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SUMMARY

In this thesis, we investigate various optimization problems motivated by applications in modern-
day machine learning. In the first part, we look at the computational complexity of training ReLU
neural networks. We consider the following problem: given a fully-connected two hidden layer
ReLU neural network with two ReLU nodes in the first layer and one ReLU node in the second
layer, does there exists weights of the edges such that neural network fits the given data? We show
that the problem is NP-hard to answer. The main contribution is the design of the gadget which
allows for reducing the Separation by Two Hyperplane problem into ReLLU neural network training
problem.

In the second part of the thesis, we look at the design and complexity analysis of algorithms for
function constrained optimization problem in both convex and nonconvex settings. These prob-
lems are becoming more and more popular in machine learning due to their applications in multi-
objective optimization, risk-averse learning among others. For the convex function constrained
optimization problem, we propose a novel Constraint Extrapolation (ConEx) method, which uses
linear approximations of the constraint functions to define the extrapolation (or acceleration) step.
We show that this method is a unified algorithm that achieves the best-known rate of conver-
gence for solving different function constrained convex composite problems, including convex or
strongly convex, and smooth or nonsmooth problems with a stochastic objective and/or stochastic
constraints. Many of these convergence rates were obtained for the first time in the literature. Be-
sides, ConEx is a single-loop algorithm that does not involve any penalty subproblems. Contrary
to existing dual methods, it does not require the projection of Lagrangian multipliers onto a (possi-
bly unknown) bounded set. Moreover, in the stochastic function constraint setting, this is the first
method that requires only bounded variance of the noise; a major relaxation over the restrictive
assumption of subgaussian noise in the existing algorithms.

In the third part of this thesis, we investigate a nonconvex nonsmooth function constrained op-

timization problem, where we introduce a new proximal point method which transforms the initial

X1v



nonconvex problem into a sequence of convex function constrained subproblems. For this algo-
rithm, we establish the asymptotic convergence as well as the rate of convergence to KKT points
under different constraint qualifications. For practical use, we present inexact variants of this algo-
rithm, in which approximate solutions of the subproblems are computed using the aforementioned
ConEx method and establish their associated rate of convergence under a strong feasibility con-
straint qualification.

In the fourth part, we identify an important class of nonconvex function constrained problem
for statistical machine learning applications where sparsity is imperative. We consider various
nonconvex sparsity-inducing constraints. These are tighter approximations of ¢y-norm compared
to /1-norm convex relaxation. For this class of problems, we relax the requirement of strong feasi-
bility constraint qualification to a weaker and a well-known constraint qualification and still prove
convergence to KKT points at the rate of gradient descent for nonconvex regularized problems.
This work performs a systematic study of the structure of nonconvex sparsity inducing constraints
to obtain bounds over Lagrange multipliers and solve certain subproblems faster to achieve con-
vergence rate that matches the rates of nonconvex regularized version under a relaxed constraint
qualification which is satisfied by almost all the time.

In the fifth part, we present a faster algorithm for solving mixed packing and covering (MPC)
linear programs. The proposed algorithm is from a family of primal-dual type algorithm, similar
to ConEx. Here, the main challenge comes from the feasible set of the primal variables which is
(-, ball for a general MPC. The diameter of the ball is at least €2(1/n), where n is the dimension of
LP. This huge diameter also costs in the complexity. We give specialized treatment to this problem
and use a new regularization function which is weaker than the strongly convex function and still
obtains accelerated convergence rate. Using this regularizer, we replace the poly(n) term in the

complexity to a logarithmic term.

XV



CHAPTER 1
INTRODUCTION

In this chapter, we introduce some background on computational complexity as well as complexity
theory for convex optimization which motivated the systematic study of decision and optimization

problems.

1.1 Computational Complexity

Computational complexity theory focuses on systematically classifying computational problems
into various complexity classes based on their inherent difficulty. A computational problem is
solved by a computer and is solvable by the application of predefined mathematical steps, i.e., an
algorithm. The notion of inherent difficulty is formalized by the amount of resources needed to
solve them, such as time and storage, which is known as time complexity and space complexity,
respectively. A complexity class is a set of problems with related complexity. The role of compu-
tational complexity theory is to determine the practical limits of what computers can and cannot
do.

A detailed study of various models of computation is beyond the scope of this chapter. Here,
we just state a brief overview of some key complexity classes and the formalism that determines
whether a problem belongs to a particular complexity class. In particular, we are interested in
four complexity classes for this introduction: P, NP, NP-complete, and NP-hard. Informally, P is a
class of problems that can be solved given a deterministic set of rules in O(poly(n)) computations
where n is the size of the input, defined appropriately for each problem. The problems in class
P are supposed to be efficiently solvable problems. NP is a class of problems that can be solved
by the non-deterministic set of rules in time O(poly(n)). It is clear from the description that P is
contained in NP. NP-complete is a set of problems that are the hardest in the NP class. This class of

problems was introduced by Cook-Levin theorem. To discuss this theorem, the notion of reduction
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Figure 1.1: Complexity classes P, NP, NP-complete, and NP-hard

becomes important.

Suppose that Problem X and Problem Y are the two classes of problems. We say that Problem
Y can be reduced to Problem X if there is a deterministic polynomial-time method that converts
a general instance of Problem Y into a specific instance of Problem X, which is mathematically
denoted as Y <p X. Naturally, if there is an algorithm to solve Problem X in polynomial time, then
there is an algorithm to solve any general instance of Problem Y. In other words, Y <p X implies
that Problem X is at least as hard as Problem Y. Cook and Levin independently showed that any
problem in NP can be reduced to a set of problems that are called today as NP-complete. Hence,
the NP-complete class is the set of hardest problems in the complexity class NP.

NP-hard class is the set of problems that are at least as hard as any problem in NP. Note that
they may not be in NP at all. By this description, the simplest way to prove that Problem X is NP-
hard is to reduce a general instance of a known NP-complete problem to a particular instance of
Problem X in polynomial time. We will use this simple procedure to prove that a certain decision
problem related to the training of a neural network is NP-hard. It should be noted that many
problems in NP-hard are known to be solved up to some constant approximation ratio or even up
to any approximation ratio in polynomial-time. Please refer to Figure 1.1 which summarizes our

discussion of the complexity classes.



1.2 Complexity Theory for Convex Optimization

In the previous section, we presented computational complexity theory whose mathematical mod-
els of computation are useful for decision problems or sometimes even search problems. How-
ever, continuous optimization problems require different models of computation for analyzing their
complexity in a meaningful way. In this section, we will look at the complexity theory for general
convex optimization problems and understand the limits of what is achievable with commonly used
oracles for convex optimization.

A general convex optimization problem can be written as

ffr=min fy(z)
reX 0 (11)

subjectto  fi(z) <0,i=1,...,m,

where X < R” is a convex compact set with nonempty interior, the objective f; and constraints
fi,i =1,...,m, are convex continuous functions over X. Let us also assume that convex program
(1.1) is feasible and class of such problems is denoted by C,,(X). Then feasibility assumption
along with compactness of X implies optimal value of (1.1) must be attained at some feasible
solution, i.e., (1.1) is solvable. We identify an instance of C,,,(X) by Z = [X, fo, fi,- -, fm]- A
first order oracle G for the class of convex programs, takes an instance Z and a point x € int X,
outputs the values and subgradients of the objective and constraints at the point x. In particular, G

(n+1)x(m+1

can be defined as a map from X to R ) given by

r— G(z;I) = [fol@), fo(x); f(@), fi(z); .5 fnl@), fra(@)].

Suppose that a solution mechanism M, applied to instance Z, calls the oracle G sequentially
with input x;, the i-th search point. In the first iteration, the search point x; is generated without
any information but the ¢-th search point is generated using accumulated information of the search

points already visited. The mechanism can also perform a termination test during the run. How-



ever, the test must depend on the information given by the oracle, G. The final output of mechanism
M on instance Z is denoted by z(Z, M). Now that we have introduced sufficient notation, we are
ready to talk about complexity for convex optimization. The total number of steps performed by
mechanism M, applied to instance Z, is called the iteration complexity. By iteration complexity,
we mean that each iteration involving the evaluation of G at a certain point, and then doing some
simple computation to get the next iterate is considered to be the unit cost. This mode of compu-
tation is commonplace for complexity measures involving iterative methods of which mechanism
M is an instance. In fact, the use of iterative methods is so mainstream that we denote iteration
complexity by just complexity whenever we talk about continuous optimization. We denote the
complexity of M on instance Z by Compx(,M,Z). This quantity can be +oo if the mechanism
does not terminate on instance Z. Accordingly, we define the complexity of M on the family
Cm(X) as

Compx(M) := sup Compx(M,T).
TeCm (X)

Note that algorithms for convex optimization cannot solve problem (1.1) exactly. However, they
can obtain an approximate solution that is reasonably close to the optimal. The closeness to the
optimality is denoted by an accuracy measure. Let us denote the accuracy of the solution z € X

for instance Z by,

folx) — f* LA@)], [fm(@)], } (12)

) = )T e )] maxex [fn(w)],

where | - |, := max{z, 0}. We define the accuracy of M applied to instance Z by the accuracy of
its output z(M, 7), i.e.,
Accurc(M,T) := e(Z(M,1);I),

and the accuracy of mechanism M applied to the whole family C,,(X) by

Accurc(M) := sup e(x(M,I);T).
ZeCm(X)



Finally, the complexity of the family C,,(X) is defined as the best complexity of a mechanism

based on oracle G, for solving problems from this family with a given accuracy, i.e.,
Compx () = n/l\iln{Come(M) : Accurc(M) < e}.

Now we look at the lower and upper bounds on the complexity. A lower bound on Compx(¢)
means for whatever algorithm solving problems in C,,(X), there always exists a ‘bad’ problem
instance such that number of iterations performed by these algorithms is at least Compx(g). An
upper bound on Compx(¢) is the number of steps of a particular algorithm that returns a solution
of given accuracy for all problems in C,,(X).

To discuss a major result providing a lower bound for problem class C,,(X), we introduce
one more notion, called as asphericity v of X. This term essentially tells how X differs from an
Euclidean ball. In particular, the asphericity « is defined as the smallest ratio of radii of two con-
centric Euclidean balls V; and V, such that V; € X < V. Below we state the result by Nemirovski
and Yudin [76] that provides lower and upper bounds for solving general convex programming

problems.

Theorem 1.2.1 The complexity of the family C,,(X) of general convex programming problems
with m constraints over a convex compact set X € R" of asphericity k can be bounded by

. 1 4k?
min< n, W < Compx(e) < = | 0<e<l.

We now make the following comments about the above result. First, the upper bound on Compx ()
is obtained by the simple subgradient method. For fixed «, this upper bound is dimension inde-
pendent. Second, for high-dimensional problems, i.e., n > {ﬁJ, the lower bound is only a
constant factor smaller than the upper bound. Therefore the subgradient method is already optimal
for large-scale convex programming problems C,,(X). The only way to improve the performance

of an algorithm is to develop specialized algorithms for important subclasses of C,,,(X). In the

next subsection, we will see an optimal method for convex optimization.
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1.2.1 Composite convex optimization

In this section, we discuss the convex optimization problem

min{y(z) := f(z) + x(z)}, (1.3)

reX

where we impose the requirement that f : X — R has Lipschitz continuous gradients, i.e.,

IVf(z) = VWl < Lz -yl

||, denotes the dual norm and Y is a convex, possible nonsmooth function

for all z,y € X. Here,
satisfying

Ix(z) = x(y)| < M|z -yl

Hence, (1.3) is a general nonsmooth convex optimization problem. However, there is an additional
structure to the problem since we assume that, f, a component of the objective function is Lips-
chitz smooth. Lipschitz smooth means gradients are Lipschitz continuous. Since the objective is
composed of two convex components hence, we say that this is a composite convex optimization
problem.

Observe that problem (1.3) covers several important classes of convex programming problems
as certain special cases. For the sake of simplicity, we assume in the following discussion that the
domain X is a standard Euclidean ball.

Non-smooth convex optimization: Suppose that the smooth component f = 0 in ¢). Then,
problem (1.3) becomes the generic non-smooth convex optimization problem that has been well-
studied in the literature. According to Nemirovski and Yudin [76], if the dimension 7 is sufficiently

large, then the complexity of any iterative algorithm satisfied the lower bound

2

Compx(e) > -



Moreover, the simple subgradient descent method can achieve, up to a constant factor, the above
lower bound. Nemirovski and Yudin [76] also developed the mirror descent algorithm that can
be advantageous over the subgradient descent method when X is not a Euclidean ball by using a
prox-function (also called Bregman’s distance. More on this will come later).

Smooth convex optimization: Suppose that the non-smooth component y = 0 in ¢). Then,
problem (1.3) becomes the smooth convex optimization problem. In [76], Nemirovski and Yudin

show that, if the dimension n is sufficiently large, then the complexity of any iterative algorithm

I\ 12
Compx(g) > <—) .

€

can be lower bounded by

In a major work, Nesterov [Neste] showed an upper bound on the complexity which at most con-
stant factor worse than the aforementioned lower bound. Hence, it is an optimal method. Nes-
terov’s method was further studied using Bregman distance in [blah]. However, it is unclear
whether the method converges in presence of nonsmooth component Y.

Finally, note that subgradient method when applied to composite convex optimization has the

complexity upper bound
L? + M?

Compx(e) < =

Y

whose dependence on Lipschitz constant L is suboptimal. In particular, a trivial lower bound on

complexity of (1.3) from [76] is

L M?

1/2
C >(2) +=-
ompx(¢) <5) =

This motivated study of a specialized method that has unified convergence for composite problem
(1.3) which we will look in Section 1.3.1. Nesterov’s optimal method for smooth problems In the

next section, we look at convex optimization with stochastic first-order oracle.



1.3 Convex Optimization under a Stochastic First-order Oracle

In the previous section, we reviewed some important results for convex optimization under exact
first-order information. In many situations, the information returned by the first-order oracle is
inexact. One prominent example is given in the following stochastic programming problem:

min{f(z) := E[F(x,€)]}, (1.4)

zeX

where ¢ is a random vector whose probability distribution P is supported on set = — R? and
F : X x Z — R. We assume that for every ¢ € Z, the function F'(-, £) is convex on X, and that

the expectation

BIF(2.¢)] = | Fle.)dP() (1.5
is well defined and finite valued for every x € X. It follows that the function f(-) is convex and
finite valued on X. Moreover, we assume that f is continuous on X . With these assumptions, (1.4)
becomes a convex programming problem.

A difficulty of solving stochastic convex problem (1.4) is that the objective is written as an
expectation function for which exact zeroth and first-order oracles may not exist. Moreover, eval-
uating integral in (1.5) cannot be computed efficiently to the required accuracy for high dimension
d. Hence, a common notion is to assume existence of stochastic oracle SO, which we describe
next. At iteration ¢ of the algorithm, z; € X being the input, the SO outputs a vector G(x, &),
where {{;};>1 is a sequence of i.i.d. random variables (also independent of search points x;) whose
probability distribution P is supported on = < R? Following assumptions are made on Borel

functions G(z, &;).

For any z € X, we have

E[G(z,&)] = g(x) € 0f (x),

E[||G(2,&) — g(@)|3] < o?,



where Jf(x) denotes the subdifferential of f at x. Note that we assume that we can obtain an
unbiased estimator of the subgradient whose second moment is uniformly bounded.

There exist two competing approaches for solving (1.4): stochastic approximation (SA) and
sample average approximation (SAA), both of which have a long history. Given the vast amount
of literature, we focus on just one work which is relevant for our discussion here. Recently, [74]
demonstrated that a properly modified SA method with iterate averaging can be competitive and
even outperform SAA approach for a certain class of stochastic problems. Moreover, this algorithm
exhibits unimprovable rate of convergence E[f(zy) — f*] < O (%) where M is the modulus
of Lipschitz continuity of f. Note that the term \/—MN inside the convergence rate is equivalent to ]\E/[—;
upper bound on the complexity Compx(e).

In the last section, we briefly discussed that subgradient method converges optimally for gen-
eral nonsmooth problems however has suboptimal dependence on Lipschitz constant for Lipschitz
smooth component of the composite optimization problem. In the next subsection, we describe
another method which exhibits unified convergence complexity for both smooth and nonsmooth
components which can be stochastic as well. Such unified complexity results show the benefits of
a systematic study of complexity analysis. Indeed the search for methods with faster convergence
such as Nesterov’s optimal method for smooth convex optimization or unified complexity results

in the upcoming section were motivated by the lower bound on the complexity as described in

Nemirovski and Yudin [76].

1.3.1 Unified method for stochastic composite convex optimization

Here, we consider the composite optimization problem (1.3) along with stochastic first-order oracle
information for function v satisfying the aforementioned assumptions of SO. This problem is
referred to as stochastic composite optimization problem.

In the following, we describe Lan’s accelerated stochastic approximation (AC-SA) [Lan-ACSA]
algorithm which exhibits unified and optimal convergence complexity for stochastic composite op-

timization problem. Note that the complexity for stochastic composite optimization can be lower



bounded by

LN M? 4 o2
Compx(e) > | — + i,
€ €2

where we change the notion of accuracy in (1.2) to the expectation notion

e(z,1) :=Ef(z) - f7,

where the expectation over z, assumed to be the output of a stochastic algorithm. Note that ex-
pected optimality gap is a natural criterion for error in stochastic convex optimization. since the
solution output by a stochastic algorithm is essentially a random variable. For the time being, we
also ignore the function constraints in the definition of accuracy. AC-SA method achieved an upper
bound on the complexity which is at most a constant factor worse than the lower bound mentioned
above.

AC-SA method is motivated by two different algorithms which were developed separately
for solving two different classes of problem. First inspiration comes from Mirror Descent SA
which is optimal for nonsmooth and stochastic convex optimization, and secondly from Nesterov’s
accelerated method which is optimal for smooth convex optimization. Without further ado, let us

see the AC-SA algorithm.

Accelerated Stochastic Approximation (AC-SA) method:

0. Letx}? = 21 € X. Sett = 1.

2. Call SO to compute G(x"?, &,). Compute (7441, 277,) € X x X as

1
min ——5(Glaf™, ), 3) + 5w — il
xe

2 +t—l
11 3T

.2
Tyl = argmin

ag

_ ag
T T

[Et.
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3. Sett <t + 1 and go to step 1.

The main convergence result for AC-SA method is the following:

Theorem 1.3.1 Suppose v in AC-SA algorithm is set to v = min{i, (N+2)3/\2/g%+02)1/2 } where

Dx = max, yex||z — yl|, and N is a fixed in advance number of iterations. Then, we have

ALD%:  4Dy+/4M? + o2

E[¢(x?€+l) - ¢*] < N(N + 2) \/N

It is not difficult to observe that the upper bound on the complexity, i.e., V. for obtaining E[¢ (2%, ;) —

1/2 2 2
Compx(e) < N, < O(l){ (£> + M}

¥*] < e is at most

€ g2
Note that the problem addressed by AC-SA does not contain function constraint. In fact, tra-
ditionally most studies on function constrained optimization (with possibly nonconvex objective
and constraints) were focused on obtaining an asymptotic convergence result. We will look at this
quite general case in Section 1.5. However, there are some convergence results for convex function

constrained optimization which we will discuss briefly in the next section.

1.4 Advances in Convex Function Constrained Optimization

There are various methods for solving convex function constrained optimization with provable
convergence guarantees. We divided them into three separate categories.

First, there are primal methods that do not involve Lagrange multipliers of the constraints
functions. A notable example of this category is the level-set method due to Nesterov [61, 81]
which considers the case of nonsmooth and smooth deterministic function constrained optimization
problem separately. More recently, [lin2020] extended level-set method for nonsmooth stochas-
tic problems. Another type of primal method includes cooperative subgradient method which
was first introduced by Polyak [86] and later extended for stochastic problems in [60]. Note that

in both [lin2020, 60], the stochastic oracle requires a subgaussian tail which is a quite restric-
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tive assumption than the bounded second moment oracle used in AC-SA. Moreover, these primal
methods don’t make the best use of smooth components of the objective/constraints and hence can-
not achieve a unified complexity result like AC-SA with accelerated convergence for the smooth
part. This problem resembles that of the subgradient method which is optimal for nonsmooth op-
timization problems but has worse than optimal dependence on Lipschitz constant when a smooth
component is present.

The second category consists of augmented Lagrangian and penalty methods. The first non-
asymptotic convergence result for these methods was shown in a series of papers [54, 55] for linear
constraints and general convex objective. This linearity assumption on constraints was relaxed in
[110]. However. all of these methods deal with smooth deterministic optimization problems and
hence, the problem class is quite restrictive.

The Third category consists of primal-dual methods, Here, the constrained optimization prob-
lem is converted into an equivalent saddle point reformulation and is solved using primal-dual
methods such as mirror-prox [75] or a recent primal-dual method proposed in [45]. In particular,
for problem (1.1) the Lagrangian saddle point reformulation has the following form:

min max {£(z,y) = fo(z) + 2,y fi(2)}. (1.6)

zeX y=0

The main challenge in the use of these algorithms is that they may not converge directly for the
saddle point formulation in (1.6) since the domain of the dual variable, y, is unbounded. In particu-
lar, for general convex-concave saddle point problem, primal-dual type algorithms converge under
the assumption that

IVaL(z1,y) = VoL, y)ll, < Llz1 — 32,

for all 1,25 € X and y > 0. It is clear that a constant L satisfying uniform upper bound above
for saddle point problem (1.6) does not exist for any nonlinear convex function since domain of y
is unbounded. Hence, primal-dual method require bounding the dual feasible such that at least one

optimal dual solution of (1.6) is contained sufficiently inside the dual feasible set, which may not
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be possible in general. Moreover, primal-dual methods are not known to converge for nonsmooth
or stochastic function constrained optimization problem.

In Chapter 3, we will see a primal-dual method which just modifies an existing slightly and
answers quite a few open problems regarding general function constrained optimization. It gives a
unified complexity result, a first for (1.1) with accelerated convergence for Lipschitz smooth com-
ponents. It also gives convergence under bounded second moment oracle for stochastic component
and its convergence rate on the stochastic component is optimal. Moreover, this method does not
require the aforementioned boundedness of the dual feasible set and can directly deal with the (1.6)
as well as nonsmooth problems. We will see more elaborate discussion in Chapter 3.

Another closely related problem for is that when instead of the dual feasible set, the primal fea-
sible set is quite large. This problem arises in certain linear programs associated with fundamental
problems in combinatorial optimization. In particular, when primal set X in (1.6) is an ¢, ball
then the diameter of this set cannot be ignored. For such problems, even though convergence can
be obtained using standard method, the diameter of ¢, ball adds another /n factor, where n is the
dimension of LP. This can be a huge factor for most LPs of practical interest. Here, we need more
specialized attention to deal with this well-known ¢.,-barrier. We will look at this problem in more
detail in Chapter 6.

For now, we shift our focus back to the brief overview of nonconvex optimization.

1.5 Advances in Composite Nonconvex Optimization

In this section, we consider the following composite optimization problem:

ml)I(l Yo(z) == fo(z) + xo(x)
ze (1.7)

s.t. Yi(x) = filx) + xi(x) <0, i=1,...,m,

where fo : X — Rand f; : X — R, ¢ = 1,...,m are continuous functions which are not

necessarily convex but satisfy that gradients are Lipschitz continuous and y; : X — R are convex,
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possibly nonsmooth functions.

The past few years has also seen a resurgence of interest in the design of efficient algorithms
for nonconvex stochastic optimization, especially for stochastic and finite-sum problems due to
their importance in machine learning. Most of these studies need to assume that the constraints are
convex, and focus on the analysis of iteration complexity, i.e., the number of iterations required
to find an approximate stationary point, as well as possible ways to accelerate such approximate
solutions.

If the nonconvex function constraints do not appear, one type of approach for solving (4.1) is to
directly generalize stochastic gradient descent type methods (see [38, 40, 89, 1, 35, 119, 105, 119,
105, 84, 53]) for solving problems with nonconvex objective functions. An alternative approach is
to indirectly utilize convex optimization methods within the framework of proximal-point methods
which transfer nonconvex optimization problems into a series of convex ones (see [44, 13, 36, 26,
50, 58, 87, 82]). While direct methods are simpler and hence easier to implement, indirect methods
may provide stronger theoretical performance guarantees under certain circumstances, €.g., when
the problem has a large conditional number, many components and/or multiple blocks [58].

However, if nonconvex function constraints ;(x) < 0 do appear in (4.1), the study on its so-
lution methods is scarce. While there is a large body of work on the asymptotic analysis and the
optimality conditions of penalty-based approaches for general constrained nonlinear programming
(for example, see [11, 71, 4, 3, 29] ), only a few works discussed the complexity of these methods
for solving problems with nonconvex function constraints [21, 104, 33]. However, these techniques
are not applicable to our setting because they cannot guarantee the feasibility of the generated solu-
tions, but a certain local non-increasing properties for the constraint functions. On the other hand,
the feasibility of the nonconvex function constraints appear to be important in certain problems of
interest.

In chapter 4, we will see some new algorithm for nonconvex algorithm. We will show asymp-
totic as well as rate of convergence results of this algorithm to a KKT-point. In order to talk about

KKT-condition, we will also introduce a subdifferential for nonsmooth nonconvex problem (1.7).
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We analyze convergence result under various constraint qualifications. The details of this algorithm

are bit involved so we will discuss them in more details in Chapter 4.

1.6 Organization of the Thesis

The thesis is organized as follows.

In Chapter 2, we explore some basic questions on the complexity of training neural networks
with ReLU activation function. We show that it is NP-hard to train a two-hidden layer feedforward
ReLU neural network. If the dimension of the input data and the network topology is fixed then
we show that there exists a polynomial-time algorithm for the same training problem. We also
show that if sufficient over-parameterization is provided in the first hidden layer of ReLU neural
network then there is a polynomial-time algorithm that finds weights such that output of the over-
parameterized ReLLU neural network matches with the output of the given data.

In Chapter 3, we present a novel Constraint Extrapolation (ConEx) method for solving convex
function constrained problems, which utilizes linear approximations of the constraint functions to
define the extrapolation (or acceleration) step. We show that this method is a unified algorithm
that achieves the best-known rate of convergence for solving different function constrained convex
composite problems, including convex or strongly convex, and smooth or nonsmooth problems
with a stochastic objective and/or stochastic constraints. Many of these rates of convergence were
in fact obtained for the first time in the literature. Besides, ConEX is a single-loop algorithm that
does not involve any penalty subproblems. Contrary to existing primal-dual methods, it does not
require the projection of Lagrangian multipliers onto a (possibly unknown) bounded set.

