instead. Second, the nonconvex function gpxq can be nonsmooth especially

for the sparsity applications, presenting a substantial challenge for classic nonlinear programming

methods, e.g., augmented Lagrangian methods and penalty methods (see [12]) which assumes that

functions are continuously differentiable.

5.1.3 New algorithm for the proposed new model

In this chapter, we study a newly proposed nonconvex constrained model (5.5) from an algorithmic

point of view. In particular, we present a novel level-constrained proximal point (LCPP) method for

problem (5.5) where the objective ψ can be either deterministic/stochastic, smooth/nonsmooth and

convex/nonconvex and the constraint g models a variety of sparsity inducing nonconvex constraints

proposed in the literature. The key idea is to translate problem (5.5) into a sequence of convex

subproblems where ψpxq is convexified using a proximal point quadratic term and gpxq is majorized

119

by a convex function rgpxqrě gpxqs. Note that trgpxq ď ηu is a convex subset of the nonconvex set

tgpxq ď ηu.

We show that starting from a strict feasible point2, LCPP traces a feasible solution path with

respect to the set tgpxq ď ηu. We also show that LCPP generates convex subproblems for which

bounds on the optimal Lagrange multiplier (or the optimal dual) can be provided under a mild and

a well-known constraint qualification. This bound on the dual and the proximal point update in the

objective allows us to prove asymptotic convergence to the KKT points of the problem (5.5).

While deriving the complexity, we consider the inexact LCPP method that solves convex sub-

problems approximately. We show that the constraint, rgpxq ď η, has an efficient projection al-

gorithm. Hence, each convex subproblem can be solved by projection-based first-order methods.

This allows us to be feasible even when the solution reaches arbitrarily close to the boundary of

the set tgpxq ď ηu which entails that the bound on the dual mentioned earlier works in the inexact

case too. Moreover, efficient projection-based first-order method for solving the subproblem helps

us get an accelerated convergence complexity of Op1{εqrOp1{ε2qs gradient [stochastic gradient] in

order to obtain an ε-KKT point. In particular, refer to Table 5.1. We see that in the case where ob-

jective is smooth and deterministic, we obtain convergence rate of Op1{εq whereas for nonsmooth

and/or stochastic objective we obtain convergence rate of Op1{ε2q. This complexity is nearly the

same as that of the gradient [stochastic gradient] descent for the regularized problem (5.4) of the

respective type.

Remarkably, this convergence rate is better than black-box nonconvex function constrained

optimization methods proposed in the literature recently ([16, 62]). We will discuss this in more

detail soon. For now, note that the convergence of gradient descent does not ensure a bound

on the infeasibility of the constraint g, whereas the KKT criterion requires feasibility on top of

stationarity. Moreover, such a bound cannot be ensured theoretically due to the absence of duality.

Hence, our algorithm provides additional guarantees without paying much in the complexity.

We perform numerical experiments to measure the efficiency of our LCPP method and the

2Origin is always strictly feasible for sparsity inducing constraints and can be chosen as a starting point.

120

Table 5.1: Convergence rates of LCPP for problem (5.5) when the objective can be either convex
or nonconvex, smooth or nonsmooth and deterministic or stochastic

Convex (5.5) Nonconvex (5.5)
Cases Smooth Nonsmooth Smooth Nonsmooth

Deterministic Op1{εq Op1{ε2q Op1{εq Op1{ε2q

Stochastic Op1{ε2q Op1{ε2q Op1{ε2q Op1{ε2q

effectiveness of the new constrained model (5.5). First, we show that our algorithm has running

time performance which is competitive against open-source solvers, e.g., DCCP [94]. Second, we

also compare the effectiveness of our constrained model with respect to the existing convex and

nonconvex regularization models in the literature. Our numerical experiments show promising

results compared to `1-regularization model 5.3 and has competitive performance with respect to

recently developed algorithm for nonconvex regularization model 5.4 (see [41]). Given that this is

the first study in the development of algorithms for the constrained model, we believe empirical

study of even more efficient algorithms solving problem (5.5) may be of independent interest and

can be pursued in the future.

5.1.4 Existing methods similar to the proposed algorithm

There is a growing interest in using convex majorization for solving nonconvex optimization with

nonconvex function constraints.

Typical frameworks include difference-of-convex (DC) programming ([100]), majorization-

minimization ([98]) to name a few. Considering the substantial literature, we emphasize the most

relevant work to our current paper. Scutari et al. [91] proposed general approaches to majorize non-

convex constrained problems and include (5.5) as a special case. They require exact solutions of

the subproblems and prove asymptotic convergence which is prohibitive for large-scale optimiza-

tion. Shen et al. [94] proposed a disciplined convex-concave programming (DCCP) framework

for a class of DC programs in which (5.5) is a special case. Their work is empirical and does not

provide specific convergence results.

The more recent works [16, 62] considered a type of proximal point method in which they

121

add a large enough quadratic proximal term into both objective and constraint in order to obtain a

convex subproblem. This convex function constrained subproblem can be solved by oracles whose

output solution might have small infeasibility. Moreover these oracles have weaker convergence

rates. Complexity results proposed in these works, when applied to problem (5.5), entailOp1{ε3{2q

iterations for obtaining an ε-KKT point under a strong feasibility constraint qualification. In similar

setting, we show faster convergence result ofOp1{εq. This due to the fact that our oracle for solving

the subproblem is more efficient than those used in their paper. We can obtain such an oracle

due to the availability of efficient projection onto convex surrogate constraint. Moreover, our

convergence results hold under a well-known constraint qualification which is weaker compared to

strong feasibility since our oracle outputs a feasible solution whereas they can get a solution which

is slightly infeasible.

5.2 Level Constrained Proximal Point Method

Given this background, now we focus our attention to the main problem at hand. Our main goal is

to solve problem (5.5). We make Assumption 5.2.1 throughout the paper.

Assumption 5.2.1 1. ψpxq is a continuous and possibly nonsmooth nonconvex function satisfying:

ψpxq ě ψpyq ` xψ1pyq, x´ yy ´ µ
2
‖x´ y‖2

2. (5.6)

2. gpxq is a nonsmooth nonconvex function of the form gpxq “ λ‖x‖1´hpxq, where hpxq is convex

and continuously differentiable.

The Lagrangian function for problem (5.5) is defined as Lpx, yq “ ψpxq ` ygpxq where y ě 0.

For nonconvex nonsmooth function gpxq in the form of (5.2), we denote its subdifferential3 by

Bgpxq “ Bpλ‖x‖1q´∇hpxq. For this definition of subdifferential, we consider the following KKT

condition:
3Various subdifferentials exist in the literature for nonconvex optimization problem. Here, we use subdifferential

Definition 3.1 in Boob et al. [16] for nonconvex nonsmooth function g.

122

Table 5.2: Examples of constraint function gpxq “ λ‖x‖1 ´ hpxq.

Function gpxq Parameter λ Function hpxq

MCP[115] λ hλ,θpxq “

#

x2

2θ
if |x| ď θλ,

λ |x| ´ θλ2

2
if |x| ą θλ.

SCAD[34] λ hλ,θpxq “

$

’

&

’

%

0 if |x| ď λ,
x2´2λ|x|`λ2

2pθ´1q
if λ ă |x| ď θλ,

λ|x| ´ 1
2
pθ ` 1qλ2 if |x| ą θλ.

Exp[17] λ hλpxq “ e´λ|x| ´ 1` λ|x|.
Log[106] θ

logp1`θq
hθpxq “

θ
logp1`θq

|x|´ logp1`θ|x|q
logp1`θq

.

`pp0 ă p ă 1q[37] ε1{θ´1

θ
hε,θpxq “

ε1{θ´1

θ
|x|´ p|x|` εq1{θ.

`ppp ă 0q[88] ´pθ hθpxq “ ´pθ|x|´ 1` p1` θ|x|qp.

Figure 5.1: Graphs for various constraints along with `1. For `pp0 ă p ă 1q, we have ε “ 0.1 .

The KKT condition For Problem (5.5), we say that x is the (stochastic) pε, δq- KKT solution

if there exists x̄ and ȳ ě 0 such that gpx̄q ď η, E }x´ x̄}2 ď δ

E |ȳ rgpx̄q ´ ηs| ď ε

E rdist pBxLpx̄, ȳq, 0qs2 ď ε

(5.7)

Moreover, for ε “ δ “ 0, we have that x̄ is the KKT solution or satisfied KKT condition. If

δ “ Opεq, we refer to this solution as an ε-KKT solution in order to be brief.

It should be mentioned that local or global optimality does not generally imply the KKT condi-

tion. However, it is shown to be necessary for optimality when Mangasarian-Fromovitz constraint

qualification (MFCQ) holds [16]. Below, we make MFCQ assumption precise:

Assumption 5.2.2 (MFCQ [16]) Whenever the constraint is active: gpx̄q “ η, there exists a di-

123

rection z such that maxvPBgpx̄q v
T z ă 0.

For differentiable g, MFCQ requires existence of z such that zT∇gpsxq ă 0, reducing to the classi-

cal form of MFCQ [12]. Below, we summarize necessary optimality condition under MFCQ from

Chapter 4.

Proposition 5.2.1 (Necessary condition) Let x̄ be a local optimal solution of problem (5.5). If x̄

satisfies Assumption 5.2.2, then there exists ȳ ě 0 such that (5.7) holds with ε “ δ “ 0.

Consider the following LCPP method: LCPP method solves sequence of convex subproblems

Algorithm 4 Level constrained proximal point (LCPP) method

1: Input: x0 “ x̂, γ ą 0, η0 ă η
2: for k “ 1 to K do
3: Set ηk “ ηk´1 ` δk;
4: gkpxq :“ λ‖x‖1 ´ hpx

k´1q ´∇hpxk´1qT px´ xk´1q;
5: Return feasible solution xk of the problem

minψkpxq “ ψpxq ` γ
2
‖x´ xk´1‖2

2, subject to gkpxq ď ηk (5.8)

6: end for

(5.8). In particular, note that gkpxq majorizes gpxq: gkpxq ě gpxq, gkpx
k´1q “ gpxk´1q. implying

that tgkpxq ď ηku is a convex subset of the original problem. It can also be observed that adding

a proximal term in the objective yields ψk strongly convex for large enough γ ą 0. In the current

form, Algorithm 4 requires a feasible solution of (5.8) and requirement of sequence tηku is left

unspecified.

We first make the following assumptions.

Assumption 5.2.3 (Strict feasibility) There exist sequence tηkukě0 satisfying:

1. η0 ă η and a point x̂ of such that gpx̂q ă η0.

2. The sequence tηku is monotonically increasing and converges to η: limkÑ8 ηk “ η.

In light of Assumption 5.2.3, starting from a strictly feasible point x0, Algorithm 4 solves subprob-

lems (5.8) with gradually relaxed constraint levels. This allows us to assert that each subproblem

124

is strictly feasible. Indeed, we have gkpxkq ď ηk ñ gk`1px
kq “ gpxkq ď gkpx

kq ď ηk ă ηk`1.

This implies the existence of KKT solution for each subproblem. A formal statement can be found

in the appendix. Moreover, all the proofs of our technical results can also be found in the appendix

and we just make statements in the main article henceforth.

5.3 Convergence Analysis

First we look at the asymptotic convergence results.

5.3.1 Asymptotic convergence of LCPP method and boundedness of the optimal dual

Our next goal is to establish asymptotic convergence of Algorithm 4 to the KKT points. To this

end, we require a uniform boundedness assumption on the Lagrange multipliers. First, we prove

asymptotic convergence under this assumption then we justify it under MFCQ. Before precisely

stating the convergence results, we make the following boundedness assumption.

Assumption 5.3.1 (Boundedness of dual variables) There exists B ą 0 such that supk ȳ
k ă B.

The following asymptotic convergence theorem is in order.

Theorem 5.3.1 (Convergence to KKT) Let πk denotes the randomness of x1, x2, ..., xk´1. As-

sume that there exists a ρ P r0, γ ´ µs and a summable nonnegative sequence ζk such that

Erψkpxkq ´ ψkpx̄kq|πks ď ρ
2
‖x̄k ´ xk´1‖2

2 ` ζk. (5.9)

Then, under Assumption 5.2.3 and 5.3.1 for any limit point rx of the proposed algorithm, there

exists a dual variable ry such that prx, ryq satisfies KKT condition, almost surely.

This theorem shows that any limit point of Algorithm 4 converges to a KKT point. However,

it makes the assumption that dual is bounded. Since the optimal dual depends on the convex

subproblems (5.8) which are generated dynamically in the algorithm, it is important to justify

125

Assumption 5.3.1. To this end, we show that Assumption 5.3.1 is satisfied under a well-known

constraint qualification.

Theorem 5.3.2 (Boundedness condition) Suppose Assumption (5.2.3) and relation (5.9) are sat-

isfied and all limit points of Algorithm 4 exists a.s., and satisfy the MFCQ condition. Then, syk is

bounded a.s.

This theorem shows the existence of dual under the MFCQ assumption for all limit points of

Algorithm 4. MFCQ is a mild constraint qualification frequently used in the existing literature

[12]. In certain cases, we also provide explicit bounds on the dual variables. These bounds quantify

how “closely” the MFCQ assumption is violated and provides its effect on the magnitude of the

optimal dual. Additional results and discussion in this regard are deferred to the last section. For

our purpose now, we assume that the dual variables remain bounded henceforth.

In the next subsection, we show convergence complexity results for the LCPP method.

5.3.2 Complexity of LCPP method

Our goal here is to analyze the complexity of the proposed algorithm. Apart from the negative

lower curvature guarantee (5.6) of the objective function, we impose that h has Lipschitz contin-

uous gradients, ‖∇hpxq ´∇hpyq‖2 ď Lh‖x ´ y‖2. This is satisfied by all functions in Table 5.2.

Below, we discuss a general convergence result of LCPP method for original nonconvex problem

(5.5).

Theorem 5.3.3 Suppose Assumption 5.2.3 and 5.3.1 hold such that δk “ η´η0
kpk`1q

for all k ě 1. Let

xk satisfy (5.9) where ρ P r0, γ ´ µs and tζku is a summable nonnegative sequence. Moreover, xk

is a feasible solution of the k-th subproblem, i.e.,

gkpx
k
q ď ηk. (5.10)

126

If k̂ is chosen uniformly at random from
X

K`1
2

\

to K then there exists a pair psxk̂, sypkq satisfying

ErdistpBxLpx̄k̂, ȳk̂q, 0q2s ď
16pγ2`B2L2

hq

Kpγ´µ´ρq

`

γ´µ`ρ
2pγ´µq

∆0
` Z

˘

,

Erȳk̂|gpx̄k̂q ´ η|s ď 2BLh
Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ

∆0
` 2Z

˘

`
2Bpη´η0q

K
,

Er‖xk̂ ´ x̄k̂‖2
s ď

4ρpγ´µ`ρq
Kpγ´µq2pγ´µ´ρq

∆0
` 8Z

Kpγ´µ´ρq
,

where, ∆0 :“ ψpx0q ´ ψpx˚q, Z :“
řK
k“1ζk and expectation is taken over the randomness of pk

and solutions xk, k “ 1, . . . , K.

Note that Theorem 5.3.3 assumes that subproblem (5.8) can be solved according to the framework

of (5.9) and (5.10). When the subproblem solver is deterministic then we ignore the expectation

in (5.9). It is easy to see from the above theorem that for xk̂ to be an ε-KKT point, we must have

K “ Op1{εq and ζk must be small enough such that Z is bounded above by a constant. The

complexity analysis of different cases now boils down to understanding the number of iterations

of the subproblem solver needed in order to satisfy these requirements on ρ and tζku (or Z).

In the rest of this section, we provide a unified complexity result for solving subproblem (5.8)

in Algorithm 4 such that criteria in (5.9) and (5.10) are satisfied for various settings of the objective

ψpxq.

Unified method for solving subproblem (5.8) Here we provide a unified complexity analysis

for solving subproblem (5.8). In particular, consider the form of the objective ψpxq “ EξrΨpx, ξqs,

where ξ is the random input of Ψpx, ξq and ψpxq satisfies the following property:

ψpxq ´ ψpyq ´ xψ1pyq, x´ yy ď L
2
‖x´ y‖2

2 `M‖x´ y‖2.

Note that, whenM “ 0, function ψ is Lipschitz smooth whereas whenL “ 0, it is nonsmooth. Due

to the possible stochastic nature of Ψ, negative lower curvature in (5.6) and the combined smooth-

ness and nonsmoothness property above, we have that ψ can be either smooth or nonsmooth,

deterministic or stochastic and convex (µ “ 0) or nonconvex (µ ą 0). We also assume bounded

127

second moment stochastic oracle for ψ1 when ψ is a stochastic function: For any x, we have an

oracle whose output, Ψ1px, ξq, satisfies EξrΨ1px, ξqs “ ψ1pxq and Er‖Ψ1px, ξq ´ ψ1pxq‖2
2s ď σ2.

For such a function, we consider an accelerated stochastic approximation algorithm (AC-SA)

proposed in [39] for solving the subproblem (5.8) which can be reformulated as minx ψkpxq `

Itgkpxqďηkupxq, where I is the indicator set function. AC-SA algorithm can be applied when γ ě µ.

In particular, ψkpxq :“ ψpxq ` γ
2
‖x ´ xk´1‖2

2 is pγ ´ µq-strongly convex and pL ` γq-Lipschitz

smooth. Moreover, AC-SA requires computation of a single prox operation of the following form

in each iteration:

argmin
x

wTx` ‖x´ sx‖2
2 ` Itgkpxqďηkupxq, (5.11)

for any w, sx P Rd. We show an efficient method for solving this problem at the end of in this

section. For now, we look at convergence properties of the AC-SA:

Proposition 5.3.4 [39] Let xk be the output of AC-SA algorithm after running Tk iterations for the

subproblem (5.8). Then gkpxkq ď ηk and Erψkpxkq ´ ψkpsxkqs ď 2pL`γq

T 2
k
‖xk´1 ´ sxk‖2

2 `
8pM2`σ2q

pγ´µqTk

Note that convergence result in Proposition 5.3.4 closely follows the requirement in (5.9). In

particular, we should ensure that Tk is big enough such that ρ
2
ď

2pL`γq

T 2
k

and ζk “
8pM2`σ2q

pγ´µqTk
sum to

a constant. Consequently, we have the following corollary:

Corollary 5.3.5 Let ψ be nonconvex such that it satisfies (5.6) with µ ą 0. Set γ “ 3µ and run

AC-SA for Tk “ maxt2
`

L
µ
`3

˘1{2
, KpM`σqu iterations whereK is total iterations of Algorithm 4.