In Chapter 4, we study the nonconvex function constrained optimization problem. We first
introduce a new proximal point method which transforms the initial nonconvex problem into a
sequence of convex function constrained subproblems. We establish the convergence and rate of
convergence of this algorithm to KKT points under different constraint qualifications. For practical
use, we present inexact variants of this algorithm, in which approximate solutions of the subprob-

lems are computed using the aforementioned ConEx method and establish their associated rate of
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convergence.

In Chapter 5, we study a constrained model for inducing sparsity. This model consists of a
general convex or nonconvex objective and a variety of continuous nonconvex (and nonsmooth)
sparsity-inducing constraints. For this constrained model, we propose a novel proximal point al-
gorithm that solves a sequence of convex subproblems with gradually relaxed constraint levels.
Each subproblem, having a proximal point objective and a convex surrogate constraint, can be effi-
ciently solved based on a fast routine for projection onto the surrogate constraint. We establish the
asymptotic convergence of the proposed algorithm to the Karush-Kuhn-Tucker (KKT) solutions.
We also establish new convergence complexities to achieve an approximate KKT solution when
the objective can be smooth/nonsmooth, deterministic/stochastic, and convex/nonconvex with the
complexity that is on a par with gradient descent when applied to nonconvex regularized prob-
lems. To the best of our knowledge, this is the first study of the first-order methods with complex-
ity guarantee for nonconvex sparse-constrained problems. We perform numerical experiments to
demonstrate the effectiveness of our new model and the efficiency of the proposed algorithm for
large scale problems.

In Chapter 6, we give a faster width-dependent algorithm for mixed packing-covering LPs.
Mixed packing-covering LPs are fundamental to combinatorial optimization in computer science
and operations research. Our algorithm finds a 1+ ¢ approximate solution in time O(Nw/¢), where
N is number of nonzero entries in the constraint matrix, and w is the maximum number of nonzeros
in any constraint. This algorithm is faster than Nesterov’s smoothing algorithm which requires
O(Ny/nw/e) time, where n is the dimension of the problem. The current best width-independent
algorithm for this problem runs in time O(N /?) [Young-arXiv-14] and hence has worse running
time dependence on . Many real life instances of mixed packing-covering problems exhibit small
width and for such cases, our algorithm can report higher precision results when compared to

width-independent algorithms.
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CHAPTER 2
COMPLEXITY OF TRAINING RELU NEURAL NETWORK

In this chapter, we study the computational complexity of training ReLLU neural networks. First,

we provide a brief introduction of neural networks and ReL.U neural networks.

2.1 Introduction to Neural Networks

Deep neural networks (DNNs) are functions computed on a graph parameterized by its edge
weights. More formally, the graph corresponding to a DNN is defined by input and output di-
mensions wy, wy € Z,, number of hidden layers k£ € Z., and a sequence of k£ natural numbers
wy, Wa, . . ., Wy, representing the number of nodes in each of the hidden k-layers. The function

computed on the DNN graphs is:
fi=1oapo---ocayoToa,

where o is function composition, 7 is a nonlinear function (applied componentwise) called as the
activation function, and a; : R*~1 — R"# are affine functions. Given the input and corresponding
output data, the problem of training a deep neural network can be thought of as determining the
edge weights of the directed layered graph for which output of the neural network matches the
output data as closely as possible. Formally, given a set of input and output data {(z*,y*)}¥,
where (z%,7") € R¥ x R“, and a loss function [ : R¥* x R¥ — R, (e.g., [ can be the square

loss function), the task is to determine the weights that define the affine function a;’s such that

PIUCIEOND @.1)

1s minimized.
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Some commonly studied activation functions are: threshold function, sigmoid function and
ReLU function. ReLU is one of the important activation functions used widely in applications.
However, the problem of complexity of training multi-layer fully-connected ReLU neural network
remained open. This is where we add our contributions. Before formally stating our results, we

take a look at the current state-of-the-art in the literature.

2.2 Complexity of training neural networks

First, we provide a brief overview of the complexity results for training neural networks with

threshold activation function. The threshold (sign) function is given by

1 ifz >0
sgn(z) 1= :
-1 ifx <0

It was shown by Blum et al. [15] that the problem of training a simple two layer neural network
with two nodes in the first layer and one node in the second layer while using threshold activation
function at all the nodes is NP-complete. The problem turns out to be equivalent to separation by
two hyperplanes which was shown to be NP-complete by Megiddo [72]. There are other hardness
results such as crypto hardness for intersection of k-hyperplanes which apply to neural networks

with threshold activation function [92, 49].

2.2.1 Complexity of training neural network with rectified linear unit (ReLU) activation function

Theoretical worst case results presented above, along with limited empirical successes led to
DNN'’s going out of favor by late 1990s. However, in recent times, DNNs became popular again
due to the success of first-order gradient based heuristic algorithms for training. This success
started with the work of [46] which gave an empirical evidence that if DNNs are initialized prop-
erly then we can find good solutions in reasonable runtime. This work was soon followed by
series of early successes of deep learning in natural language processing [24], speech recognition

[73] and visual object classification [52]. It was empirically shown by [114] that a sufficiently
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over-parameterized neural network can be trained to global optimality.

These gradient-based heuristics are not useful for neural networks with threshold activation
function as there is no gradient information. Even networks with sigmoid activation function fell
out of favor because gradient information is not valuable when input values are large[47]. The
popular neural network architecture uses ReLU activations on which the gradient based methods

are useful. Formally, the ReLU function is given by: [z]; := max(z,0).

Related literature As discussed before, most hardness results so far are for neural networks with
threshold activation function[15, 49, 92]. There are also limited results for ReLLU that we discuss
next: Recently, [65] examined RelLU activations from the point of view that two connected ReLU
nodes, when appropriately designed, yield an approximation to threshold function. Hence training
problem for such a class of ReLU network should be as hard as training a neural network with
threshold activation function. Similar results are shown by [25]. In both these papers, in order to
approximate the threshold activation function, the neural network studied is not a fully connected
network. More specifically, in the underlying graph of such a neural network, each node in the
second hidden layer is connected to exactly one distinct node in the first hidden layer, weight of
the connecting edge is set to —1 with the addition of some positive bias term. Figure 2.1 shows
the difference between ReLU network studied by [65, 25] and fully connected ReLLU network.
The architecture artificially restricts the form of the affine functions in order to prove NP-hardness.
In particular, it requires connecting hidden layer matrix to be a square diagonal matrix. Due to
this restriction, it was unclear whether allowing non-diagonal entries of the matrix to be non-zero
would make problem easy (more parameters hence higher power to neural network function) or
hard (more parameters so more things to decide).

Another line of research in understanding the hardness of training ReL U neural networks as-
sumes that the data is coming from some distribution. More recent works in this direction include
[93] which shows a smooth family of functions for which the gradient of squared error function

is not informative while training neural network over Gaussian input distribution. Another study
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(a) ReLU network studied in [65, 25] (b) Fully connected ReLU

Figure 2.1: Difference between ReLLU model studied in [65, 25] and typical fully connected coun-
terpart

in this line of work considers Statistical Query (SQ) framework [97] (which contains SGD algo-
rithms) and shows that there exists a class of special functions generated by single hidden layer
neural network for which learning will require exponential number of queries (i.e. sample gradient
evaluations) for the data coming from the product measure of the real valued log-concave distribu-
tion. These are interesting studies in their own right and generally consider hardness with respect
to the algorithms that use stochastic gradient queries and require that such algorithm must perform
minimization of the (expectation) objective functions. In comparison, we consider the framework
of NP-hardness which takes into account the complete class of the polynomial time algorithms,
generally assumes that the data is given and requires an optimal solution to the corresponding
empirical objective.

Recently, [6] showed that a single hidden layer ReLU network can be trained in polynomial
time when dimension of input, wy, is constant.

Based on the above discussion, we see that the status of the complexity of training the multi-
layer fully-connected ReLLU neural network remains open. Given the importance of the ReLU NN,

this is an important question. In this chapter, we take the first steps in resolving this question.

2.2.2  Our Contributions

e NP-hardness: We show that the training problem for a simple two hidden layer fully-connected
NN which has two nodes in the first layer, one node in the second layer and ReL U activa-
tion function at all nodes is NP-hard (Theorem 2.4.1). Underlying graph of this network is

exactly the same as that in Blum et al. [15] but all activation functions are ReLLU instead
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of threshold function. Techniques used in the proof are different from earlier work in the
literature because there is no combinatorial interpretation to ReLU as opposed to threshold

function.

Polynomial-time solvable cases: We present two cases where the training problem with
ReLU activation function can be solved in polynomial-time. The first case is when the
dimension of the input is fixed (Theorem 2.4.3). This result generalizes the result from [6]

and uses the hyperplane arrangement theorem for its proof.

We also observe that when the number of nodes in the first layer of the network is equal to
the number of input data points (Proposition 2.4.4) then there exists a polynomial time algo-
rithm. The proof of this fact follows from a simple observation that reduces the problem to
fitting a single hidden layer neural network and then applying the polynomial time algorithm
result for single hidden layer neural network in the work of [114] This is the highly over-
parameterized neural network setting. This result leads to some interesting open questions

that we discuss later.

2.3 Notation and Definitions

We use the following standard set notation [n] := {1,...,n}. Let a(x) = cI'z + ¢, be an affine

function, then we denote a as (cy, c2) wherever such a notation is necessary. For any scalar «, we

naturally denote affine function aa as (ac;, acz). The letter d generally denotes the dimension of

input data, /V denotes the number of data-points and unless explicitly specified, the output data is

one dimensional.

The main training problem of interest for the paper corresponds to a neural network with 3

nodes. The underlying graph is a layered directed graph with two layers. The first layer contains

two nodes and the second layer contains one node. The network is fully connected feedforward

network. One can write the function corresponding to this neural network as follows:

F(z) = [wy + wl[a1($)]+ + Wy [az(x)LL, (2.2)
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where a; : R? — R for i € {1,2} are real valued affine functions, and wg, w;,w, € R. The

Figure 2.2: (2,1)-ReLU Neural Network. Also called 2-ReLLU NN after dropping ‘1’. Here ReLU
function is presented in each node to specify the type of activation function at the output of each
node.

output of the two affine maps a4, ay are the inputs to the two ReLU nodes in first hidden layer of
network. The weights {wy, wy,w,} denote affine map for ReLU node in second layer. We refer to
the network defined in (2.2) as (2,1)-ReL.U Neural Network(NN). As its name suggests, it has 2
ReLU nodes in first layer and 1 ReLU node in second layer.

We will refer to (k, j)-ReLU NN as a generalization of (2,1)-ReLU NN where there are k
ReLU nodes in first layer and j ReLU nodes in second layer. Note that the output of (k, j)-ReLU
NN lies in R/,

If there is only one node in the second layer, we will often drop the “1” and refer it as a 2-ReLLU
NN or k-ReLLU NN depending on whether there are 2 or k£ nodes in the first layer, respectively.
Figure 2.2 shows 2-ReLLU NN.

Observation 2.3.1 Note that

wlaz + b]4 = sgn(w)[|w|(ax + )], = sgn(w)[az + b,

so without loss of generality we will assume w1, wq € {—1,1} in (2.2).

Now we formally state the definition of the decision version of the training problem.

Definition 2.3.1 (Decision-version of the training problem) Given a set of training data (x', ') €
R? x {1,0} for i € S, do there exist edge weights so that the resulting function F satisfies

F(2') =y forie S.
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The decision version of the training problem in Definition 2.3.1 is asking if it is possible to find
edge weights to obtain zero loss function value in the expression (2.1), assuming [/ is a norm i.e.

l(a,b) =0iffa = 0.

2.4 Main Results
Theorem 2.4.1 It is NP-hard to solve the training problem for 2-ReLU NN.

An immediate corollary of Theorem 2.4.1 is the following:

Corollary 2.4.2 Training problem of (2,j)-ReLU NN is NP hard, for all j > 1.

The proof of Theorem 2.4.1 is obtained by reducing the 2-Hyperplane Separability Problem to the
training problem of 2-ReLLU NN. Details of this reduction and the proof of Theorem 2.4.1 and
Corollary 2.4.2 are presented in Section 2.5.

After this work was finished, two more studies [70, 27] considered the computational com-
plexity of training a single ReLLU node and proved that it is a NP-hard problem. [70] also showed
that it is NP-hard to train one hidden layer neural network with two nodes and ReLLU activa-
tion at each node. This network basically removes the second layer ReLLU activation and affine
constant wyp in (2.2) so that neural network function of their case can be rewritten as F'(z) =
wi[ay(z)] Lt ws [as(z)] .- These are different network architectures and hence hardness of train-
ing any one of them does not necessarily imply hardness of training for remaining neural networks.

Megiddo [72] shows that the separability with fixed number of hyperplanes (generalization of
2-hyperplane separability problem) can be solved in polynomial-time in fixed dimension. There-
fore 2-hyperplane separability problem can be solved in polynomial time given dimension is con-
stant. Based on the reduction used to prove Theorem 2.4.1 , a natural question to ask is “Can one
solve the training problem of 2-ReLU NN problem in polynomial time under the same assump-

tion?”. We answer this question in the affirmative.
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Theorem 2.4.3 Under the assumption that the dimension of input, d and the number of nodes in
the first layer, k, are constant, then there exists a poly(N)-time solution to the training problem of

k-ReLU neural network, where N is the number of data-points.

The high-level idea of the proof is the following: each data point “passes through” the three ReLU
nodes and the activation function in these nodes is “turned on” or “turned off” (i.e., the output
is 0 or not). We will enumerate all possible combinations of the data points being turned on or
not, which we show is poly(N) assuming d and £ is fixed (by use of the Hyperplane Arrangement
Theorem). Then we show that for each of these combinations and for each possible sign pattern of
the weights defining the affine function applied at the second layer, corresponding optimal affine
functions can be calculated via solving one convex program of poly size. Finally, we select the best
optimal affine function which minimizes the loss function. Technique of Hyperplane Arrangement
Theorem to enumerate partition was used in [6] for proving poly(N)-time algorithms for single
hidden layer neural networks. We extend this result for £-ReLU neural network which is a two
hidden layer network. The complication due to second layer ReLU node are handled by solving
a convex program of poly size. We show the precise proof of Theorem 2.4.3 in Section 2.7.1.
We also study this problem under over-parameterization. Structural understanding of 2-ReLLU NN
yields an easy algorithm to solve training problem for N-ReLU neural network over N data points.

In fact, the problem can be easily reduced to a single hidden layer NN.

Proposition 2.4.4 Given data, {z',y'},c;n) (Where we assume that 's are distinct), then the train-
ing problem for N-ReLU NN has a poly(N,d)-time randomized algorithm, where N is the number

of data-points and d is the dimension of input.

Proof of this proposition first reduces the problem to training a single hidden layer network with
N nodes on dataset of size N. Then applies polynomial time algorithm for interpolating the data

from [114]. The precise details are in Section 2.7.2.
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2.5 Training 2-ReL U NN is NP-hard

In this section we give details about the NP-hardness reduction for the training problem of 2-ReLLU

NN. We begin with the formal definition of 2-Hyperplane Separability Problem.

Definition 2.5.1 (2-Hyperplane Separability Problem) Given a set of points {x'},c[n1 € R* and
a partition of [ N] into two sets: S1, Sy, (i.e. S NSy = I, S1 U Sy = [IN]) decide whether there
exist two hyperplanes Hy = {x : alz + B, = 0} and Hy = {x : adx + By = 0} where a;, ap € R?

and 1, P2 € R that separate the set of points in the following fashion:
1. For each point x* such that i € Sy, both af'z' + 3, > 0 and ofx* + 3, > 0.

2. For each point x" such that i € Sy, of ' + B < 0 or adz' + By < 0.

The 2-hyperplane separability problem is NP-complete [72]. Note the difference between con-
ditions 1 and 2 above. First one is an “AND” statement and second is an “OR” statement. Ge-
ometrically, solving 2-hyperplane separability problem means that finding two affine hyperplanes
{aq, B1} and {aw, 52} such that all points in set S; lie in one quadrant formed by two hyperplanes
and all points in set Sy lie outside that quadrant. Due to this geometric intuition, the problem is
called separation by 2-hyperplane separability. We will construct a polynomial reduction from
this NP-complete problem to training 2-ReL.U NN, which will prove that training 2-ReLLU NN is
NP-hard.

Remark 2.5.1 (Variants of 2-hyperplane separability) Note here that some sources also define
2-hyperplane separability problem with minor difference. In particular, the change is that strict
inequalities, *>’, in Definition 2.5.1.1 are diluted to inequalities, *>". In fact, these two problems
are equivalent in the sense that there is a solution for the first problem if and only if there is a
solution for the second problem. Solution for the first problem implies solution for the second
problem trivially. Suppose there is a solution for the second problem, that implies there exist

{a1, b1} and {cw, Bs} such that for all i € Sy we have either aTx' + 51 < 0 or oz’ + 3, < 0.
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This implies € := qun max{—a1x" — B1, —aex’ — Bo} > 0. So if we shift both planes by %e ie.
€00

Bi — Bi + %6 then this is a solution to the first problem.

Assumption: 0 € S; (Here 0 € R is a vector of zeros.) Suppose we are given a generic instance
of 2-hyperplane separability problem with data-points {z"};cn from R? and partition S; and S, of
the set [/V]. Since the answer of 2-hyperplane separability instance is invariant under coordinate
translation, we shift the origin to any z for ¢ € S}, and therefore assume that the origin belongs to

S; henceforth.

2.5.1 Reduction

Now we create a particular instance for 2-ReLU NN problem from a general instance of 2-hyperplane
separability. We add two new dimensions to each data-point z*. We also create a label, 37, for each
data-point. Moreover, we add a constant number of extra points to the training problem. Exact

details are as follows:

. ' ‘ 1 ifie S
Consider training set {(',0,0), y' };cn] Where y* = :
0 ifie S
Add additional 12 data points to the above training set as follows:
1 =100,1,1), 1,2 = {(0,2,1), 1, ps = {(0,1,2), 1}, p1 = {(0,2,2), 1},
ps = {(0,0.75,1.5), 1}, ps = {(0,2.25,1.5), 1}, pr = {(0,1.5,0.75), 1}, ps = {(0, 1.5,2.25), 1},
pe = {(0,1,-1),0}, p1o = {(0,2, 1), 0}, p11 = {(0,3, 1), 0},
piz = {(0,—1,1),0}, p13 = {(0, -1,2), 0}, pra = {(0,-1,3), 0},
p15 = {(0,—1,0),0},p16 = {(0,0, —1),0}},
pir ={(0,-1,5),0}, p1s = {(0,5,—1),0}}.
Let’s call the set of additional data points with label 1 as 7} and additional data points with label
0 as Ty. These additional data points (we refer to these points as the “gadget points™) are of fixed
size. So this is a polynomial time reduction.

Figure 2.3 shows the gadget points. Note that origin is added to the gadget because there exists

i € S} such that z* = 0. Hence training set has the data-point {(0,0,0),1}.
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Figure 2.3: Gadget: Blue points represent set 77 and red points represent set 7.

Let’s call the training problem of fitting 2-ReLLU NN to this data as (P). In the context of the
training problem (P), we abuse the notation and call the set of points (z¢,0,0) with label 1 as S;
and the set of points (x%,0,0) with label 0 as Sy. In particular, there is a direct correspondence
between the sets 57, .5y defined in 2-hyperplane separability problem and sets S7, Sy defined for
2-ReLU NN training problem (P). Use of our notation is generally clear from the context.

Now what remains is to show that the general instance of 2-hyperplane separability has a solu-
tion if and only if the constructed instance of 2-ReLU NN has a solution. In order to understand
our approach better, we introduce the notion of “hard-sorting”. Hard-sorting is formally defined

below, and its significance is stated in Lemma 2.5.5.

Definition 2.5.2 (Hard-sorting) We say that a set of points {7'}ics, partitioned into two sets
Iy, II; can be hard-sorted with respect to 11, if there exist two affine transformations [y, ly and

scalars wy, wo, c such that the following condition is satisfied:

=c forallmell
w1 [ll(ﬂ)]+ + W9 [lg(ﬁ)]+ (23)
<c forallmelly
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Being able to hard-sort implies that after passing the data through two nodes of the first hidden
layer, the scalar input to the second hidden layer node must have a separation of the data-points in

IT; and the data-points in 11y, moreover, scalar input for all data points in II; must be a constant.

Remark 2.5.2 If there exists scalars wy,ws, c and affine transformations [y, l5 such that

=c forallmelly
w1 [ll(ﬁ)]+ + IUQ[ZQ(W)]+ =
> c forall e 1.

then —wy, —wsq, —c, ly, ly satisfy condition (2.3) of hard-sorting.

Remark 2.5.3 Let [1, 1y and II; < I1;. Then hard-sorting of 11y u 11y with respect to 11, =

hard-sorting of Iy U I1; with respect to 11,.
Remark 2.5.4 Without loss of generality, we may assume that wy,ws € {—1,1}.

It is not difficult to see that hard-sorting implies (P) has a solution. We show that hard-sorting is

also required for solving training problem. This is formally stated in lemma below.

Lemma 2.5.5 The 2-ReLU NN training problem (P) has a solution if and only if data-points S; U

T1 U Sy u Ty are hard-sorted with respect to S U T1.

The proof of Lemma 2.5.5 can be found in Section 2.7.4 .
Figure 2.4 below explains geometric interpretation of Lemma 2.5.5 We use the hard-sorting
characterization of the solution of the training problem (P) extensively. We first show the forward

direction of the reduction in the lemma below. This is also the easier direction.

Lemma 2.5.6 If2-hyperplane separability problem has a solution then problem (P) has a solution.

The proof of Lemma 2.5.6 can be found in Section 2.7.3.
To prove reverse direction we need to show that if a set of weights solve the training problem (P)

then we can generate a solution to the 2-hyperplane separability problem. In the rest of the proof
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(a) Input is hard-sorted. This can (b) Since there are two red points (c) Since blue points lies on differ-

give a perfect fit. so input is not hard-sorted. This ent side of red points so input is
cannot give a perfect fit. not hard-sorted. This cannot give
a perfect fit.

Figure 2.4: X-axis in figures above is output of the first layer of 2-ReLLU NN 1.e. w, [ll(ﬂ)] .t

Wa [lg(?’[‘)] .- Y-axis is the output of second hidden layer node. Since output of first hidden layer
goes to input of second hidden layer, we are essentially trying to fit ReLU node of second hidden
layer. In particular, red and blue dots represent output of first hidden layer on data points with label
1 and O respectively. In fig (a) we see that hard-sorted input can be classified as 0/1 by a ReLU
function. In fig (b) and (c) we see that input which is not hard-sorted cannot be classified exactly
as 0/1 by a ReLU function.

we will argue that the only way to solve the training problem (P) for 2-ReLU NN or equivalently
hard-sort data-points is to find two affine function a;, as : R¥*? — R such that i) ai(x) < 0 and
as(z) < 0forall z € S; U Ty and i) a;(z) > 0 or as(z) > 0 for all z € Sy U Tp. If such a solution
exists then there exists a solution to 2-hyperplane separability problem after dropping coefficients
of last two dimensions of affine functions —a; and —ay. Note that changing ‘<’ to ‘<’ in 2-affine
separability problem is valid in view of Remark 2.5.1.

We will first show that we can hard-sort the gadget points only under the properties of a; and
ao mentioned above. This implies that a solution to (P) which hard-sorts all points (including
the gadget points) must have same properties of a; and as. This follows from counter-positive
of Remark 2.5.3 i.e. if subset of data-points cannot be hard-sorted then all data-points cannot be
hard-sorted. Henceforth, we will focus on the gadget data-points (or the last two dimensions of the

data).

Gadget Points and Hard-Sorting

In the following lemma, we show a necessary condition on a;, as satisfying hard-sorting of gadget

data points 77 u Ty U {0} with respect to T} U {0}.
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Lemma 2.5.7 Suppose affine functions a;,a; : R¥*? — R and scalars w,,ws, ¢ satisfy hard-
sorting of the data-points Ty U Ty U {0} with respect to Ty U {0} then all points in T\ must satisfy

ai(z) <0, az(x) < 0. Moreover, we must have w; = wy = —1 and ¢ = 0.

Note that in view of Lemma 2.5.7 and counter-positive of Remark 2.5.3, we have that affine func-
tion ay,as : R¥™? — R and scalars w;, ws, ¢ satisfying hard-sorting of S; U T} U Sy U Tj, with

respect to S; U T} must satisfy

=0 ifzxesS;
_[al(w)]+ — [a2(x)]+ _
<0 if$€So

The above condition is equivalent to the requirement that a;(z) < 0, az(x) < 0 for all z € S; and
aj(z) > 0 or as(z) > 0 for x € Sy. After dropping the last two dimensions of —a; and —a,, we
obtain the solution for 2-affine separability problem. Now that we have reduced the problem to the
key lemma above, the main purpose of this section is to prove Lemma 2.5.7.

Note that for each data point in the gadget T} U T,{0}, the first d elements are always 0. So
for the sake of gadget, we may assume that a;,as : R?> — R and the gadgets lies in R?. They
can be thought of as the projection of the original a; : R“? — R and 0 € R%? to last two
dimension which are relevant for gadget data points 77 U 7. Due to this observation, we assume
that a;, as : R? — R henceforth for this subsection and provide a proof of Lemma 2.5.7 under this
assumption.

The proof of Lemma 2.5.7 is divided into the following sequence of results.

Proposition 2.5.8 Suppose that ay, ay satisfy hard-sorting of T1 U Ty, with respect to T then there

exists © € Ty such that a;(x) < 0, az(z) < 0.

Proof of Proposition 2.5.8 can be found in Section 2.7.5.
Next we show one more simple proposition which is critical in proving the final result. The

proof of this proposition can be found in Section 2.7.7.
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Proposition 2.5.9 Affine functions ay, as and weights wy, wy satisfy hard-sorting of T1 U Ty L {0}

with respect to Ty U {0} then wq,wy must satisfy w, = wy = —1.

We are now ready to present the prove Lemma 2.5.7.
Proof of Lemma 2.5.7. Since a;, ay satisfy hard-sorting of the data points 7} U Ty U {0} with

respect to 77 U {0} then, in view of Proposition 2.5.8 and Proposition 2.5.9, we have
1. 3z € T} such that a;(z) < 0, ay(z) < 0.
2. wp = Wy = —1.

Then we have that —[a; (z)] L [as(z)] . = Oforall z € T1, due to condition (2.3) of hard-sorting.

This implies a1 (x) < 0, az(x) < 0 for all z € T}. So we conclude the proof. o

In the next section, we show that this result on the gadget data-points gives us the solution to the

original 2-hyperplane separability problem.

From Gadget Data to Complete Data

Lemma 2.5.10 [f there is a solution to the problem (P), then there is a solution to corresponding

2-hyperplane separability problem.

Proof. Note that if there is a solution to problem (P), then by Lemma 2.5.5, we must have a;, as :
R*2 — R and w,, wy, ¢ hard-sorting S; U T} U Sy U Tjy with respect to S; U T}. In view of Lemma

2.5.7 and counter-positive of Remark 2.5.3, we have
1. w1, = Wo = —1.
2. wy [al(x)]+ + Wy [aQ(yc)]Jr = 0 forall z € S; U T} due to requirement (2.3) of hard-sorting.

Since wy, = wy = —1, so 2 above implies a;(z) < 0 and as(x) < 0 for all z € Sy U T;. Moreover,
we require a;(z) > 0 or ag(z) > 0 for all z € Sy U Ty because condition (2.3) of hard-sorting.
Now as discussed earlier, —a;, —ay after ignoring coefficients of last two dimensions will yield

solution to 2-hyperplane separability problem. Hence we conclude the proof. D
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Now we are ready to prove the main NP-hardness theorem.

Proof of Theorem 2.4.1. Using Lemma 2.5.6 and Lemma 2.5.10, we conclude the proof. o

Below we state an immediate corollary of Theorem 2.4.1 whose proof can be found in Section

2.7.8.

Corollary 2.5.11 Training problem of (2,j)-ReLU NN is NP hard.

2.6 Discussion

We showed that the problem of training 2-ReLU NN is NP-hard. Given the importance of ReLU
activation function in neural networks, in our opinion, this result resolves a significant gap in
understanding complexity class of the problem at hand. On the other hand, we show that the
problem of training N-ReLU NN is in P. So a natural research direction is to understand the
complexity status when input layer has more than 2 nodes and strictly less than N nodes. A
particularly interesting question in that direction is to generalize the gadget we used for 2-ReLLU

NN to the case of k-ReLLU NN.

2.7 Proofs of Auxiliary Results

In this section, we provide proof of all auxiliary results.

2.7.1 Proof of Theorem 2.4.3

Suppose we partition the set [ V] into sets (); and Qj such that all points in ); satisfy a;(z) > 0
and all points in @j satisfy a;(x) < O for all j € [k]. Given a set S < [k], we define T'(S) :=

(ﬂjeSQ]) N (ﬂjeng> where S = [k]\S. Let z = (ai,...,ar, wo,w1,...,w;). Then the

objective function can be written as

f(z) = Z Z ([w0+2wjaj($i)]+—yi>2-

Sc[k]€T(S) jeES
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Now we can partition 7'(S) into sets 7'(.5); and T'(S), for each S < [k], S # ¢. For T'(S);, the
ReLU term in the objective, wq + Z wjaj(x) (note that this is an affine function), is constrained
to be non-negative and for T(S)Qj:}fe ReLU terms is constrained to be non-positive. We need
not enumerate partitions of 7'(¢) since ReLU terms for T'(¢) do not depend on data-points. The
key observation is that the partition of 7(.S) into sets 7'(.S); and T'(S), is a partition due to a
hyperplane.

Number of combinations: According to the Hyperplane Arrangement Theorem, given a set
of points {z'},cn in R%, the number of distinct partitions created by linear separators is O(N?).
Moreover, due to [31], we can enumerate all possible partitions created by linear separators in
O(NY) time. Therefore, there are a total of O(N*?) possible combinations of @);,j € [k]. For
each such Q;, j € [k], there are 2¥ non-empty subsets 7'(S) = [N]. For each T'(S), S # ¢, there
are O(|T(9)]4) = O(N?) possible ways to partition 7'(.S) into T'(S); and T(S)s. So number of
product combinations is O(N2*~14). Hence there are a total of O (N *@+(2"~1)d) combinations.

Number of convex programs: By Observation 2.3.1 it suffices to check for wy, ..., w, = £1.
We will divide the optimization problem in two cases wy = 0 and wy < 0. So there are a total of
28+1 convex programs for each possible combination of @Q;, T'(S); for all S < [k] of the following

form:

min 3. { ¥ ((wo+ Swsase)) —u) + 2 0-p) } > (o] )

€T (S)1 jes 1€T(S)2 €Ty
S#¢

subject to constraints

a;(z') =0, Vj,ieQ;

(2.4)
a;(z') <0, Vj, i€ Q;
wo + ijaj(xi) >0, VS < [k],S # ¢, i€ T(S)
78 2.5)
wo + Y wja;(z') <0, VS < [k],S # ¢, i € T(S),
jJeS
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Moreover, we add constraint wy > 0 or wy < 0 and change the [wo] | term in objective with w or 0
respectively. Every program has k(d+1)+1 variablesin ay, . . ., ax, wo. Total number of constraints
is at most kN + N + 1. Note that, for constraints of type (2.4), for each j, number of constraints
equals |Q); U @]\ = N. Hence total number of constraints of type (2.4) are kN. Similarly, for
constraints of type (2.5), for each S < [k], we have total of |T'(S); U T'(S)2| = |T'(S)| constraints.

Hence total constraints of type (2.5) are > |7(S)| < N (This follows due to observation that
Sclk],
o

T(S),S < [k] is a partition of [N]). One more constraint is on wy. Hence total number of

constraints is (kK + 1)N + 1. Since number of constraints and variables are poly(k,d, N) and
objective is convex quadratic so we conclude that this program can be solved in poly(N, k, d)
time.

Finally, the total number of convex programs to be solved is O(2k+1 . Nkd+(2*~1)d),

2.7.2 Proof of Proposition 2.4.4

Before proving this proposition, we state a polynomial time algorithm (Theorem 1 of [114]) for

training single hidden layer neural network.

Proposition 2.7.1 There exists a poly(N, d)-time algorithm to train a single hidden layer neural
network with N nodes and ReLU activations which can represent any function on sample of size

N in dimension d.

Now we are ready to prove Proposition 2.4.4.

N
Note that a N-ReLU NN can be written as c¢(z) = [ > w;[a;(z)], + wo],. Suppose y =
=1

17 € RY be a vector of labels. We may assume that y > 0 since otherwise we can

[y ..y

add a constant term to each label in y. Then we need to find weights w;,2 = 0, ..., N and affine

functions a;, 7 = 1,..., N such that ¢(2?) = gy forall i € [IV]. Since y > 0 so we have f(z') = ¢

where f(z) = %1 wjla;(z)] . +wo. Now note that function f with wy = 0is a single hidden layer
iz

ReLU NN used in [114]. Using the fact that number of nodes in f matches number of data points,

N, then applying Proposition 2.7.1, we obtain the result.
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2.7.3 Proof of Lemma 2.5.6

Suppose (aq, 81) and («w, 52) are solution satisfying condition for 2-hyperplane separability. Note
that there is a data-point 0 € S; so we obtain (3, S5 > 0. Without loss of generality we can assume
B1 = B2 = 0.5. This is due to the fact that scaling the original solution by any positive scalar yields
a valid solution. Now we show that the solution of 2-hyperplane separability problem can be used
to show hard-sorting of Sy U T U S7 U T with respect to .Sy U T}. Hence in view of Lemma 2.5.5,

we obtain existence of existence of solution for problem (P).

Setw; = wy = —1, ¢ = 0. Moreover, for (z,y, z) € R¥*2, consider the affine map l;(z, y, z) =
—alz —y— By and ly(z,y, 2) = —alz — 2 — Bo. We claim that wy, wo, ¢, l1, 5 satisfy hard-sorting

condition (2.3) for Sy U Ty U S7 U T; with respect to S7 U T;. In particular, note that

1. For x € S}, we have
[—ale-p], —[-alz—B], —0=c
2. Forz = (0,1,m) € T}, we have
=B -1, = [-B—m], =0

This follows since $; = B2 = 1/2 and [, m € [0.75,2.25] so the two ReLU terms inside are

both zero for all x € T7.

3. For x € Sy, we have
—[—aipx—ﬁl]+—[—agm—ﬁg]+ < 0.

This follows since at least one of afz + 8 and oz + B is strictly negative for z € Sy as

(a1, B1) and (g, o) are solution for 2-hyperplane separability problem.
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4. Forx = (0,1, m) € Ty, we have
=B, ~[~fa—m], <0

This follows since 51 = 2 = 1/2 and either [ or m equals —1 for x € Tj.

This proves hard-sorting of Sy u Ty U S; U T with respect to S; U 17 and hence we have the

existence of solution for training problem (P).

2.7.4 Proof of Lemma 2.5.5

We first prove the forward direction. Suppose points are hard-sorted as required by the lemma.

Then define ¢ := IerétigTO —wl[ll(x)L — Wy [lz(x)]+ + c. By definition, we have ¢ > 0. Then

= 2
€

neural network f(z) = 2[wi[li(2)], +wyla(x)], —c+¢/2], solves training problem. This can

be easily checked from the fact that

=0 if v € 57 UTi;
wl[ll(x)L + wo [lg(x)L —c
< —¢ ifxeSyuly,

which holds under the assumption of hard-sorting.

Now we assume that points cannot be hard-sorted and conclude that there does not exist weight
assignment solving training problem of 2-ReLLU NN, hence proving the backward direction. Since
the points cannot be hard-sorted so there does not exist any [y, ls, w1, wo, ¢ satisfying condition
(2.3). This fact along with Remark 2.5.2 implies that for all possible weights we either have
a) w [ll(:zc)]Jr + wo [lg(x)]+ is not constant for all z € S; U T} or
b) If w; [ll(x)]+ + wo [lg(x)]+ = cfor all x € S; U T} and some constant ¢, then same expression
evaluated on z € Sy U Tj is not strictly on same side of c.

If we choose [, 5, w1, ws, ¢ such that a) happens, then such weights will not solve training
problem as their output of 2-ReLLU NN for points p € S; u T} will be at least two distinct num-

bers which is an undesirable outcome. Specifically, we want [wy + w; [l1(z)] Lt wy [l2(2)] +] .
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to evaluate to 1 for all x € S; u T,. Hence w; [ll(w)]+ + Wy [lg(l’)]+ must be a constant for all

x € S1 u Ti. This requirement is violated in case a).

If we choose 1, Iy, wy, w2, ¢ such that b) happens, then we can set wy, § such that F'(z) = 6[w; [l (z)] L
Wo [ZQ(x)] Lt w0]+, wop +c > 0and 0 = ﬁ Here we introduced another parameter 6 > 0

in the definition of F' for sake of convenience of argument but note that # can be absorbed in

the definition of /; and [, to obtain the original neural network function defined (2.2). Since

not all x € Sy u Tj are strictly on one side, we conclude there exist ' € Sy U Ty such that

wi [l (2')], +wa[la(2")], = ¢ = chence F(z') := 0lwi[li(2')], + wo[la(2)], +wo], =1
which is an undesirable outcome for a point with label 0.

Since all choices of [y, l5, wy, ws, ¢ satisfy either a) or b), we conclude that there does not exist

weights solving training problem of 2-ReLLU NN.

2.7.5 Proof of Proposition 2.5.8

In order to prove Proposition 2.5.8, we need to prove one more technical result stated below. Proof
of this new proposition is deferred to Section 2.7.6 but here we state it and proceed with the proof

of Proposition 2.5.8.

Proposition 2.7.2 Let c be an arbitrary constant. Suppose affine functions a1, as : R?> — R satisfy
wiai(z) + weaz(x) = c for all x € R?, then such ay,ay cannot satisfy hard-sorting of the data

points Ty U Ty U {0} with respect to Ty L {0}.

Remark 2.7.3 A key corollary of Proposition 2.7.2 is that if a,, ay satisfy hard-sorting of gadget
data points Ty U Ty U {0} with respect to Ty U {0} then set L := {x|wia;(x) + waas(x) = c}
is a line for all c € R. Henceforth, in the proofs of subsequent propositions, we will refer L as

wiay + woas = c hiding the input variable, x, for ease of notation.

Now we are ready to prove Proposition 2.5.8.
Let a4, ay satisfy hard-sorting of 77 U Tj U {0} with respect to 77 U {0}. Then due to Remark
2.5.3, we have that aq, ay satisfy hard-sorting of T U Ty with respect to 77. We will show that any

a1, as satisfying the above condition must satisfy the requirement of Proposition 2.5.8.
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Let us partition the set of points R? into four partitions S o, S5 0, S0 + and S, . based on sign
of [a1]+ and [a2]+. Then, we have to show that at least on element in 7} lies in the partition S .

For sake of contradiction, assume that 77 n Sy = J. Then, using pigeonhole principle, we
have that at least one of S, (, Sy + and S, ; must contain three points from the set 7. Note that
any three points in the set 7} are not collinear. Moreover, the function w; [a | L Twy [as] _ is affine
in all three regions, S, o, So + and S, ; of R? and is non-constant in view of Proposition 2.7.2.
Hence, we cannot satisfy hard-sorting since those three points in 7 will break the requirement in

condition (2.3) for hard-sorting. Hence, we obtain a contradiction.

2.7.6  Proof of Proposition 2.7.2

First observe that if a;, as : R? — R satisfy hard-sorting of Ty U Ty U {0} with respect to 77 U {0},
then neither of them can be a constant function. In particular, it is straightforward to see that both
of them cannot be constant. If only one of them is constant, then data needs to be linearly separable
which is not the case for gadget data-points 77 U Ty U {0}. Therefore, we will assume that both of
them are affine functions with non-zero normal vectors.

Note that in view of Remark 2.5.4 and the fact that wya; (z) + waas(z) = ¢ for all x € R?, we may
assume that magnitude of the normal to these lines is equal i.e. [Va;| = |Vaq| # 0. For the sake

of this proof, we extend the definition of hard-sorting to include the condition

=c¢ forall x € Ty U {0};
wl[al(:v)L + w2[a2(x>]+
> ¢ forall x € Ty,

along with condition (2.3). Due to this extended definition and in view of Remark 2.5.2, we just
need to check for case (wy,ws) = (1,1) and (wy,we) = (1, —1). More specifically, (w;, ws) =
(—1, —1) yields a hard-sorting solution iff there exists a hard-sorting solution for (wy, wy) = (1,1).
Equivalent argument can be made about the case (wy,wy) = (—1,1) and (wy, ws) = (1, —1).

Then, we have two possible situations here: ay, ay satisfy 1) ay(z) + as(z) = ¢,V z € R? when

normals point in opposite directions and 2) a;(x) — as(z) = ¢, Vo € R? when normals point in
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same direction. We will consider both these cases separately and show that expression w, [al] Lt

ws|as] . for the choices of wy, w, mentioned above, cannot hard-sort the data as required.

Case 1: Normals point in the opposite directions. Here w; = wy, = 1 and we assume a; + as = c.

Suppose ¢ = 0. Then it can be verified that

= 3

lar(@)], + [aa(2)],

-

\

c ifc=a(x) =20
ai(x) ifa;(x) = ¢
c—ay(x) ifai(z) <O0.

By extended hard-sorting requirement, we need all points in 77 U {0} should be contained in the

set {x : a;(x) € [0, ]} and all points in T should not be in this set. Now observe that if ¢ = 0, then

the set {z : a;(x) = 0} is one dimensional, and therefore cannot contain all the points of 77 U {0}.

Hence we must have ¢ > 0 and all points in 7} U {0} lie inside the region of two parallel lines

ar(z) = Oand ay(z) = cas [ai(x)], + [az(x)], evaluates to the constant ¢ in this region. It can

be seen that this separation of 77 U {0} from T} is impossible to achieve by two parallel lines.

Similarly when ¢ < 0, then it can be verified that

I:CLl(.Z')]+ + [a2(x>]+ = <

r

\

0 ifc<a(x) <0

ai(x) ifa;(z) =0

c—ay(x) ifai(zr)<c

Again, for extended hard-sorting, as in the previous case, we need all points in 77 U {0} should be

in set {z : a;(z) € [¢,0]} and all points in Tj should not be in this set which cannot be achieved.

Case 2: Normals point in the same direction. Then a;(z) — as(z) = c. Suppose ¢ > 0. Then it
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can be verified that

.
ai(z) ifc=ai(x) =0

[al(x)]+ - [a2($)]+ =9c ifa;(z) = ¢

0 ifa;(z) <0

If ¢ = 0 then [a;(z)] L [aQ(x)]+ = 0 for all x € R2. So this cannot hard-sort data. Hence for
hard-sorting we definitely need ¢ > 0. Moreover, we need either 1) 7} U {0} < {z : a;(z) < 0}
and 7o < {z : a1(x) > 0} or2) 71 U {0} < {z : a1(x) = ¢} and Ty < {z : a1(x) < c¢}. So
essentially the points in 77 U Ty U {0} must be separable by a line. This is not possible.

Note that when ¢ < 0, one can write as — a; = —c and write similar functional form for [aQL —
],

Since in both cases, we were unable to achieve hard-sorting 7} U Ty U {0} w.r.t. 77 U {0}, so we

conclude the proof.

2.7.7 Proof of Lemma 2.5.9

Proposition 2.5.8 yields that any hard-sorting a1, a; must satisfy a;(z) < 0,as(x) < 0 for at least
one xr € T7.

Now, suppose sign of wy, ws is different. Suppose w; = 1,w,; = —1. Since a; and ay satisfy
hard-sorting of gadget so we have [al(x)L - [aQ(x)]+ = ¢,V x € T;. Due to Proposition 2.5.8,
we obtain ¢ = 0. Then to fulfill hard-sorting condition, we need [a; ()] - [as(z)] L <0VzeTy.
(The case for w; = —1,w, = 1 will have same proof with all a, exchanged by a; in next 3 lines.)
This implies ay(z) > 0 for all x € Ty. However note that 77 < conv(7}). So we get a contradiction
to the assumption that sign of weights w,, w- is different. Now note that if sign of wy, w is same
then we cannot set w; = wo = 1 due to requirement (2.3) of hard-sorting. Hence we have that

w, = Wy = —1.
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2.7.8 Proof of Corollary 2.5.11

The reduction is similar except the labels need to be changed from R to R7. Simply add j — 1
zeros to original output labels. Now output of j — 1 nodes is O for all data-points so these are
redundant. In particular, for k € [j], every k-th node in the second layer is connected to 2 nodes
in the first layer by distinct edges whose weights are parameterized by wy, 1, wy 2 and bias weight
wio. We can set wy, = wio = —1 and wyo = 0 for all & € [j]\{1}. This yields the output
0 at all nodes k € [j]\{1}, irrespective of the affine functions a;, as in the first layer. Now, first
node satisfied to global optimality will yield solution a;, as, w1 1, w; 2, w 0. By the reduction, we
know that —a, —ay after ignoring last two co-ordinates yield solution to 2-hyperplane separability

problem.
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CHAPTER 3
STOCHASTIC FIRST-ORDER METHOD FOR CONVEX FUNCTION CONSTRAINED
OPTIMIZATION

In the previous chapter, we saw convergence complexity for training neural networks. Henceforth,
we will focus on algorithmic developments for function constrained optimization problems. In
this chapter, our main focus will be on the development of efficient and simple algorithms for con-
vex function constrained optimization. We will consider various settings of the convex function
constrained problem, e.g., convex or strongly convex and Lipschitz smooth or nonsmooth objec-
tive and/or constraints which can be either stochastic or deterministic. We will present a novel

algorithm that exhibits a unified convergence and reduces the impact of Lipschitz constants.

3.1 Convex Function Constrained Optimization Problem

In this paper, we study the following composite optimization problem with function constraints:

ml)r(I Yo(z) = fo(x) + xo(2)
ze (3.1)

st i(x) = filx) + xi(z) <0, i=1,...,m.

Here, X < R" is a convex compact set, f; : X — R, ¢ =0, ..., m are continuous functions which
are convex or strongly convex and y; : X — R,7 = 0,...,m are proper convex lower semicon-

tinuous functions. Problem 3.1 covers different convex and strongly convex settings depending on

the assumptions on f; and x;, ¢ =0,...,m.
In particular, we assume that f;, © = 0,...,m, are either smooth, nonsmooth or the sum of
smooth and nonsmooth components. We also assume that x;, ¢ = 0, ..., m, are “simple” functions

in the sense that, for any given vector v € R" and non-negative weight vector w € R™, a certain

proximal operator associated with the function xo(z) + X" w;x;(z) + (v, z) can be computed
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efficiently. For such problems, Lipschitz smoothness properties of x;’s is of no consequence due

to the simplicity of this proximal operator.

3.1.1 Algorithms for solving convex function constrained optimization

There exists a variety of literature on solving convex function constrained optimization problems
(3.1). One research line focuses on primal methods without involving the Lagrange multipliers
including the cooperative subgradient methods [86, 60] and level-set methods [61, 81, 64, 5, 63].
One possible limitation of these methods is the difficulty to directly achieve accelerated rate of
convergence when the objective or constraint functions are smooth.

Constrained convex optimization problems can also be solved by reformulating them as saddle
point problems which will then be solved by using primal-dual type algorithms (see [75, 45]).
The main hurdle for existing primal-dual methods exists in that they require the projection of dual
multipliers inside a ball whose diameter is usually unknown.

Other alternative approaches for constrained convex problems include the classical exact penalty,
quadratic penalty and augmented Lagrangian methods [11, 54, 55, 109]. These approaches how-
ever require the solutions of penalty subproblems and hence are more complicated than primal and
primal-dual methods.

Recently, research effort has also been directed to stochastic optimization problems with func-
tion constraints [60, 5]. In spite of many interesting findings, existing methods for solving these
problems are still limited: a) many primal methods solve only stochastic problems with determin-
istic constraints [60], and the convergence for accelerated primal-dual methods [75, 45] has not
been studied for stochastic function constrained problems; and b) a few algorithms for solving
problems with expectation constraints require either a constraint evaluation step [60], or stochastic
lower bounds on the optimal value [5], thus relying on a light-tail assumption for the stochastic
noise and conservative sampling estimates based on Bernstein inequality. Some other algorithms
require even more restrictive assumptions that the noise associated with stochastic constraints has

to be bounded [113].

43



3.1.2  Unified algorithm for composite convex function constrained optimization

In this chapter, we attempt to address some of the aforementioned significant issues associated
with both convex and nonconvex function constrained optimization.

Firstly, for solving convex function constrained problems, we present a novel primal-dual type
method, referred to as the Constraint Extrapolation (ConEx) method. One distinctive feature of this
method from existing primal-dual methods is that it utilizes linear approximations of the constraint
functions to define the extrapolation (or acceleration/momentum) step. As a consequence, con-
trary to the well-known Nemirovski’s mirror-prox method [75] and a primal-dual method recently
developed by Hamedani and Aybat [45], ConEx does not require the projection of Lagrangian
multipliers onto a (possibly unknown) bounded set. In addition, ConEx is a single-loop algorithm
that does not involve any penalty subproblems. Due to the built-in acceleration step, this method
can explore problem structures and hence achieve better rate of convergence than primal meth-
ods. In fact, we show that this method is a unified algorithm that achieves the best-known rate
of convergence for solving different convex function constrained problems, including convex or
strongly convex, and smooth or non-smooth problems with stochastic objective and/or stochastic

constraints.

Table 3.1: Different convergence rates of the ConEx method for

Strongly convex (3.1) Convex (3.1)

Cases Smooth  Nonsmooth | Smooth Nonsmooth

Deterministic | O(1/y/e)  O(1/e) O(1/e)  O(1/e?)

Semi-stochastic | O(1/¢) O(1/e) | O(1/e*)  O(1/e?)

Fully-stochastic | O(1/¢?)  O(1/¢?) | O(1/e*)  O(1/e?)

Table 3.1 provides a brief summary for the iteration complexity of the ConEx method for dif-
ferent problem settings such as strongly convex/convex, and smooth/nonsmooth objective and/or
constraints. Deterministic means both objective and constraints are deterministic, semi-stochastic

means objective is stochastic but constraints are deterministic, fully-stochastic means both objec-
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tive and constraints are stochastic. For the strongly convex case, ConEx can obtain convergence to
an e-approximate solution (i.e., optimality gap and infeasibility are O(c)) as well as convergence
of the distance of the last iterate to the optimal solution. The complexity bounds provided in Table
3.1 for the strongly convex case hold for both types of convergence criteria. For semi-stochastic
and fully-stochastic cases, we use the notion of expected convergence instead of exact convergence
used in the deterministic case. It should be noted that in Table 3.1, we ignore the impact of var-
ious Lipschitz constants and/or stochastic noises for the sake of simplicity. In fact, the ConEx
method achieves quite a few new complexity results by reducing the impact of these Lipschitz
constants. Moreover, to the best of our knowledge, it attains for the first time the optimal iteration
and sampling complexity for solving general stochastic constrained problems without requiring the
boundedness or light-tail assumptions on the stochastic subgradients (see Theorems 3.3.1 and 3.3.3
and discussions afterwards).

Even though ConEx is a primal-dual type method, we can show its convergence irrespective
of the knowledge of the optimal Lagrange multipliers as it does not require the projection of mul-
tipliers onto the ball. In particular, convergence rates of the ConEx method for nonsmooth cases
(either convex or strongly convex) in Table 3.1 holds irrespective of the knowledge of the opti-
mal Lagrange multipliers. For smooth cases, if certain parameters of ConEx method are not big
enough (compared to the norm of optimal Lagrange multipliers), then it converges at the rates for
nonsmooth problems of the respective case. As one can see from Table 3.1, such a change would
cause a suboptimal convergence rate in terms of ¢ only for the deterministic case, but complexity
will be the same for both semi- and fully-stochastic cases.

It is worth mentioning that faster convergence rates for the smooth deterministic case can still
be attained by incorporating certain line search procedures. ConEx method is arguably the first
algorithm in the literature solving all different types of convex function constrained problems in an

optimal and unified manner.
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3.2 Notation and Terminologies

Throughout the paper, we use the following notations. Let

[m] :={1,...,m},
¢(x) = [1/)1(1‘)7 v ’¢m($)]T7
f(:E) = [fl(x)’ S 7fm<x)]T7

X(@) = Da@), - xm(@)]"

(3.2)

and the constraints in (3.1) be expressed as ¢(x) < 0. Here bold 0 denotes the vector of elements
0. Size of the vector is left unspecified whenever it is clear from the context. ||-|| denotes a general
norm and |||, denotes its dual norm defined as |||, := sup{z¥z : ||z|| < 1}. From this definition,
we obtain the a”b < ||a||||b||,. Euclidean norm is denoted as ||||, and standard inner product is
denoted as (-, -). Let B*(r) := {z : ||z]|, < r} be the Euclidean ball of radius r centered at origin.
Nonnegative orthant of this ball is denoted as B2 (r). [z] . = max{z, 0} for any x € R. For any
vector x € R¥, we define [x]+ as element-wise application of the operator [ : ] .- The i-th element
of vector x is denoted as z;.