Then, we obtain that xk̂ is an pε1, ε2q-KKT point of (5.5), where k̂ is chosen according to Theorem

5.3.3 and

ε1 “
`

3∆0

2K
`

8pM`σq
µK

˘

max
 8p9µ2`B2L2

hq

µ
, 2BLh

µ
u `

2Bpη´η0q
K

, ε2 “
3∆0

µK
`

32pM`σq
µ2K

Note that Corollary 5.3.5 gives a unified complexity for obtaining KKT point of (5.5) in various

settings of nonconvex objective pµ ą 0q. First, in order to get an ε-KKT point, K must be of

Op1{εq. If the problem is deterministic and smooth thenM “ σ “ 0. In this case, Tk “ 2pL
µ
`3q1{2

128

is a constant. Hence, the total iteration count is
řK
k“1Tk “ OpKq, implying that total iteration

complexity for obtaining an ε-KKT point is of Op1{εq. For nonsmooth or stochastic cases, M or σ

is positive. Hence, Tk “ OpKpM`σqq implying the total iteration complexity
řK
k“1Tk “ OpK2q,

which is of Op1{ε2q. Similar result for the convex case is shown in the appendix.

Efficient projection We conclude this section by formally stating the theorem which provides

an efficient oracle for solving the projection problem (5.11). Since gkpxq “ λ‖x‖1 ` xv, xy, the

linear form along with `1 ball breaks the symmetry around origin which is used in existing results

on (weighted) `1-ball projection [30, 51]. Our method involves a careful analysis of Lagrangian

duality equations to convert the problem into finding the root of a piecewise linear function. Then

a line search method can be employed to find the solution inOpd log dq time. The formal statement

is as follows:

Theorem 5.3.6 There exists an algorithm that runs in Opd log dq-time and solves the following

problem exactly:

min
xPRd

1
2
‖x´ v‖2

2 subject to ‖x‖1 ` xu, xy ď τ. (5.12)

In conclusion, note that (5.11) and (5.12) are equivalent where v in (5.12) can be replaced by

sx` 1
2
w of (5.11) to get the equivalence of the objective functions of the two problems.

5.4 Numerical Experiments

The goal of this section is to illustrate the empirical performance of LCPP. For simplicity, we will

consider the following logistic regression problem:

min
x

ψpxq “ 1
n

řn
i“1 logp1` expp´bia

T
i xqq, s.t. gpxq ď η,

where ai P Rd is the training sample, bi P t˘1u is the training label, and gpxq is the MCP penalty

(see Table 5.2). Details of the testing datasets are summarized in Table 5.3. As we have stated,

129

LCPP can be equipped with projected first order methods for fast iteration. We compare the ef-

ficiency of (spectral) gradient descent [41], Nesterov accelerated gradient and stochastic gradient

[108] for solving LCPP subproblem. We find that spectral gradient outperforms the other meth-

ods and hence use it in LCPP for the remaining experiment. Due to the space limit, we leave the

discussion of this part in appendix. The rest of the section will compare the optimization effi-

ciency of LCPP with the state-of-the-art nonlinear programming solver, and compare the proposed

sparse constrained models solved by LCPP with standard convex and nonconvex sparse regular-

ized models. Our first experiment is to compare LCPP with existing optimization library for their

Table 5.3: Dataset description. mnist is formulated as a binary problem to classify digit 5 from
the other digits. real-sim is randomly partitioned into 70% training data and 30% testing data.

Datasets Training size Testing size Dimensionality Ratio of Nonzeros
real-sim 50347 21962 20958 0.25%

rcv1.binary 20242 677399 47236 0.16%
mnist 60000 10000 784 19.12%
gisette 6000 1000 5000 99.10%

optimization efficiency. To the best of our knowledge, DCCP ([95]) is the only open-source pack-

age available for the proposed nonconvex constrained problem. While the work [95] has made its

code available online, we found that their code had unresolved errors in parsing MCP functions.

Therefore, we replicate their setup in our own implementation. DCCP converts the initial problem

into a sequence of relatively easier convex problems amenable to CVX ([28]), a convex optimiza-

tion interface that runs on top of popular optimization libraries. We choose DCCP with MOSEK

as the backend as it consistently outperforms DCCP with the default open-source solver SCS.

0 1000 2000 3000 4000 5000 6000 7000
Running time

10 1

2 × 10 1

Ob
je

ct
iv

e

LCPP
DCCP

0 2000 4000 6000 8000
Running time

3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

Ob
je

ct
iv

e

LCPP
DCCP

0 1000 2000 3000 4000 5000 6000 7000 8000
Running time

10 3

10 2

10 1

Ob
je

ct
iv

e

LCPP
DCCP

0 1000 2000 3000 4000 5000 6000 7000
Running time

10 7

10 5

10 3

10 1

Ob
je

ct
iv

e

LCPP
DCCP

Figure 5.2: Objective value vs. running time (in seconds). Left to right: mnist (η “ 0.1d),
real-sim (η “ 0.001d), rcv1.binary (η “ 0.05d) and gisette (η “ 0.05d). d stands for
the feature dimension.

To fix the parameters, we choose γ “ 10´5 for gisette dataset and γ “ 10´4 for the other

130

datasets. For each LCPP subproblem we run gradient descent at most 10 iterations and break

when the criterion }xk ´ xk´1}{}xk} ď ε is met. We set the number of outer loops as 1000 to

run LCPP sufficiently long. We set λ “ 2, θ “ 0.25 in the MCP function. Figure 5.2 plots the

convergence performance of LCPP and DCCP, confirming that LCPP is more advantageous over

DCCP. Specifically, LCPP outperforms DCCP, sometimes reaching near-optimality even before

DCCP finishes the first iteration. This observation can be explained by the fact that LCPP leverages

the strengthen of first order methods, for which we can derive efficient projection subroutine. In

contrast, DCCP is not scalable to large dataset due to the inefficiency in dealing with large scale

linear system arising from the interior point subproblems.

Our next experiment is to compare the performance of nonconvex sparse constrained models,

which is then optimized by LCPP, against regularized learning models in the following form:

min
x

ψpxq “ 1
n

řn
i“1 logp1` expp´bia

T
i xqq ` αgpxq.

In above, gpxq is the sparsity-inducing penalty function. We consider both convex and nonconvex

functions, namely Lasso-type penalty gpxq “ }x}1 and MCP penalty (see Table 5.2). We solve the

Lasso problem by Sklearn [83] logistic regression solver and solve the MCP regularized problem

by GIST algorithm [41]. For simplicity, both GIST and LCPP set λ “ 2 and θ “ 5 in MCP

function, and set the maximum iteration number as 2000 for all the algorithms. Then we use a grid

of values α for GIST and LASSO, and η for LCPP accordingly, to obtain the classification error

under various sparsity levels. Experiment results on average of 10 runs are presented in Figure 5.3.

We can clearly see the advantage of our proposed models over Lasso-type estimators. We observe

that nonconvex models LCPP and GIST both perform more robustly than Lasso across a wide

range of sparsity levels. Lasso models tend to overfit with increasing number of selected features

while LCPP is less affected by the feature selection.

131

0 100 200 300 400 500 600 700
NNZs

3 × 10 2

4 × 10 2

6 × 10 2

Cl
as

sif
ica

tio
n

Er
ro

r
GIST
LCPP
LASSO

0 5000 10000 15000 20000
NNZs

10 1

Cl
as

sif
ica

tio
n

Er
ro

r

GIST
LCPP
LASSO

0 10000 20000 30000 40000
NNZs

5 × 10 2

6 × 10 2

7 × 10 2

8 × 10 2

Cl
as

sif
ica

tio
n

Er
ro

r

GIST
LCPP
LASSO

0 1000 2000 3000 4000 5000
NNZs

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Cl
as

sif
ica

tio
n

Er
ro

r

GIST
LCPP
LASSO

Figure 5.3: Testing error vs number of nonzeros. From left to right: mnist, real-sim,
rcv1.binary and gisette.

5.5 Auxiliary results

5.5.1 Existence of KKT points

Proposition 5.5.1 Under Assumption 5.2.3, let x0 “ x̂. Then, for any k ě 1, we have xk´1 is

strictly feasible for the k-th subproblem. Moreover, there exists x̄k, ȳk ě 0 such that gk
`

x̄k
˘

ď ηk

and:

Bψpx̄kq ` γ
`

x̄k ´ xk´1
˘

` ȳk
`

Bgkpx̄
k
q
˘

Q 0

ȳk
`

gk
`

x̄k
˘

´ ηk
˘

“ 0

(5.13)

Proof. Since x0 satisfies gpx0q ď η0 ă η1 so we have that first subproblem is well defined. We

prove the result by induction. First of all, suppose xk´1 is strictly feasible for k-th subproblem:

gkpx
k´1q ă ηk. Then we note that this problem is also valid and a feasible xk exists. Hence,

algorithm is well-defined. Now, note that

gk`1px
k
q “ gpxkq ď gkpx

k
q ď ηk ă ηk`1.

where first inequality follows due to majorization, second inequality follows due to feasibility of

xk for k-the subproblem and third strict inequality follows due to strictly increasing nature of se-

quence tηku.

Since k-th subproblem has xk´1 as strictly feasible point satisfying Slater condition so we obtain

existence of x̄k and ȳk ě 0 satisfying the KKT condition (5.13). ˝

132

5.5.2 Proof of Theorem 5.3.1

In order to prove this theorem, we first state the following intermediate result.

Proposition 5.5.2 Let πk denotes the randomness of x1, x2, ..., xk´1. Assume that there exists a

ρ P r0, γ ´ µs and a summable nonnegative sequence ζk (ζk ě 0,
ř8

k“1ζk ă 8) such that

E
“

ψkpx
k
q ´ ψkpx̄

k
q|πk

‰

ď
ρ
2
‖x̄k ´ xk´1‖2

2 ` ζk (5.14)

Then, under Assumption 5.2.3, we have

1. The sequence Erψpxkqs is bounded;

2. limkÑ8 ψpx
kq exists a.s.;

3. limkÑ8‖xk´1 ´ x̄k‖0
“ a.s.;

4. If the whole algorithm is deterministic then ψpxkq is bounded. Moreover, if ζk “ 0, then the

sequence ψpxkq is monotonically decreasing and convergent.

Proof. Due to the strong convexity of ψkpxq, we have

ψkpx̄
k
q ď ψkpxq ´

γ´µ
2
‖x̄k ´ x‖2

2, (5.15)

for all x satisfying gkpxq ď ηk. Taking x “ xk´1 and using feasibility of xk´1 (gkpxk´1q ď ηkq we

have

ψpxk´1
q ě ψpx̄kq ` γ

2
‖x̄k ´ xk´1‖2

2 `
γ´µ

2
‖xk´1

´ x̄k‖2
2

Together with (5.9) we have

ζk ` ψpx
k´1
q ě E

“

ψpxkq ` γ
2
‖xk ´ xk´1‖2

2|πk
‰

`
γ´µ´ρ

2
‖xk´1

´ x̄k‖2
2.

(5.16)

Since tζku is summable, taking the expectation of πk and summing up all over all k, we have

Erψpxkqs ď ψpx0q `
řk
s“1ζk ă 8. Moreover, Applying Supermartingale Theorem 5.5.11 to

133

(5.16), we have limkÑ8 ψpx
kq exists and

ř8

k“1‖xk´1 ´ x̄k‖2
2 ă 8 a.s. Hence we conclude

limkÑ8‖xk´1 ´ x̄k‖2 “ 0 a.s. Part 4) can be readily deduced from (5.16). ˝

Now we are ready to prove Theorem 5.3.1.

For simplicity, we assume the whole sequence generated by Algorithm 4 converges to rx. Due

to Proposition 5.5.1, there exists a KKT point px̄k, ȳk). The optimality condition yields

ψpxq `
γ

2
‖x´ xk´1‖2

2 ` ȳ
kgkpxq ě ψpx̄kq `

γ

2
‖x̄k ´ xk´1‖2

2 ` ȳ
kgkpx̄

k
q, @x (5.17)

Since ȳk is bounded, there exists a convergent subsequence tiku that limkÑ8 ȳ
ik “ ry for some

ry ě 0. Let us take k Ñ 8 in (5.17). In view of Proposition 5.5.2, Part 3, we have limkÑ8 x̄
ik “

limkÑ8 x
ik´1 “ rx almost surely. Then limkÑ8 hpx

ik´1q “ hprxq and limkÑ8∇hpxik´1q “ ∇hprxq

a.s. due to the continuity of hpxq and ∇hpxq, respectively. Then we have

ψpxq `
γ

2
‖x´ rx‖2

2 ` ry rλ‖x‖1 ´ hprxq ´ x∇hprxq, x´ rxys ě ψprxq ` rygprxq, a.s.

implying that rxminimizes the loss function ψpxq` γ
2
‖x´rx‖2

2`ry
“

λ‖x‖´1 hprxq ´ x∇hprxq, x´ rxy
‰

.

Due to the first order optimality condition, we conclude 0 P Bψprxq ` ryBgprxq, a.s.

Moreover, using the complementary slackness, we have 0 “ ȳik pgik px̄
ikq ´ ηikq. Taking the

limit of k Ñ 8 and noticing that limkÑ8 ηik “ η, we have 0 “ ry pg prxq ´ ηq a.s . As a result, we

conclude that prx, ryq is a KKT point of problem (5.5), a.s.

5.5.3 Proof of Theorem 5.3.2

From KKT condition of (5.13), x̄k is the optimal solution of the problem minxPRd ψkpxq`ȳ
k pgkpxq ´ ηkq .

Therefore, for any x P Rd, we have

ψkpxq ` ȳ
kgkpxq ě ψkpx̄

k
q ` ȳkgkpx̄

k
q (5.18)

We prove that tȳku is bounded a.s. by contradiction. If

ȳk
(

has unbounded subsequence with

134

positive probability, then conditioned under that event, there exists a subsequence tiku such that

ȳik Ñ 8. Let us divide both sides of (5.18) by ȳk and expand gk by its definition. After placing

k “ ik, we have for all x

1
ȳik
ψikpxq ` λ‖x‖1 ´∇hpxik´1

q
Tx

ě 1
ȳik
ψikpx̄

ikq ` λ‖x̄ik‖1 ´∇hpxik´1
q
T x̄ik .

(5.19)

Let rx be any limiting point a.s. of the sequence txik´1u. By the statement of the theorem,

we know that it exists and satisfies MFCQ assumption. Passing to some subsequence if neces-

sary, we have limkÑ8 x
ik´1 “ rx a.s. Using Proposition 5.5.2 Part 3, we have limkÑ8 x̄

ik “ rx

a.s. Moreover, using Proposition 5.5.2 Part 2, we have limkÑ8 ψpsx
ikq exists a.s. This implies

limkÑ8
1
syik
ψikpsx

ikq “ 0 a.s.

Taking k Ñ 8, sinceψikpxq is bounded a.s. (due to existence of rx a.s.), we have limkÑ8
1
ȳik
ψikpxq “

0. From Lipschitz continuity of l1 norm and ∇hpxq, we have limkÑ8 λ‖x̄ik‖1 “ λ‖rx‖1 a.s., and

limkÑ8∇hpxik´1q “ ∇hprxq a.s., respectively. It then follows from (5.19) that for all x, we have

λ‖x‖1 ´ x∇hprxq, xy ě λ‖rx‖1 ´ x∇hprxq, rxy. In other words, we have

0 P Bλ‖rx‖1 ´∇hprxq “ Bgprxq, a.s. (5.20)

Moreover, due to complementary slackness and ȳik ą 0, the equality gikpx̄
ikq “ ηik holds. Hence,

in the limit, we have the constraint gprxq “ η active a.s. Under MFCQ, there exists z such that

maxvPBgprxq z
Tv ă 0. However, from (5.20) we have 0 “ zT0 since 0 P Bgprxq, leading to a contra-

diction to the event that tsyku contained unbounded sequence with positive probability. Hence, sy is

bounded a.s.

5.5.4 Explicit and specialized bounds on the dual

Here, we discuss some of the results for explicit bounds on the dual. In particular, we focus on

the SCAD and MCP case. Similar results can be extended for Exp and `p, p ă 0 case since these

135

function follows two key properties (as we will see later in the proofs):

1. |∇hpxq| ď λ for all x for each of these functions.

2. They remain bounded below a constant. See Figure 5.1.

We exploit these two structural properties of these sparse constraints to obtain specialized and

explicit bounds on the optimal dual of problem 5.5. The following lemma is in order.

Lemma 5.5.3 Let h : RÑ R be the the convex function which satisfies |∇hpxq| ď λ for all x P R.

Then the minimum value of sgpx; sxq : RÑ R defined as sgpx; sxq :“ λ|x|´ hpsxq ´ x∇hpsxq, x´ sxy

is achieved at 0 for all sx P R.

Proof. Note that sg is a convex function for any sx P R. So by first order optimality condition, if px

is the minimizer of sg then 0 P Bsgppx; sxq. This implies

λB|px|´∇hpsxq Q 0.

Note that px “ 0 satisfies this condition since in that case λB|px| “ r´λ, λs. And due to assumption

on h, we have ∇hpsxq P r´λ, λs. Hence px “ 0 is always the minimizer. ˝

Now note that hλ,θ functions defined for our examples, such as SCAD or MCP. satisfy the assump-

tion of bounded gradients in Lemma 5.5.3. Now we use this simple result to show that 0 is the

most feasible solution for each of the subproblem (5.8) generated in Algorithm 4 and hence we can

give an explicit bound for the optimal dual value for each subproblem.