A function r(-) is A-Lipschitz smooth if the gradient Vr(x) is a A-Lipschitz function, i.e. for
some A > 0

IVr(z) = Vr(y)ll. < Az —yll, Yo,y e domr

For a convex function r, an equivalent form of the above is:
0<r(z) —r(y) —(Vr(y),z —y) < §llz -yl Va,y € domr.

In many cases, it is possible that a convex function r is a combination of Lipschitz smooth and

nonsmooth functions. Let w : X — R be continuously differentiable with L,, Lipschitz gradient
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and 1-strongly convex with respect to ||-||. We define the prox-function associated with w(-) as

W(y,z) :=wly) —w(z) —Vw(x),y — ), Va,y e X. (3.3)

Based on the smoothness and strong convexity of w(z), we have the following relation

W(y,z) < Lz —y|* < LW (z,y), Va,y e X. (3.4)

Moreover, we say that a function r(-) is S-strongly convex with respect to W (-, -) if

r(x) =r(y) +<{Vr(y),z —y) + W (zx,y), Va,ye X. (3.5)

For any convex function h, we denote the subdifferential as dh which is defined as follows: at a
point z in the relative interior of X, 0h is comprised of all subgradients i’ of h at  which are in
the linear span of X — X. For a point z € X\ rint X, the set dh(z) consists of all vectors /’, if any,
such that there exists z; € rint X and h} € oh(z;),i = 1,2,..., withx = ili_}rgc xi, W = Zh_,% R
With this definition, it is well-known that, if a convex function ~ : X — R is Lipschitz continuous,

with constant M, with respect to a norm ||-||, then the set 0h(x) is nonempty for any € X and

h' € oh(z) = [N, d)| < M||d]],Vd € lin (X — X),

which also implies

h' € oh(x) = ||F']], < M,
where ||-||, is the dual norm. See [10] for more details.

3.3 Constraint Extrapolation Method

In this section, we present a novel constraint extrapolation (ConEx) method for solving problem

(3.1). To motivate our proposed method, observe that the KKT point of (3.1) coincides with the
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solution of the following saddle point problem:

min max {£(z,y) = vo(z) + 20y D(2)} . (3.6)

zeX y=0

In other words, (z*, y*) is a saddle point of the Lagrange function £(x, y) such that
L(z%y) < L(2%,y%) < L(z,y7), 3.7

for all x € X,y > 0, whenever the optimal dual, y*, exists. Throughout this chapter, we assume
the existence of y* satisfying (3.7). The following definition describes a widely used optimality

measure for the convex problem (3.1).

Definition 3.3.1 A point T € X is called a (9,, d.)-optimal solution of problem (3.1) if

Go@) — 5 <8 and |[0(@)], ], < 0.

A stochastic (0,, 0.)-approximately optimal solution satisfies

E[vo(z) — 0] <8 and E[|[¥(@)], ]l <.

As mentioned earlier, for the convex composite case, we assume that x;,72 = 0, ..., m, are “simple”
functions in the sense that, for any vector v € R"™ and nonnegative w € R™, we can efficiently

compute the following prox operator

prox(w, v, T, 1) := argmin{xo(z) + X;" wixi(z) + {v,z) + W (z,2)}. (3.8)
zeX

ConEx is a single-loop primal-dual type method for function constrained optimization. It
evolves from the primal-dual methods for solving bilinear saddle point point problems (e.g., [22,
23,59, 56, 53]). Recently Hamedani and Aybat [45] show that these methods can also handle more

general function coupling term. However, as discussed earlier, existing primal-dual methods [75,
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45] for general saddle point problems, when applied to function constrained problems, require the
projection of dual multipliers onto a possibly unknown bounded set in order to ensure the bound-
edness of the multipliers, as well as the proper selection of stepsizes. One distinctive feature of
ConEXx is to use value of linearized constraint functions in place of exact function values when
defining the operator of the saddle point problem and the extrapolation/momentum step. With this
modification, we show that the ConEx method still converges even though the feasible set of y in
problem (3.6) is unbounded.

In addition, we show that the ConEx is a unified algorithm for solving function constrained
optimization problems in the following sense. First, we establish explicit rate of convergence
for the ConEx method for solving function constrained stochastic optimization problems where
either the objective and/or constraints are given in the form of expectation. Second, we consider
the composite constrained optimization problem in which objective function f; and/or constraints
fi, o =1,...,m can be nonsmooth. Third, we consider the two cases of convex or strongly convex
objective, fy. For strongly convex objective, we also establish the convergence rate of the distance
between last iterate to the optimal solution z*.

Before proceeding to the algorithm, we introduce the problem setup in more details. First, we

assume that f, satisfies the following Lipschitz smoothness and nonsmoothness condition:

fo(z1) = folza) — {f(za), 21 — 22) < 22|21 — @||* + Hol|z1 — 22| (3.9)

for all 21,25 € X and for all f{(z2) € fo(x2). For constraints, we make a similar assumption as
in (3.9). Moreover, we make an additional assumption that the constraint functions are Lipschitz

continuous. In particular, we have

filzr) = fi(xa) = {fi(22), 21 — 22y < Ei||my — 2a|)® + Hyl|wy — 22, (3.10)
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for all x1, x5 € X and for all f/(xs) € 0f;(xs), i =1,...,m, and

fz(I1> — fz(l‘g) < Mf,inl — ZEQ”, Vl’l,l’g S X,’L = 1, oo, Mm,
(3.11)

Xi(z1) — xi(z2) < Myil|lz1 — 22|, Vai,20€ X,i=1,...,m.

Note that the Lipschitz-continuity assumption in (3.11) is common in the literature when f;,7 €
[m], are nonsmooth functions. If f;, ¢ € [m], are Lipschitz smooth then their gradients are bounded
due to the compactness of X. Hence (3.11) is not a strong assumption for the given setting. Also
note that due to definition of subgradient for convex function defined in Section 3.2, we have
17 (Il < My, which implies | f;(z2)" (21 — z2)| < [|fi (@) [l [lz1 — w2ll < Mysllar — 2|

Using this relation and noting relations (3.10) and (3.11), we have the following four relations:

[f(x1) = fza)lls < Myl — 2o,
[x(21) = x(22) |2 < My[|71 — 22,
(3.12)
1 f (1) = fx2) — f(22)T (21 — 22) ||y < Ho ||y — wol|* + Hyllzy — o],

£/ (z2)" (1 — m2)|y < My||zy — 22,

for all z1, 25 € X. Here f'(-) := [fi(:),..., f,(-)] € R"*"™ and constants M, M,, H; and L are

defined as
My = (ZZlMJ%,i>1/27 M, = (ZZLMii)l/Qv
(3.13)
Hy = (X2, HY)?, Lp= (0, L)Y
We denote @ = (ay,...,a,)" as the vector of moduli of strong convexity for x;,i € [m], and

ap as the modulus of strong convexity for x,. We say that problem (3.1) is a convex composite
smooth (also referred to as composite smooth) function constrained minimization problem if (3.10)
is satisfied with H; = O forall: = 1,...,m and (3.9) is satisfied with Hy = 0. Otherwise, (3.1)
is a nonsmooth problem. To be succinct, problem (3.1) is composite smooth if Hy = H, = 0,

otherwise it is a nonsmooth problem.
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We assume that we can access the first-order information of functions fy, f; and zeroth-order
information of function f; using a stochastic oracle (SO). In particular, given x € X, SO outputs

Go(x,§),Gi(x, ), and F(x, &) such that

E[GO(J:7§)] = fé(x)v
E[Gi(x,8)] = fi(z), i=1,...,m,

(3.14)

where ¢ is a random variable which models the source of uncertainty and is independent of the
search point . Note that the last relation of (3.14) is satisfied if we have individual stochastic
oracles F;(z, &) such that E[(F;(x,§) — fi(x))?*] < o7,. In particular, we can set 07 = 3. 07 .
We call G;,i = 0,...,m, as stochastic subgradients of functions f;,2 = 0,...,m at point z,
respectively. We use stochastic subgradients G;(zy,&;), @ = 0,...,m, in the ¢-th iteration of the
ConEx method where &, is a realization of random variable £ which is independent of the search
point z;.

We denote éifl(xt) a linear approximation of f(-) at point x; with

0N @) o= floe) + f(we)" (2 — 201),

where f'(xy_1) = [fi(zi-1),--., [} (x,_1)] as defined earlier. For ease of notation, we denote
Eifl(xt) as (¢(z;). We can do this, since for all ¢, we approximate f(x;) with linear function
approximation taken at z;_;. We use a stochastic version of /¢ in our algorithm, which is denoted

as (. In particular, we have

Cp(xy) = F(o1, &) + Gy, & 1) (1 — 241),
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where G (2,_1,&-1) = [Gi(zi1,&1), -+, Glw-1,&-1)] € R™™. Here, we used & as an
independent (of &) realization of random variable £. In other words, G;(z;,&) and Gy, &)
are conditionally independent estimates of f/(x;) fori = 1,...,m under the condition that z; is
fixed. As we show later, independent samples of £ are required to show that ¢x(x;) is an unbiased
estimator of £;(x;).

We are now ready to formally describe the constraint extrapolation method (see Algorithm 1).

As mentioned earlier, the ¢(x;) term in Line 3 of Algorithm 1 can be shown to be an unbiased

Algorithm 1 Constraint Extrapolation (ConEx) Method

Input: (o, Y0), {72, 72, 7, Oc}e=0, T N

L (2o1,y-1) < (%0,%0), F'(x-1) < F(20,&) and Lp(x_1) < lp(z0)
cfort=0,...,T—1do

st (1+00)[x(xe) + €r(2e)] — O[x(21-1) + Lr(20-1)]-

Y41 < [?/t + %StL-

Tiy1 < prox(yt+17 Go(xy, &) + Zie[m]Gi(It, gt)yﬁk)lu Ty, 77t)-
end for

B _ _1 T-1
return zr = ( tT:()l%) D) ViTir1-
=0

A

estimator of /;(x;). Moreover, the term x(x;) + ¢¢(z;) is an approximation to x(x;) + f(z:) =
¥ (x;). Essentially, Line 3 represents a stochastic approximation for the term ¢ (x;) + 6;(¢(x) —
¥ (x;_1)) which is an extrapolation of the constraints, hence justifying the name of the algorithm.
Line 4 is the standard prox operator of the form argmin, _o(—s¢, %) + %[|y — %|3. Line 5 also uses
a prox operator defined in (3.8) which uses Bregman divergence W instead of standard Euclidean
norm. The final output of the algorithm in Line 7 is the weighted average of all primal iterates
generated. If we choose 0 = 0y = 0; = 0 forz = 1,...,m then we recover the deterministic
gradients and function evaluation. Henceforth, we assume general non-negative values for such
o’s and provide a combined analysis for these settings. Later, we substitute appropriate values of

o’s to finish the analysis for the following three different cases.

a) Deterministic setting where both the objective and constraints are deterministic. Here oy =

o, = oy = 0foralli e [m].
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b) Semi-stochastic setting where the constraints are deterministic but the objective is stochastic.

Here, 0, = 0; = 0 for all i € [m]. However, oy > 0 can take arbitrary values.

c) Fully-stochastic setting where both function and gradient evaluations are stochastic. Here,

all o, 09, 0; = 0 can take arbitrary values.

Below, we specify a stepsize policy and state the convergence properties of Algorithm 1 for
solving problem (3.1) in the strongly convex setting. The proof of this result is involved and will

be deferred to Section 3.4.

Theorem 3.3.1 Suppose (3.9), (3.10), (3.11) and (3.14) are satisfied. Let B > 1 be a constant,

to := % +2, M := max{2M;, M, + My}, and ox 5 := (0} + D%||o||3)V% Setyo = 0O

0

and {7y, 0, nt, 71} in Algorithm 1 according to the following:

. o ag(t+t0+1)

’Yt_t+t0+27 m = 2 9 (315)
_ 1 32M2 384|037 ox T2 _ b+l '

Tt = t+1 maX{ ag Qo » B(tg+2)1/2 > et T t+te+2”

Then for'T' = 1, we have

_ to+1)(to+2)D2 12B to+1)(to+2)1/? 16(¢2+H?2 8B(to+2)1/2
E[yo(or) — o(a*)] < Sprtns o BERGEstis o MR ¢ St
(3.16)
and
_ 192(to+2)(||y* ||, +1)2M? to+1)(to+2) D2 13B to+1)(to+2)1/2
B o), | < st | oo, oty
+ 16(¢2+H2+144(to+2) (ly* ||, +1)2]lo]|2)
aoT
1/2 * 2, B 1/2 5
n {6(t0+2) (||?]JS lo+1)%ox f + 26 (to+§) X,f}/]%p7 (3.17)
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where

* —
Ho i= Ho + (ly*[ly + 1)/ Hj + 23002125l

H2 . 3a0Box ;(to+2)¥27) /2
= 2603 + 120t + 3)[ol5"I3 + 96(t0 + 2) B2 o3 + 2 + Hoposglosar )}

Moreover, we obtain the last iterate convergence

% 192(to+2)(J|ly* || +1)2M? (to+1)(to+2)D? 12Box ;(to+1)(to+2)"/?
E[W(ZB ,XT):I < CM%T22 + T2 X + fOé0T3/2

16(C%+HE +144(to+2) ([ly* [l +1)? (o [13)

+ agT

(to+2)2lly*l3ox.s 1 8B(to+2) 20 ¢
* Bag TR T aoriE (3.18)

An immediate corollary of the above theorem is the following:

Corollary 3.3.2 We obtain an (e, €)-optimal solution of problem (3.1) in T iterations, where

Y

500(to+2)(to4+1)D%  960(to+2)(ly*|l,+1)2M2\ Y2 /65Box 1 (to+2)3/212/3
Tszmax{(ao(o ),5(0 )X+ (to+ )(I(IlyDEH2+) ) ’( O’X,fg(O"r) )/

(3.19)
80(¢2+H3 +144(to+2) (ly* [l +1)%(|o[13) (30(||y*”2+1)20'X,f)t0+2 (13OB<7X,f)2t0+2
QoE ’ B g2 3 g2
Moreover, we obtain E|W (2*, xr)] < € in at most
1/2 )

5(to+2)(to+1)D% | 960(to+2)(||y* |l +1)2M? 60Box ;(to+2)%/2\2/3

max { ( € + aga ’ ( ape ) )
(3.20)

80(C2+HZ +144(to+2) (ly* I, + 127 113) (5||y*||50x,f)2t0+2 (4OBUX,f)2t0+2
aie ) Bag g2 o g2

iterations.

Proof. Using (3.17) and (3.19), we have EH [1/1(ET)] < ¢ +:+:+:+¢ = ¢ Similarly, using

T2
(3.16) and (3.19), it is easy to observe that E[¢(Z7) — ¥(2*)] < €. Using (3.18) and (3.20), we

have E[W (z*,27)] < £ + £ + £ + £ + £ = . Hence we conclude the proof. D

Theorem 3.3.1 and Corollary 3.3.2 provide unified iteration complexity bounds for solving
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strongly convex function constrained optimization problems. These results will also be used
later for solving subproblems arising from the proximal point method for nonconvex problems
in Section 4.2. Below we derive from (3.19) the convergence rate of Algorithm 1 for both nons-
mooth problems, i.e., either H; or H is strictly positive, and (composite) smooth problems, i.e.,
H; =0,Hy = 0.

Let us start with nonsmooth problems for which (3.9) is satisfied with Hy > 0 or (3.10) is

satisfied with H; > 0 for at least one 7 € [m]. In this case, we have

Hy = (ly*lly + 1) Hy + Hy + 22xllla+125le

irrespective of the value of B. Then, using (3.19), we obtain the iteration complexity of

O 4 (HetBlx o S0TPUIH) | 2 )

LT ag apE

B

for the deterministic case. For the semi-stochastic case, the iteration complexity becomes

O(L((LO"‘BLJ’)DX N \/WBM) N (”Hi+a§))‘

NG NG ag age

Similarly, for the fully-stochastic case, the iteration complexity is given by

O(\/%((Lﬁic%)px n \/@BM) N (Hi:—a@) + BQ(Lo-i-BLf)a(grg-&-Dg(HaH%)})‘
Observe that, due to the built-in acceleration scheme of the ConEx method, the Lipschitz constant
Ly will barely impact the convergence since it appears only in the O(1/4/¢) term. Similarly, the
impact of the Lipschitz constant L will be minimized for a large enough B (i.e., B > [Jy*||, + 1).
To the best of our knowledge, these complexity results with separate impact of Lipschitz constants
appear to be new for function constrained optimization. Moreover, the iteration (and sample)

complexity for the fully-stochastic case, i.e., general stochastic constrained problems requiring
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only bounded second moments on nosies, has not been obtained before in the literature.

Now let us consider smooth problems for which (3.9) and (3.10) are satisfied with Hy, = 0
and H; = O forall s = 1,...,m, respectively. We distinguish two different scenarios depending
on whether B > ||y*||, + 1. First, if B > |ly*||, + 1, then X, = Ho + Hp(|ly*|l, + 1) +
LiDx|[||ly*||; +1— B]+/2 = 0 and the iteration complexity in (3.19) can be simplified as follows.

For the deterministic case, the iteration complexity in (3.19) reduces to

O<L(<Lo+BLf>Dx N x/mBM)) (3.21)

VEUT V@ a0

Moreover, the complexity bounds for the semi- and fully-stochastic cases are given by

1 ((Lo+BL¢)D Lo+BLyBM o2
O( g (Lorinbx o YITILIH) 4 o), (3.22)
O(\%((LM%)DX n \/LOJFfOLfBM) n Of_; n Eiz B2(L0+BLfL(;73+D§(||o||§)})’ (3.23)

respectively, where (? = O(o3 + B%*(Lo + BLy)||o||3/v). It is worth noting that a similar bound
to 3.21 has been obtained in [45] with a slightly different termination criterion'. On the other hand,
the complexity bounds in 3.22 and 3.23 for the semi-stochastic and fully-stochastic cases seem to
be new in the literature.

Second, if B < ||y*||, + 1 for the smooth case, then /.. > 0 and the ConEx method converges
at the rate of nonsmooth problems in all these three settings described above. Hence, the ConEx
method still converges albeit at a slower rate without knowing exact bound on [|y*[|,. On the
other hand, existing primal-dual methods require correct estimation of ||y*||, in order to define
the projection operator and properly select stepsize. Observe that one can possibly perform a line
search for right value of B when specifying 7; in the ConEx method in order to obtain a faster

convergence rate, especially for the deterministic and semi-stochastic cases where the constraint

!The infeasibility in [45] is measured by y* [w(fT)] .- and hence may vanish for constraints with yFf =0.
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violations ||[¢(-)] . |l can be measured precisely.

It is worth mentioning that for the complexity results discussed above, we do not require the
constraints ¢;, 1 = 1,...,m, to be strongly convex. From (3.15), we can see that oy > 0 is enough
to ensure the selection of stepsize policy which yields accelerated convergence rates. In particular,
if ; = 0 for all i € [m] (implying ;s are merely convex functions) then 7, in relation (3.34) is
required to satisfy the following more stringent relation: ~;7; < v;—1(m:—1 + o). Note that our
stepsize policy already satisfies this relation. Hence Algorithm 1 exhibits accelerated convergence
rates even if the constraints are merely convex.

Now we provide another theorem which states the stepsize policy and the resulting conver-
gence properties of the ConEx method for solving problem (3.1) without any strong convexity

assumptions. The proof of this result can be found in Section 3.4.

Theorem 3.3.3 Suppose (3.9), (3.10), (3.11) and (3.14) are satisfied. Let B > 1 be a given
constant, M, ox s and H, be defined as in Theorem 3.3.1. Set yo = 0 and {0, m, 7t} in

Algorithm 1 according to the following:

/yt:17 nt:L0+BLf+777

(3.24)
et = 17 T =T,
where
2 0.2 2||lo 2 max o
7 := max{ \/2T[H*+[;);4SB IolE] o5 ;ﬁf"‘” lahy
- max{ \/967;0)(,/-, 2Dx max{B./\/l,4H0'H2} }
Then, we have
— N\ * (Lo+BLj§) DX +max{6M,24||o||,} BDx | 1 V2(¢?+H2)Dx V3Box,;
E[Q/}O(xT) wo(‘r )] < T + \/T{\/H>2k+0'[2)+48B2||0'”g \/5 }
(3.25)
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and

(ly*l+1)?
(Lo+BLy)D% +max{6M,24]|o]|,} Dx (B+-—2—)

Elll[¢(@r)], 1l.] < T

L{[12x/6(lly*\\2+1)2 138

T U7 B + 1vsloxs

+12Dy [\/’Hi + B202 + 48||0 |2 + ¢ty ]}, (3.26)

\/ HL+03+48B2||0||3

where

¢ = 2e{02 + ||o|2(14]|y* |3 + 123B%) + 2V3||0||,(2BH.. + Boo)}''”.

As a consequence, the number of iterations performed by Algorithm 1 to find an (e, €)-optimal

solution of problem (3.1) can be bounded by

3(Lo+BLy) D% +max{36M,144|lo|l,} (ly*[l,+1) Dx  r36v6(ly*ll,+1D)> | 13v3B12%x.s
max . . 5 + =05 175,
(3.27)

" S o112 Dx (C+#3) 2}
-2 [DX\//H* + o5 + 48 B ||U||2 + \/Hi+03+4832”0“§] '

Theorem 3.3.3 provides unified iteration complexity bounds for solving convex function con-
strained optimization problems. Below we derive from (3.27) the convergence rate of Algorithm
1 for solving both nonsmooth problems, i.e., either H or Hj is strictly positive, and (composite)
smooth problems, i.e., Hy = 0, Hy = 0.

Let us start with the more general nonsmooth problems. Since H; > 0 for some 7 = 0,...,m,
we have H, > 0. Then, the complexity bound in (3.27) for the deterministic, semi-stochastic and

fully-stochastic cases, respectively, will reduce to

Lo+BDx (LsDx+M) D2 #H2
O( Ef + )22 *)’

Lo+BDx (LsDx+M) D2 (H2+02)
ol — + e,
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and

0 (L0+BDX(LfDX+M) n BQ(U?+D§¢HUH%)+D§¢(U§+H1)) ' (3.28)

€ €2

Similarly to the strongly convex case, the separate impact of the Lipschitz constants (L and L)
on these complexity bounds have not been obtained before. Moreover, the iteration (and sampling)
complexity for the fully-stochastic case, i.e., general stochastic constrained problems requiring
only bounded second moments on nosies, appears to be new in the literature.

Now let us consider smooth problems for which H; = H, = 0. We distinguish two different
scenarios depending on whether B > ||y*|, + 1. First, if B > ||y*||, + 1, then H, = 0 and
the complexity bound in (3.27) for the deterministic, semi-stochastic and fully-stochastic cases,

respectively, will reduce to

O (Lot Bx(LDx M)y (3.29)

O<L0+BDX(EL,-DX+M) n 0353()7 (3.30)
and

O<L0+BDX(€LfDX+M) n BQ(O'JQ«'FD%(!;’”%)"'D%(U(%)’ (3.31)

where last bound is obtained from (3.27) by noting that (* = O(o3 + 48B?||c||3) and replacing
0% = 07 + D%||o||3. Note that similar bound as in (3.29) has been obtained before by using
more complicated algorithms (e.g., penaly method) or different criterrions. On the other hand the
complexity bounds in (3.30) and (3.31) appear to be new in the literature. Second, if B < ||y*||,+1,
then H, > 0 and as a result, the ConEx method still converges but at the rate of nonsmooth
problems in all these three settings described above.

It should be noted that, different from the strongly convex case (c.f. (3.15)), the stepsize scheme

in (3.24) depends on .., implying that we need to estimate whether B > ||y=||, + 1. However, we
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can replace H.,. in the definition of n by Hp := Hy + BH;. In this way, similar complexity bounds
will be obtained for most cases, including nonsmooth deterministic, nonsmooth semi-stochastic,
nonsmooth fully-stochastic, as well as smooth semi-stochastic and smooth fully-stochastic prob-

lems. In particular, with this modification the last term in (3.27) will change to

18 2 2 2| 12 Dx ((+H3) 2
. [DX\/”HB + 03 + 48B2||0 |3 + ¢%2B+og+4832uou§] :

The only exception that this modification would not work is for smooth deterministic problems. In
this case, since Hp = 0 but H, > 0, the stepsize scheme (3.24) set according to replacing H. by
‘H p does not yield convergence. In particular, the last term in the infeasibility bound (3.26) would
change to H2/H p which is undefined. One possible solution for this is to artificially set Hp > 0 in
the definition of 7 to be some large positive number and forego of the faster convergence of O(1/¢).
After this change, we would obtain a convergence rate of O(1/£?). An alternative approach would
be to design a line search procedure on H 5 for the right value of ., since there exists a verifiable

condition based on the constraint violation || [1(-)], 5.

3.4 Convergence analysis of the ConEx method

In this section, we provide a combined analysis of Theorem 3.3.1 and Theorem 3.3.3. Note that
Algorithm 1 is essentially a dual type method. In order to analyze this algorithm, we define a
primal-dual gap function for the equivalent saddle point problem (3.6). In particular, given a pair
of feasible solution z = (z,y) and z = (Z,y) of (3.6), we define the primal-dual gap function
Q(z,2) as

Q(z,2) := L(x,y) — L(Z,y). (3.32)

One can easily see from (3.7) that Q(z, z*) > 0 and Q(z*, z) < 0 for all feasible z. We use the gap
function of the saddle point formulation (3.6) to bound the optimality and feasibility of the convex
problem (3.1) separately, in terms of Definition 3.3.1. We first develop an important upper-bound

on the gap function in terms of primal, dual variables and randomness. This bound holds for all
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nonnegative ;, 7, and 7;. The precise statement is provided in Lemma 3.4.2.
The following technical result provides a simple form of the three-point theorem (see, e.g.,

Lemma 3.5 of [53]) and will be used in the proof of Lemma 3.4.2.

Lemma 3.4.1 Assume that g : X — R satisfies

g(y) = g(x) + (' (x),y — x) + uW (y, ), Vo,ye S (3.33)

for some 1 = 0, where S is convex set in R™. If

T = argmin{g(z) + W(x, )},

zeS

then

9(Z) + W(z,Z) + (n+ Y)W (z,z) < g(x) + W(x,T), Vo esS.