Lemma 5.5.4 Suppose all assumptions in Lemma 5.5.3 are satisfied. Then we have for any k ě 1,

syk ď ψkp0q´ψkpsx
kq

ηk´gpxk´1q`

řd
i“1pλ´ |∇hpx

k´1
i q|q|xk´1

i |
. (5.21)

Proof. Note that gkpxq “
řd
i“1sgpxi;x

k´1
i q where sg is defined in Lemma 5.5.3. Since assumptions

of Lemma 5.5.3 hold, so we have that each individual sg is minimized at xi “ 0. Hence gkp0q is the

136

minimum value of gk. In view of Proposition 5.5.1, we have that xk´1 is strictly feasible solution

with respect to constraint gkpxq ď ηk implying gkpxk´1q ´ ηk ă 0. Hence, we have

ηk ´ gkp0q

“ ηk ´
“

λ‖0‖1 ´
řd
i“1thpx

k´1
i q `∇hpxk´1

i qp0´ xk´1
i qu

‰

“ ηk `
řd
i“1hpx

k´1
i q ´

řd
i“1∇hpx

k´1
i qxk´1

i

“ ηk ´ gpx
k´1
q ` rgpxk´1

q ` hpxk´1
qs ´

řd
i“1∇hpx

k´1
i qxk´1

i

ě ηk ´ gpx
k´1
q ` λ‖xk´1‖1 ´

řd
i“1|∇hpx

k´1
i q||xk´1

i |

“ ηk ´ gpx
k´1
q `

řd
i“1pλ´ |∇hpx

k´1
i q|q|xk´1

i |

ą 0.

Here, last strict inequality follows due to the fact that λ ě |∇hpxk´1
i q| and ηk ą gpxk´1q. Then,

we have, optimal dual syk satisfies for all x:

ψkpsx
k
q ď ψkpxq ` sykpgkpxq ´ ηkq

ñ ψkpsx
k
q ď ψkp0q ` sykpgkp0q ´ ηkq

ñ syk ď ψkp0q´ψkpsx
kq

ηk´gkp0q

ď
ψkp0q´ψkpsx

kq

ηk´gpxk´1q`

řd
i“1pλ´ |∇hpx

k´1
i q|q|xk´1

i |
,

where third inequality follows due to the fact that ηk ´ gkp0q ą 0 Hence, we conclude the proof. ˝

Note that the bound in (5.21) depends on xk´1 which can not be controlled, especially in the

stochastic cases. In order to show a bound on syk irrespective of xk´1, we must lower bound

the denominator in (5.21) for all possible values of xk´1. To accomplish this goal, we show the

following two theorems in which we lower bound the term
řd
i“1pλ´ |∇hpx

k´1
i q|q|xk´1

i |. Each of

these theorem is a specialized result for SCAD and MCP function, respectively.

137

Figure 5.4: Plot of zpγq for SCAD function where λ “ 1, θ “ 5. z : r0, 3s Ñ Rě0 where
zp0q “ zp3q “ 0 otherwise z is strictly positive.

Theorem 5.5.5 Let g be the SCAD function and x P Rd such that gpxq “ α. Also, let γ “

α ´ β λ
2pθ`1q

2
where β is the largest nonnegative integer such that γ ě 0. Then,

řd
i“1pλ ´

|∇hpxiq|q|xi| ě zpγq where z : r0, λ
2pθ`1q

2
s Ñ Rě0 is the function defined as

zpγq :“

$

’

’

&

’

’

%

γ if 0 ď γ ď λ2

γ
λ

b

2
θ´1

b

λ2pθ`1q
2

´ γ if λ2 ă γ ď λ2pθ`1q
2

.

Theorem 5.5.6 Let g be the MCP function and x P Rd be such that gpxq “ α. Also let γ “

α´β λ
2θ
2

where β is the largest nonnegative integer such that γ ě 0. Then
řd
i“1pλ´|∇hpxiq|q|xi| ě

zpγq where z : r0, λ
2θ
2
s Ñ Rě0 is the function defined as zpγq :“ γ

b

1´ 2γ
θλ2
.

Note that Theorem 5.5.5 states that lower bound zpγq “ 0 when γ “ 0 or λ2pθ`1q
2

. In essence,

when α is exact integral multiple of λ2pθ`1q
2

then lower bound turn out to be zero. However, for all

other values of α, the corresponding zpγq is strictly positive. This can be seen from the graph of

zpγq below. Similar claims can be made with respect to MCP in Theorem 5.5.6.

Now we are ready to show a bound on syk irrespective of xk´1. We give a specific routine to

choose the values of ηk such that we can obtain a provable bound on the denominator in (5.21)

hence obtaining an upper bound on the syk for all k irrespective of xk´1.

Proposition 5.5.7 Let g be the SCAD function and η “ β λ
2pθ`1q

2
` rη where β be the largest

nonnegative integer such that rη ě 0. Then, for properly selected η0, we have that ηk ´ gpxk´1q `

138

řd
i“1pλ´ |∇hpx

k´1
i q|q|xk´1

i | ě mintλ2, zprηq
2
u.

We note that very similar proposition for MCP can be proved based on Theorem 5.5.6. We skip

that discussion in order to avoid repetition.

Connection to MFCQ In this section, we show the connection of MFCQ assumption in Theorem

5.3.2 with the bound in Theorem 5.5.5.

Note that for the boundary points of the set gpxq ď η1 where η1 “
λ2pθ`1q

2
then the lower bound

zpη1q “ 0. In fact, carefully following the proof of Theorem 5.5.5, we can identify that the lower

bound is tight for x’s such that one of the coordinate xi satisfy |xi| ě λθ and all other coordinates

are 0. In this case, we see that such points do not satisfy MFCQ. At such points, we don’t have

any strictly feasible directions required by MFCQ assumption. This can be easily visualized in the

leftmost figure in Figure 5.5. Note that λθ “ 5 and for any |x| ě 5, the feasible region is merely

the axis and hence there is no strict feasible direction. This implies MFCQ indeed fails at these

points.

Figure 5.5: All figures are plotted for λ “ 1 and θ “ 5. From left to right: η1 “ 3, η2 “ 2.8 and
η3 “ 3.2. Then η1 “

λ2pθ`1q
2

“ 3. In first figure, we see that for |x| ě 5, the MFCQ assumption
is violated since only x-axis is feasible. Similar observation holds for y-axis as well. However, in
second and third figure such claims are no longer valid.

For gpxq “ η2 ă η1 the lower bound zpη2q is nonzero and same holds for gpxq “ η3 ą η1.

Indeed, we see that for such cases, the points not satisfying MFCQ in case of η1 vanish. This can

be observed in second and third figure in Figure 5.5. For the case of η2 in part (b), these points

become infeasible and for the case of η3 in part (c), they are no longer boundary points.

Looking back at MFCQ from the result of Theorem 5.5.5, we can see that how close η is to

λ2pθ`1q
2

shows how ‘close’ the problem is for violating MFCQ. Moreover, the lower bound zp¨q on

139

the denominator of (5.21) shows how quickly the dual will explode as the problem setting gets

closer to violating MFCQ.

We complete this discussion by showing the proof of Theorem 5.5.5 and Theorem 5.5.6. We

also note that similar theorems can be proved for `p, p ă 0 and Exp function in Table 5.2.

Proof of Theorem 5.5.5

First, we show a lower bound for one-dimensional function and then extend it to higher dimensions.

Suppose u P R be such that gpuq “ α. Note that since g is SCAD function so α must lie in the set

r0, λ
2pθ`1q

2
s. Key to our analysis is the lower bound on pλ ´ |∇hpuq|q|u| as a function of α. Note

that since

gpuq “ αñ λ|u| ě αñ |u| ě α
λ
. (5.22)

Also note that for all |u| ď λ, we have gpuq “ λ|u| and ∇hpuq “ 0 which implies ∇hpuq “ 0 for

all gpuq “ α ď λ2. Hence, using this relation along with (5.22), we obtain

pλ´ |∇hpuq|q|u| “ λ|u| ě α if 0 ď α ď λ2. (5.23)

We note that |∇hpuq| “ λ for all u ě λθ and gpuq “ α “ λ2pθ`1q
2

for all u ě λθ. Hence,

pλ´ |∇hpuq|q|u| “ 0 if α “ λ2pθ`1q
2

. (5.24)

Now we design a lower bound when α P pλ2, λ
2pθ`1q

2
q. For such values of α, we have

gpuq “λ|u|´ p|u|´λq2
2pθ´1q

“ α

ñu2
´ 2λθ|u|` λ2

` 2αpθ ´ 1q “ 0

ñ|u| “ λθ ´

b

2pθ ´ 1q
“

λ2pθ`1q
2

´ α
‰

ñ|∇hpuq| “ |u|´λ
θ´1

“ λ´
b

2
θ´1

b

λ2pθ`1q
2

´ α

ñλ´ |∇hpuq| “
b

2
θ´1

b

λ2pθ`1q
2

´ α.

140

Then, above relation along with (5.22), we have pλ´ |∇hpuq|q|u| ě
b

2
θ´1

α
λ

b

λ2pθ`1q
2

´ α for all

α P pλ2, λ
2pθ`1q

2
q. Using this relation along with (5.23), (5.24) and noting the definition of function

zp¨q, we obtain a lower bound pλ´ |∇hpuq|q|u| ě zpαq where α “ gpuq.

Now note that for general high-dimensional x P Rd, we have gpxq “
řd
i“1gpxiq “ α. Then

α P r0, dλ
2pθ`1q

2
s. Since each individual gpxiq ě 0, we can think of α as a budget such that sum

of gpxiq must equal α. In order to minimize the lower bound on pλ ´ |∇hpxiq|q|xi|, we should

exhaust the largest budget from
řd
i“1gpxiq “ α while maintaining the lowest possible value of the

lower bound on pλ ´ |∇hpxiq|q|xi|. This clearly holds by setting |xi| such that gpxiq “
λ2pθ`1q

2
.

This can be clearly observed in the figure below.

Figure 5.6: Plot of function zpαq on y-axis and α on x-axis for λ “ 1, θ “ 5. The largest possible
value gpuq is λ2pθ`1q

2
“ 3 is achieved for u ě λθ “ 5 and lower bound zp3q “ 0. Hence, setting

u ě λθ maximizes the gpuq and minimizes zpαq “ zpgpuqq.

Hence, if α P
”

β λ
2pθ`1q

2
, pβ ` 1qλ

2pθ`1q
2

¯

for some nonnegative integer β, then we should set

β coordinates of x satisfying |xi| ě λθ in order to exhaust the maximum possible budget, λ
2pθ`1q

2
,

from α and still keep the value of the lower bound on pλ ´ |∇hpuq|q|u| as 0. Hence, noting the

definition of γ, the problem reduces to
ř

igpxiq “ γ where summation is taken over remaining

coordinates of x and γ P
“

0, λ
2pθ`1q

2

˘

.

Lets recall from the analysis in 1-D case that if gpxiq “ αi then pλ ´ |∇hpxiq|q|xi| ě zpαiq

so we obtain the lower bound
ř

izpαiq while αi’s satisfy the relation
ř

iαi “ γ. Moreover, z :

r0, λ
2pθ`1q

2
s Ñ Rě0 is a concave function with zp0q “ 0. Then we show that z is a subadditive

function. Using Jensen’s inequality, for all t P r0, 1s, we have zptx`p1´tqyq ě tzpxq`p1´tqzpyq.

141

Using y “ 0 and the fact that zp0q “ 0, we have zptxq ě tzpxq for any t P r0, 1s. Now using this

relation along with t “ x
x`y

P r0, 1s (for x, y ě 0) we have

zpxq “ zptpx` yqq ě tzpx` yq.

zpyq “ zpp1´ tqpx` yqq ě p1´ tqzpx` yq.

Adding the two relations, we obtain zpxq ` zpyq ě zpx ` yq. Hence, z is a subadditive function.

Since
ř

iαi “ γ then the we have
ř

izpαiq ě zp
ř

iαiq “ zpγq. This bound is indeed achieved

when we set one of αi “ γ and rest to 0. Hence, we conclude the proof.

Proof of Theorem 5.5.6

As before, we proceed by assuming 1-D case, i.e., u P R and gpuq “ α and then extend it to

general d-dimensional setting. Then, α P r0, λ
2θ
2
s. Then, we write function pλ ´ |∇hpuq|q|u| in

term of α. Note that

gpuq “ λ|u|´ u2

2θ
“ α

ñ |u| “ θλ
`

1´
b

1´ 2α
θλ2

˘

ñ |∇hpuq| “ |u|
θ
“ λ

`

1´
b

1´ 2α
θλ2

˘

ñ λ´ |∇hpuq| “ λ
b

1´ 2α
θλ2

Moreover, we also have (5.22). Then, noting the definition of zp¨q, we obtain that pλ´|∇hpuq|q|u| ě

zpαq.

For high dimensional x P Rd, we use similar arguments as in the proof of theorem 5.5.5. In

particular, we set β coordinates x satisfying |xi| ě λθ which exhausts the maximum possible

budget λ
2θ
2

from α and still keeps the value of the lower bound on pλ´ |∇hpxiq|q|xi| as 0. Finally,

we reduce the problem to
ř

igpxiq “
ř

iαi “ γ and lower bound is
ř

izpαiq. As in the previous

case, z is concave function on nonnegative domain with zp0q “ 0 hence it must be subadditive. So

142

we obtain that
ř

izpαiq ě zp
ř

iαiq “ zpγq. Hence, we conclude the proof.

Proof of Proposition 5.5.7

We note that η “ β λ
2pθ`1q

2
` rη, where β is the largest nonnegative integer such that rη ě 0. Clearly

rη P
“

0, λ
2pθ`1q

2

˘

. Now, we divide our analysis in two cases:

Case 1: Suppose rη ď λ2. Then we define η0 for Algorithm 4 as η0 “ β λ
2pθ`1q

2
`

rη
2
.

Now, if gpxk´1q ď β λ
2pθ`1q

2
then we have that ηk´1 ´ gpxk´1q ě η0 ´ gpxk´1q ě

rη
2
. In this case,

we obtain that denominator of (5.21) is at least rη
2
.

In other case, suppose that gpxk´1q ą β λ
2pθ`1q

2
. We also note that gpxk´1q ď gk´1px

k´1q ď ηk´1 ď

η. Hence, we obtain gpxk´1q ď η “ β λ
2pθ`1q

2
` rη. This implies rgpxk´1q :“ gpxk´1q ´ β λ

2pθ`1q
2

P

r0, λ2s. Then, using Theorem 5.5.5, we obtain that
řd
i“1pλ ´ |∇hpx

k´1
i q|q|xk´1

i | ě zprgpxk´1qq “

rgpxk´1q. Using this relation, we obtain that ηk´1 ´ gpxk´1q `
řd
i“1pλ ´ |∇hpx

k´1
i q|q|xk´1

i | ě

ηk´1 ´ gpx
k´1q ` rgpxk´1q “ ηk´1 ´ β

λ2pθ`1q
2

“ rηk´1 ě
rη
2
.

So, when rη ď λ2, we obtain that the denominator in (5.21) is at least ηk´ηk´1`
zprηq

2
“ δk`

zprηq
2
ě

zprηq
2

.

Case 2: Now, we look at the second case where rη ą λ2. In this case, we define η0 “ β λ
2pθ`1q

2
`

mintλ2, zprηqu. Then, we again note that gpxk´1q ď β λ
2pθ`1q

2
implies ηk´1´ gpx

k´1q ě rηk´1 ě rη0.

In other case, we assume that gpxk´1q P rβ λ
2pθ`1q

2
, β λ

2pθ`1q
2

`λ2s, then again using Theorem 5.5.5,

we obtain
řd
i“1pλ ´ |∇hpx

k´1
i q|q|xk´1

i | ě zprgpxk´1qq “ rgpxk´1q. This implies ηk´1 ´ gpxk´1q `

řd
i“1pλ´ |∇hpx

k´1
i q|q|xk´1

i | ě ηk´1 ´ β
λ2pθ`1q

2
“ rηk´1 ě rη0.

Finally, gpxk´1q ą β λ
2pθ`1q

2
` λ2 then rgpxk´1q P pλ2, rηq then due to concavity of z, we obtain that

zprgpxk´1qq ě mintλ2, zprηqu “ rη0.

Hence, combining the bounds in both cases, we obtain that denominator in (5.21) is always

bounded below by mintλ2, zpηq
2
u.

143

5.5.5 Proof of Theorem 5.3.3

As in the previous case, we show an important recursive property of iterates. We first state the

theorem again:

Theorem 5.5.8 Suppose Assumption 5.2.3, 5.3.1 hold such that δk “ η´η0
kpk`1q

for all k ě 1. Let πk

denote the randomness of x1, . . . , xk´1. Suppose for k-th subproblem (5.8), the solution xk satisfies

Erψkpxkq ´ ψkpx̄kq|πks ď ρ
2
‖xk´1

´ x̄k‖2
2 ` ζk,

gkpx
k
q ď ηk

where ρ lies in the interval r0, γ´µs and tζku is a sequence of nonnegative numbers. If k̂ is chosen

uniformly randomly from
X

K`1
2

\

to K then corresponding to xk̂, there exists pair psxk̂, syk̂q satisfying

Ek̂
“

dist
`

BxLpx̄k̂, ȳk̂q, 0
˘2‰

ď
8pγ2`B2L2

hq

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ

∆0
` 2Z1

˘

,

Ek̂
“

ȳk̂
ˇ

ˇgpx̄k̂q ´ η
ˇ

ˇ

‰

ď
2BLh

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ

∆0
` 2Z1

˘

`
2Bpη´η0q

K
,

Ek̂‖x
k̂
´ x̄k̂‖2

2 ď
4ρpγ´µ`ρq

Kpγ´µq2pγ´µ´ρq
∆0
` 8Z1

Kpγ´µ´ρq
,

where, ∆0 :“ ψpx0q ´ ψpx˚q and Z1 :“
řK
k“1ζk.

We first prove the following important relationship on the sum of squares of distances of the iter-

ates.