Proof. It follows from the definition of W that W (z,Z) = W (z,2) +(VW(Zz,2), x—z)+ W (z, T).

Using this relation, (3.33) and the optimality condition for z, we have

g(x) + W(x,2) = g(x) + [W(z,2) + (VW (z,2),x —T) + W(x,T)]
> g(Z) + (@), —T) + uW(x,T) + [W(Z,2) + (VW (Z,%), 2 — T) + W(z,T)]

> g(Z)+W(Z,Z) + (n+ V)W (x, Z).

Hence we conclude the proof. D

Lemma 3.4.2 Suppose (3.9), (3.10), (3.11) and (3.14) are satisfied. Let B > 0 be a constant and
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assume that {7y, m;, ¢, 0+ } is a non-negative sequence satisfying

Vel = Y1,
VTt < Ve—1Tt—1, (3.34)

Ve < Yee1 (M1 + o 1-1),

and
(2M)? o < e fomBL g (M 4 M,)? < sl Bl (3.35)
(2M)2 5 < T om B0 (€ 4 M )2 < Tttt Lo B,

where ay i= ag + aly 1 and My, M, L are constants as defined in (3.13). Then, for all T > 1

and z € {(z,y) : € X,y = 0}, we have

Zt 0 'VtQ(ZHla ) Zt 0 ’Yt[<5t y Tt — «75> - <5£17 Yt+1 — y>]
< yomoW (z,20) — vr-1(nr + aor—1)W (z, 27) + 222|ly — yol|3 — T2 |ly — yrll3
t L¢D
+ Y s 10812 + (Ho + Hillyll, + =5 [llyll, — B1+)?]

T-13 t9 3y _
+ S el = @l + St lar - arlls. (3.36)

G = Lp(w) — Lp(wimr) + x(z0) — x(z1),
0F = Up(e) — Lp(xy) and 6F = Go(24, &) + NyepmGilmeusy — Filwe) — S iz

Here q; = (p(zy) — lp(xi—1) + x(2) — x(24-1),

Proof. Note that y,,; = argmin{—s;,y) + %|ly — :||3. Hence, using Lemma 3.4.1, we have for
y=0

ally > 0,

Tt

—(st, i1 — ¥ < [y — well3 = Nlyerr — well3 = |y — vesall3]- (3.37)

Let us denote v := f{(z;) + Zie[m]f{(xt)yfi)l and V; := Go(4, &) + 2iepm Gile, &)yt(i)l. Then,

due to the strong convexity of yo and x;,7 = 1,...,m, the optimality of x;,,, Lemma 3.4.1 and
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the definition of o ;, we have for all x € X,

Vi = )+ X0(@t01) = Xo(®) + Dicm (Xi(@r11) = Xi(2))yi
(3.38)

< [Wix, ) = W(zggr, )] — (e + o) Wz, 2441).

Due to the convexity of f, and f;, (3.9), the definition of ¢; and the fact that y;,.; > 0, we have

(o w1 — ) = (@) + Sy @ U o1 — 2
— (fy(@e) Tsr = w2 — )+ @)Y, T — T + 30— T
> fow) = fol@) + fol@esr) = folwe) = Bl — wil|* = Hollwir — |
+ Cpen, U (@en) = F@)) + v, F@) = (@)

= fo(@e1) = fo(z) + y(@e41) — f(2),Ye11) — (%Hl'tﬂ - xt”Q + Hollwi1 — xtH)a (3.39)

L |
Ot+1

where O; 1 = %thﬂ — x¢||* + Hol|zes1 — 4| is a ‘Lipschitz’-like term for the objective.

Combining (3.38), (3.39), noting that §¢ = V;, — v, and using 1)y = fy + X0, ¥ = f + X, we have

Yo(wi1) — Yo(x) + Lp(xisr) + x(Te41) — (@), Yrg1) + <5tG, Tpp1 — X)

< Wiz, z¢) — W (21, ) — (e + ao,t)W($7$t+1) + Oy1.

(3.40)

Noting the definition of Q(-, -) in (3.32) and, adding (3.37) and (3.40), we obtain

Q(z41,2) — (W(2451),y) + <£f(xt+1> + X(Tt41), Y1) — Sty Yes1 — Y) + <5tG, Ty — T)
< 2y = well3 = Nlvesr — wells = N1y — ves [13]

+ W (@, 2) — W (@1, 20) — (e + 20,) W (2, 2411) + Oppa- (3.41)

In view of (3.10),

filween) = g (w41) < %thﬂ — 2| + Hyl| w1 — ).
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Then, using Cauchy-Schwarz inequality and noting definitions of Ly, H ¢, we have

L
W, f (@) = L)) < Dyl [Fllween — @il + Hyllze — @],

Ct+1

where Cy1 = %thﬂ — x4||* + Hyl|zeo1 — 2] is a ‘Lipschitz’-like term for the constraints.

Noting the above relation and definitions of ¢; and 47 ;, we have

Cy(zpn) + x(@es1), Yer1) = Q(@41), y) = (St Y1 — Y)
= p(ween) + X(@e41), Y1) — Ly (@er1) + X(@e11), ¥) — (St Yer1 — ¥) — [Y][2Cen
= {lp(@es1) + X(@er1) = s, 41 — Y) — [Yl[2Cn
= {p(wee1) + X(@e41) — Lp(xe) — X(22) = 00, Y1 — y) — [Y[l2Cera

= {Ger1, Y1 — ¥ — 0{qt, Yt — ) — 0qt, Yerr — Yy — {Of 1, Yer1 — U) — |[Y][oCrra. (3.42)

Let B > 0 be a constant. Then

L BL
1Wll:Ceir = S (I1ylly = B)llweer — zell* + N wess — 2ell* + Nyl Hpllween — a2l

L BL
< Fylls = Blillzen — 2ll* + =F|ween — 2ll® + ly o Hp |z — .l
BL L¢D
< e =2l + (Il Hy + =5 [lylly = Blo) w2l (3.43)

By (3.41), (3.42), and (3.43), noting the definition of O;,; and using the relation %Ha — bH2 <
W (a,b), we have

Q(ZtJrl: Z) + <Qt+17 Yiv+1 — y> - ‘9t<Qt7 Yy — Z/> + <5tG, Ty — l’> - <5f+17 Yt+1 — y>
< 0qe, yes1 — Yoy — (67, T — @)

+ W (@, 20) — (e + ao) W, zs1) + Z{ly — well3 = Nvesr — vell3 = 1y — v [13]

~ (0~ Lo = BLAW (ger, @) + (Ho + [wlloHy + 222 lylly — BL) s — el (3:44)
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Multiplying (3.44) by ~;, summing them up from¢ = 0to 7" — 1 with 7" > 1, we obtain

Zz:ol%fQ(Zt—i-ly z) + Zf;ol [Vi@es1, Yesr — ¥) — 10{ae, ye — )] + ZtT:_ol% [<5tG7 Ty —x) — <5£r17 Yer1 — )]
< Z,:T;ol [ve0:(qe — Go> Yes1 — Ye) + 10Tty Y1 — Ye) + <%5tGa Ty — Tpp1)]

+ Yo 521y = 9el3 = 2521y =y 3] = 220 25" yeer — well3

+ 2 [y W (@, 2) — %(ne + 00, )W (@, 2441)]

_ L:D
— Yoo [0 — Lo = BL)W (w41, @) — v (Ho + lylloHy + 252 [ylly — Blo)llwe — zl],
H(y,B)

(3.45)

where H(y, B) := Ho + ||y|l,Hf + Lffx [l|y]ls — B]+. Now we focus our attention to handle the

inner product terms of (3.45). Noting the definition of ¢;, we have

1@llo = [1€5(ze) = Cp(zea1) + X (@) — X(2-1) [l
< [ f(we1) + f’(ft—l)T(xt —xi1) = fze2) — f’(xt—Q)T(xt—l —xa)lg + lIx(we) — x(ze-1) |l
< f(@emr) = flea)lly + 1 (wema) " (@ = 2em1) g + 1 (@—2) " (2em1 — 2e=2) |l + M|y — 201 |

< 2Myllwpy — zpa|| + (My + Mp)||lze — ], (3.46)

where the last relation follows due to (3.12). Using the above relation, we obtain

_ - _o(ni—2—Lo—BL _1(pt—1—Lo—BL
'Yt9t<CIta?Jt+1 - ?/t> - %Hytﬂ - ?Jt”g — ezl 24 ° f)W($t—1,th—2) — el 14 . f)W(xt,ﬂft—l)

< WO @ellollyesr — viella — - lyeer — well3

~Yt—2(nt—2—Lo—BLy) Ye—1(ne—1—Lo—BLy)
- 4 W(‘/Etflaxt72> - 4 W(:Utwmtfl)

< 2Mpvibil|zi-1 — we-a||Yer1 — wello — 254 [yesn — vl — Wz(mfzzLO_BLf)W(:th,CUtfz)

+ (Mf + MH)%Gt”CCt - Sb'tle Hyt+1 - ytHQ - %Hyﬂl - Z/t”% - Wtil(ntil;Lo_BLf)W(ﬂﬁt, Zthl)

<0, (3.47)
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where the last inequality follows by applying the relation W (x,y) > %Hx — /|, Young’s inequality

(2ab < a® + b?) applied twice, once with

(Wt—z(nt72—Lo—BLf) ) 1/2

g Hﬂﬁtq - $t72||

N\ 1/2
o= () yps —wll, b=

and second time with

1/2 e p_ Lo
a = (%) / Hyt+1 _ytHa b= (’Yt 1(ne 18Lo BLf)) / ||xt _xt—1||,
and the fact that
(2M )b, < {2mles o BLORYE - o g2 e < ncathonBLy),
(Mj + M)} < 2rlig—to- 20 o (M;+ My)6, < “=lo=BLy).

where equivalences follow due to (3.34).

Using Young’s inequality, Cauchy-Schwarz inequality and the relation u”v < |lul|||v]|,, we have

_ 02 _
Ve0:l@r — G Yes1 — Ye) — %H%H - ytHg < ?’gij llg: — QtH%:
—Lo—BL
<%5tG>$t — Tpp1) — WW(%H,%) < me2(+BLf“51tG”>2w (3.48)
YH(y, B) 001 — ]| — PE==EEOW (241, 00) < o2 H(y, B,

Using (3.47) and (3.48) fort = 0,...,T — 1 inside (3.45) and noting (3.34), we have

Z;[:_ol’YtQ(ZtHy 2) + yr-1{qr, yr — y) + ZtT:_ol’Vt [<5tGa Ty —x) — <51517 Yir1 — Y]

T-1

< YomoW (z, 20) — yr—1(m + aor—1)W(z, zr) + 292 |ly — yoll3 — T ly — yr |3

T—1[ 362 _
+ 2o [ e — @lI3 + 77t,L20+BLfH5tGH3 + m,LZ(+BLfH(y7 B)?]

_ VT_Q(UT_Z—LO—BLJ«)W@TA’ T g) — ’YT—1(77T—12—LO—BLf)W(xT’ Tr_1), (3.49)

where in the left hand side of the above relation, we used the fact that qg = (p(z9) — {p(z_1) +

x(zo) — x(z_1) = 0. Similarly, we see that gy = 0. Hence we can ignore ||qy — qo||3 term in the

right hand side of the above relation.
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Using (3.46), we have

— Y1 {ar.Yyr — Y) — 1TT Hly — yT”z
— VT_Q(WT_QZ;LOiBLf)W(ﬁT—l, Tr_9) — VT_I(WT_lgLoiBLf)W(:ET, Tr_1)
< (Mg + My)yr—illzr — zrallllyr — yll, — =52y — yrll3 — 7T_l(nT_l;LOfBLf)W(JET, Tr_1)
+ 2Mpyr_a|lzr—1 — x|l lyr — ylly, — ZEE=2 |y — yrll3 — o202 Lo BED yy (g o)
w”yT - Z/HQ
< — =7 lyr — vl (3.50)

where the last relation follows from (3.35), Young’s inequality and the fact that

(2Mf)yr-1 < {VT_MT_ITT_IEZT_Q_LO_BLJ()}1/2 And (2Mf)2

Tt(ne—2—Lo—BLy)
12 ’

<
Op_1

(Mf +MH)’}/T71 < {’Y%flTTfl(n'ligl_LO—BLf)}1/2 < (Mf + MH) < T — 1(7]T 112L0 BLf)

Moreover, again using Young’s inequality and Cauchy-Schwarz inequality, we have

—vr—1{qr — qr,yr — y) — =5 ly — yr||2 < 224 |gr — gr||3. (3.51)

27’T 1

Using (3.50) and (3.51) in relation (3.49), noting that ¢y — qo = 0 and replacing the definition of
H(y, B), we obtain (3.36). o

We now aim to convert the bound on the primal-dual gap function ) in Lemma 3.4.2 into a
bound on the optimality and infeasibility according to Definition 3.3.1. For proving this lemma,

we need one more simple result which is stated below.

Lemma 3.4.3 Let po, ..., p; be a sequence of elements in R" and let S be a convex set in R".

Define the sequence vy, t = 0,1, ..., as follows: vy € S and

Vi1 = argmin{py, ©) + |z = vlf3,
zeS
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Then for any x € S and t > 0, the following inequalities hold

(prv — ) < Hle = vl = Ll = o3 + Hloul, (3.52)

oot ve = ) < gllz = woll3 + §20o I3 (3.53)
Proof. Using Lemma 3.4.1 with g(z) = {p;,z), W(y,z) = L|ly — z[3, ¥ = vy and p = 0, we

have, due to the optimality of v; 1,

pe Vst — ) + 3llveer — vell3 + 311z — v |3 < glle — el

is satisfied for all x € S. The above relation and the fact

(pesve = ver) — gllvens — vellz < 5lloellas
imply that
s ve — ) < gllv = vell = 3lle = vealls + 5llel3,

for all z € S. Summing up the above relations from ¢ = 0 to j and noting the nonnegativity of

|-]|3, we obtain (3.53). Hence we conclude the proof. o

Now we are ready to prove the lemma converting bound on the primal-dual gap to infeasibility

and optimality gap.

Lemma 3.4.4 Suppose all assumptions in Lemma 3.4.2 are satisfied. Then, for'T' > 1, we have

E[o(Tr) — vo(z*)] < £ [vomoW (2", z0) + 252 |yoll3

T—112v02 | 12y7_,
+ 2 om( (1671121 + HE) + (X5 =25 + 222=1) (0% + D% |lo]13)],

(3.54)
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Yr—1(nr—1+aor—)E[W (2*, 27)] < 222 ||y* — yol|3 + YomoW (z*, zo)

+ (N ) (52 4 DY [|o][2) (3.55)

Tt TTr—1

+ Yo g ABUOEIR] + (Ho + ly* Il Hy + [lly* ]l — B]+)*},

and

E[v@)], o] < 7 [0 llwoll3 + 3(1y*Ilz + 107 + 200 W (2", )

: * Ly Dx[|ly*|l,+1-B
+ Yo g [EIOF 1] + (Ho + (ly*ll, + 1) Hy + = xlly*la+1-Ble y2)

+( T— 112::;9,f _i_Z;F 01:: + 1297 1)(0f+D ||O'” )] (356)

TT—1

where T'p = 3",

Proof. Notice that conditional random variables |G (x4, &) [€p—11, E[t_g]] and [G;(w, &) [€p—11, E[t_g]
satisfy properties of SO in (3.14) because z; is a constant conditioned on random variables ;1) :=
(&0, -, &—1) and E[t_g] = (&, ...,&—2). Also, observe that, 1, is a constant conditioned on

random variables {[;_j and f [t—1]- In particular, using (3.14), we have

E[(5C, x, — 2)] = B e, .60y [06], 2, — x) = 0, (3.57)

for any non-random x. This follows due to the following relation

_ G
E|£[t71]a£[t71] [515 ]

=B, ey [Gol@n &) — fi@)] + EXT i By, e, o [Gilzi &) = fi(z)] = 0

Similarly, using (3.14), we have

E[{8¢ 115 Yr+1 — )] = E[{Big, &, [051], vea1 — 4] = 0, (3.58)
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for any non-random y. Here, we note that

E‘f[t] ft 1] [5t+1] E|§ &[t—1] [F(xh gt)] - f(xt)

+ (B, g0y [Glae, &)] = f/(20)) (w1 — ) = 0,

(3.59)

where the first term in RHS is 0 due to the third relation in (3.14) applied to &, the second term

is 0 due to the second relation of (3.14) applied to & and the common fact for both the terms that

Tt, Ty4q are constants for given &, {;—1]. We note that

E[[1613] < 2E[|| F (211, &-1) = fze) 3] + 2B[|[G (211, &E1) — [ (we1)]" (20 — 200) 3]
< 20120 + 2E[>" 1{ (e 1,ft 1) = fl(@e—1) T (2 — xtfl)}2]
< 207 + 2B |Gi(w-1, 1) — [/ (1) |22 — mema %]

< 207 4+ 2D% |0 |l3. (3.60)
Then, in view of above relation and definitions of ¢;, q;, we have

Elllg: — @3] = E[lltr (2:) = £y(20) + Lr(zimr) = Lp(@io)]5]

2E[]167 2] + 2E[]|6;,[12] < 8(F + Dx o l3).

(3.61)

Taking expectation on both sides of (3.36) and using relation (3.57), (3.58) and (3.61), we have for

all non-random? z € {(z,y) : v € X,y > 0},

_ 2
B[N 1Q (241, 2)] < 220y — yoll3 + yomoW (z, z0) + (S, 2% + 271 (5% + D [|o|3)
t T—1

t L¢D -B
+ 500 e [BUSEIR) + (Ho + [lyllpHy + 222 gl=2e)2]

— yr—1(nr—1 + g r—1)E[W (z, z7)], (3.62)

where we dropped ||y — yr|/3. Using the convexity of 1(-) and 1(-), and noting the definition of

2This z, y is required to be non-random because we are dropping the inner product terms of the left hand side of
(3.36).
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I'r, we have for all non-random y > 0 and x € X,

LrE[vo(@r) + {y, ¥ (Tr)) = do(x) = Gr, ¥(@))] < E[X, ) %Q (241, 2)]. (3.63)

Combining (3.62) and (3.63), then choosing z = z*,y = 0 (which are non-random) throughout
the combined relation, observing that [0 — B], = 0 for any B > 0, ignoring W (z, zr) term and
noting that ¢)(z*) < 0 and yr > 0 implies (g, ¥ (z*)) < 0, we have (3.54).

Now, we prove a bound on E[W (z*, zr)]. Put z = 2* := (z*, y*) in (3.62). Then we have that
Q(z¢11,2*) = 0forallt = 0,...,7 — 1. Hence, using z = z* in (3.62), dropping summation of
(Q-terms and taking expectation on both sides, we obtain (3.55).

Now, we focus our attention to the infeasibility bound. First, define R := ||y*||, + 1. Second,

define an auxiliary sequence {y;'} in the following way: y{ = yo and for all ¢t > 0, define

yier -= argmin =07, y) + 1lly — v/ [13,
yeB2 (R)

where we recall that B2 (R) = {x € R" : ||z]|, < R,z = 0}. Then in view of Lemma 3.4.3, in

particular relation (3.52), for all y € B2 (R) we have

%<§£r1vyf+1 —y) < %Hy - yfﬂ”% QHZJ yt+2||2 + WH‘S +1H2 (3.64)

Multiplying (3.64) by v;7, taking a sum from ¢ = 0 to 7" — 1 and noting the second relation in
(3.34), we obtain

T -1
Zt 07t<5t+1ayt+1 y) < Py — yill5 +Zt 0 ;;H(StHHQ, (3.65)
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for all y € B2 (R). Summing (3.65) and (3.36), we obtain

Zt 0 '7tQ(zt+17 ) + Zt 0 ’7t[<51;Ga Ty — 37> - <5£r17 Yt+1 — yf+1>]

o T—1 37462 3yr— —
20 lly = wollz + ly — w7151 + vomoW (2, 20) + 3y et Ml — @ill5 + 5= llar — ar 3
T—1 L¢:D —B
+2mdgﬁ%@W$M+gm+mmw+4¥ﬂ%—hm+;wﬂma (3.66)

forall z € {(z,y) : 2z € X,y e B2(R)}. Note that given &) and 1), we have y,1, Y7, 1, Ter1

and z; are constants. Hence we have

E[<5t}11’ Yi+1 — yl’fl)+1>] = ]E[<]E|§[t]£[t,1] [615}11]7 Yt+1 — y§+1>] = 07 (367)

where second equality follows from (3.59). Choosing z = Z := (z*,7) in (3.66) where §j :=
(y*lla+D[w(@)], [y (= >]+”2_1 e B2 (R), taking expectation on both sides and noting (3.67),
(3.60), (3.61), first relation in (3.57), we have

E[Y—o %Q (241, 2)] < 5PE[1T — voll3 + 17 — y7 3] + vomoW («*, z0)

L;D * 1-B 2
+ X0 e, ABIIOF 1) + (Ho + (gl + 1) Hy + 225 Etke )Ty

+( T— IIQZIQt +Z?OIZ: 127T_1)( + D2 ||o]|?). (3.68)

TT—1

Noting the convexity of () in first argument, we obtain

E[Q(zr,2)] < m-E[X, g %Q(ze01, 2)). (3.69)

Now observe that

L(Zr,y*) — L(z*,y*) =0

= Yo(Tr) + Y, Y(Tr)) — Yo(z*) = 0,
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which in view of the relation

W () < [vEn)] D < ly*llbl[e@n)],
implies that
vo(@r) + ly* o ll[ (@7)] Nl = to(=*) = 0. (3.70)

Moreover,

Q(zr,2) = L(27,7) — L(2*,5r) = L(@r,7) — L(&*,y*) = Yo(@r) + (ly*]l2 + DI (@r)] , Il2 = (),

along with (3.70) implies that
Q(Zr,2) = H[¢<fT)]+H2

The above relation, (3.69) and (3.68) together yield

B[], ) < & ZRE0G - ol3 + 17 — 5713] + vomW (2*, 20)

t % LD * 1-B 2
+ 000 ey BT 121 + (Ho + ("l + 1)/Hy + g™

(X 11206} T8 i IQVT =1 (a% + DX loll3 )]

Tt

Noting the bound ||7 — vV ||, < 2R and ||7 — o3 < 2||woll3 + 2|73 < ||lvoll3 + 2R? in the above

relation and recalling that R = ||y*||, + 1, we obtain (3.56). Hence we conclude the proof. o

Note that we still need to bound E[||6¢]|2]. Below, we provide a simple lemma which is used

to show such a bound.

Lemma 3.4.5 Let {a,};~0 be a nonnegative sequence, my, my = 0 be constants such that ag < my

and the following relation holds for all t > 1

t—1
ap < my + mod k.
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Then we have a; < mq(1 + ma)".

Proof. We prove this lemma by induction. Clearly, it is true for ¢ = 0. Suppose it is true for a,.

Then, using inductive hypothesis on a;, for k = 0, ..., ¢, we have

t
Q1 <My + Mmoo

< m1[1 + mQZl];:O(l + mg)k]

(1+m2)t+1_1]

ma = m1(1 + mg)t+1.

< m1[1 + Mo

Hence, we conclude the proof. =

Now, under some assumptions, we show a bound on E[||6¢|2].

Lemma 3.4.6 Assume that {~;, 1,1} satisfy

96(|o113
Tt('f]t—LO—2BLf) <1 (3.71)

forallt <'T'— 1 and constants R, and R, satisfying the following conditions exist.

YTt

96|01 -1 2, 48|all3 4 2070 |[,* 2 vm
Ry = (1 - 7't("7t_L—0—BLf)> [200 + {'Y oW (x*, o) + 252 ly* — woll3 + 25t ly=[I3

+ Sion=rotpry (Ho + Hylly*[l; + 22 l==te)?
+ (U0, 2+ 22 (03 + DY o)) (3.72)
forallt <T —1and
Ry = <1 - Tt<nt9—6L|Z—lgBLf>>1m<?f—oio§—%BLf> (3.73)
forallt <T —1andi <t — 1. Then, we have
E[ll67112] < Ri(1 + Ry)', (3.74)
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forallt < T — 1. In particular, if ||o|l, = 0, then we can set Ry = 203 and Ry = 0 implying
E[J|0F][3] < 20¢.

Proof. Observe that Q(24,1,2%) = Oforallt = 0,...,7 — 1 where z* = (z*,y*). Choosing
z = z*1in (3.36) for T substituted by ¢ + 1(> 1), taking expectation, using (3.57) with x = z* and

(3.58) with y = y* and noting (3.61), we have

BENY" = yenllz < vomW (2%, 20) + 252y™ — woll3

" L+D *||,—B
+ Xzt [BIOFIR + (Ho + Hylly*lly + 22l =mkey?]

+ (S0 2y 120y (62 4 DY o]f3). (3.75)

Ti

Now, let us define 6 := Gi(xy,&) — f/(x;) fori = 0,...,m. As a consequence, we have

o =07y + D 13;,5“(5?Z Then, we have

E[0713] = EIIST, + X2 ol2]
< 2E[[65112) + 2B[1 2, 6 6% 2]
< 2E[I55113] + 2E[(S24 105,07
2{% + E[llyesll3 (2 19512) 1}
2{00 +E[Hyt+1|\ (ZZ 1E|§t e 1][H5 12 ])]}
<203 + Ellyena 3X 1071}

= 2(05 + llo[3Elly+113)

<
1
<

< 205 + 4llolz(ly" 112 + Ellyeer — y*[12)- (3.76)

Here, relation (i) follows due to the fact that ||a + b2 < (|lall, + ||b]l,)* < 2|al?

relation (ii) follows due to Cauchy-Schwarz inequality, relation (iii) follows dues the fact that
Ys+1 1S a constant conditioned on random variables 5[t,1],€[t,1] and relation (iv) follows from

fourth and fifth relation in (3.14) and the fact that z; is a constant conditioned on random variables

§r—11» §pe—1
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Adding 27t||y* |3 to both sides of (3.75), then multiplying it by ”0”2 and observing (3.76), we

have

48||o T T
E[0F12] < 208 + 22 Lo W (2%, z0) + 252 ly* — yoll3 + 2511”3

VTt

i L:D *|| —B
_|_ZZ OJ#BM(HO"_HJ‘HQ*HQ"" f X[Hy2 Il ]+)2

t 12 29L t 96 2 i
(T 2 4 20 (02 1 DR |oIB) ) + Sl S B2,

In view of (3.71), we have that the coefficient of the 6© term on the right hand side of the above
relation is strictly less than 1. Moving the §¢ term to the left hand side and noting the conditions

imposed on constants Ry, Ry, we have
E[05)12] < Ri + RoX i E[||6C12],

for all t < T'— 1. Using Lemma 3.4.5 for the above relation, we have (3.74). Hence we conclude

the proof. O

Note that bound in (3.74) is still a function of stepsize parameters since R; are Ry need to satisfy
relations (3.72) and (3.73), respectively. Now, we need to show that there exists a possible selection
of stepsize parameters for which we can compute a uniform upper bound on E[||6¢]|2] for all ¢ <
T — 1, in particular, we can obtain constants /2, and R, satisfying (3.72) and (3.73), respectively.
Moreover, selected stepsize policy is meaningful in the sense that it yields convergence according
(3.54) and (3.56). Below, we show that the stepsize policy in (3.15) of Theorem 3.3.1 and (3.24)
of Theorem 3.3.3 are specified in a way such that (3.34), (3.35) and (3.71) are satisfied. Moreover,
a uniform upper bound according to (3.74) for all ¢ < 7" — 1 can be obtained and it also leads to
the convergence according to (3.54) and (3.56). In particular, we show the proof of Theorem 3.3.1
and Theorem 3.3.3 below.

First, we focus on the setting in which (3.1) is strongly convex, 1.e., oy > 0 and show the proof

of Theorem 3.3.1 below.
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Proof of Theorem 3.3.1. Note that {~,, 0;,n;, 7;} set according to (3.15) satisfy (3.34). It is easy

to verify the first two relations in (3.34). To verify the third relation, note that

Vi1 (1 + @o—1) = Y1 (—1 + ap)

= (t +to + 1) (2 4 ) = (¢ 4t + 1) (t + to + 2) = 3.

Note that (3.35) is satisfied if 3M? < w. This follows due to the fact that {7} is an

increasing sequence, % < 6; < 1 and the definition of M. Indeed we have,

Tt(ﬂt72—L0—BLf) 32M?2 (Oc()(t-‘rt()—l) o Oco(to—Q)) _ 2(2t+t0)./\/l2 4M?
12 “ 12a0(t+1) 2 4 3(t+1) = 3

where the last inequality follows from ¢, > 2 by definition. Also note that

384|137 /o 1 ao(to—2 96(2t+to+4)||o|13T
il — Lo — BLy) > Uy (et — enl=t) = SEEGERELE > 1000

for all £ > 0. Then the above relation implies that

96]1[13 1
Tt(ﬁt*L0*2BLf) S 2 (377)

for all ¢ > 0. Finally, we need to show the existence of constants ; and R, satisfying (3.72) and

3840 ||3T

ooty > Ve observe

(3.73), respectively. Using the fact that 7, >

96||o 1|3z < 384|||3(i+to+2) ao(t+1) 1 (3.78)
’yt’Tt(77i—L0—BLf) = Oco(2i+t()+4) 384||0’||%(t+t0+2)T =70 *

forall 7 = 0,¢ > 0. Noting (3.77), (3.78) and (3.73), we can set

Ry = (3.79)

2
=
Noting (3.72) along with definition of ., in the theorem statement, setting yo = 0, using (3.77),(3.61),
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and applying the following relations

384||0]3T  ox ;T3
VTt = max{ @0 ? B(tg+2)1/2 }7

Zt Vi 4(t+1)
i=0m,—Lo—BL; =~ ao '
t b2 |y B(to+2)V21(t+1)3 | (t+1)2(to+2) | (t+1)(9t0+10)
Zizl P S ox ;32 [ 3 T 2 + 6 — (to + 1)]’

we can observe that have for all ¢ < T — 1, RHS of (3.72) is at most

2 2f (to+2 | 1 \q,x)2 o 8THE _ T ag
2|20 + 481013 (52 + )13 + ot s i
120% (B(to+2)"? ( B(to+2)1/2 13 g (T2(t0+2) 4 TO0T10) gy 1))
ox, ;T3/2 ox sT32 3 384[|0|13T 2 6 0 :

Then, noting % < 1 and ignoring —(ty + 1) term, we can set

Ry := 2[203+24(t0+3)||a||§||y*||§+7{i +4 % 48(t0+2)BZ||U||§+3aOBaX,f(to+2)3/2]. (3.80)

Then using Lemma 3.4.6 and noting (3.79), we have forall t <7 — 1

202 if |lo|l, = o5 = 0;

E{I9712] < -
R1(1 + %) " < Rye?  otherwise.

Noting the above relation, (3.80) and the definition of (, we have

E[||6712] < ¢, Vi<T—1. (3.81)

So according to (3.54) with yy = 0 and using (3.81), we have

X « 1 2 8 2 H2 T
E[¢o(ZTr) — tho(2™)] < T(T+gto+3)[ h(t0+2)(t0+ YW (2*, z0) + %
2Bl 4 2) g (PO | foshr
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Here we used the bound

. [

m—Lo—BLy S ap for all ¢ = 0’ (3 82)
T—17:02 yT_1 Bl(to+2)1/2 1 T2(T+2) T(T+3) '
t=1 T_tt + Tr_1 < UX,fT3/2 [ 3 + (t[) + 1) D) ]

Noting the bound on W (z*, ) in the earlier relation, we obtain (3.16). Using (3.56), (3.81) and

the bounds in (3.82), we have

x [ 2 ox T%?  384|0|3T
EH [w(xT)]+ 2 S T(T-‘rgto-‘r?)) [B(to + 2)(“y*H2 + 1>2 maX{?)Q&/\: ) 3(1(512)1/27 |(‘)¢0H2 }
DOy (7 ) 113ty + 2) Py f{ ULy Gt Ty
L:D * —B 2
+ 52{¢2 + [Ho + (ly*|l; + 1) Hy + 22X lm=Be 1), (3.83)

Noting the bound on W (z*, x4) in (3.83), the definition of H., using the fact that w < T3

and combining the T’ 3/2 order terms, we obtain (3.17). From (3.55), we have

* 2 (to+2)|ly* |13 32M2  _ox,fT%?  384||0|3T
E[W (wr, %)) < ao(T+to+1)(T+to+2)[ 2 max{ a0 Btor2)2° a0 }

a 1/2 —1/2
+ ol D2y (% ) 4 12B(t + 2) 20y p{ T 0H2) y Lot DT 7IE8)y

+ 500 4 [Ho + |yl Hy + Ze2xllyla=Bleg?y

With similar replacements in the above relation as in (3.83), we obtain (3.18). Hence we conclude

the proof. D

Proof of Theorem 3.3.3. It is easy to verify that {~,, 0;, ;, 7} set according to (3.24) satisfy (3.34)
with oy = 0. Note that (3.35) is satisfied if M? < w. This follows due to the fact
that {n;} is an non-decreasing sequence, ¢; = 1 for all ¢ > 0 and the definition of M. Then we

have

Tt(ne—2—Lo—BLy) 6 MB 2MDx 1 2
12 > 50T X = M
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: 24B|o|| 8Dx ol
Also, since (1, — Lo — BLy) > —p, > and 7, > ===, we have

7(ne — Lo — BLy) = 192|0|3
for all ¢ > 0. In view of the above relation, we have

96||o 13 <1 (3.84)

Tt(T]thofBLf) == 27

hence (3.71) is satisfied. We also need to show the existence of I?; and R, satisfying (3.72) and

96Tox rlloll

(3.73), respectively. Using the fact that v, n; and 7; are constants for all £ > 0, 7 > D

and noting (3.84), we obtain

(1 _ 9613 )*1 96(l[I3i < 296|IU||2 < 9 llolla Dx <

2
Tt(nt—Lo—BLy) yert(ni—Lo—BLys) TN Tox,y T

where in the last relation, we used the fact that ox s = Dx/||o||,. In view of the above relation and
(3.73), we can set

Ry := 2. (3.85)

Noting (3.72) along with the fact that H, > Hy + Hy|ly*||, + LfDX[Hy;||2_B]+, setting yo = O,
i = A/ v txl VTDx

using (3‘84) 3.61), wm = 7 = VI6Tox s, Zl 0mi—Lo—BLy n S \/2[HE+03+48B2| 03]’

P 1 7" = % < % forall t < T — 1, we can see that the RHS of (3.72) is at most

i=1"1;,

and

2 207 2 2 V2T DxH2 B
2[20% + 48|0|13{ Sly* |5 + 2D + T +00+ZSBQ =T VetTox -+ 120Xf =

W

H2+Uo+4832\|0’\|2] BHs 6 max{M4[lol,}BDx B B2
B\/ T \@) T Smax(Mdlol,] Dx | 8 |

< 2205 + 28|lo|lly* (I3 + 75703 + V48|lolly[2BH. + (Boo + V48 B2||o]|,)]]

< 2[20% + 48|loI3{ v I3 + 2D% + DEEHe + 12T0% ool f}]

< 2[207 + 48]l |l3{ Zllv* |15 +

O'Xf

\UHzDX

where in the last inequality, we used the fact that | < 1. Note that the last term in the above
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sequence of relations is a constant satisfying the requirement in (3.72). Hence we can set

Ry = 2[207 + 28|l0l3]ly" (13 + 755%|o[l3 + V48[l [lo[2BH. + (Bay + V48B?|o],)]]. (3.86)

Then using Lemma 3.4.6 and noting (3.85), we have forall t <7 — 1

203 ifloll, = oy = 0

E{I9712] < B
R1(1 + %) " < Rye?  otherwise.

Noting the above relation, (3.86) and the definition of (, we have

E[ll67 1171 < ¢2, Vi<T—1. (3.87)

So according to (3.54) with yy = 0 and using (3.87), we have

2(¢2+H2)T

E[¢o(2r) — to(z")] < 7[(n + Lo + BL)W (2", ) + == + 120% 7.

Using the bound W (z*, 7¢) < D%, we obtain (3.25). From (3.56) and (3.87), we have for T > 1

_ * " 24942 130% ;T
EH[¢($T)]+H2 < 2[3(|ly*|l, + 1)°7 + (n + Lo + BLy)W (2", o) + 2e +77H LA XL

Using bounds W (z*, ) < D%, we obtain (3.26). Using (3.26) and (3.27), we have

wlm
+

wolm
+

wlm
[
o

E“[¢(ET)]+”2 <

Similarly, using (3.25) and (3.27), it is easy to observe that E[o(Z7) — 1o(2*)] < . Hence we

conclude the proof. =
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CHAPTER 4
STOCHASTIC PROXIMAL POINT METHOD FOR STRUCTURED NONCONVEX
FUNCTION CONSTRAINED OPTIMIZATION

In the previous chapter, we looked at ConEx method as a unified algorithm for solving the convex
composite function constrained optimization problem. In this chapter, we will look at the prox-
imal point method for nonconvex function constrained optimization. We assume that nonconvex
functions have a minimal structure such that the original problem can be reduced to solving a se-
quence of convex composite function constrained subproblems. The algorithm and the analysis
techniques are motivated by proximal point methods for unconstrained optimization. We will look
at the convergence of the newly proposed proximal point method to the KKT point under various
constraint qualifications. We will also consider stochastic or large-scale cases where an exact so-
lution to the convex subproblems cannot be obtained. We will employ the aforementioned ConEx
method for solving the subproblems inexactly and show its convergence under various constraint

qualifications.

4.1 Structured Nonconvex Function Constrained Optimization

We study the following composite optimization problem with function constraints:

ml)l(l Yo(x) := fo(x) + xo(2)
s “4.1)

s.t. Yi(x) = fi(x) + xi(x) <0, i=1,...,m,

where X < R™is aconvex compactset, fo : X — Rand f; : X — R, ¢ = 1,..., m are continuous
functions which are not necessarily convex, o : X — R is a proper convex lower semicontinuous
function, and y; : X — R,7 = 1,...,m are convex and continuous functions. Problem 4.1 covers

different nonconvex settings depending on the assumptions on f; and x;, 2 = 0, ..., m.
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We assume that f;, i = 0, ..., m, are smooth functions, which are not necessarily convex, but
satisfying a certain lower curvature condition (c.f. (4.2)). However, we do not put the simplicity
assumption about the proximal operator associated with convex functions x;, ¢ = 0,...,m, as
we did in the previous chapter, covering a broader class of nonconvex problems. This includes

problems with non-differentiable objective functions or constraints.

4.1.1 Algorithms in the literature

The past few years has also seen a resurgence of interest in the design of efficient algorithms for
nonconvex stochastic optimization, especially for stochastic and finite-sum problems due to their
importance in machine learning. Most of these studies need to assume that the constraints are
convex, and focus on the analysis of iteration complexity, i.e., the number of iterations required
to find an approximate stationary point, as well as possible ways to accelerate such approximate
solutions.

If the nonconvex function constraints do not appear, one type of approach for solving (4.1) is to
directly generalize stochastic gradient descent type methods (see [38, 40, 89, 1, 35, 119, 105, 119,
105, 84, 53]) for solving problems with nonconvex objective functions. An alternative approach is
to indirectly utilize convex optimization methods within the framework of proximal-point methods
which transfer nonconvex optimization problems into a series of convex ones (see [44, 13, 36, 26,
50, 58, 87, 82]). While direct methods are simpler and hence easier to implement, indirect methods
may provide stronger theoretical performance guarantees under certain circumstances, e.g., when
the problem has a large conditional number, many components and/or multiple blocks [58].

However, if nonconvex function constraints ;(x) < 0 do appear in (4.1), the study on its so-
lution methods is scarce. While there is a large body of work on the asymptotic analysis and the
optimality conditions of penalty-based approaches for general constrained nonlinear programming
(for example, see [11, 71, 4, 3, 29] ), only a few works discussed the complexity of these methods
for solving problems with nonconvex function constraints [21, 104, 33]. However, these techniques

are not applicable to our setting because they cannot guarantee the feasibility of the generated solu-
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tions, but a certain local non-increasing properties for the constraint functions. On the other hand,
the feasibility of the nonconvex function constraints appear to be important in certain problems of

interest.

4.1.2 New method for solving structured nonconvex function constrained optimization

In this chapter, we aim to extend the ConEx method for the nonconvex setting and present a new
framework of proximal point method for solving the nonconvex function constrained optimization
problems, which otherwise seem to be difficult to solve by using direct approaches.

The key component of our method is to exploit the structure of the nonconvex objective and
constraints ¥, ¢ = 0,...,m, thereby turning the original problem into a sequence of function
constrained subproblems with a strongly convex objective and strongly convex constraints. We
show that when the initial point is strictly feasible, then all the subsequent points generated in the
algorithm remain strictly feasible. Hence by Slater condition, there exists Lagrange multipliers
attaining strong duality for each subproblem. Furthermore, we analyze the conditions under which
the dual variables are bounded, and show asymptotic convergence of the sequence to the KKT
points of the original problem. Moreover, we provide the first iteration complexity of this proximal
point method under certain regularity conditions. More specifically, we show that this method
requires O(1/¢) iterations to obtain an appropriately defined ¢-KKT point.

For practical use, we propose an inexact proximal point type algorithm for which only ap-
proximate solutions of the subproblems are given. To develop the convergence analysis of the
proposed method, we present different termination criterions for controlling the accuracy for solv-
ing the subproblems, either based on the distance to the optimal solution, or in terms of function
optimality gap and constraint violation, depending on different types of constraint qualifications.
We then establish the convergence or complexity of the inexact proximal point method for solving
nonconvex function constrained problems. We also present the overall complexity of the inexact
proximal point method when the ConEx method is used to solve the subproblems under appro-

priate constraint qualification conditions (see Theorem 4.2.14, Corollary 4.2.16 and discussions
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afterwards).

Almost at the same time this work was completed, Ma et. al. [67] also worked independently
on the analysis of the proximal-point methods for nonconvex function constrained problems. In
spite of some overlap, there exist a few essential differences between this work and [67]. First,
this work establishes the convergence/complexity of the proximal point method under a variety
of constraint qualification conditions, including Mangasarian-Fromovitz constraint qualification
(MFCQ), strong MFCQ, and strong feasibility, and hence covers a broader class of nonconvex
problems, while [67] only consider a uniform Slater’s condition. Strong feasibility condition is
stronger than the uniform Slater’s condition but is easier to verify. Second, [67] uses a different
definition of subdifferential than the one proposed here and the definition of the KKT conditions
in [67] comes from convex optimization problems. While it is unclear under what constraint qual-
ification this KKT condition is necessary for local optimality of nonsmooth nonconvex problems
they consider, it is possible to put their problem into our structured composite framework in 3.1
and compute the subdifferential that provably yields our KKT condition under the aforementioned
MEFCQ. Third, for solving the convex subproblems, we will use ConEx method presented in Chap-
ter 3, that can achieve the best-known rate of convergence for solving different problem classes,
including deterministic, semi-stochastic and fully-stochastic, smooth and nonsmooth problems. On
the other hand, different methods were suggested for solving different types of problems in [67].
In particular, a variant of the switching subgradient method, which was firstly presented by Polyak
in [86] for the general convex case, and later extended by [60] for the stochastic and strongly con-
vex cases, was suggested for solving deterministic problems. For the stochastic case they directly
apply the algorithm in [113] and hence require stochastic gradients to be bounded. These nons-
mooth subgradient methods do not necessarily yield the best possible rate of convergence if the
objective/constraint functions are smooth or contain certain smooth components.

Now we shift our focus to the details of proximal point method for structured nonconvex func-

tion constrained optimization.
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4.1.3 Notation and terminologies

We borrow the useful notation in (3.2) from Chapter 3 and the constraints in (3.1) be expressed
as ¥(x) < 0. ||| denotes a general norm and ||-||, denotes its dual norm defined as ||z||, :=
sup{z’z : ||z| < 1}. From this definition, we obtain the a’b < ||a||||b||,. Euclidean norm is
denoted as ||-||, and standard inner product is denoted as (-, -). Let B*(r) := {x : ||z|, < r} be
the Euclidean ball of radius r centered at origin. Nonnegative orthant of this ball is denoted as
B2 (r). For a convex set X, we denote the normal cone at # € X as Nx(x) and its dual cone
as N%(z), interior as int X and relative interior as rint X. For a scalar valued function f and
a scalar t, the notation {f < t} stands for the set {z : f(x) < t}. The “+” operation on sets
denotes the Minkowski sum of the sets. We refer to the distance between two sets A, B < R" as
d(A, B) := mingeaeplla —b||.

[x] L= max{xz,0} for any x € R. For any vector z € R*, we define [m]+ as elementwise
application of the operator [ : ]+. The ¢-th element of vector x is denoted as x; unless otherwise
explicitly specified a different notation for certain special vectors.

A function r(-) is A-Lipschitz smooth if the gradient Vr(x) is a A-Lipschitz function, i.e. for
some A = 0

IVr(z) = Vr)lIEAlz = yll, Va,y e domr.

An equivalent form is:
3z —yl? <r(@) —rly) = Vr@y) e —y < glle—yl*,  Va,yedomr.

A refined version of the above property differentiates between negative and positive curvature. In

particular, we have
r(y) +(Vry),z =y — lle —yl* < r(), Vz,y € domr. (4.2)

Here, we say that r satisfies (4.2) with parameter v with respect to ||-||. In many cases, it is
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possible that a convex function 7 is a combination of Lipschitz smooth and nonsmooth functions.
Let w : X — R be continuously differentiable with L,, Lipschitz gradient and 1-strongly convex

with respect to ||-||. We define the prox-function associated with w(-) as

W(y,z):=wly) —w(x) —Vw(x),y — ), Va,ye X. 4.3)

Based on the smoothness and strong convexity of w(z), we have the following relation

W(y,z) < Lz —y|? < LW (z,y), Va,y e X. (4.4)

Moreover, we say that a function r(-) is S-strongly convex with respect to W (-, -) if

r(z) = r(y) +{Vr(y),z —y) + BW(x,y), Y,y e X. (4.5)

For any convex function h, we denote the subdifferential as dh which is defined as follows: at a
point x in the relative interior of X, 0h is comprised of all subgradients 2’ of h at = which are in
the linear span of X — X. For a point z € X\ rint X, the set dh(z) consists of all vectors /', if any,
such that there exists z; € rint X and h} € oh(z;),i = 1,2,..., withx = ilirrgé x;, W = ili_)rg R

With this definition, it is well-known that, if a convex function h : X — R is Lipschitz continuous,

with constant M, with respect to a norm ||-||, then the set 0h(x) is nonempty for any € X and

I e oh(z) = [, dy| < M|, ¥d € lin (X — X),

which also implies

h' e oh(z) = K], < M,

where |||, is the dual norm. See [10] for more details.
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4.2 Proximal Point Methods for Nonconvex Function Constrained Problems

Our goal in this section is to extend the ConEx method for the nonconvex setting by developing
a general proximal point method for nonconvex function constrained optimization. This proximal
point method transforms the nonconvex function constrained problem (3.1) into a sequence of
convex function constrained subproblems. In Section 4.2.1, we present an exact proximal point
method which carries its name since we assume that convex subproblems are solved exactly. This
method requires a weak assumption on constraint qualification. Section 4.2.2 discusses an inexact
proximal point method where convex subproblems are solved inexactly using the ConEx method
presented in Chapter 3. Convergence of this method requires a stronger but verifiable constraint
qualification.

We first recall the assumptions mentioned briefly in Section 3.1 for the nonconvex case.

1. f; + X — R are nonconvex and Lipschitz-smooth functions satisfying the lower curvature

condition in (4.2) with parameters p;, 1 = 0,...,m.
2. xo : X — Ris a proper convex lower semicontinuous function.
3. vi : X > R, i =1,...,mare convex and continuous functions.

Let 2* € X be a the global optimal solution and ¢§ = y(2*) be optimal value of problem (3.1).
Given the above assumptions and compactness of X, we have ¢ > —oo.

It should be noted, however, that solving nonconvex problem (3.1) to the optimality condition
in Definition 3.3.1 is generally difficult. Due to the hardness of the problem, we focus on the
necessary condition for guaranteeing local optimality. For this purpose, we need to generalize the
subdifferential for the objective function vy and constraints 1); because they are possibly nonconvex

and nonsmooth. Let dx, and Jx;, i € [m] be the subdifferentials of the convex functions x, and
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Xi, @ € [m], respectively. We define

o () := {V fo(x)} + Ixo()

Note that 0v); = {V f;} when v is a “purely” differentiable nonconvex function f; and d0v); = 0dx;
when 1; is a nonsmooth convex function ;.
Using these objects, we can define a Karush-Kuhn-Tucker (KKT) condition for this class of

nonsmooth nonconvex problem (3.1) as follows.

Definition 4.2.1 We say that =* € X is a critical KKT point of (3.1) if ¥;(z*) < 0 and 3 y* =

[y*®, . y*™]T > 0 5.1,

y*(i)wz’(fﬂ*)
d(0vo(z*) + X0 y* Doy, (z*) + Nx(z*),0)

0 )
s 1€ [m], ( . )
0.

The parameters {y*(i)}ie[m] are called Lagrange multipliers. For brevity, we use the notation y*
and [y*M, ..., y*(™]7 interchangeably.

It is well-known that for solving nonlinear optimization problems where functions vy and ;’s
are continuously differentiable, the KKT condition is necessary for achieving optimality under the
classical Mangasarian-Fromovitz constraint qualification (MFCQ, see [69]). Using the subdiffer-
ential dyy and 01; defined above, we will show that the KKT condition in (4.6) is a first-order
necessary optimality condition for the composite nonconvex optimization problem in (3.1) under

the following MFCQ type assumption.

Assumption 4.2.1 (MFCQ) There exists a direction z € —N% (x*) such that

max vlz <0, ie A(z"), 4.7
VeI (x*)

where A(x*) denotes the indicator set of all active constraints.
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Proposition 4.2.1 below gives a necessary condition for a point to be a locally optimal solution

of the problem (3.1) and its proof is given in Appendix 4.3.1.

Proposition 4.2.1 Let x* be a local optimal solution of the problem (3.1). If x* satisfies Assump-

tion 4.2.1, then there exists y*® = 0, i € [m] such that 4.6 holds.

Due to the hardness of exactly computing even the local optimal solution for the nonconvex

function constrained problem, it is natural to seek an approximate KKT point defined as follows.

Definition 4.2.2 We say that a point T € X is an (¢,0)-KKT point for the problem (3.1) if there

exists (x,y) such that ¢(x) < 0,y = 0 and

Zzniﬂy(z)%(ﬂ?)\ < e,
[d(20o (@) + Sy Doui(x) + Nx(2),0)]" <. 4.8)

lz — 2|2 < 6.

Similarly a stochastic (&, §)-KKT point generated by stochastic algorithms can be defined as a point
7 € X such that (4.8) is satisfied under expectation with respect to the random variables involved
in these methods. Note that if § = 0 then Z coincides with x. In this case, we call Z as an e-
KKT point by dropping ¢ in the notation. Clearly a 0-KKT point satisfies the KKT condition (4.6)
exactly since both ¢ = § = 0. The parameter ¢ in the approximation criterion (4.8) is introduced
to discuss the convergence rate of our algorithm when the constrained convex subproblems in each
iteration are solved inexactly. Termination criterion with § > 0 has been used in [58, 26] when
solving the subproblems of the proximal point methods inexactly. However, under exact oracle
for the subproblems, there is no need to use ¢ and in this case, we work with the stronger e-KKT

approximation criterion.

4.2.1 Exact proximal point method

The main idea of the proximal point method (see Algorithm 2) is to translate the nonconvex prob-

lem into a sequence of convex subproblems by adding strongly convex terms to the objective and
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to the constraints. Specifically, each step of the proximal point algorithm involves a convex sub-
problem (4.9). It can be observed that, by adding a strongly convex proximal term, ¢ (z; 5_1) is
po-strongly convex and ¥;(z; xp_1) is p;-strongly convex with respect to W (-, -). Hence, each sub-

problem will have a unique global optimal solution. Our main goal in this subsection is to analyze

Algorithm 2 Exact Constrained Proximal Point Algorithm

Input: Input x,
1: for k=1,..., K do

2 Set Yo(w; mx—1) = Yo(x) + 2p0W (7, 241),
Vi p-1) = ti(@) + 2 W (2, 3-1), i€ [m].
3:  Obtain T = argmin T T
FT Ve Yo(@: 21) (4.9)
s.t. (s 1) <0, ie[m].
4:  If z,_, = x4 then return x;.

end for
6: return rx

9,1

the convergence behavior of Algorithm 2. We will first describe some basic properties of Algo-
rithm 2, e.g., monotonic nonincreasing objective values, square summability of distances between
the consecutive iterates, etc. Moreover, by properly imposing constraint qualification assumptions,
we will establish the asymptotic convergence and rate of convergence of this method to compute
an approximate KKT point of problem (3.1).