Proposition 5.5.9 Let requirements of Theorem 5.3.3 hold. Then for any s ě 2, we have

Er
řK
k“s‖xk´1 ´ x̄k‖2

2|πs´1s ď
2pAs`Zsq
γ´µ´ρ

, (5.25)

Er
řK
k“s‖xk ´ x̄k‖2

2|πs´1s ď
2ρAs

pγ´µqpγ´µ´ρq
` 2Zs

γ´µ´ρ
(5.26)

where As “ γ´µ`ρ
γ´µ

rψpxs´2q ´ ψpx˚qs and Zs “
řK
k“s´1ζk.

144

Proof. Note that since for all k ě 1 we have feasibility of xk for k-th subproblem (due to (5.10)),

then in view of Proposition 5.5.1, we have that xk´1 is strictly feasible for the k-th subproblem.

Consequently, using strong convexity of ψk and optimality of sxk, we have γ´µ
2
‖xk´1 ´ sxk‖2

2 ď

ψkpx
k´1q ´ ψkpsx

kq. Therefore, taking expectation conditioned on πk´1 ob both sides of the above

relation, we obtain

γ´µ
2
Er‖xk´1

´ x̄k‖2
2|πk´1s ď Erψkpxk´1

q ´ ψkpx̄
k
q|πk´1s

ď Erψk´1px
k´1
q ´ ψkpx̄

k
q|πk´1s

ď ψk´1px̄
k´1
q ´ Erψkpx̄kq|πk´1s `

ρ
2
‖xk´2

´ x̄k´1‖2
2 ` ζk´1

where second inequality follows from ψkpx
k´1q “ ψpxk´1q ď ψk´1px

k´1q and third inequality

follows from (5.9). Placing the definition of ψkp¨q in above relation, we have

2γ´µ
2

Er‖xk´1
´ x̄k‖2

2|πk´1s ď ψpx̄k´1
q ´ Erψpx̄kq|πk´1s `

γ`ρ
2
‖xk´2

´ x̄k´1‖2
2 ` ζk´1.

Summing up over k “ s, s` 1, . . . , K and taking expectation conditioned on πs´1, we have

2γ´µ
2

řK
k“sE

“

‖xk´1 ´ x̄k‖2
2|ψs´1

‰

ď ψpx̄s´1
q ´ Eψpx̄Kq

`
γ`ρ

2

řK
k“sE

“

‖xk´2 ´ x̄k´1‖2
2|πs´1

‰

`
řK
k“sζk´1.

145

It then follows that

γ´µ´ρ
2

E
“
řK
k“s‖xk´1 ´ x̄k‖2

2|πs´1

‰

ď ψpx̄s´1
q ´ Eψpx̄Kq ` γ`ρ

2
‖xs´2

´ x̄s´1‖2
2 `

řK
k“sζk´1

ď ψs´1px̄
s´1
q ´ Eψpx̄Kq

`
ρ

γ´µ

“

ψs´1px
s´2
q ´ ψs´1px̄

s´1
q
‰

`
řK
k“sζk´1

ď ψpxs´2
q ´ Eψpx̄Kq

`
ρ

γ´µ

“

ψpxs´2
q ´ ψs´1px̄

s´1
q
‰

`
řK
k“sζk´1

ď
γ´µ`ρ
γ´µ

“

ψpxs´2
q ´ ψpx˚q

‰

`
řK
k“sζk´1,

where the third and the last inequality follow from the property

ψpxk´1
q “ ψkpx

k´1
q ě ψkpx̄

k
q ě ψpx̄kq ě ψpx˚q.

Note that solution xk is feasible for the k-th subproblem and hence, in view of Proposition 5.5.1,

we have that gpsxkq ď gkpsx
kq ď ηk ă η and hence sxk is feasible solution for the main problem

implying ψpsxkq ě ψpx˚q in the above relation. Then (5.25) immediately follows.

Now we prove that (5.26) holds. Note that

E
“

‖xk ´ x̄k‖2
2|πk

‰

ď 2
γ´µ

E
“

ψkpx
k
q ´ ψkpx̄

k
q|πk

‰

ď 2
γ´µ

“

ρ
2
‖xk´1

´ x̄k‖2
2 ` ζk

‰

,

where first inequality follows due to strong convexity ψk as well as optimality of sxk and second

inequality follows due to (5.9). Now summing the above relation from k “ s to K and taking

expectation conditioned on ψs´1, we obtain

E
”

řK
k“s‖xk ´ x̄k‖2

2|πs´1

ı

ď
ρ

γ´µ
E
”

řK
k“s‖xk´1 ´ x̄k‖2

2|πs´1

ı

` 2
γ´µ

řK
k“sζk

ď
2ρAs

pγ´µqpγ´µ´ρq
` 2Zs

γ´µ´ρ
,

where last inequality follows from (5.25) and definition of Zs. Hence, we conclude the proof. ˝

146

Now we present the unified convergence of proximal point as stated in Theorem 5.3.3.

Proof of Theorem 5.3.3

Due to the KKT condition for the subproblem (5.8), we have

0 P Bψpx̄kq ` γ
`

x̄k ´ xk´1
˘

` ȳk
`

B‖x̄k‖1 ´∇hpxk´1
q
˘

0 “ ȳk
`

λ‖x̄k‖1 ´ hpx
k´1
q ´ x∇hpxk´1

q, x̄k ´ xk´1
y ´ ηk

˘

(5.27)

Using triangle inequality along with first relation in the above equation, we have dist
`

BxLpx̄k, ȳkq, 0
˘

ď

γ‖x̄k ´ xk´1‖2` ȳ
k‖∇hpxk´1q ´∇hpx̄kq‖2. Therefore, noting the bound on syk from Assumption

5.3.1, we have

dist
`

BxLpx̄k, ȳkq, 0
˘2
ď 2γ2‖x̄k ´ xk´1‖2

2 ` 2B2‖∇hpxk´1
q ´ hpx̄kq‖2

2

ď 2
`

γ2
`B2L2

h

˘

‖x̄k ´ xk´1‖2
2,

where the second inequality uses Lipschitz smoothness of hpxq. Summing the above relation from

k “ s, . . . ,K and the taking expectation conditioned on πs´1 on both sides, we obtain

E
”

řK
k“s dist

`

BxLpx̄k, ȳkq, 0
˘2
|πs´1

ı

ď 2pγ2
`B2L2

hqE
”

řK
k“s‖xk´1 ´ x̄k‖2

2|πs´1

ı

ď
4pγ2`B2L2

hq
γ´µ´ρ

pAs ` Zsq, (5.28)

For the complementary slackness part of the KKT condition, first notice that ηk “ η0 `
řk
t“1δt “

η0 `
řk
t“1

η´η0
tpt`1q

“ k
k`1

η ` 1
k`1

η0. Therefore,

řK
k“s pη ´ ηkq “

řK
k“s

η´η0
k`1

ď K`1´s
s`1

pη ´ η0q.

147

To prove the error of complementary slackness condition, observe that

ȳk
ˇ

ˇλ‖x̄k‖1 ´ hpx̄
k
q ´ η

ˇ

ˇ ď ȳk
ˇ

ˇλ‖x̄k‖1 ´ hpx
k´1
q ´ x∇hpxk´1

q, x̄k ´ xk´1
y ´ ηk

ˇ

ˇ

` ȳk
ˇ

ˇhpxk´1
q ` x∇hpxk´1

q, x̄k ´ xk´1
y ´ hpx̄kq

ˇ

ˇ` ȳk pη ´ ηkq

ď
BLh

2
‖x̄k ´ xk´1‖2

2 `B pη ´ ηkq ,

where second inequality follows due to second relation in (5.27) and bound on syk from Assumption

5.3.1. Summing the above relation from k “ s, . . . ,K and taking expectation conditioned on πs´1

on both sides, we obtain

E
”

řK
k“sȳ

k
ˇ

ˇgpx̄kq ´ η
ˇ

ˇ |πs´1

ı

ď
řK
k“sE

“

BLh
2
‖x̄k ´ xk´1‖2

2 `B pη ´ ηkq |πs´1

‰

ď
BLh

2
E
”

řK
k“s‖x̄k ´ xk´1‖2

2|ψs´1

ı

`B
řK
k“s pη ´ ηkq

ď
BLh
γ´µ´ρ

pAs ` Zsq `
pK`1´sqBpη´η0q

s`1
. (5.29)

Now note that As “ γ´µ`ρ
γ´µ

rψpxs´2q ´ ψpx˚qs is a random variable due to randomness of xs´2.

Now we bound expectation of ψpxs´2q. In view of (5.9), we have

Erψkpxkq|πks ď ψkpsx
k
q `

ρ
2
‖xk´1

´ sxk‖2
2 ` ζk

ď ψkpx
k´1
q ´

γ´µ´ρ
2
‖xk´1

´ sxk‖1 ` ζk

Since, γ ´ µ´ ρ ě 0 and noting that ψkpxk´1q “ ψpxk´1q, ψkpxkq ě ψpxkq, we have

Erψpxkq|πks ď ψpxk´1
q ` ζk.

Taking expectation on both sides of the above relation and then summing from k “ 1 to s´ 2, we

get

Erψpxs´2
qs ď ψpx0

q `
řs´2
k“1ζk.

148

Using the above relation, we obtain

ErAss ď γ´µ`ρ
γ´µ

∆0
` 2

řs´2
k“1ζk, (5.30)

where ∆0 “ ψpx0q ´ ψpx˚q. Note that here we used the fact γ´µ`ρ
γ´µ

ď 2. Now taking expectation

on both sides of (5.28) and using bound on ErAss in (5.30), we obtain

E
”

řK
k“s dist

`

BxLpx̄k, ȳkq, 0
˘2
|πs´1

ı

ď
4pγ2`B2L2

hq

γ´µ´ρ

`

γ´µ`ρ
γ´µ

∆0
` 2

řs´2
k“1ζk `

řK
k“s´1ζk

˘

ď
4pγ2`B2L2

hq

γ´µ´ρ

`

γ´µ`ρ
γ´µ

∆0
` 2Z1

˘

.

Similarly, taking expectation on both sides of (5.29) and using (5.30), we obtain

E
”

řK
k“sȳ

k
ˇ

ˇgpx̄kq ´ η
ˇ

ˇ |πs´1

ı

ď
BLh
γ´µ´ρ

`

γ´µ`ρ
γ´µ

∆0
` 2Z1

˘

` K`1´s
s`1

Bpη ´ η0q.

Taking expectation on both sides of (5.26) and using (5.30), we obtain

Er
řK
k“s‖xk ´ x̄k‖2

2s ď
2ρ

pγ´µqpγ´µ´ρq

`

γ´µ`ρ
γ´µ

∆0
` 2

řs´2
k“1ζk

˘

` 2Zs
γ´µ´ρ

ď
2ρpγ´µ`ρq

pγ´µq2pγ´µ´ρq
∆0
` 4Z1

γ´µ´ρ
.

Finally, setting s “
X

K`1
2

\

, we have K
2
ď s ď K`1

2
. Therefore, we have

Ek̂

„

dist
´

BxLpx̄k̂, ȳk̂q, 0
¯2


ď
8pγ2`B2L2

hq

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ

∆0
` 2Z1

˘

,

Ek̂
”

ȳk̂
ˇ

ˇ

ˇ
gpx̄k̂q ´ η

ˇ

ˇ

ˇ

ı

ď
2BLh

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ

∆0
` 2Z1

˘

`
2Bpη´η0q

K
,

and

Ek̂‖x
k̂
´ x̄k̂‖2

2 ď
4ρpγ´µ`ρq

Kpγ´µq2pγ´µ´ρq
∆0
` 8Z1

Kpγ´µ´ρq
.

Hence, we conclude the proof.

149

5.5.6 Proof of Corollary 5.3.5

Since Tk ě 2
b

L
µ
` 3, we have that 2pL`γq

T 2
k

“
2pL`3µq

T 2
k

ď
µ
2
“

ρ
2
. Moreover, we see that ρ “ µ ď

γ´µ “ 2µ. Finally, since Tk ě KpM `σq so we have ζk ď 4
µK

implying that Z1 “
řK
k“1ζk ď

4
µ

.

Then, applying Theorem 5.3.3, we obtain that xk̂ is an pε1, ε2q-KKT solution of the problem (5.5).

5.5.7 Convergence for the (stochastic) convex case

We have the following Corollary of Theorem 5.3.3 for the case in which objective ψ is convex, i.e.

µ “ 0.

Corollary 5.5.10 Let ψ be convex function such that it satisfies (5.6) with µ “ 0. Set γ “ βL

where β P r0, 1q be a small constant and run AC-SA for Tk “ maxt2
b

2p1`βq
β

, KpM ` σqu

iterations where K is total number of iterations of Algorithm 4. Then, we obtain that xk̂ is an

pε1, ε2q-KKT point of the problem (5.5) where

ε1 “
`

3∆0

2K
`

16pM`σq
βKL

˘

maxt
16pβ2L2`B2L2

hq

βL
, 4BLh

βL
u `

2Bpη´η0q
K

,

ε2 “
3∆0

2βLK
`

128pM`σq
βL2K

.

Proof. Since Tk ě 2
b

2p1`βq
β

, we have 2pL`γq

T 2
k

“
2p1`βqL

T 2
k

ď
βL
4
“

ρ
2
. Moreover, note that

ρ “ βL
2
ď γ “ βL. Finally, since Tk ě KpM ` σq so we have ζk “

8pM2`σ2q

γTk
ď

8pM`σq
βLK

. Hence,

Z1 “
řK
k“1ζk ď

8pM`σq
βL

. Then, applying Theorem 5.3.3, we obtain that xk̂ is an pε1, ε2q-KKT

solution of problem (5.5). ˝

Finite-sum problem A special case of objective takes the finite-sum form fpxq “ 1
n

řn
i“1

rfipxq

thereby leading to the following subproblem

min
x

rψpxq “ 1
n

řn
i“1

rfipxq ` rωpxq

150

It is known that finite-sum problem can be efficiently solved by using variance reduction or ran-

domized incremental gradient method [108, 57]. The complexity of LCPP on finite-sum problem

can be further improved if we apply variance reduction technique for solving the subproblem. We

comment on the complexity result in brief. In the finite-sum setting, the Nesterov’s accelerated

gradient-based LCPP requires Tk “ rOpn
b

L`2µ
µ
q and Tk “ rOpnβ´1{2q number of stochastic gra-

dient computations to solve each LCPP subproblem. Even though this number is a constant in

terms of dependence on K, number of terms (n) in the finite sum can be large. In comparison

to these standard methods, the complexity of SVRG (stochastic variance reduced gradient) based

LCPP method can be improved to Tk “ rOpn ` L`µ
µ
q for the case when ψ is nonconvex satisfying

(5.6) with µ ą 0, and to Tk “ rOpn` β´1q for convex problem where µ “ 0. This will be verified

in the numerical experiments section.

5.5.8 Proof for the projection algorithm for problem (5.11)

Here, we describe an efficient algorithm for solving the (5.11). Specifically, we formulate the

update as the following problem

min
xPRd

1
2
‖x´ v‖2

2 s.t. ‖x‖1 ` xu, xy ď τ. (5.31)

Since the objective is strongly convex, problem (5.31) has a unique global optimal solution. More-

over, the problem is strictly feasible because of the strict feasibility guarantee (5.5.1) in the context

of problem (5.8). Therefore, KKT condition guarantees that there exists y ě 0 such that

0 P x´ v ` yu` yB‖x‖1, (5.32)

0 “ y pxu, xy ` ‖x‖1 ´ τq . (5.33)

The algorithm proceeds as follows. First, we check whether v is feasible, if it is the case, then

x “ v is the optimal solution. Otherwise, the constraint in (5.31) is active. Next, we explore the

optimality condition (5.32). Given the optimal Lagrangian multiplier y ě 0, for the i-th coordinate

151

of the optimal x, one of the following three situations will occur:

1. xi ą 0 and xi “ vi ´ pui ` 1qy.

2. xi ă 0 and xi “ vi ´ pui ´ 1qy.

3. xi “ 0 and pui ´ 1qy ď vi ď pui ` 1qy.

For simplicity, let us denote ras` “ maxta, 0u and ra, bs` “ maxta, b, 0u. Based on the discussion

above, we can express x as a piecewise linear function of y.

xipyq “ rvi ´ pui ` 1qys
`
´ rpui ´ 1qy ´ vis` .

Let us denote `pyq “ xu, xpyqy ` ‖xpyq‖1. We can deduce that

`pyq “
řd
i“1uixipyq `

řd
i“1 maxtxipyq,´xipyqu

“
řd
i“1ui rvi ´ pui ` 1qys

`
´
řd
i“1ui rpui ´ 1qy ´ vis`

` 2
řd
i“1rvi ´ pui ` 1qy, pui ´ 1qy ´ vis`

´
řd
i“1 rvi ´ pui ` 1qys

`
´
řd
i“1 rpui ´ 1qy ´ vis`

“
řd
i“1pui ´ 1q rvi ´ pui ` 1qys

`

´
řd
i“1pui ` 1q rpui ´ 1qy ´ vis`

` 2
řd
i“1rvi ´ pui ` 1qy, pui ´ 1qy ´ vis`

Above, the second equality uses the identity: maxtp ´ q, q ´ pu “ 2 maxtp, qu ´ p ´ q for any

p, q P R. It can be readily seen that `pyq is a piecewise linear function with at most 3d breaking

points. We can sort these points in Opd log dq and then apply a line-search to find the root of

`p¨q “ τ in Opdq time.

5.5.9 Supermartingale convergence theorem

In below, we state a version of supermartingale convergence theorem developed by [90].

152

Theorem 5.5.11 Let pΩ, F, P q be a probability space and F0 Ď F1 Ď ... Ď Fk Ď be some

sub-σ-algebra of F . Let bk, ck be nonnegative Fk-measurable random variables such that

E rbk`1 | Fks ď bk ` ξk ´ ck,

where tξku0ďkă8 is a non-negative and summable:
ř8

k“0ξk ă `8. Then we have

lim
kÑ8

bk exists, and
ř8

k“1ck ă `8, a.s.