Theorem 4.2.2 describes some basic properties of Algorithm 2, namely, the square summability

of z;,_1 — x; and sufficient descent property.
Theorem 4.2.2 Assume that x is feasible for (3.1) in Algorithm 2. Then

a) Either the algorithm terminates at x1 = xq or all the generated points x1, s, ..., Tj... are

strictly feasible for problem (3.1), and satisfy

Siillzi = zall? < 5= [Wo(wo) — volx)], (4.10)

{¢o(xk)} is monotonically decreasing.
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b) Either there exists a k such that v; = x;_,, and then the algorithm terminates, or {1o(xy)}

is strictly decreasing and has a limit point 1)y > —c0. In that case we have
lim ||Ik — xk,1|’:0.
k—+

Proof. We first show part a). Note that x is a feasible solution of subproblem (4.9) for £ = 1. By
definition, the optimal solution of this problem is z;. If x1 = x( then we have nothing to prove.
We assume that x; # xo. Since ¢;(z1;29) < 0 for all i € [m]. Hence, we have ¢;(x1) < 0
for all i € [m] implying that x; is strictly feasible. Moreover, by continuity of v;, we have that
int({¢) < 0}) # &.

We prove the rest of the claim by induction. Assume that our claim holds for xy_1, i.e., ¥;(x_1) <
0, then xj_ is strictly feasible for the k-th subproblem (4.9) with objective 1y(+; 1) and con-
straints ¢ (+; xx_1). If 23, = 41, the claim holds by the induction assumption. Otherwise, by the
feasibility of x;, for (4.9), we have 1;(xy) < 1;(xy; 1) < 0 forall i € [m].

Due to the optimality of xj, for solving subproblem (4.9) and noting the strong convexity of objec-
tive function ¢y (-; x_1 ), we have for all feasible x that v (z; z_1) = Vo(xk; xK_1) + poW (2, x1).
By inductive hypothesis, we have x;_; is a feasible solution. Hence, taking x = zj_;, and using

strong convexity of the distance generating function w(zx) of W (-, -), we have

lwr—1 = 2ll* < 5o [Yo(zr-1) — Yo(zx)]. (4.11)

Summing up (4.11) for k = 1,2, 3, ... K yields the result in part a).
To show part b), we observe from (4.11) that {¢)y(x1)} is a nonincreasing sequence. Moreover,
we have strict monotonicity if x; # x,_1 for all k. In that case we conclude that limy,_, ; o, ¥o(xx) =

Uy for some 1y > Yg and limy,_, 4 oo ||z, — 21| = 0. -

Strict feasibility is a common assumption to show the existence of Lagrange multipliers for

convex programming. Henceforth, we will assume that the initial point x is a strict feasible
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solution for the problem (3.1) throughout this section. Then, in view of Theorem 4.2.2, we note that
there exists a strict feasible solution for the subproblem (4.9) for all £ > 1. Therefore, there exists
a KKT point (xy, yx) based on Slater constraint qualification. The following lemma characterizes

an important property of (xy, yx) for such convex nonlinear problems.

Lemma 4.2.3 Let (x, yx) be a KKT point of the subproblem (4.9). Then

Vo5 1) = Vol(@n; Tpe1) + Wi, V(@ 1)) = (o + ) W(n,ze), zeX. (412

Proof. Let ¢ (zx) € dvo(z*) , ¥i(x*) € 0Y;(x*) and 2* € Nx(x*) be the subgradients satisfying
the condition (4.6). According to the strong convexity of 1y (+; xx—1), ¥;(-; Tx—1), and the fact that

yr = 0, we have

o(x; 1) + yr, V(25 28-1)) = Yo(ar; Te—1) + Wy(xr; T—1), (x — zx)) + poW (2, 2)
gy (@ o)) + Oy U (@ i) @ — 2y + (Y)W (x, o)
= o Thor) + (@ Tar) + Sy W (s wp ), T — @)

+ (po + 1" ye) Wz, ),

where the last equality follows from the complementary slackness part of KKT condition. More-

over, for all x € X, we have

(b (n; ) + Sy W wpa), & — ax) = 0,

where the inequality follows from the definition of normal cone. Putting the above two inequalities

together, we arrive at relation (4.12). o

Note that even though Lemma 4.2.3 is stated for subproblem (4.9), it is applicable for any
strongly convex function constrained problem. Using the above lemma and Theorem 4.2.2, we can

show a bound on the norm of dual variables.
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Proposition 4.2.4 Assume that x is strictly feasible for (3.1) in Algorithm 2. Then for all k > 1,

there exists y;, = [y,(;), . ,y,(gm)]T such that yy, = 0, and
y](gl)wz(xk;xk—l) = 07 1= 17"‘7m7
. (4.13)
0o (ks Th—1) + Zie[m]y;(f)@%(xk; Tp-1) + Nx(z1) 2 0.
and we have the following bound on yy,:
lyaly < ez —volon) o g — 7 93 (4.14)

mini <i<m{—vi(zr—1)}’

Proof. Strict feasibility of z, along with Part (a) of Theorem 4.2.2 imply that each subproblem
(4.9) in Algorithm 2 satisfies Slater constraint qualification for all £ > 1. Hence, (4.13) follows
from KKT necessary condition with Slater constraint qualification. In particular, first relation in
(4.13) is adirect application of KKT complementary slackness and second relation is an application

of KKT stationarity. Similarly, applying Lemma 4.2.3 and placing * = x;_ in (4.12) yields

Yo(wr-1) — Yo(wr) = (ho + u Y)W (-1, 1) + 2u0W (24, 1) — S 90 i (1)

> o), min {—(z5_ 1)}

1<i<m

Thus relation (4.14) immediately follows. =

In view of Proposition 4.2.4, strict feasibility assumption implies a bound on g, for each k£ > 1.
As a special case, if z; = x4_; for some £ > 1, then the critical KKT point is in the interior of
the inequality constraints and consequently, we have y, = 0. Conceptually, we hope that the
bound on the sequence {y;} and proximity of consecutive elements of the sequence {z} leads
to convergence to the KKT condition of the problem (3.1). However, Proposition 4.2.4 does not
precisely describe the limiting behavior of the dual sequence, {y;}. For instance, it does not pre-

clude the case that the limit of the sequence ||yx||; tends to infinity, which is possible when x
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converges to boundary points. In the latter case, mere existence of the optimal dual multiplier y;, of
the subproblem does not necessarily implies convergence to a solution satisfying KKT condition
of the problem (3.1). We indeed need to analyze under what conditions one can definitively say
that for the entire sequence of subproblems generated by Algorithm 2, the optimal dual variables
remain bounded. In what follows, we describe two sufficient conditions under which convergence
to the KKT solutions can be established. We show that the assumptions are relatively weak in the
sense that they are satisfied some variants of MFCQ which is a classical constraint qualification

for function constrained problems.

Assumption 4.2.2 (Subsequence boundedness) Given the sequence of primal variables {x;}7_,,
one limit point x*, and the sequence of optimal dual variables {yx}_,, if {x; } is a subsequence

convergent to x*, then the subsequence {y;, } is bounded.
The following lemma shows that MFCQ implies the subsequence boundedness condition.

Lemma 4.2.5 In Algorithm 2, let x* be a limit point of the sequence {x}}. Assume that there exists

some z € —N%(x*) such that Assumption 4.2.1 is satisfied, then Assumption 4.2.2 is satisfied.

Proof. We prove by contradiction, that the dual variable associated with the convergent subse-
quence is bounded.

Let 2* € X be a limit point of the sequence {x;}. Passing to a subsequence if necessary, we have
limy_,o 2 = x*. For the sake of contradiction, assume that {y;} is not bounded. Then there exists

a subsequence {7} such that limj_,||y;,||; = c0. Due to the optimality of z;,, we have

Yo(5,) +yj(x5,) < o) +yj () + 2o + 1y [W (@, 25 1) =W (2, 25 0)], Yoe X

(4.15)

Let v;, = y;,/llvj.|l1» then ||v;, ||; = 1, hence {v;, } must have a convergent subsequence. Without

loss of generality, we assume limj_,, v;, = v*. Dividing both sides of (4.15) by ||y;, ||;, taking
k — oo and using continuity of v, we have

v (z*) = ]}erolo v () < vT(x) + 20T v W (%), Vae X, (4.16)
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Given that z* is optimal, the first-order necessary condition implies

d(3,00i(z*)v*) + Nx(z*),0) = 0. 4.17)

Let A(z*) be the set of active constraints at z*. By this definition, for any i ¢ A(z*), we have

¥;(x*) < 0. Since 1; is continuous and |z, — x;,_, |* converges to 0, there exists ko such that for

all k > ko, we have v;(z;,;xj,_1) < 0. Hence, according to the KKT complementary slackness
()

condition for the subproblem, y;” = 0 for k > ko. Taking k& — o0 we obtain v*@) = 0 for any

i ¢ A(z*). So we can rewrite the equation (4.17) as

(S0 a10) -0,

Let 9(z*) € 0ty(x*), i € [m], and u € Nx(z*) be such that u + 33" 11i(2*)v*® = 0. Then,
0=2"u + ZzeA(m*)U*(Z)ZTd};(x*) < ZzeA a#)V Tw ( )
< ZzeA z* maxveaw (z*) Z'v < O
T

where the first inequality follows since z € —N% (2*) and u € Nx(z*) hence z' u < 0, the second
inequality follows due to the fact that v*) > 0 and ¢(2*) € di;(z*) and the last strict inequality
follows due to Assumption 4.2.1 and v*( > 0 for at least one i € A(x*). Hence, we obtain a

contradiction and conclude that {y;, } is a bounded sequence and finish the proof. O

We are now ready to state our first general convergence result for Algorithm 2.

Theorem 4.2.6 Let x* be a limit point of Algorithm 2. If Assumption 4.2.2 holds, then there exists

a vector y* = 0 such that the KKT conditions in (4.6) are satisfied.
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Proof. From the KKT condition for the k-th subproblem and noting that

Mo (v wx-1) = o (+) + 2u0(Vw() — Vw(zg-1)),

(5 wp-1) = APi(+) + 2 (Vw () — Vw(zg-1)),

we have
y i) = ~290 W (o), i=1.m, (+18)

and

d(0o () + Xy ds(xx) + Nx (1), 0) < 2(po + uTyr) | V() — Veo(apa) |
< 2V2L0 (110 + ||l oo [y | )V W (241, 7).

(4.19)
Applying Lemma 4.2.3 with = z4_;, we have
Vo(zh-1) — Yo(@r) = 2p0W (wr, w1) + (o + 1 y) W@n—1, 7). (4.20)
Together with (4.18) we obtain
ZZJZJ;@%(%H = Q(NTyk)W(xkyxkfl) < 2L, (NTyk)W<37k—17$k)
< 2Ly [vo(zh-1) — Yo(zk)], (4.21)

where the first inequality follows from (4.4).

In view of the convergence of {1y(xy)} according to Theorem 4.2.2, we have
lim 37 () = 0, i=1,2,..,m.
k—00

Let {x;,} be a convergent subsequence to z*. Based on Assumption 4.2.2, ||y;, || is bounded

above. Passing to a subsequence if necessary, we have limy_,,, y;, = y*. Then y* > 0,¢(2*) <0
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and

y*Dapy (%) = 0, i=1,...,m. (4.22)

Moreover, using part two of Theorem 4.2.2 we have limy_,o, 1o(z;,) = 120 > —oo. We will show
o(z*) = zzo. First, due to lower semicontinuity of 1)y, we have ¢y (z*) < zzo. Next, taking k — o0

in (4.15) in Lemma 4.2.5, noting the definition of @Zo and continuity of ), we have
Do + v () < vola) + v (@) + 2(uo + pTy )W (z, 2*), Vre X. (4.23)

Plugging the value = = z* in the above relation, we have ¥y(z*) > 7;;(). Consequently, we have

o(z*) = 0. Replacing ¢ by 1o(2*) in the condition (4.23), the optimality of z* implies
d(Oo(z*) + 2 y* Doy, (a*) + Nx (z*),0) = 0. (4.24)

Here note that we dropped the term, Vw(-) — Vw(z*), which evaluates to 0 at *. From equations
(4.22), (4.24) and the assertion that y* > 0 and ¢(z*) < 0, we conclude that (z*, y*) is a KKT

point of problem (3.1). O

Our goal in the remaining part of this subsection is to develop the iteration complexity, i.e., a
bound on the number of iterations performed by Algorithm 2 in order to obtain an e-KKT point,
as specified in Definition 4.2.2. To achieve this goal, we require a stronger assumption of uniform

bounded dual sequence.

Assumption 4.2.3 (Uniform boundedness) Given the sequence of optimal dual variables {y;} of

subproblem (4.9), the whole sequence {yy} is bounded:
iB>0 st |y, < B, k=12,.. (4.25)
In the following lemma, we show that uniform boundedness of dual variables can be guaranteed
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under some mild conditions.

Lemma 4.2.7 If Assumption 4.2.2 holds for every limit point x* of Algorithm 2 , then Assumption
4.2.3 also holds.

Proof. The boundedness of y; can be proved by contradiction. Suppose that there exists an un-
bounded subsequence {y;, } such that limy_,||y;, ||, = co. Since X is a compact set and {x;,} is
a bounded sequence, there exists a convergent subsequence {j} < {i;}: limy_o x;, = 2*. How-

ever, {y;, } is bounded according to Assumption 4.2.2. Hence we have a contradiction. o

Below, we state an immediate corollary of Lemma 4.2.5 and Lemma 4.2.7 which gives uniform

bounds on the the sequence ||yx||; using a stronger version of MFCQ.

Corollary 4.2.8 Suppose z € —N% (x*) satisfying (4.2.1) exists for every limit point x* of Algo-
rithm 2 then Assumption 4.2.3 holds.

In the corollary above, we used condition (4.2.1) for every limit point, 2*, of Algorithm 2 in order
to show that Assumption 4.2.3 holds. However, it is difficult to verify whether this condition is
satisfied. Alternatively, we provide another verifiable sufficient condition that ensures uniform

boundedness assumption.
Lemma 4.2.9 Let Dy := max, yex \/W Suppose there exists T € X such that
Vi(7) < —2u;D%, i=1,...,m. (4.26)
Then Assumption 4.2.3 holds, and specifically, we have the following uniform bound:
lyulh < B = Yo@=vi oDy E=1,23, .. (4.27)

2
.““minDX

where [iyin = Minj<i<m i
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Proof. Based on (4.26), for subproblem 4.9, we have
Vi(T, 2 1) < —2u; D% + 2 W (T, 24 1) < —pi D% < 0.

Then the existence of the KKT point (xy, yx) follows from the Slater condition. Moreover, using

r = ¥ in Lemma 4.2.3, and noting that y;, > 0, one has

Yo(Z) + 2u0W (T, 21—1) — Yo(xr) — 2p0W (T, Th—1) = (Yp, — (T, Tp1))-

Combining the above two inequalities together, we successively deduce

Mmin”kalD?( < (MTyk)Dgf
< =Sy i(@, ap)

< Yo(T) — o(xr) + oD%, k=1,2,... K.

Finally, since the feasible region of the subproblem 4.9 is smaller than that of Problem 3.1, we

have ¢y (zx) = 1. The result immediately follows. o

Note that (4.26) is a local and a verifiable condition and it provides a computable uniform bound B,
as in accordance with the result of Lemma 4.2.9. While it appears that (4.26) is quite distinct from
Assumption 4.2.1, we would like to point out certain similarities between these two conditions. To
understand this connection better, let us assume that 1); is smooth function. Then for all z € X, we

have

:E—IHZ

Di(@) = i) +{V(w), 7 —2) =
= (Vihi(z), 2 — ) = ¢i(x) — (7)) - &

7 — |,
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which implies that

(Vy(z), 2 —T) =0, Vee X n{y; = —g,uiDE(}. (4.28)

Recall that the existence of a Minty solution, z, for variational inequality problem on mapping

V1), is the following condition
(Vi(z), 2 — ) =0, Vo e X, (4.29)

which is a stronger condition than (4.28). Hence, v satisfying (4.26) is not necessarily quasi-
convex. However, existence of Minty solution, z, gives an ‘almost’ sufficient condition for ensur-
ing Assumption 4.2.1 in the following way. Set z = x* in (4.29). Then we obtain that z = 7 — z*
satisfies Assumption 4.2.1 with strict inequality replaced by nonstrict inequality. Since there is no
implication from (4.28) to (4.29) (in fact, the implication is in the opposite direction), so a direct
comparison for the weaker among the two condition (4.26) and Assumption 4.2.1, can not be made
as such.

Having provided with two sufficient conditions for the uniform boundedness assumption, we

now present the main complexity result of Algorithm 2 in the following theorem.

Theorem 4.2.10 If the dual sequence {yx} is bounded, i.e., Assumption 4.2.3 holds such that

|yl < B, thenfor% = argmin, o, < g Yo(@r—1) — Yo(ar), 3 is an € x-KKT point with
ex = max{2L,,8L2 (ko + |1l B)} Wo(:c;{)—w(”f].
Proof. We derive the complexity to compute an approximate KKT point. By definition of E,

K[o(g ) — vo(x)] < S [Wo(mr-1) — volax)] < volwo) — g (4.30)
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Putting together (4.30), the relation (5.13), (4.20) and (4.44) we conclude that
m ¢ 2L, 20)— ¥
Zi=1|yé)¢i(l‘g)| < M)
and

d (o (x7) + Zyilyg)é‘%(mz) + Ny (27),0)" < 4(uo + (nTyp))” | Vewo(ag) — Veo(zz_)|?
<8L2 (o + (1yp))” Wag_y, 2p)

< 8LZ (,uo + (,UTy@)) [%(33@,1) - %(37%)]

< 8L& (ot B)[Wo (o) =¥ ]
~ K .

(4.31)

Moreover, due to Part (a) of Theorem 4.2.2, we have 1)(z;) < 0 and due to Proposition 4.2.4, we

have y; > 0. Hence we conclude the proof. =

In view of Theorem 4.2.10, the exact proximal point method finds an e-KKT point. in O(1/¢)

iterations.

Remark 4.2.11 Note that all the results in this section can be easily extended to the case when
Wi, 1 € [m] are convex functions. In that case, we can replace ji; = 0 for all i € [m]. This changes

(4.9) of Algorithm 2 to

T) = argmin %(90; xk—l)
zeX 4.32)
s.t. Yi(z) <0, i€ [m].

Hence constraints are fixed for all iterations. For Algorithm 2 with (4.9) replaced by (4.32), we can
easily obtain asymptotic convergence result of Theorem 4.2.6 for limits point x* satisfying Assump-
tion 4.2.1 with almost the same proof except replace ; by 0 for all i € [m] and V(z; 1) = Y (z)
forall k = 1. Under Assumption 4.2.1 for every limit point of {x}, we obtain rate of convergence

result similar to Theorem 4.2.10 with almost the same proof and similar replacements.
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It should be noted that we need to assume access to an oracle that solves the convex subprob-
lem (4.9) exactly in Algorithm 2. Such a problem can be efficiently solved by polynomial time
algorithms, e.g., by the ellipsoid method and interior point methods, if the problem dimension is
relatively small to medium. However, there exist scenarios where exact solutions are difficult to
attain, e.g., when the objective or constraints are expectation of stochastic functions. Hence we
turn our attention to an inexact proximal point algorithm which only requires approximate solution

for the subproblem (4.9). We present details in the next subsection.

4.2.2 Inexact proximal point method

In this subsection, we propose an inexact variant of the proximal point method which solves the
subproblem inexactly. To understand our motivation for the analysis of inexact proximal point
method, consider the case when the objective function is given in the form of f(x) = E¢[F(z,£)],
where F'(z, £) is a stochastic function on some random variable £ and is possibly nonconvex with
respect to the parameter x. Consequently, the objective function in the subproblem (4.9) is given by
E¢[F(z,&)]+ pollz—Z||*. As discussed in the previous section, stochastic optimization algorithms
for solving this type of problem will exhibit a sublinear rate of convergence, making it difficult to

attain high-precision solution.

Algorithm 3 Inexact Constrained Proximal Point Algorithm

1: Input xg

2. for k=1,...,Kdo

3:  xp < a(stochastic) approximate solution of subproblem (4.9).
4: end for R

5: Randomly choose & from {1, 2, ..., K}.

6: return ;.

To deal with this type of problem, we propose a (stochastic) inexact proximal point method as
shown in Algorithm 3. The main difference between Algorithm 3 and Algorithm 2 is that the for-
mer permits approximate optimal solutions. To distinct exact and approximate solution, we denote
exact solution as x; and corresponding dual solution as y;; hereafter for this subsection. Since each

subproblem (4.9) is solved inexactly, the sequence generated by Algorithm 3 can become infea-
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sible with respect to the original problem. If x;_; is infeasible with respect to (3.1), then we can
not guarantee feasibility of the subproblem (4.9) in general. This also implies obtaining bounds
on Lagrange multipliers is more challenging for inexact case. However, we show that if succes-
sive problems are solved accurately enough then we can obtain strict feasibility of the iterates and
moreover, also show boundedness guarantees on ||y ||, as in the previous subsection.

Throughout the rest of this subsection, we assume that v (-; xx_1) is Lipschitz continuous
with constant My, ¥;(-; xx_1) is Lipschitz continuous with constant M;, i € [m], and denote
M = [M;, M, ..., M,,]". Proposition 4.2.12 shows that the sequence {z}} is strictly feasible

if the subproblem (4.9) is solved accurately enough.
Proposition 4.2.12 Let {x}} be the sequence generated by Algorithm 3.

a) For the subproblem (4.9), assume that ) (xy—1) < 0 and x} # xp_1. If xy, satisfies

A/ % x — i | + ok — 2f|| < |ze—1 — 23], forallie [m], (4.33)

then xy, is a strictly feasible point for problem (3.1). If x is strictly feasible, then the whole

sequence {x}} is strictly feasible.

b) Furthermore, if x;, satisfies:
2oy — gl + Jar — 2k] < Jwr-1 — 2, (4.34)

then {1y(xy)} is monotonically decreasing and converges to a limit point 1y. Moreover we

have
lim W(mk,xk,l), lim W(l’k,l,l';:,) = 0. (435)
k—o0 k—o0
Proof. Part a). Let us use ¢, = |z, — x| for brevity. From the definition of ;(x; z;_,) and

feasibility of x}, we have

Vi(xr) + 2 W (g, mp—1) = Vi@n; Tp—1) < i@ wp—1) + Mi|ag — 2p|| < M;|xg — 2,
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where the first inequality follows from Lipschitz continuity of v;(x; z)_1). Using the triangle

inequality, we have

V20W (wn, w1) 2 Viillor = 2| = Vii(loees — o] = o — 23])

> A/ M|z, — xF.

Combining the above two results together, we have ¢ (z;) < 0.

Part b). We successively deduce

wo(l’k—l) = wo(xkfﬂxkfl)
= wo(mz; xk—l) - <y;§a w(mk—H $k71)> + (Mo + MTZJZ)W(%A? 95Z)
= Yo(wr; Tr-1) — Moey + (po + MTZ/Z‘)W(%A, Ty)-

= o(w1) + 2u0W (2, Tp—1) — Moer + (1o + p Y)W (zi-1, T3).

Here the first inequality uses Lemma 4.2.3 with x = z,_; and replacing the saddle point (zy, yx)

defined in Lemma 4.2.3 by (27, y;). Together with (4.34), we deduce

Yo(zr) + poW (2r, Tp—1) + (o + MT?jZ)W(%fl,mZ) < Yo(p-1). (4.36)

We immediately observe that ¢y (zy) is decreasing. Since v, is bounded below, we have the con-

vergence limy, ¢ (zy) = @Zo for some @Zo > —o0. Summing up the above relation for k£ = 1,2, ...,

we have
w ~
Z[MoW(JIk, ]Jk_1> + (/L() + uTyZ)W(xk_l,xz)] < 'Lb()(xo) - '(ﬁo < +00. (437)
k=1

Therefore, the last result immediately follows. o

The following lemma shows that MFCQ (Assumption 4.2.1) along with (4.33) and (4.34) is suffi-

cient to guarantee dual boundedness assumptions for Algorithm 3.
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Theorem 4.2.13 In Algorithm 3, under all the assumptions of Proposition 4.2.12:

a) If Assumption 4.2.1 holds at a limit point x* of the sequence {x}}, then Assumption 4.2.2
holds for sequence {x\} and {y;:}. Moreover, there exists a vector y* the KKT conditions in

(4.6) are satisfied.

b) If Assumption 4.2.1 holds at every limit point of {x}}, then the whole sequence {y;:} is uni-

formly bounded, i.e. Assumption 4.2.3 holds, i.e., |yx||1 < B for some constant B > 0. Then

after K iterations, there exists an (e, Ex )-KKT point with i, € O(1/K).

Proof. Part a) Let * € X be a limit point of the sequence {z;} and let {z, } be a convergent
subsequence to z*. Denote {z}} the primal optimal solutions for the sequence of subproblems.
Due to Proposition 4.2.12, limy_,,, #5 = x*, hence z* is also a limit point of sequence {z}}.
Using Lemma 4.2.5 we can show y; is bounded, hence concluding that Assumption 4.2.2 holds.

Applying Lemma 4.2.3 with = = 2, and replacing (z, yx) by (x5, y;), we have

Yo(zr-1) — o(xy) = 2ueW (25, xpo1) + (o + 1 yi) W (wp—1, zf). (4.38)

Together with (4.18) we obtain

S D) = Sy D)) + S O M|y, — o
<2(p"yp )W (g, wnmr) + (MTyg) o — 2|

< 2L, (1 yE) W (e ) + (MTyE) | — . (4.39)
Proposition 4.2.12 implies
lim gD (x,) = 0, i=1,2,..,m.
k—0o0

Consider the limit point z* of Algorithm 3, with {z;, } being the subsequence convergent to

x*. Based on Assumption 4.2.2, {yj*k} is bounded. Passing to a subsequence if necessary, we have
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limy—, y;, = y*. Hence we have the complementary slackness:
y*Dapi(a*) =0, i=1,2,..,m.

The rest of the proof is slightly simplified from the proof of Theorem 4.2.6, since we assume that

f is continuous. The KKT condition for the subproblem implies that
Yo(x, ) + y]”;Tz/J(x;‘k) < o(x) + y]”fsz/z(x) + (20 + 1y )W (2, 25, -1), Vo e X. (4.40)
Taking £ — o0 and using the continuity of ¢y and ), we have
Yo(*) + y* (x*) < o(x) + y* Y (2), Vo e X. (4.41)

Based on the optimality of z* of minimizing the right hand side, we have 0 € Nx (z*) + 0o (2*) +
Dic[m] y* Doy (2*). Hence (2*, y*) is a KKT point.