153

CHAPTER 6

FASTER WIDTH-DEPENDENT ALGORITHM FOR MIXED PACKING AND

COVERING LPS

In chapter 3, we saw a primal-dual type algorithm for solving function constrained optimization

problem. In that problem, we assumed that the primal feasible set X is a simple set whose radius

is not too big. However, for certain important class of linear programs (LPs), we need to set X

to be an `8-ball. Such LPs arise quite naturally in combinatorial optimization and hence require

special attention. Note that the radius is of an `8-ball is at least Ωp
?
nq where n is the dimension

of LP which can be quite large for many practical applications. In this chapter, we focus on this

well-known `8 barrier and propose a new algorithm that can overcome it.

6.1 Mixed Packing and Covering LPs

Mixed packing and covering linear programs (LPs) are a natural class of LPs where coefficients,

variables, and constraints are non-negative. They model a wide range of important problems in

combinatorial optimization and operations research. In general, they model any problem which

contains a limited set of available resources (packing constraints) and a set of demands to fulfill

(covering constraints).

Two special cases of the problem have been widely studied in literature: pure packing, formu-

lated as maxxtb
Tx | Px ď pu; and pure covering, formulated as minxtb

Tx | Cx ě cu where

P, p, C, c, b are all non-negative. These are known to model fundamental problems such as max-

imum bipartite graph matching, minimum set cover, etc. [66]. Algorithms to solve packing and

covering LPs have also been applied to great effect in designing flow control systems [7], schedul-

ing problems [85], zero-sum matrix games [77] and in mechanism design [120]. In this paper,

we study the mixed packing and covering (MPC) problem, formulated as checking the feasibility

of the set: tx | Px ď p, Cx ě cu, where P,C, p, c are non-negative. We say that x is an ε-

154

approximate solution to MPC if it belongs to the relaxed set tx | Px ď p1` εqp, Cx ě p1´ εqcu.

MPC is a generalization of pure packing and pure covering, hence it is applicable to a wider range

of problems such as multi-commodity flow on graphs [111, 96], non-negative linear systems and

X-ray tomography [111].

General LP solving techniques such as the interior point method can approximate solutions to

MPC in as few asOplogp1{εqq iterations - however, they incur a large per-iteration cost. In contrast,

iterative approximation algorithms based on first-order optimization methods require polyp1{εq

iterations, but the iterations are fast and in most cases are conducive to efficient parallelization.

This property is of utmost importance in the context of ever-growing datasets and the availability

of powerful parallel computers, resulting in much faster algorithms in relatively low-precision

regimes.

6.1.1 Previous work

In literature, algorithms for the MPC problem can be grouped into two broad categories: width-

dependent and width-independent. Here, width is an intrinsic property of a linear program which

typically depends on the dimensions and the largest entry of the constraint matrix, and is an in-

dication of the range of values any constraint can take. In the context of this paper and the MPC

problem, we define wP and wC as the maximum number of non-zeros in any constraint in P and

C respectively. We define the width of the LP as w :“ maxpwP , wCq.

One of the first approaches used to solve LPs was Langrangian-relaxation: replacing hard con-

straints with loss functions which enforce the same constraints indirectly. Using this approach,

Plotkin, Schmoys and Tardos [85], and Grigoriadis and Khachiyan [43] obtained width-dependent

polynomial-time approximation algorithms for MPC. Luby and Nisan [66] gave the first width-

dependent parallelizable algorithm for pure packing and pure covering, which ran in rOpε´4q par-

allel time, and rOpNε´4q total work. Here, parallel time (sometimes termed as depth) refers to the

longest chain of dependent operations, and work refers to the total number of operations in the

algorithm.

155

Young [111] extended this technique to give the first width-independent parallel algorithm

for MPC in rOpε´4q parallel time, and rOpmdε´2q total work1. Young [112] later improved his

algorithm to run using total work OpNε´2q. Mahoney et al. [68] later gave an algorithm with a

faster parallel run-time of rOpε´3q.

The other most prominent approach in literature towards solving an LP is by converting it into

a smooth function [77], and then applying general first-order optimization techniques [77, 79]. Al-

though the dependence on ε from using first-order techniques is much improved, it usually comes

at the cost of sub-optimal dependence on the input size and width. For the MPC problem, Nes-

terov’s accelerated method [79], as well as Bienstock and Iyengar’s adaptation [14] of Nesterov’s

smoothing [77], give rise to algorithms with runtime linearly depending on ε´1, but with far from

optimal dependence on input size and width. For pure packing and pure covering problems, how-

ever, Allen-Zhu and Orrechia [2] were the first to incorporate Nesterov-like acceleration while still

being able to obtain near-linear width-independent runtimes, giving a rOpNε´1q time algorithm for

the packing problem. For the covering problem, they gave a rOpNε´1.5q time algorithm, which was

then improved to rOpNε´1q by [103]. Importantly, however, the above algorithms do not generalize

to MPC.

6.1.2 Our contributions

We give the best parallel width-dependent algorithm for MPC, while only incurring a linear depen-

dence on ε´1 in the parallel runtime and total work. Additionally, the total work has near-linear

dependence on the input-size. Formally, we state our main theorem as follows.

Theorem 6.1.1 There exists a parallel ε-approximation algorithm for the mixed packing covering

problem, which runs in rOpw ¨ε´1q parallel time, while performing rOpw ¨N ¨ε´1q total work, where

N is the total number of non-zeros in the constraint matrices, and w is the width of the given LP.

Table 6.1 compares the running time of our algorithm to previous works solving this problem.

1d here is the maximum number of constraints that any variable appears in.

156

Table 6.1: Comparison of runtimes of ε-approximation algorithms for the mixed packing covering
problem.

Parallel Runtime Total Work Comments

Young [111] rOpε´4q rOpmdε´2q d is column-width

Bienstock and Iyengar [14] rOpn2.5w1.5
P wε´1q width-dependent

Nesterov [79] rOpw
?
nε´1q rOpw ¨N

?
nε´1q width-dependent

Young [112] rOpε´4q rOpNε´2q

Mahoney et al. [68] rOpε´3q rOpNε´3q

This paper rOpwε´1q rOpwNε´1q width-dependent

Sacrificing width independence for faster convergence with respect to precision proves to be

a valuable trade-off for several combinatorial optimization problems which naturally have a low

width. Prominent examples of such problems which are not pure packing or covering problems

include multicommodity flow and densest subgraph, where the width is bounded by the degree of a

vertex. In a large number of real-world graphs, the maximum vertex degree is usually small, hence

our algorithm proves to be much faster when we want high-precision solutions. We explicitly show

that this result directly gives the fastest algorithm for the densest subgraph problem on low-degree

graphs in Appendix ??.

6.2 Notation and Definitions

For any integer q, we represent using ‖¨‖q the q-norm of any vector. We represent the infinity-norm

as ‖¨‖8. We denote the infinity-norm ball (sometimes called the `8 ball) as the set Bn8prq :“ tx P

Rn : ‖x‖8 ď ru. The nonnegative part of this ball is denoted as Bn`,8prq “ tx P Rn : x ě

0n, ‖x‖8 ď ru. For radius r “ 1, we drop the radius specification and use the short notation Bn8

and Bn`,8. We denote the extended simplex of dimension k as ∆`
k :“ tx P Rk :

řk
i“1 xi ď 1u. For

any y ě 0k, proj∆`k
pyq “ y{‖y‖1 if ‖y‖1 ě 1. Further, for any set K, we represent its interior,

relative interior and closure as intpKq, relintpKq and clpKq, respectively. The function exp is

applied to a vector element wise. The division of two vectors of same dimension is also performed

157

element wise.

For any matrix A, we use nnzpAq to denote the number of nonzero entries in it. We use Ai,:

and A:,j to refer to the ith row and jth column of A respectively. We use notation Aij (or Ai,j

alternatively) to denote an element in the i-th row and j-th column of matrix A. ‖A‖8 denotes the

operator norm ‖A‖8Ñ8 :“ supx‰0
‖Ax‖8
‖x‖8

. For a symmetric matrix A and an antisymmetric matrix

B, we define an operator ľi as Aľi B ô

»

—

–

A ´B

B A

fi

ffi

fl

is positive semi-definite.

We formally define an ε-approximate solution to the mixed packing-covering (MPC) problem

as follows.

Definition 6.2.1 We say that x is an ε-approximate solution of the mixed packing-covering prob-

lem if x satisfies x P Bn`,8, Px ď p1` εq1p and Cx ě p1´ εq1c.

Here, 1k denotes a vectors of 1’s of dimension k for any integer k.

The saddle point problem on two sets x P X and y P Y can be defined as follows:

min
xPX

max
yPY
Lpx, yq, (6.1)

where Lpx, yq is some bilinear form between x and y. For this problem, we define the primal-

dual gap function as suppsx,syqPXˆY Lpx, syq ´ Lpsx, yq. This gap function can be used as measure of

accuracy of the above saddle point solution.

Definition 6.2.2 We say that px, yq P XˆY is an ε-optimal solution for (6.1) if suppsx,syqPXˆY Lpx, syq´

Lpsx, yq ď ε.

6.3 Technical overview

The mixed packing-covering (MPC) problem is formally defined as follows.
Given two nonnegative matrices P P Rpˆn, C P Rcˆn, find an x P Rn, x ě 0, ‖x‖8 ď 1 such that

Px ď 1p and Cx ě 1c if it exists, otherwise report infeasibility.

158

Note that the vector of 1’s on the right hand side of the packing and covering constraints can

be obtained by simply scaling each constraint appropriately. We also assume that each entry in the

matrices P and C is at most 1. This assumption, and subsequently the `8 constraints on x also

cause no loss of generality2.

We reformulate MPC as a saddle point problem, as defined in Section 6.2;

λ˚ :“ min
xPBn`,8

max
yP∆`c , zP∆

`
p

Lpx, y, zq, (6.2)

where Lpx, y, zq :“ ryT zT s

»

—

–

P ´1p

´C 1c

fi

ffi

fl

»

—

–

x

1

fi

ffi

fl

. The relation between the two formulations is

shown in Section 6.4. For the rest of the paper, we focus on the saddle point formulation (6.2).

ηpxq :“ maxyP∆`c ,zP∆`p Lpx, y, zq is a piecewise linear convex function. Assuming oracle ac-

cess to this “inner” maximization problem, the “outer” problem of minimizing ηpxq can be per-

formed using first order methods like mirror descent, which are suitable when the underlying prob-

lem space is the unit `8 ball. One drawback of this class of methods is that their rate of conver-

gence, which is standard for non-accelerated first order methods on non-differentiable objectives,

is Op 1
ε2
q to obtain an ε-approximate minimizer x of η which satisfies ηpxq ď η˚ ` ε, where η˚ is

the optimal value. This means that the algorithm needs to access the inner maximization oracle

Op 1
ε2
q times, which can become prohibitively large in the high precision regime.

Note that even though η is a piecewise linear non-differentiable function, it is not a black box

function, but a maximization linear functions in x. This structure can be exploited using Nesterov’s

smoothing technique [77]. In particular, ηpxq can be approximated by choosing a strongly convex3

function φ : ∆`
p ˆ∆`

c Ñ R and considering

rηpxq “ max
yP∆`c ,zP∆

`
p

Lpx, y, zq ´ φpy, zq.

2This transformation can be achieved by adapting techniques from [103] while increasing dimension of the problem
up to a logarithmic factor. Details of this fact are in Appendix 6.5.11 in the full version of this paper. For the purpose
of the main text, we work with this assumption.

159

This strongly convex regularization yields that rη is a Lipschitz-smooth3 convex function. If L is the

constant of Lipschitz smoothness of rη then application of any of the accelerated gradient methods

in literature will converge in Op
b

L
ε
q iterations. Moreover, it can also be shown that in order to

construct a smooth ε-approximation rη of η, the Lipschitz smoothness constant L can be chosen

to be of the order Op1
ε
q, which in turn implies an overall convergence rate of Op1

ε
q. In particu-

lar, Nesterov’s smoothing achieves an oracle complexity of Opp‖P‖`8‖C‖
q
8Dx maxtDy, Dzuε

´1q,

where where Dx, Dy and Dz denote the sizes of the ranges of their respective regularizers which

are strongly convex functions. Dy and Dz can be made of the order of log p and log c, respectively.

However, Dx can be problematic since x belongs to an `8 ball. More on this will soon follow.

Nesterov’s dual extrapolation algorithm[78] gives a very similar complexity but is a different

algorithm in that it directly addresses the saddle point formulation (6.2) rather than viewing the

problem as optimizing a non-smooth function η. The final convergence for the dual extrapolation

algorithm is given in terms of the primal-dual gap function of the saddle point problem (6.2).

This algorithms views the saddle point problem as solving variational inequality for an appropriate

monotone operator in joint domain px, y, zq. Moreover, as opposed to smoothing techniques which

only regularize the dual, this algorithm regularizes both primal and dual parts (joint regularization),

hence is a different scheme altogether.

Note that for both schemes mentioned above, the maximization oracle itself has an analytical

expression which involves matrix-vector multiplication. Hence each call to the oracle incurs a

sequential run-time of nnzpP q ` nnzpCq. Then, overall complexity for both schemes is of order

OppnnzpP q ` nnzpCqqp‖P‖`8‖C‖
q
8Dx maxtDy, Dzuε

´1q.

6.3.1 The `8 barrier

Note that the both methods, i.e., Nesterov’s smoothing and dual extrapolation, involves a Dx term,

which denotes the range of a convex function over the domain of x. The following lemma states a

3Definitions of Lipschitz-smoothness and strong convexity can be found in many texts in nonlinear programming
and machine learning. e.g. [18]. Intuitively, f is Lipschitz-smooth if the rate of change of ∇f can be bounded by a
quantity known as the “constant of Lipschitz smoothness”.

160

lower bound for this range in case of `8 balls.

Lemma 6.3.1 Any strongly convex function has a range of at least Ωp
?
nq on any `8 ball.

SinceDx “ Ωp
?
nq for each member function of this wide class, there is no hope of eliminating

this
?
n factor using techniques involving explicit use of strong convexity.

So, the goal now is to find a joint regularization function with a small range over `8 balls, but

still act as good enough regularizers to enable accelerated convergence of the descent algorithm. In

pursuit of breaking this `8 barrier, we draw inspiration from the notion of area convexity introduced

by Sherman [96]. Area convexity is a weaker notion than strong convexity, however, it is still strong

enough to ensure that accelerated first order methods still go through when using area convex

regularizers. Since this is a weaker notion than strong convexity, we can construct area convex

functions which have range of Opnop1qq on `8 ball.

First, we define area convexity, and then go on to mention its relevance to the saddle point

problem (6.2).

Area convexity is a notion defined in context of a matrix A P Raˆb and a convex set K Ď Ra`b.

Let MA :“

»

—

–

0bˆb ´AT

A 0aˆa

fi

ffi

fl

.

Definition 6.3.1 ([96]) A function φ is area convex with respect to a matrixA on a convex setK iff

for any t, u, v P K, φ satisfies φ
`t` u` v

3

˘

ď
1

3

`

φptq`φpuq`φpvq
˘

´
1

3
?

3
pv´uqTMApu´ tq.

To understand the definition above, let us first look at the notion of strong convexity. φ is said to

be strongly convex if for any two points t, u, 1
2
pφptq ` φpuqq exceeds φp1

2
pt ` uqq by an amount

proportional to ‖t ´ u‖2
2. Definition 6.3.1 generalizes this notion in context of matrix A for any

three points x, y, z. φ is area-convex on set K if for any three points t, u, v P K, we have 1
3
pφptq `

φpuq`φpvqq exceeds φp1
3
pt`u` vqq by an amount proportional to the area of the triangle defined

by the convex hull of t, u, v.

Consider the case that points t, u, v are collinear. For this case, the area term (i.e., the term

involving MA) in Definition 6.3.1 is 0 since matrix MA is antisymmetric. In this sense, area

161

convexity is even weaker than strict convexity. Moreover, the notion of area is parameterized by

matrixA. To see a specific example of this notion of area, considerA “

»

—

–

0 ´1

1 0

fi

ffi

fl

and t, u, v P R2.

Then, for all possible permutations of t, u, v, the area term takes a value equal to ˘pt1pu2 ´ v2q `

u1pv2 ´ t2q ` v1pt2 ´ u2qq. Since the condition holds irrespective of the permutation so we must

have that φp t`u`v
3
q ď 1

3

`

φptq`φpuq`φpvq
˘

´ 1
3
?

3
|t1pu2´v2q`u1pv2´t2q`v1pt2´u2q|. But note

that area of triangle formed by points t, u, v is equal to 1
2
|t1pu2 ´ v2q ` u1pv2 ´ t2q ` v1pt2 ´ u2q|.

Hence the area term is just a high dimensional matrix based generalization of the area of a triangle.

Coming back to the saddle point problem (6.2), we need to pick a suitable area convex function

φ on the set Bn`,8 ˆ ∆`
p ˆ ∆`

c . Since φ is defined on the joint space, it has the property of joint

regularization vis a vis (6.2). However, we need an additional parameter: a suitable matrix MA.

The choice of this matrix is related to the bilinear form of the primal-dual gap function of (6.2). We

delve into the technical details of this in Section 6.4, however, we state that the matrix is composed

of P,C and some additional constants. The algorithm we state exactly follows Nesterov’s dual

extrapolation method described earlier. One notable difference is that in [78], they consider joint

regularization by a strongly convex function which does not depend on the problem matrices P,C

but only on the constraint set Bn`,8 ˆ∆`
p ˆ∆`

c . Our area convex regularizer, on the other hand, is

tailor made for the particular problem matrices P,C as well as the constraint set.

6.4 Area Convexity for Mixed Packing Covering LPs

In this section, we present our technical results and algorithm for the MPC problem, with the end

goal of proving Theorem 6.1.1. First, we relate an p1` εq-approximate solution to the saddle point

problem to an ε-approximate solution to MPC. Next, we present some theoretical background

towards the goal of choosing and analyzing an appropriate area-convex regularizer in the context

of the saddle point formulation, where the key requirement of the area convex function is to obtain

a provable and efficient convergence result. Finally, we explicitly show an area convex function

which is generated using a simple “gadget” function. We show that this area convex function

162

satisfies all key requirements and hence achieves the desired accelerated rate of convergence. This

section closely follows [96], in which the author chooses an area convex function specific to the

undirected multicommodity flow problem. Due to space constraints, we relegate almost all proofs

to Appendix 6.5 (in the full version) and simply include pointers to proofs in [96] when it is directly

applicable.

6.4.1 Saddle Point Formulation for MPC

Consider the saddle point formulation in (6.2) for MPC. Given a feasible primal-dual feasible

solution pair px, y, zq and psx, sy, szq for (6.2), we denote w “ px, u, y, zq and sw “ psx, su, sy, szq where

u, su P R. Then, we define a function Q : Rn`1`p`c ˆ Rn`1`p`c Ñ R as

Qpw, swq :“ rsyT szT s

»

—

–

P ´1p

´C 1c

fi

ffi

fl

»

—

–

x

u

fi

ffi

fl

´ ryT zT s

»

—

–

P ´1p

´C 1c

fi

ffi

fl

»

—

–

sx

su

fi

ffi

fl

.

Note that if u “ su “ 1, then

sup
swPW

Qpw, swq “ sup
sxPBn`,8,syP∆

`
p ,szP∆

`
c

Lpx, sy, szq ´ Lpsx, y, zq

is precisely the primal-dual gap function defined in Section 6.2. Notice that if px˚, y˚, z˚q is a

saddle point of (6.2), then we have

Lpx˚, y, zq ď Lpx˚, y˚, z˚q ď Lpx, y˚, z˚q

for all x P Bn`,8, y P ∆`
p , z P ∆`

c . From above equation, it is clear that Qpw,w˚q ě 0 for

all w P W where W :“ Bn`,8 ˆ t1u ˆ ∆`
p ˆ ∆`

c and w˚ “ px˚, 1, y˚, z˚q P W . Moreover,

Qpw˚, w˚q “ 0. This motivates the following accuracy measure of the candidate approximate

solution w.

163

Definition 6.4.1 We say that w PW is an ε-optimal solution of (6.2) iff

sup
swPW

Qpw, swq ď ε.

Remark 6.4.1 Recall the definition ofMA for a matrixA in Section 6.3. We can rewriteQpw, swq “

swTJw where J “MH and

H “

»

—

–

P ´1p

´C 1c

fi

ffi

fl

ñ J :“

»

—

—

—

—

—

—

—

–

0nˆn 0nˆ1 ´P T CT

01ˆn 0 1Tp ´1Tc

P ´1p 0pˆp 0pˆc

´C 1c 0cˆp 0cˆc

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Thus, the gap function in Definition 6.4.1 can be written in the bilinear form sup
swPW swTJw.

Lemma 6.4.2 relates the ε-optimal solution of (6.2) to the ε-approximate solution to MPC.

Lemma 6.4.2 Let px, y, zq satisfy suppsx,sy,szqPBn`,8ˆ∆`p ˆ∆`c
Lpx, sy, szq ´ Lpsx, y, zq ď ε. Then either

1. x is an ε-approximate solution of MPC, or

2. y, z satisfy yT pPsx´ 1pq ` z
T p´Csx` 1cq ą 0 for all sx P Bn`,8.

This lemma states that in order to find an ε-approximate solution of MPC, it suffices to find ε-

optimal solution of (6.2). Henceforth, we will focus on ε-optimality of the saddle point formulation

(6.2).

6.4.2 Area Convexity with Saddle Point Framework

Here we state some useful lemmas which help in determining whether a differentiable function

is area convex. We start with the following remark which follows from the definition of area

convexity (Definition 6.3.1).

Remark 6.4.3 If φ is area convex with respect to A on a convex set K, and sK Ď K is a convex

set, then φ is area convex with respect to A on sK.

164

The following two lemmas from [96] provide the key characterization of area convexity.

Lemma 6.4.4 Let A P R2ˆ2 symmetric matrix. Aľi

»

—

–

0 ´1

1 0

fi

ffi

fl

ô A ľ 0 and detpAq ě 1.

Lemma 6.4.5 Let φ be twice differentiable on the interior of convex set K, i.e., intpKq.

1. If φ is area convex with respect to A on intpKq, then d2φpxqľi MA for all x P intpKq.

2. If d2φpxqľi MA for all x P intpKq, then φ is area convex with respect to 1
3
A on intpKq.

Moreover, if φ is continuous on clpKq, then φ is area convex with respect to 1
3
A on clpKq.

In order to handle the operator ľi (recall from Section 6.2), we state some basic but important

properties of this operator, which will come in handy in later proofs.

Remark 6.4.6 For symmetric matrices A and C and antisymmetric matrices B and D,

1. If Aľi B then Aľip´Bq.

2. If Aľi B and λ ě 0 then λAľi λB.

3. If Aľi B and C ľi D then A` C ľipB `Dq.

Having laid a basic foundation for area convexity, we now focus on its relevance to solving the

saddle point problem (6.2). Considering Remark 6.4.1, we can write the gap function criterion of

optimality in terms of bilinear form of the matrix J . Suppose we have a function φ which is area

convex with respect to H on set W . Then, consider the following jointly-regularized version of

the bilinear form:

rηpwq :“ sup
swPW

swTJw ´ φp swq. (6.3)

Similar to Nesterov’s dual extrapolation, one can attainOp1{εq convergence of accelerated gradient

descent for function rηpwq in (6.3) over variable w. In order to obtain gradients of rηpwq, we need

access to argmax
swPW swTJw ´ φp swq. However, it may not be possible to find an exact maximizer

in all cases. Again, one can get around this difficulty by instead using an approximate optimization

oracle of the problem in (6.3).

165

Definition 6.4.2 A δ-optimal solution oracle (OSO) for φ : W Ñ R takes input a and outputs

w PW such that

aTw ´ φpwq ě sup
swPW

aT sw ´ φp swq ´ δ.

Given Φ as a δ-OSO for a function φ, consider the following algorithm (Algorithm ??):

Algorithm 5 Area Convex Mixed Packing Covering (AC-MPC)

Initialize w0 “ p0n, 1,0p`cq

for t “ 0, . . . , T do

wt`1 Ð wt ` ΦpJwt ` 2JΦpJwtqq

end for

For Algorithm ??, [96] shows the following:

Lemma 6.4.7 Let φ :W Ñ r´ρ, 0s. Suppose φ is area convex with respect to 2
?

3H onW . Then

for J “MH and for all t ě 1 we have wt{t PW and,

sup
swPW

swJ wt
t
ď δ ` ρ

t
.

In particular, in ρ
ε

iterations, Algorithm ?? obtain pδ ` εq-solution of the saddle point problem

(6.2).

The analysis of this lemma closely follows the analysis of Nesterov’s dual extrapolation.

Note that, each iteration consists of Op1q matrix-vector multiplications, Op1q vector additions,

andOp1q calls to the approximate oracle. Since the former two are parallelizable toOplog nq depth,

the same remains to be shown for the oracle computation to complete the proof of the run-time in

Theorem 6.1.1.

Recall from the discussion in Section 6.3 that the critical bottleneck of Nesterov’s method is

that diameter of the `8 ball is Ωp
?
nq, which is achieved even in the Euclidean `2 norm. This

makes ρ in Lemma 6.4.7 to also be Ωp
?
nq, which can be a major bottleneck for high dimensional

LPs, which are commonplace among real-world applications.

166

Although, on the face of it, area convexity applied to the saddle point formulation (6.2) has a

similar framework to Nesterov’s dual extrapolation, the challenge is to construct a φ for which we

can overcome the above bottleneck. Particularly, there are three key challenges to tackle:

1. We need to show that existence of a function φ that is area convex with respect to H onW .

2. φ :W Ñ r´ρ, 0s should be such that ρ is not too large.

3. There should exist an efficient δ-OSO for φ.

In the next subsection, we focus on these three aspects in order to complete our analysis.

6.4.3 Choosing an area convex function

First, we consider a simple 2-D gadget function and prove a “nice” property of this gadget. Using

this gadget, we construct a function which can be shown to be area convex using the aforemen-

tioned property of the gadget.

Let γβ : R2
` Ñ R be a function parameterized by β defined as

γβpa, bq “ ba log a` βb log b.

Lemma 6.4.8 Suppose β ě 2. Then d2γβpa, bq ľ

»

—

–

0 ´1

1 0

fi

ffi

fl

for all a P p0, 1s and b ą 0.

We note in Figure 6.3 that the function γβ is indeed convex. However, its level curves become

straight near the boundary implying that this function is not strongly convex.

Now, using the function γβ , we construct a function φ and use the sufficiency criterion provided

in Lemma 6.4.5 to show that φ is area convex with respect to J onW . Note that our set of interest

W is not full-dimensional, whereas Lemma (6.4.5) is only stated for int and not for relint. To get

around this difficulty, we consider a larger set ĎW Ą W such that ĎW is full dimensional and φ is

area convex on ĎW . Then we use Remark 6.4.3 to obtain the final result, i.e., area convexity of φ.

167

Figure 6.1: Auxiliary view Figure 6.2: Level set γpx, yq ď ´0.5

Figure 6.3: Sublevel set for area convex function γβ .

Theorem 6.4.9 Let w “ px, u, y, zq and define

φpwq :“
řp
i“1

řn
j“1 Pijγpipxj, yiq `

p
ř

i“1

γ2pu, yiq `
c
ř

i“1

n
ř

j“1

Cijγcipxj, ziq `
c
ř

i“1

γ2pu, ziq,

where pi “ 2 ˚ ‖P‖8
‖Pi,:‖1

and ci “ 2 ˚ ‖C‖8
‖Ci,:‖1

, then φ is area convex with respect to 1
3

»

—

–

P ´1p

´C 1c

fi

ffi

fl

on

set ĎW :“ Bn`1
`,8p1q ˆ∆`

p ˆ∆`
c . In particular, it also implies 6

?
3φ is area convex with respect to

2
?

3

»

—

–

P ´1p

´C 1c

fi

ffi

fl

on setW .

Theorem 6.4.9 addresses the first part of the key three challenges. Next, Lemma 6.4.10 shows an

upper bound on the range of φ.

Lemma 6.4.10 Function φ :W Ñ r´ρ, 0s then ρ “ Op‖P‖log
8 p` ‖C‖log

8 cq.

Finally, we need an efficient δ-OSO. Consider the following alternating minimization algo-

rithm.

168

Algorithm 6 δ-OSO for φ

Input a P Rn`1, a1 P Rp, a2 P Rc, δ ą 0

Initialize px0, u0q P Bn`,8 ˆ t1u arbitrarily.

for k “ 1, . . . , K do

pyk, zkq Ð argmax
yP∆`c , zP∆`p

yTa1 ` zTa2 ´ φpxk´1, uk´1, y, zq

pxk, ukq Ð argmax
px,uqPBn`,8ˆt1u

rxT usa´ φpx, u, yk, zkq

end for

[9] shows the following convergence result.

Lemma 6.4.11 For δ ą 0, Algorithm 6 is a δ-OSO for φ which converges in Oplog 1
δ
q iterations.

We show that for our chosen φ, we can perform the two argmax computations in each iteration of

Algorithm 6 analytically in time OpnnzpP q ` nnzpCqq, and hence we obtain a δ-OSO which takes

OppnnzpP q ` nnzpCq log 1
δ
q total work. Parallelizing matrix-vector multiplications eliminates the

dependence on nnzpP q and nnzpCq, at the cost of another logpNq term.

Lemma 6.4.12 Each argmax in Algorithm 6 can be computed as follows:

xk “ min

exp
`

a
PT yk`CT zk

´ 1
˘

,1n
(

for all j P rns.

yk “ proj∆`p
`

exp

1
2p‖P‖`81q

pa1 ´ Pxk´1 log xk´1q
(˘

zk “ proj∆`c
`

exp

1
2p‖C‖`81q

pa2 ´ Cxk´1 log xk´1q
(˘

In particular, we can compute xk, yk, zk inOpnnzpP q`nnzpCqq work andOplogNq parallel time.

As a result of the above lemma, we obtain that three key challenges are overcome due the

area convex regularization and hence, we obtain convergence to an ε-solution of MPC at the rate

rOpwNε´1q.

6.5 Proof of auxiliary results

In this section, we include proofs of lemmas from the main paper. In some cases, the lemmas are

direct restatements of results from other papers, for which we provide appropriate pointers.

169

6.5.1 Proof of Lemma 6.3.1

Consider an arbitrary strongly convex function d. Assume WLOG that dp0q “ 0. (otherwise,

we can shift it accordingly). We will show that maxxPBn8prq dpxq ě
nr2

2
by induction on n for

set Bn8prq. This suffices because Bn`,8p1q is isomorphic to Bn8p1
2
q. The claim holds for n “ 1

by the definition of strong convexity. Now, suppose it is true for n ´ 1. Then there exists sx P

Bn´1
8 prq such that dpsxq ě pn´1qr2

2
. Moving r units in the last coordinate from sx in the direction

of nonnegative slope, suppose we reach px P Bn8prq. Then, due to strong convexity of d, we have

dppxq ě dpsxq ` 1
2
‖px´ sx‖2

8 ě
pn´1qr2

2
` r2

2
“ nr2

2
.

6.5.2 Proof of Lemma 6.4.2

Suppose we are given px, y, zq such that suppsx,sy,szqPBn`,8ˆ∆`p ˆ∆`c
Lpx, sy, szq´Lpsx, y, zq ď ε. If there

exists rx which is feasible for MPC then choosing sx “ rx then Lprx, y, zq ď 0. Hence we have

sup
psy,szqP∆`p ˆ∆`c

Lpx, sy, szq ď ε

ñ ‖rPx´ 1ps`‖8 ` ‖r´Cx` 1cs`‖8 ď ε,

where implication follows by optimality over extended simplices ∆`
p ,∆

`
c . So we obtain, if there

exist a feasible solution for MPC then x is ε-approximate solution of MPC.

On the other hand, suppose x is not an ε-approximate solution. Then

maxt‖rPx´ 1ps`‖8, ‖r´Cx` 1cs`‖8u ą ε

ñ sup
psy,szqP∆`p ˆ∆`c

Lpx, sy, szq “‖rPx´ 1ps`‖8 ` ‖r´Cx` 1cs`‖8 ą ε

170

Let ppy, pzq P ∆`
p ˆ∆`

c such that Lpx, py, pzq ą ε then we have

sup
sxPBn`,8

Lpx, py, pzq ´ Lpsx, y, zq ď ε

ñ Lpx, py, pzq ´ inf
sxPBn`,8

Lpsx, y, zq ď ε

ñ inf
sxPBn`,8

Lpsx, y, zq ą 0

Hence, if x is not ε-approximate solution of MPC then py, zq satisfy yT pPsx´1pq`zT p´Csx`1cq ą

0 for all sx P Bn`,8p1q implying that MPC is infeasible.

6.5.3 Proof of Lemma 6.4.4

Let B “

»

—

–

0 ´1

1 0

fi

ffi

fl

and T :“

»

—

–

A ´B

B A

fi

ffi

fl

.

Then Aľi B iff T ľ 0 iff all principle minors of T are nonnegative. Now, T ľ 0 implies

A ľ 0. It is easy to verify that third principle minor is nonnegative iff detpAq ě 1. So T ľ 0

implies A must be invertible. Then, applying Schur complement lemma, we obtain that T ľ 0 ô

A ` BA´1B ľ 0. Now let A “

»

—

–

a b

b d

fi

ffi

fl

then A´1 “ 1
ad´b2

»

—

–

d ´b

´b a

fi

ffi

fl

. It is easy to verify that

A`BA´1B “ Ap1´ 1
detpAq

q. This implies T ľ 0 ô A ľ 0 and detpAq ě 1. Hence we conclude

the proof.

6.5.4 Proof of Lemma 6.4.5

This lemma appears exactly as Theorem 1.6 in [96]. The proof follows from the same.

171

6.5.5 Proof of Proposition 6.4.6

1.

Aľi B ô

»

—

–

A ´B

B A

fi

ffi

fl

ľ 0

ô xTAx` yTAy ` yTBx´ xTBy ě 0, @ x, y

ô xTAx` yTAy ´ yTBx` xTBy ě 0, @ x, y

ô

»

—

–

A B

´B A

fi

ffi

fl

ľ 0 ô Aľip´Bq

Here, the third equivalence follows after replacing y by ´y. Hence we conclude the proof of

part 1.

2.

Aľi B ô

»

—

–

A ´B

B A

fi

ffi

fl

ľ 0 ñ

»

—

–

λA ´λB

λB λA

fi

ffi

fl

ľ 0 ô λA ľ λB

3. Aľi B implies

»

—

–

A ´B

B A

fi

ffi

fl

ľ 0. Similarly C ľi D implies

»

—

–

C ´D

D C

fi

ffi

fl

ľ 0. Hence

»

—

–

A` C ´pB `Dq

pB `Dq pA` Cq

fi

ffi

fl

ľ 0.

So we obtain A` C ľipB `Dq.

6.5.6 Proof of Lemma 6.4.7

This lemma appears as Theorem 1.3 in [96], and the proof follows from the same.

172

6.5.7 Proof of Lemma 6.4.8

We use equivalent characterization proved in Lemma 6.4.4. We need to show that d2γβpa, bq ľ 0

and detpd2γβpa, bqq ě 1 for all a P p0, 1s and b ą 0. First of all, note that d2γβ is well-defined on

this domain. In particular, we can write

d2γβpa, bq “

»

—

–

β
b

1` log a

1` log a b
a

fi

ffi

fl

.

Note that a 2ˆ 2 matrix is PSD if and only if its diagonal entries and determinant are nonnegative.

Clearly diagonal entries of d2γβpa, bq are nonnegative for the given values of β, a and b. Hence, in

order to prove the lemma, it suffices to show that detpd2γβpa, bqq ě 1.

detpd2γβpa, bqq “
β
a
´ p1 ` log aq2 is only a function of a for any fixed value of β ě 2.

Moreover, it can be shown that detpd2γβq is a decreasing function of a on set p0, 1s. Clearly, the

minimum occurs at a “ 1. However, detpd2γβp1, bqq “ β ´ 1 ě 1 for all b ą 0. Hence we have

that detpd2γβpa, bqq ě 1 for all a P p0, 1s, b ą 0 and β ě 2.

Finally to see the claim that detpd2γβq is a decreasing function of a P p0, 1s for any β ě 2,

consider

d

da

`

detpd2γβpa, bqq
˘

“ ´
β

a2
´

2p1` log aq

a

ď ´
2p1` ap1` log aqq

a2
ă 0

where the last inequality follows from the observation that 1 ` a ` a log a ą 0 for all a P p0, 1s.

Hence we conclude the proof.

6.5.8 Proof of Theorem 6.4.9

Note that γci , γpi are twice differentiable in the intpĎWq. So by Lemma 6.4.5 part 2, it is sufficient

to prove that d2φpwqľi J for all w P intpĎWq.

173

By definition, we have γci ě 2 for all i P rcs and γpi ě 2 for all i P rps. Moreover xj P p0, 1q

and yi ą 0, zi ą 0 for any w “ px, u, y, zq P intpWq. Then by Lemma 6.4.8 and Proposition 6.4.6,

we have

d2φpwq “
p
ÿ

i“1

n
ÿ

j“1

Pijd
2γpipxj, yiq `

p
ÿ

i“1

d2γ2pu, yiq `
c
ÿ

i“1

n
ÿ

j“1

Cijd
2γcipxj, yiq `

c
ÿ

i“1

d2γ2pu, ziq

ľi

´

p
ÿ

i“1

n
ÿ

j“1

´Pijej b en`1`i `

p
ÿ

i“1

en`1 b en`1`i

`

c
ÿ

i“1

n
ÿ

j“1

Cijej b en`p`i `
c
ÿ

i“1

p´1qen`1 b en`1`p`i

¯

, (6.4)

where ek b el “ eke
T
l ´ ele

T
k . Here we used Pijd2γpipxj, yiqľi´Pijej b en`1`i using Lemma

6.4.8, Proposition 6.4.6 part 1, part 2 and Cijd2γcipxj, yiqľi Cijej b en`1`p`i using Lemma 6.4.8,

Proposition 6.4.6 part 2. Similar arguments can be made about terms inside the other two summa-

tions. Finally we used Proposition 6.4.6 part 3 to obtain (6.4). Note matrix in the last sum term is

in fact J .

It is clear that since d2φľi J hence using Proposition 6.4.6 part 2, we have d26
?

3φľi 6
?

3J .

Then by Lemma 6.4.5 part 2, we obtain 6
?

3φ is area convex with respect to 2
?

3

»

—

–

P ´1p

´C 1c

fi

ffi

fl

on set ĎW .

Note that the set of interestW Ă ĎW . Moreover,W is a convex subset. By Remark 6.4.3, one

can see that 6
?

3φ is area convex with respect to 2
?

3

»

—

–

P ´1p

´C 1c

fi

ffi

fl

on setW . Hence we conclude

the proof.

6.5.9 Proof of Lemma 6.4.10

Note that γβpa, bq ď 0 for any a P r0, 1s, b P r0, 1s, β ě 0. Since Pij ě 0, Ckj ě 0 for all possible

values of i, j, k hence we clearly have φpwq ď 0 for all w PW . Now we prove that lower bound is

not too small.

174

We have

p
ÿ

i“1

n
ÿ

j“1

Pijγpipxj, yiq “
p
ÿ

i“1

n
ÿ

j“1

Pijpyixj log xj ` piyi log yiq

ě ´

p
ÿ

i“1

n
ÿ

j“1

Pijyi
1

e
`

p
ÿ

i“1

piyi log yi

p
ÿ

j“1

Pij

“ ´

p
ÿ

i“1

n
ÿ

j“1

Pijyi
1

e
`

p
ÿ

i“1

2‖P‖8yi log yi

ě ´

p
ÿ

i“1

‖P‖8
e

yi `
p
ÿ

i“1

2‖P‖8yi log yi

ě ´
‖P‖8
e

´ 2‖P‖8 log p

Note that if w PW implies u “ 1. So

p
ÿ

i“1

γ2pu, yiq “
p
ÿ

i“1

2yi logpyiq ě ´2 log p

Similarly, we have

c
ÿ

i“1

n
ÿ

j“1

Cijγcipxj, ziq ě ´
‖C‖8
e

´ 2‖C‖8 log c

c
ÿ

i“1

γ2pu, ziq ě ´2 log c

Taking sum of all four terms, we conclude the proof.

6.5.10 Proof of Lemma 6.4.12

Note that maximization with respect to u is trivial since u “ 1 is a fixed variable. We first look at

maximization with respect to x P Bn`,8p1q. Writing the first order necessary condition of Lagrange

175

multipliers, we have

aj ´
p
ÿ

i“1

Pij
B

Bt
γpipt, vq

ˇ

ˇ

ˇ

ˇ

pt,vq“pxj ,yiq

´

c
ÿ

i“1

Cij
B

Bt
γcipt, vq

ˇ

ˇ

ˇ

ˇ

pt,vq“pxj ,ziq

´ λj “ 0

ñ aj ´

p
ÿ

i“1

Pijyi `
c
ÿ

i“1

Cijzi
(

p1` log xjq ´ λj “ 0.

Here λj is the Lagrange multiplier corresponding to the case that xj “ 1. By complimentary

slackness, we have λj ą 0 iff xj “ 1.

This implies xj “ min

$

&

%

exp

¨

˝

aj
p
ř

i“1
Pijyi`

c
ř

i“1
Cijzi

´ 1

˛

‚, 1

,

.

-

for all j P rns.

Now we consider maximization with respect to y, z. Note that there are no cross-terms of yi

and zi, i.e., Bγpi
Byi

is independent of z variable and vice-versa. So we can optimize them separately.

From first order necessary condition of Lagrange multipliers for y, we have

a1
i ´

n
ÿ

j“1

Pij
B

Bv
γpipt, vq

ˇ

ˇ

ˇ

ˇ

pt,vq“pxj ,yiq

´
B

Bv
γ2pt, vq

ˇ

ˇ

ˇ

ˇ

pt,vq“pu,yiq

´ λ “ 0

ñ a1
i ´

n
ÿ

j“1

Pijpxj log xj ` pip1` log yiqq ´ u log u|u“1 ´ 2p1` log yiq ´ λ “ 0

ñ a1
i ´

n
ÿ

j“1

Pijxj log xj ´ 2p‖P‖`81qp1` log yiq ´ λ “ 0

where last relation follows due to definition of pi and λ is Lagrange multiplier corresponding to

the constraint
p
ř

i“1

yi ď 1. By comple mentary slackness, we have λ ą 0 iff
p
ř

i“1

yi “ 1.

Eliminating λ from above equations, we obtain y “ proj∆`p

´

exp
!

1
2p‖P‖`81q

pa1 ´ Px log xq
)¯

.

Similarly, we obtain z “ proj∆`c

´

exp
!

1
2p‖C‖`81q

pa2 ´ Cx log xq
)¯

.

It is clear from the analytical expressions that for each iteration of Algorithm 6, we need

OpnnzpP q ` nnzpCqq time. Hence total runtime of Algorithm 6 is OppnnzpP q ` nnzpCqq log 1
δ
q.

6.5.11 Proof of width reduction for the MPC problem

In Section 6.3, we made the assumption that all entries

176

This assumption follows from the results in [103]. We outline this proof in this section for

completeness.

For the purpose of this proof, we introduce notation rks :“ t1, . . . , ku.

Suppose we are given an instance of mixed packing covering of the form

Px ď 1p, Cx ě 1c, x ě 0n. (6.5)

Case 1: For each column P:,i associated with variable xi, let Pji,i :“ maxjPrps Pji ą 0. Then we

consider the following updates to MPC in order to reduce diameter.

Suppose, without loss of generality, C1,i “ maxjPrcsCji and Cci “ minjPrcsCji. If C1i ď Pji,i

then we can update sP:,i “
1

Pji,i
P:,i, sC:,i “

1
Pji,i

C:,i and sxi “ Pji,ixi. Then we observe that each

element in sP:,i, sC:,i is at most 1. Moreover, due to the packing constraint sPji,:sx ď 1, we note that

for any feasible sx, sPji,isxi ď 1. Finally, since sPji,i “ 1, we have that sxi ď 1 lies in the support of

constraint set. So we replaced the i-th column and corresponding i-th variable of the system by an

equivalent system.

Similarly, if Cc,i ě Pji,i then consider xsol defined as

xsolk :“

$

’

’

&

’

’

%

1
Pji,i

if k “ i

0 otherwise.

Then xsol is already a feasible solution of MPC. So we may assume that Cci ă Pji,i ă C1i. In this

case, define ri “ C1i

Pji,i
and ni “ rlog ris. We make ni copies of the column C:, i and denote by

the tuple pi, lq the columns of a new matrix pC:,pi,lq where l P rnis. Similarly, we add ni copies of

variable xi, denoted as pxpi,lq. We make similar changes to P:,i. Note that this system is equivalent

to earlier system in the sense that any solution pxpi,lq, l P rnis can be converted into a solution of the

earlier system since xi “
ř

lPrnis
pxpi,lq. However, this allows us to reduce the elements of pC along

177

with certain box constraints on pxi, which was our original goal. For each j P rcs, l P rnis, redefine

pCj,pi,lq “ mintCji, 2
lPji,iu

and for variable pxpi,lq, add the constraint

pxi,l ď
2

2lPji,i
. (6.6)

Claim 6.5.1 MPC (6.5) and the new system defined by matrices pC, pP and variable px are equiva-

lent.

Proof. For this proof, let us focus on i-th column and i-th variable.

For any feasible solution px, consider xi “
ř

lPrnis
pxi,l. This xi does not violate any covering

constraint since pCj,pi,lq ď Cji. The packing constraints also follow because we have not made any

changes to the elements corresponding to the packing constraints pPj,pi,lq.

For the other direction, the key fact to note is that any feasible x satisfies xi ď 1
Pji,i

due to

packing constraint Pji,:x ď 1. Let li be the largest index such that

xi ď
2

2liPji,i
,

and then let

pxpi,lq “

$

’

’

&

’

’

%

xi if l “ li

0 otherwise.

By construction, pxpi,lq satisfies the constraint in (6.6) for all l P rnis. Moreover, for constraint j,

we must have pCj,:px ě 1. Note that if pCj,pi,liq “ Cji then there is nothing to prove. So we assume

that Cji ą pCj,pi,liq “ 2liPji,i. Then we must have that li ă ni in this case, by definition of ni. This

then gives pxpi,liq “ xi ě
1

2liPji,i
by our choice of li being the largest possible. Then we know that

178

pCj,pi,liq “ 2liPji,i, and hence the j-th covering constraint is satisfied.

Packing constraints are satisfied trivially since there is no change in elements of pP:,pi,lq for all

l P rnis. Hence the claim follows. ˝

Finally the proof follows by change of variables as sxpi,lq “ 2l´1Pji,i and sC:,pi,lq “
1

2l´1Pji,i
pC:,pi,lq.

Further, note that all elements of sP:,pi,lq are at most 1 for all l P rnis, and all elements of sC:,pi,lq are

at most 2 for all l P rnis and sxi,l ď 1 for all l P rnis.

Case 2: Suppose Pji,i “ 0.. This implies that in variable xi, this is a purely covering problem.

So we can increase xi to satisfy the jth covering constraint such that Cji ą 0 independent of

the packing constraints and problem reduces to smaller packing covering problem in remaining

variables and covering constraints j such that Cji “ 0. For this smaller packing covering problem,

we can apply the method in Case 1 again.

179

REFERENCES

[1] Z. Allen-Zhu and E. Hazan, “Variance reduction for faster non-convex optimization,” In-
ternational Conference on Machine Learning, pp. 699–707, 2016.

[2] Z. Allen-Zhu and L. Orecchia, “Nearly linear-time packing and covering LP solvers -
achieving width-independence and -convergence,” Math. Program., vol. 175, no. 1-2, pp. 307–
353, 2019.

[3] R. Andreani, G. Haeser, and J. M. Martı́nez, “On sequential optimality conditions for
smooth constrained optimization,” Optimization, vol. 60, no. 5, pp. 627–641, 2011.

[4] R. Andreani, J. M. Martı́nez, A. Ramos, and P. J. S. Silva, “Strict constraint qualifications
and sequential optimality conditions for constrained optimization,” Mathematics of Oper-
ations Research, vol. 43, pp. 693–717, 2018.

[5] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and S. Roy, “Level-set
methods for convex optimization,” Mathematical Programming, pp. 1–32, 2018.

[6] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep neural networks
with rectified linear units,” 2016.

[7] Y. Bartal, J. W. Byers, and D. Raz, “Fast, distributed approximation algorithms for positive
linear programming with applications to flow control,” SIAM J. Comput., vol. 33, no. 6,
pp. 1261–1279, 2004.

[8] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[9] A. Beck, “On the convergence of alternating minimization for convex programming with
applications to iteratively reweighted least squares and decomposition schemes,” SIAM
Journal on Optimization, vol. 25, no. 1, pp. 185–209, 2015.

[10] A. Ben-Tal and A. Nemirovski, “Non-euclidean restricted memory level method for large-
scale convex optimization,” Mathematical Programming, vol. 102, pp. 407–456, 2005.

[11] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

[12] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

[13] D. P. Bertsekas, Convex optimization algorithms. Athena Scientific Belmont, 2015.

180

[14] D. Bienstock and G. Iyengar, “Approximating fractional packings and coverings in o(1/epsilon)
iterations,” SIAM J. Comput., vol. 35, no. 4, pp. 825–854, 2006.

[15] A. Blum and R. L. Rivest, “Training a 3-node neural network is np-complete,” in Proceed-
ings of the First Annual Workshop on Computational Learning Theory, ser. COLT ’88,
1988, pp. 9–18.

[16] D. Boob, Q. Deng, and G. Lan, “Stochastic first-order methods for convex and nonconvex
functional constrained optimization,” arXiv preprint arXiv:1908.02734, 2019.

[17] P. Bradley and O. L. Mangasarian, “Feature selection via concave minimization and sup-
port vector machines,” in Proceedings of International Conference on Machine Learning
(ICML’98), Morgan Kaufmann, 1998, pp. 82–90.

[18] S. Bubeck, “Theory of convex optimization for machine learning,” arXiv preprint arXiv:1405.4980,
vol. 15, 2014.

[19] E. J. Candès, Y. Plan, et al., “Near-ideal model selection by `1 minimization,” The Annals
of Statistics, vol. 37, no. 5A, pp. 2145–2177, 2009.

[20] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted l1 mini-
mization,” arXiv preprint arXiv:0711.1612, 2007.

[21] C. Cartis, N. I. Gould, and P. L. Toint, “On the complexity of finding first-order critical
points in constrained nonlinear optimization,” Mathematical Programming, vol. 144, no. 1,
pp. 93–106, 2014.

[22] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with
applications to imaging,” Journal of Mathematical Imaging and Vision, vol. 40, no. 1,
pp. 120–145, 2011.

[23] Y. Chen, G. Lan, and Y. Ouyang, “Optimal primal-dual methods for a class of saddle point
problems,” SIAM Journal on Optimization, vol. 24, no. 4, pp. 1779–1814, 2014.

[24] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep
neural networks with multitask learning,” in Proceedings of the 25th International Confer-
ence on Machine Learning, ser. ICML ’08, 2008, pp. 160–167.

[25] B. DasGupta, H. T. Siegelmann, and E. Sontag, “On a learnability question associated
to neural networks with continuous activations,” in Proceedings of the Seventh Annual
Conference on Computational Learning Theory, ser. COLT ’94, 1994, pp. 47–56.

[26] D. Davis and B. Grimmer, “Proximally guided stochastic subgradient method for nons-
mooth, nonconvex problems,” arXiv preprint arXiv: 1707.03505v4, 2017.

181

[27] S. S. Dey, G. Wang, and Y. Xie, An approximation algorithm for training one-node relu
neural network, 2018. arXiv: 1810.03592 [math.OC].

[28] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling language for convex
optimization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2909–2913,
2016.

[29] Q. T. Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining convex-concave decom-
positions and linearization approaches for solving bmis, with application to static output
feedback,” arXiv preprint arXiv:1109.3320, 2011.

[30] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient projections onto the l1-
ball for learning in high dimensions,” in Proceedings of the 25th international conference
on Machine learning, 2008, pp. 272–279.

[31] H Edelsbrunner, J O’Rouke, and R Seidel, “Constructing arrangements of lines and hyper-
planes with applications,” SIAM J. Comput., vol. 15, no. 2, pp. 341–363, 1986.

[32] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals of
Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[33] F. Facchinei, V. Kungurtsev, L. Lampariello, and G. Scutari, “Ghost penalties in nonconvex
constrained optimization: Diminishing stepsizes and iteration complexity,” arXiv preprint
arXiv:1709.03384, 2017.

[34] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its oracle
properties,” Journal of the American Statistical Association, vol. 96, no. 456, pp. 1348–
1360, 2001.

[35] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “Spider: Near-optimal non- convex optimization
via stochastic path-integrated differential estimator,” Advances in Neural Information Pro-
cessing Systems, pp. 687–697, 2018.

[36] R. Frostig, R. Ge, S. Kakade, and A. Sidford, “Un-regularizing: Approximate proximal
point and faster stochastic algorithms for empirical risk minimization,” in International
Conference on Machine Learning, 2015, pp. 2540–2548.

[37] W. J. Fu, “Penalized regressions: The bridge versus the lasso,” Journal of Computational
and Graphical Statistics, vol. 7, no. 3, pp. 397–416, 1998.

[38] S. Ghadimi and G. Lan, “Stochastic first- and zeroth-order methods for nonconvex stochas-
tic programming,” SIAM Journal on Optimization, vol. 23(4), pp. 2341–2368, 2013.

182

https://arxiv.org/abs/1810.03592

[39] S. Ghadimi and G. Lan, “Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization i: A generic algorithmic framework,” SIAM Journal on
Optimization, vol. 22, no. 4, pp. 1469–1492, 2012.

[40] S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochas-
tic programming,” Mathematical Programming, vol. 156, no. 1-2, pp. 59–99, 2016.

[41] P. Gong, C. Zhang, Z. Lu, J. Z. Huang, and J. Ye, “A general iterative shrinkage and
thresholding algorithm for non-convex regularized optimization problems,” International
Conference on Machine Learning, vol. 28, no. 2, pp. 37–45, 2013.

[42] J. ya Gotoh, A. Takeda, and K. Tono, “DC formulations and algorithms for sparse opti-
mization problems,” Mathematical Programming, vol. 169, no. 1, pp. 141–176, 2018.

[43] M. D. Grigoriadis and L. G. Khachiyan, “Approximate minimum-cost multicommodity
flows in Õ(epsilon-2knm) time,” Math. Program., vol. 75, pp. 477–482, 1996.

[44] O. Güler, “New proximal point algorithms for convex minimization,” SIAM Journal on
Optimization, vol. 2, no. 4, pp. 649–664, 1992.

[45] E. Y. Hamedani and N. S. Aybat, “A primal-dual algorithm for general convex-concave
saddle point problems,” arXiv preprint arXiv:1803.01401, 2018.

[46] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[47] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, Gradient flow in recurrent nets:
The difficulty of learning long-term dependencies, 2001.

[48] K. Khamaru and M. J. Wainwright, “Convergence guarantees for a class of non-convex
and non-smooth optimization problems,” International Conference on Machine Learning,
pp. 2606–2615, 2018.

[49] A. R. Klivans and A. A. Sherstov, “Cryptographic hardness for learning intersections of
halfspaces,” J. Comput. Syst. Sci., vol. 75, no. 1, pp. 2–12, 2009.

[50] W. Kong, J. G. Melo, and R. D. Monteiro, “Complexity of a quadratic penalty acceler-
ated inexact proximal point method for solving linearly constrained nonconvex composite
programs,” arXiv preprint arXiv:1802.03504, 2018.

[51] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online sparse system identification and sig-
nal reconstruction using projections onto weighted l1 balls,” IEEE Transactions on Signal
Processing, vol. 59, no. 3, pp. 936–952, 2011.

183

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, ser. NIPS’12, 2012, pp. 1097–1105.

[53] G. Lan, Lectures on Optimization Methods for Machine Learning. Springer-Nature, 2019,
preprint.

[54] G. Lan and R. D. C. Monteiro, “Iteration-complexity of first-order penalty methods for
convex programming,” Mathematical Programming, vol. 138, pp. 115–139, 2013.

[55] G. Lan and R. D. C. Monteiro, “Iteration-complexity of first-order augmented lagrangian
methods for convex programming,” Mathematical Programming, vol. 155(1-2), 511–547,
2016.

[56] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for decentralized and
stochastic optimization,” Mathematical Programming, 2018.

[57] G. Lan, Z. Li, and Y. Zhou, “A unified variance-reduced accelerated gradient method for
convex optimization,” in NeurIPS 2019 : Thirty-third Conference on Neural Information
Processing Systems, 2019, pp. 10 462–10 472.

[58] G. Lan and Y. Yang, “Accelerated stochastic algorithms for nonconvex finite-sum and
multi-block optimization,” arXiv preprint arXiv:1805.05411, 2018.

[59] G. Lan and Y. Zhou, “An optimal randomized incremental gradient method,” Math. Pro-
gram., vol. 171, no. 1-2, pp. 167–215, 2018.

[60] G. Lan and Z. Zhou, “Algorithms for stochastic optimization with expectation constraints,”
arXiv preprint arXiv:1604.03887, 2016.

[61] C. Lemaréchal, A. S. Nemirovski, and Y. E. Nesterov, “New variants of bundle methods,”
Mathematical Programming, vol. 69, pp. 111–148, 1995.

[62] Q. Lin, R. Ma, and Y. Xu, “Inexact proximal-point penalty methods for non-convex opti-
mization with non-convex constraints,” arXiv preprint arXiv:1908.11518, 2019.

[63] Q. Lin, R. Ma, and T. Yang, “Level-set methods for finite-sum constrained convex op-
timization,” in Proceedings of the 35th International Conference on Machine Learning,
vol. 80, 2018, pp. 3112–3121.

[64] Q. Lin, S. Nadarajah, and N. Soheili, “A level-set method for convex optimization with
a feasible solution path,” SIAM Journal on Optimization, vol. 28, no. 4, pp. 3290–3311,
2018.

184

[65] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational efficiency of train-
ing neural networks,” in Advances in Neural Information Processing Systems 27, 2014,
pp. 855–863.

[66] M. Luby and N. Nisan, “A parallel approximation algorithm for positive linear program-
ming,” in Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Comput-
ing, May 16-18, 1993, San Diego, CA, USA, 1993, pp. 448–457.

[67] R. Ma, Q. Lin, and T. Yang, “Proximally constrained methods for weakly convex optimiza-
tion with weakly convex constraints,” arXiv preprint arXiv:1908.01871, 2019.

[68] M. W. Mahoney, S. Rao, D. Wang, and P. Zhang, “Approximating the solution to mixed
packing and covering lps in parallel o(epsilonˆ{-3}) time,” in 43rd International Collo-
quium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, 2016, 52:1–52:14.

[69] O. Mangasarian and S Fromovitz, “The fritz john necessary optimality conditions in the
presence of equality and inequality constraints,” Journal of Mathematical Analysis and
Applications, vol. 17, pp. 37–47, 1967.

[70] P. Manurangsi and D. Reichman, “The computational complexity of training relu(s),” CoRR,
vol. abs/1810.04207, 2018. arXiv: 1810.04207.

[71] J. M. Martı́nez and B. F. Svaiter, “A practical optimality condition without constraint qual-
ifications for nonlinear programming,” Journal of Optimization Theory and Applications,
vol. 118, no. 1, pp. 117–133, 2003.

[72] N. Megiddo, “On the complexity of polyhedral separability.,” Discrete and Computational
Geometry, vol. 3, no. 4, pp. 325–338, 1988.

[73] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep belief networks,”
Trans. Audio, Speech and Lang. Proc., pp. 14–22, 2012.

[74] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approximation ap-
proach to stochastic programming,” SIAM Journal on Optimization, vol. 19, no. 4, pp. 1574–
1609, 2009.

[75] A. Nemirovski, “Prox-method with rate of convergence o(1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems,” SIAM Journal on Optimization, vol. 15, no. 1, pp. 229–251, 2004.

[76] A. Nemirovsky and D. B. Yudin, “Problem complexity and method efficiency in optimiza-
tion (a. s. nemirovsky and d. b. yudin),” SIAM Review, vol. 27, no. 2, pp. 264–265, 1985.

185

https://arxiv.org/abs/1810.04207

[77] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math. Program., vol. 103,
no. 1, pp. 127–152, 2005.

[78] Y. Nesterov, “Dual extrapolation and its applications to solving variational inequalities and
related problems,” Math. Program., vol. 109, no. 2-3, pp. 319–344, 2007.

[79] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization prob-
lems,” SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–362, 2012.

[80] Y. Nesterov, “Gradient methods for minimizing composite functions,” Mathematical Pro-
gramming, vol. 140, no. 1, pp. 125–161, 2013.

[81] Y. Nesterov, Lectures on convex optimization. Springer, 2018.

[82] M. Nouiehed, M. Sanjabi, J. D. Lee, and M. Razaviyayn, “Solving a class of non-convex
min-max games using iterative first order methods,” arXiv preprint arXiv:1902.08297,
2019.

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Ma-
chine Learning Research, vol. 12, pp. 2825–2830, 2011.

[84] N. H Pham, L. M Nguyen, D. T Phan, and Q. Tran-Dinh, “Proxsarah: An efficient al-
gorithmic framework for stochastic composite nonconvex optimization,” arXiv preprint
arXiv:1902.05679, 2019.

[85] S. A. Plotkin, D. B. Shmoys, and É. Tardos, “Fast approximation algorithms for fractional
packing and covering problems,” Math. Oper. Res., vol. 20, no. 2, pp. 257–301, 1995.

[86] B. Polyak, “A general method of solving extremum problems,” Soviet Mathematics Dok-
lady, vol. 8(3), 593–597, 1967.

[87] H. Rafique, M. Liu, Q. Lin, and T. Yang, “Non-convex min-max optimization: Provable
algorithms and applications in machine learning.,” arXiv preprint arXiv:1810.02060, 2018.

[88] B. D. Rao and K. Kreutz-Delgado, “An affine scaling methodology for best basis selec-
tion,” IEEE Transactions on Signal Processing, vol. 47, no. 1, pp. 187–200, Jan. 1999.

[89] S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. J. Smola, “Stochastic variance reduction
for nonconvex optimization,” International Conference on Machine Learning, pp. 314–
323, 2016.

[90] H. Robbins and D. Siegmund, “A convergence theorem for non negative almost super-
martingales and some applications,” Optimizing Methods in Statistics, pp. 111–135, 1971.

186

[91] G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and P. Song, “Parallel and dis-
tributed methods for constrained nonconvex optimization-part ii: Applications in commu-
nications and machine learning,” IEEE Transactions on Signal Processing, vol. 65, no. 8,
pp. 1945–1960, 2017.

[92] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

[93] O. Shamir, “Distribution-specific hardness of learning neural networks,” CoRR, 2016.

[94] X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-concave programming,” in
2016 IEEE 55th Conference on Decision and Control (CDC), 2016, pp. 1009–1014.

[95] X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-concave programming,” in
2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016, pp. 1009–1014.

[96] J. Sherman, “Area-convexity, l8 regularization, and undirected multicommodity flow,” in
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, 2017, pp. 452–460.

[97] L. Song, S. Vempala, J. Wilmes, and B. Xie, “On the complexity of learning neural net-
works,” CoRR, 2017.

[98] Y. Sun, P. S. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal
processing, communications, and machine learning,” IEEE Transactions on Signal Pro-
cessing, vol. 65, no. 3, pp. 794–816, 2017.

[99] H. L. Thi, T. P. Dinh, H. Le, and X. Vo, “Dc approximation approaches for sparse opti-
mization,” European Journal of Operational Research, vol. 244, no. 1, pp. 26–46, 2015.

[100] H. A. L. Thi and T. P. Dinh, “DC programming and DCA: Thirty years of developments,”
Mathematical Programming, vol. 169, no. 1, pp. 5–68, 2018.

[101] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[102] M. J. Wainwright, “Sharp thresholds for high-dimensional and noisy sparsity recovery us-
ing `1-constrained quadratic programming (lasso),” IEEE transactions on information the-
ory, vol. 55, no. 5, pp. 2183–2202, 2009.

[103] D. Wang, S. Rao, and M. W. Mahoney, “Unified acceleration method for packing and
covering problems via diameter reduction,” in 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, 2016, 50:1–
50:13.

187

[104] X. Wang, S. Ma, and Y. Yuan, “Penalty methods with stochastic approximation for stochas-
tic nonlinear programming,” Mathematics of Computation, vol. 86 (306), pp. 1793–1820,
2017.

[105] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh, “Spiderboost: A class of faster variance-
reduced algorithms for nonconvex optimization,” arXiv preprint arXiv:1810.10690, 2018.

[106] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero-norm with linear
models and kernel methods,” The Journal of Machine Learning Research, vol. 3, pp. 1439–
1461, 2003.

[107] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse reconstruction by separable
approximation,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2479–2493,
2009.

[108] L. Xiao and T. Zhang, “A proximal stochastic gradient method with progressive variance
reduction,” SIAM Journal on Optimization, vol. 24, no. 4, pp. 2057–2075, 2014.

[109] Y. Xu, “Iteration complexity of inexact augmented lagrangian methods for constrained
convex programming,” Mathematical Programming, 2019.

[110] Y. Xu, “Iteration complexity of inexact augmented lagrangian methods for constrained
convex programming,” arXiv preprint arXiv:1711.05812, 2017.

[111] N. E. Young, “Sequential and parallel algorithms for mixed packing and covering,” in
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, 2001, pp. 538–546.

[112] N. E. Young, “Nearly linear-time approximation schemes for mixed packing/covering and
facility-location linear programs,” CoRR, vol. abs/1407.3015, 2014. arXiv: 1407.3015.

[113] H. Yu, M. Neely, and X. Wei, “Online convex optimization with stochastic constraints,”
Advances in Neural Information Processing Systems, pp. 1428–1438, 2017.

[114] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning
requires rethinking generalization,” CoRR, 2016.

[115] C.-H. Zhang, “Nearly unbiased variable selection under minimax concave penalty,” Annals
of Statistics, vol. 38, no. 2, pp. 894–942, 2010.

[116] C.-H. Zhang, J. Huang, et al., “The sparsity and bias of the lasso selection in high-dimensional
linear regression,” The Annals of Statistics, vol. 36, no. 4, pp. 1567–1594, 2008.

[117] C.-H. Zhang and T. Zhang, “A general theory of concave regularization for high-dimensional
sparse estimation problems,” Statistical Science, vol. 27, no. 4, pp. 576–593, 2012.

188

https://arxiv.org/abs/1407.3015

[118] P. Zhao and B. Yu, “On model selection consistency of lasso,” Journal of Machine learning
research, vol. 7, no. Nov, pp. 2541–2563, 2006.

[119] D. Zhou, P. Xu, and Q. Gu, “Stochastic nested variance reduction for nonconvex opti-
mization,” in Proceedings of the 32Nd International Conference on Neural Information
Processing Systems, ser. NIPS’18, Montréal, Canada: Curran Associates Inc., 2018,
pp. 3925–3936.

[120] E. Zurel and N. Nisan, “An efficient approximate allocation algorithm for combinato-
rial auctions,” in Proceedings 3rd ACM Conference on Electronic Commerce (EC-2001),
Tampa, Florida, USA, October 14-17, 2001, 2001, pp. 125–136.

189

VITA

Digvijay Boob was born on July 10, 1993 in Jalgaon, Maharashtra, India. He obtained his B.S. in

Mechanical Engineering from Indian Institute of Technology, Bombay in 2014. He then worked as

a high frequency trader for a year in Singapore. In August 2015, he enrolled at Georgia Institute of

Technology. He completed his Ph.D. degree in the interdisciplinary Algorithms, Combinatorics,

and Optimization program with home unit in Industrial and Systems Engineering department in

July 2020. He became an assistant professor in the Engineering Management, Information, and

Systems department at Southern Methodist University since August 2020.

190

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Computational Complexity
	Complexity Theory for Convex Optimization
	Composite convex optimization

	Convex Optimization under a Stochastic First-order Oracle
	Unified method for stochastic composite convex optimization

	Advances in Convex Function Constrained Optimization
	Advances in Composite Nonconvex Optimization
	Organization of the Thesis

	Complexity of Training ReLU Neural Network
	Introduction to Neural Networks
	Complexity of training neural networks
	 Complexity of training neural network with rectified linear unit (ReLU) activation function
	Our Contributions

	Notation and Definitions
	Main Results
	Training 2-ReLU NN is NP-hard
	Reduction

	Discussion
	Proofs of Auxiliary Results
	Proof of Theorem 2.4.3
	Proof of Proposition 2.4.4
	Proof of Lemma 2.5.6
	Proof of Lemma 2.5.5
	Proof of Proposition 2.5.8
	Proof of Proposition 2.7.2
	Proof of Lemma 2.5.9
	Proof of Corollary 2.5.11

	Stochastic First-order Method for Convex Function Constrained Optimization
	Convex Function Constrained Optimization Problem
	Algorithms for solving convex function constrained optimization
	Unified algorithm for composite convex function constrained optimization

	Notation and Terminologies
	Constraint Extrapolation Method
	Convergence analysis of the ConEx method

	Stochastic Proximal Point method for Structured Nonconvex Function Constrained Optimization
	Structured Nonconvex Function Constrained Optimization
	Algorithms in the literature
	New method for solving structured nonconvex function constrained optimization
	Notation and terminologies

	Proximal Point Methods for Nonconvex Function Constrained Problems
	Exact proximal point method
	Inexact proximal point method

	Proofs of Auxiliary Results
	Proof of Proposition 4.2.1

	Level Proximal Point Method for Nonconvex Sparse Constrained Optimization
	Nonconvex Sparse Constrained Optimization
	Existing models
	A new model for nonconvex sparse constrained optimization
	New algorithm for the proposed new model
	Existing methods similar to the proposed algorithm

	Level Constrained Proximal Point Method
	Convergence Analysis
	Asymptotic convergence of LCPP method and boundedness of the optimal dual
	Complexity of LCPP method

	Numerical Experiments
	Auxiliary results
	Existence of KKT points
	Proof of Theorem 5.3.1
	Proof of Theorem 5.3.2
	Explicit and specialized bounds on the dual
	Proof of Theorem 5.3.3
	Proof of Corollary 5.3.5
	Convergence for the (stochastic) convex case
	Proof for the projection algorithm for problem (5.11)
	Supermartingale convergence theorem

	Faster Width-dependent Algorithm for Mixed Packing and Covering LPs
	Mixed Packing and Covering LPs
	Previous work
	Our contributions

	Notation and Definitions
	Technical overview
	The barrier

	Area Convexity for Mixed Packing Covering LPs
	Saddle Point Formulation for MPC
	Area Convexity with Saddle Point Framework
	Choosing an area convex function

	Proof of auxiliary results
	Proof of Lemma 6.3.1
	Proof of Lemma 6.4.2
	Proof of Lemma 6.4.4
	Proof of Lemma 6.4.5
	Proof of Proposition 6.4.6
	Proof of Lemma 6.4.7
	Proof of Lemma 6.4.8
	Proof of Theorem 6.4.9
	Proof of Lemma 6.4.10
	Proof of Lemma 6.4.12
	Proof of width reduction for the MPC problem

	References
	Vita