Part b). We show the boundedness of {y;} by contradiction. If there exists a subsequence {7}
such that limy, ., |y} || = co. Since {x;, } is bounded, it has a limit point z*. However, according
to part a), |y | is bounded, leading to a contradiction.

Furthermore, due to the KKT condition for (4.9), we have
d(é’z/)o(x,’:; Tp_1) + Zﬁlyz(i)ﬁ%(xz; Tp-1) + Nx(z3), 0) 3 0.
Plugging the definition of 0t (; xx_1) and 0v;(; xx_1), 7 € [m], into the above inequality yields

d(0vo(x) + X yr D ov(ag) +2(uo + pTyp) (Ve (x}) — Ve(@y_1)) + Nx (27),0) = 0. (4.42)
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Applying inequality (4.36), we deduce

d(oo(x}) + X yi P ow(xt) + Nx(a}), 0)?
< (no + )2 || Ve(at) — Vaw(zp_1)|?
< 2L2 (po + i B) (o + " yi)W (w51, )

< 2L2 (4o + fiemin B) [0 (21-1) — Yo ()], (4.43)

In addition, by KKT condition we have

S v D (a)| = 20y )W ag, we) < 2L0 (0 yf) W (w1, )

< 2L [Yo(wr—1) — Yo(ak)], (4.44)

where the last inequality is due to (4.36).

Furthermore, by the assumption of (4.34) and relation (4.36) we have |z, — z}|? < ||zp_1 —
zi|? < %Wo(xk—ﬁ — 9o(z)]. It can be seen that to obtain an approximate KKT solution with
small error, it suffices to bound ¥g(x;_1) — ¥o(xy). Since minicrcx[Vo(zr_1) — Yo(zr)] <

+ S [o(ze1) — to(x)] < M, the result immediately follows. D

Note that even though Assumption 4.2.1 along with (4.33) and (4.34) yields sufficient con-
ditions to guarantee the convergence of the inexact proximal point method, the applicability of
Assumption 4.2.1 is limited for the following reasons. First, the optimality criteria of xy, i.e., re-
lations (4.33) and (4.34) are difficult to verify algorithmically in general since one does not know
xj. Second, in order to ensure such conditions, one needs to develop algorithms satisfying conver-
gence of z, to x;.. The ConEx method provided in Section ?? exhibits this type of convergence for
solving strongly convex function constrained problem (4.9).

However, as in the previous subsection, we can use the condition (4.26) to obtain uniform

bounds on ||y; ||, for Algorithm 3 as well. In particular, the uniform boundedness result of Lemma
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4.2.9 is applicable for ||y;||,; of Algorithm 3 as we never used optimality of zj in the proof of
Lemma 4.2.9. In fact, (4.26) ensures feasibility of the subproblem (4.9) for any x;_; € X. Hence
this condition is sufficient for ensuring two core assumptions required for analyzing convergence
rates of Algorithm 3: feasibility of (4.9) and boundedness of ||yx||,. In this case, we only need to
assume that xj, satisfies the optimality gap and constraint violation as given in Definition 3.3.1.

We are now ready to show the convergence result for Algorithm 3.

Theorem 4.2.14 In Algorithm 3, suppose that Assumption 4.2.3 holds such that ||y;||, < B. More-

over, assume that the definition of xy, in Algorithm 3 is given by
Ty < a stochastic(0y, 6y, )-optimal solution (c.f. Definition 3.3.1) of (4.9). (4.45)
Then x;, is a stochastic (¢, Ex )-KKT point of Problem (3.1) with

ex = max{2L,,8L2 (ko + pmaxB) } 5, and £x = Qk. (4.46)

2
oK

where [imax = MaXie[m] fir L' 1= Ay, + BA, + Qx, Ay, = Yo(z0) — mingex o(x), Ay =
I (o)) 12 and Qe = 33,6 + BY 3 0.

Proof. Let A, = vo(zp; 751) — Yo(z}; 74_1) and A, = H[w(zk;a:k,l)]JrHQ. Using Definition
3.3.1 we have E[|A|] < 6 and E[A;] < 6. In view of Lemma 4.2.3 and the strong convexity of

Yo(; k1) and 9 (; x4y ), we have

bo(w; ror) + Xy (s an1) = do(afs o) + (o + pTyp)W (z, %)
= Yo(n; Tho1) — Dp + (o + p"y) Wz, xf)

= o(ar) + 2u0W (w, 2p1) — A + (po + pl i) W (x, 7).
(4.47)

Setting ©* = xj, in (4.47) yields

Yo(Tr; Tp—1) + Zﬁlyz(i)%(xk; Tp1) = Yo(zf; mp1) + (o + plyf)W(zy, )

109



Setting k£ = k in the above relation and taking expectation, we have

Efl|z; — xZ”Q] < 2E[W (2, 27)] < #OLKZIcKzlE[@Z)O(Ik; Tp-1) — Yo(xf;) + Zyily:(i)%(wk; Tp-1)]
< ﬁZf:1E[¢o($k; 1) — o(@fi mimr) + Sy [Wi(wes wir) ]+
< 2o YU B[A + BA]

< 2220, (6 + Boy).

where the third inequality above is due to the Cauchy-Schwarz inequality and the boundedness of

lyillz: vkl < llyilly < B

Analogously, by setting x = z;_; in (4.47) and noticing 1o(xk_1; xx_1) = o(zx_1) we have

o(Tp—1) + BA, = Yo(Tp—1; 1) + ||Z/1j||25k—1
= Po(Tp—1;Tp—1) + Z?lly;“(”wi(xms Tg—1)
(4.48)
> o(af; an—1) + (po + 1" yi) Wi(ap—1, 23)

= wo(l'k) — AL+ Q/LOW((Ek, xk,l) + (,Uo + uTy,f) W(:Ckfl, 3:';:)

Here the second inequality use the following property: for £ > 1,

S (@ ren) < X [ v )]s < SO (e )]s < lyillAe-t,

(4.49)

and Y7yt i (wo; o) = X5 Do) < |yt 2o

Summing up the inequality (4.48) for k = 1,..., K, we obtain

2M025:1W<37k7 Tp-1) + Zszl (NO + /LTZ/Z)W(CUICA’ )
< o(z0) — o(rr) + o Ap + BYw Ay (4.50)

< Af + ZleAk + BZleﬁk—lv
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Furthermore, due to the KKT condition for (4.9), we have

d(Oo(xf; 2e—1) + Z?llyZ(”ﬁ%(wZ;xk—l) + Nx(2}),0) = 0.

Plugging the definition of 0 (x; x;_1) and dvY;(x; x—1), 1 € [m], into the above inequality yields

d(0vo (@) + X1y o () + 200 + 1"y (Vwo(a) — Ve (wx1)) + Nx (@), 0) = 0. (4.51)

Let % be the random index from 1, . .., K. Then, in view of (4.51), (4.50) and bound on lvill,, we

have

E[d(00o () + S yy; 0vsi(at) + Nx(7),0)°]

— E{S d(oo(wp) + Xt uiVovi(ap) + Nx(ap), 00?}
LE{ S (0 + 1Ty | Veo(a) — Vol )12} (4.52)
ME{Z&(M +pt Y)W @k, xZ)}

e [Af + Do+ Y 0k + BZ?:zgk—l]

N

N

N

8L2 (po ;F(#maxB) FK

N

Moreover, using the complimentary slackness for the subproblem and the relation (4.50), we have

S S ()| = 2300 (W Y)W (w1 (4.53)
< 2L, (WTyr)W (2g, )

< 2Lu[Ap + 30 Ay + BY Ay

Therefore
E| S0 Iy vi(ap)l| = | SIS i vl | < 2ol

Hence we conclude the proof. D
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Remark 4.2.15 We should note that when 1;,i € [m], are convex functions then we can obtain
a variant of Algorithm 3 where x;, is a (stochastic) (0, 0x)-optimal solution of (4.32). For this
variant of Algorithm 3, we can easily obtain the result of Theorem 4.2.14 under Assumption 4.2.3.
Moreover, since constraints remain same in (4.32) for all k > 1, we just need Slater condition to

ensure uniform boundedness of ||y||;-

In the following corollary, we state an immediate consequence of Theorem 4.2.14 as well as the
final complexity when using the ConEx method as subroutine to solve subproblem 4.9. Before
proceeding to the details of the corollary, we need to properly redefine B such that it satisfies
B = max{||y;|l;, ||yi]l; + 1}. This allows the use of B in the sense of Theorem 4.2.14 as well as

in the stepsize policy for the ConEx method in (3.15).

Corollary 4.2.16 Under the assumptions of Theorem 4.2.14, suppose that in Algorithm 3, we set

S = Oy for some ¢ > 0, and 8, = £/(2c1¢cy), where

€ = maX{QLw, 8L12,)(,U0 + ,UmaxB)} (4.54)

02:C+B

Then after running at most K = 2c,(A; + BA) /¢ iterations, we obtain an (e, -2-)-KKT point

Hoc1

of Problem (3.1). In particular, if we run Algorithm 1 for subproblem (4.9), then we obtain an

(e, =2-)-KKT point in O(X1T) iterations, where T. is defined in (3.19).

? poct

Proof. Suppose &), and &), are constants throughout Algorithm 3. Then, according to (4.46), we

have ex < ¢1I'/K. Choosing given values of dy, 0 and K, we have

r A s+BAp
Ex SO = 01[—f T (c+ B)(S] = cl[ﬁ + 022;02] =c.

Moreover, we have



Now noting that §; = 0, = O(e) is a constant and using Corollary 3.3.2, we obtain (&, d;)-
approximate solution of subproblem (4.9) in 7 iterations. Noting the definition K in the statement

of the corollary, we conclude the proof. =

In the above corollary, we assume that the subproblem (4.9) is solved by using the ConEx
method. In particular, if x;(x) is a simple function such that we can compute prox operator in (3.8)
for functions p;W (z, xx_1) + xi(x), i = 1,...,m, efficiently, then we solve each subproblem in
the smooth strongly convex setting, since f;,2 = 1,...,m are smooth functions. Otherwise, we
must include the nonsmooth convex function y;(x) in totality (or part thereof) with f;, and then
we can assume ;W (x,x,_1) is a simple function. In this case, we solve the subproblems in a
nonsmooth strongly convex setting. We can derive from Corollary 4.2.16 and the definition of 7.

in (3.19) the final complexity bounds for different problem settings.

e Smooth nonconvex case: In this case, 7. can be bounded O(1/¢/?) in the deterministic
case, O(1/¢) in the semi-stochastic case and O(1/¢?) in the fully-stochastic case. Hence,
in view of Corollary 4.2.16, we can compute an (&, 2¢/(uoc; ) )-KKT point of the nonconvex
problem (3.1) in O(1/%?), O(1/2?), and O(1/£?) iterations for the deterministic case, semi-

stochastic case and fully-stochastic cases, respectively.

e Nonsmooth nonconvex case: In this case, 7. can be bounded by O(1/¢) in the determinis-
tic case, O(1/¢) in the semi-stochastic case and O(1/=?) in the fully-stochastic case. Hence,
in view of Corollary 4.2.16, we can compute an (e, 2¢/(0c1))-KKT point of the noncon-
vex problem (3.1) in O(1/&?) iterations for the deterministic and semi-stochastic cases, and

O(1/&3) iterations for the fully-stochastic case.

Note that the dependence of these complexity bounds on different problem parameters can be made

more precise in view of the definition of 7 in (3.19).
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4.3 Proofs of Auxiliary Results

4.3.1 Proof of Proposition 4.2.1

Let us denote

Yo(x) == tho(2) + Bz — 2|3,

It is easy to see that 1y(z) and );(z), i € [m], are convex functions. Moreover, their respective

subdifferentials can be written as

o) = {V fo(x) + po(z — *)} + dxo(),

oi(x) = {Vfi(w) + palx — %)} + Oxi(2).

Consider the constrained convex optimization problem:

min Yo(x) (4.55)
s.t. Vi(z) <0, i €[m].

Note that 2* is a feasible solution of this problem. For sake of this proof, define Wy (z) := 1o(z) +
gz;ilwz(x)]i + 3l — a*||3. Let S = {z : ||z — *||, < e} for some ¢ > 0 such that any z € S
which is feasible for (4.55) satisfies ¢g(x) = vo(z*). Let x4, := argmin, g x V(). Note that as
k — oo then due to the optimality of z;, and existence of z* € S N X, we have limy_,, 1 (2;) < 0.
Since limy,_,, x;, is feasible for (4.55) so we conclude that x;, — x*. Hence there exists k such
that for all k > k, 23, € int(S). So for such k we can write the following first-order criterion for

convex optimization ([¢;]% is a convex function):
0 € Nx(z1) + 0to(wy) + k[ (24)] £ 0 () + 21 — T*.
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This implies that xy, is also the optimal solution of

mip () + b [ ()T (@) + Sl — a2

For simplicity, let us denote vj, = k [¢ (z1)]%. Due to the optimality of z, of solving the above, we

have
Vo(zr) + vp ¥(zp) + Lae — 2| < Yo(2) + v () + Lz — 2*|?, VzeX. (4.56)

We claim that {v}} is a bounded sequence. Indeed, if this is true, then we can find a convergent

subsequence {i;} with limy_,,, v;, = v*. Taking k — o0 in (4.56), we have

lim sup v (2, ) + U*T@(x*) < o(z) + U*T@(aﬁ) + %Hx —z*|?, Vre X. 4.57)

k—o0

Placing z = 2%, we have y(x*) > limsup ¥ (x;, ), thus limy o, ¥o(2;,) = 1o(z*) based on the
lower semicontinuity of 1)y. In view of this discussion, z* optimizes the right side of (4.57). Thus,

applying the first order criterion, we have

0€ do(z*) + > v (2*) + Ny (a*).
i€[m]
It remains to apply 0 (z*) = O (x*) and Oy (z*) = dv;(x*).

In addition, to prove complimentary slackness, it suffices to show when 1) (z*) = 1;(z*) < 0,
we must have v = 0. Since x) converges to x* and 1, is continuous, there exists some 3k > 0,
such that @Ez(%k) < 0 when k > ky. Hence vfz)* = 0 by its definition. Taking the limit, we have
v@* = 0.

It remains to show the missing piece, that {v;} is a bounded sequence. We will prove by

contradiction. If this is not true, we may assume limy,_,, |vx|| = o0, passing to a subsequence if

necessary. Moreover, define y, = vy /||vg|, since yy, is a unit vector, it has some limit point, let us
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assume limy,_,, y;, = y* for a subsequence {j;}. Dividing both sides of (4.56) by |vj| and then

passing it to the subsequence {7}, we have

Bo(a ) s |+ ylb(s) + g o, — 27 < o) 40 (@) + gl —a* P, Vre X,

Taking k — oo, we have

v T(a*) < y* (), Vr e X.

Since subsequence z;, converges to x* and 1); is continuous, we see that ¥;(x;,) < 0 for any
i ¢ A(z*) for k > ko. This implies y;, = ji[i(x;,)], = 0forall k > ko and for all i ¢ A(z*).

So we must have 0 € Ny (z*) + ZieA(w*)y*(i)ﬁwi(x*). Let u € Nx(z*) and g;(x*) € ov;(z*),i €
A(z*) be such that

Ut D aeny ¥V gi(a*) = 0.

Then we can derive a contradiction by using Assumption 4.2.1 (MFCQ). Assume that z satisfies

MFCQ (4.2.1). Therefore, we have

0= 2"u+ D 4oy ™27 gi(2%) < Yo gy v V2" gi(2)

S ZieA(az*)y*(i) MaXyedny; (x*) 2Tv <0,

where first inequality follows since z € —N%(z*) and v € Nx(x*) hence 2"u < 0, second
inequality follows due to the fact that y*® > 0 and g;(z*) € i;(z*) and last strict inequality

follows since (4.2.1) and y* > 0 for at least one i € A(x*).
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CHAPTER §
LEVEL PROXIMAL POINT METHOD FOR NONCONVEX SPARSE CONSTRAINED
OPTIMIZATION

In the previous chapter, we saw an inexact proximal point method for solving nonconvex func-
tion constrained optimization problem. In order to obtain the convergence to a KKT-point, we
required that the sequence of Lagrange multipliers for the convex subproblem generated by prox-
imal point method remain bounded. We resorted to strong feasibility assumption to ensure such a
bound. In essence, strong feasibility assumption gives us a guarantee that all the convex subprob-
lem generated at any point in the set X has a strictly feasible point which can be used to bound
the Lagrange multiplier. In this chapter, we consider a class of problems which lie in the larger
family of nonsmooth nonconvex function constrained optimization problems in Chapter 4 and do
not require this strong feasibility assumption for ensuring a bound on the Lagrange multiplier. In
particular, we will consider constrained optimization problems with nonconvex (and nonsmooth)
sparsity inducing constraints. We will show convergence to a KKT-point for objectives which can
be convex or nonconvex, smooth or nonsmooth and deterministic or stochastic under MFCQ con-
straint qualification without requiring strong feasibility. Our assumptions on the structure of the
constraint is fairly general and are satisfied by variety of sparsity inducing constraints in the liter-
ature. Moreover, our convergence rates will be faster compared to those obtained in Chapter 4 due

to an effective projection mechanism.

5.1 Nonconvex Sparse Constrained Optimization

Recent years have witnessed a great deal of work on the sparse optimization arising from machine

learning, statistics and signal processing. A fundamental challenge in this area lies in finding the
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best set of size k out of a total of d (k < d) features to form a parsimonious fit to the data:

min ¢ (x), subjectto ||z[, < k,z e R% 5.1

However, due to the discontinuity of ||-||, norm', the above problem is intractable when there is no

other assumptions.

5.1.1 Existing models

To bypass the difficulty of handling ¢y-norm, a popular approach is to replace the /;-norm by the
¢1-norm, giving rise to an ¢1-constrained or ¢;-regularized problem. A notable example is the Lasso

([101]) approach for linear regression and its regularized variant

min ||b — Az||3, subject to ||z]|, < 7,7 € RY (5.2)

min ||b — Az|2 + Al|z];. (5.3)

Due to the Lagrange duality theory, problem (5.2) and (5.3) are equivalent in the sense that there is
a one-to-one mapping between the parameters 7 and A. A substantial amount of literature already
exists for understanding the statistical properties of /; models ([118, 102, 19, 116, 118]) as well as
for the development efficient algorithms when such models are employed ([32, 8, 80, 107]).

In spite of their success, ¢; models can be suboptimal due to the looseness of the convex
relaxation. To overcome this issue, a large body of the recent work proposes to replace the ¢;-

penalty in (5.3) by a nonconvex function g(z) to obtain sharper approximation of the ¢y-norm:

min ¥ (z) + Ag(x). (5.4)

Despite the favorable statistical properties ([34, 115, 20, 117]), nonconvex models have posed a

great challenge for optimization algorithms and has been increasingly an important issue ([42, 41,

"Note that ||-||, is not a norm in mathematical sense. Indeed, ||z||, = ||tz||, for any nonzero t.
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48, 99)).

5.1.2 A new model for nonconvex sparse constrained optimization

Most of these works studied the regularized version. However, it is often favorable to consider the

following constrained form:

min ¢(z), subjectto g(z) <n,zeR? (5.5)

because the sparsity of solutions is imperative in many applications of statistical learning and the
constrained form in (5.5) explicitly imposes such a requirement. Therefore, it is natural to ask
whether we can provide an efficient algorithm for problem (5.5). The continuous nonconvex relax-
ation (5.5) of the ¢y-norm in (5.1), albeit a straightforward one, was not studied in the literature. We
suspect that to be the case due to the difficulty in handling nonconvex constraints algorithmically.
There are two theoretical challenges: First, since the regularized form (5.4) and the constrained
form (5.5) are not equivalent due to the nonconvexity of g(z), we cannot bypass (5.5) by solv-
ing problem (5.4) instead. Second, the nonconvex function g(x) can be nonsmooth especially
for the sparsity applications, presenting a substantial challenge for classic nonlinear programming
methods, e.g., augmented Lagrangian methods and penalty methods (see [12]) which assumes that

functions are continuously differentiable.

5.1.3  New algorithm for the proposed new model

In this chapter, we study a newly proposed nonconvex constrained model (5.5) from an algorithmic
point of view. In particular, we present a novel level-constrained proximal point (LCPP) method for
problem (5.5) where the objective 1) can be either deterministic/stochastic, smooth/nonsmooth and
convex/nonconvex and the constraint ¢ models a variety of sparsity inducing nonconvex constraints
proposed in the literature. The key idea is to translate problem (5.5) into a sequence of convex

subproblems where () is convexified using a proximal point quadratic term and g(x) is majorized
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by a convex function §(z)[> g(x)]. Note that {g(z) < n} is a convex subset of the nonconvex set
{g(z) <nj.

We show that starting from a strict feasible point?, LCPP traces a feasible solution path with
respect to the set {g(z) < n}. We also show that LCPP generates convex subproblems for which
bounds on the optimal Lagrange multiplier (or the optimal dual) can be provided under a mild and
a well-known constraint qualification. This bound on the dual and the proximal point update in the
objective allows us to prove asymptotic convergence to the KKT points of the problem (5.5).

While deriving the complexity, we consider the inexact LCPP method that solves convex sub-
problems approximately. We show that the constraint, §(z) < 7, has an efficient projection al-
gorithm. Hence, each convex subproblem can be solved by projection-based first-order methods.
This allows us to be feasible even when the solution reaches arbitrarily close to the boundary of
the set {g(x) < n} which entails that the bound on the dual mentioned earlier works in the inexact
case too. Moreover, efficient projection-based first-order method for solving the subproblem helps
us get an accelerated convergence complexity of O(1/¢)[O(1/e?)] gradient [stochastic gradient] in
order to obtain an e-KKT point. In particular, refer to Table 5.1. We see that in the case where ob-
jective is smooth and deterministic, we obtain convergence rate of O(1/c) whereas for nonsmooth
and/or stochastic objective we obtain convergence rate of O(1/¢?). This complexity is nearly the
same as that of the gradient [stochastic gradient] descent for the regularized problem (5.4) of the
respective type.

Remarkably, this convergence rate is better than black-box nonconvex function constrained
optimization methods proposed in the literature recently ([16, 62]). We will discuss this in more
detail soon. For now, note that the convergence of gradient descent does not ensure a bound
on the infeasibility of the constraint g, whereas the KKT criterion requires feasibility on top of
stationarity. Moreover, such a bound cannot be ensured theoretically due to the absence of duality.
Hence, our algorithm provides additional guarantees without paying much in the complexity.

We perform numerical experiments to measure the efficiency of our LCPP method and the

2QOrigin is always strictly feasible for sparsity inducing constraints and can be chosen as a starting point.

120



Table 5.1: Convergence rates of LCPP for problem (5.5) when the objective can be either convex
or nonconvex, smooth or nonsmooth and deterministic or stochastic

Convex (5.5) Nonconvex (5.5)
Cases Smooth Nonsmooth | Smooth Nonsmooth
Deterministic | O(1/e)  O(1/e?) | O(1/e)  O(1/£?)
Stochastic | O(1/?)  O(1/e?) | O(1/e*)  O(1/e?)

effectiveness of the new constrained model (5.5). First, we show that our algorithm has running
time performance which is competitive against open-source solvers, e.g., DCCP [94]. Second, we
also compare the effectiveness of our constrained model with respect to the existing convex and
nonconvex regularization models in the literature. Our numerical experiments show promising
results compared to ¢;-regularization model 5.3 and has competitive performance with respect to
recently developed algorithm for nonconvex regularization model 5.4 (see [41]). Given that this is
the first study in the development of algorithms for the constrained model, we believe empirical
study of even more efficient algorithms solving problem (5.5) may be of independent interest and

can be pursued in the future.

5.1.4 Existing methods similar to the proposed algorithm

There is a growing interest in using convex majorization for solving nonconvex optimization with
nonconvex function constraints.

Typical frameworks include difference-of-convex (DC) programming ([100]), majorization-
minimization ([98]) to name a few. Considering the substantial literature, we emphasize the most
relevant work to our current paper. Scutari et al. [91] proposed general approaches to majorize non-
convex constrained problems and include (5.5) as a special case. They require exact solutions of
the subproblems and prove asymptotic convergence which is prohibitive for large-scale optimiza-
tion. Shen et al. [94] proposed a disciplined convex-concave programming (DCCP) framework
for a class of DC programs in which (5.5) is a special case. Their work is empirical and does not
provide specific convergence results.

The more recent works [16, 62] considered a type of proximal point method in which they
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add a large enough quadratic proximal term into both objective and constraint in order to obtain a
convex subproblem. This convex function constrained subproblem can be solved by oracles whose
output solution might have small infeasibility. Moreover these oracles have weaker convergence
rates. Complexity results proposed in these works, when applied to problem (5.5), entail O(1/£%2)
iterations for obtaining an e-KKT point under a strong feasibility constraint qualification. In similar
setting, we show faster convergence result of O(1/¢). This due to the fact that our oracle for solving
the subproblem is more efficient than those used in their paper. We can obtain such an oracle
due to the availability of efficient projection onto convex surrogate constraint. Moreover, our
convergence results hold under a well-known constraint qualification which is weaker compared to
strong feasibility since our oracle outputs a feasible solution whereas they can get a solution which

is slightly infeasible.

5.2 Level Constrained Proximal Point Method

Given this background, now we focus our attention to the main problem at hand. Our main goal is

to solve problem (5.5). We make Assumption 5.2.1 throughout the paper.

Assumption 5.2.1 1. ¢)(z) is a continuous and possibly nonsmooth nonconvex function satisfying:

() = Vy) + &' ),z —y) = Sllz—yl3. (5.6)

2. g(x) is a nonsmooth nonconvex function of the form g(x) = A||x||; — h(x), where h(z) is convex

and continuously differentiable.

The Lagrangian function for problem (5.5) is defined as L(z,y) = ¥(x) + yg(x) where y > 0.
For nonconvex nonsmooth function g(z) in the form of (5.2), we denote its subdifferential’® by
0g(x) = d(A||z||;) — Vh(z). For this definition of subdifferential, we consider the following KKT

condition:

3Various subdifferentials exist in the literature for nonconvex optimization problem. Here, we use subdifferential
Definition 3.1 in Boob et al. [16] for nonconvex nonsmooth function g.
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Table 5.2: Examples of constraint function g(z) = A||z||, — h(x).

Function g(z)  Parameter A Function h(z)
2
o if |z < OA
MCP[115 A hag(z) =42 . ’
] sol@) {A:q—% if || > 6.
0 if |z < A,
2 —2)|z|+ A2 .
SCAD[34] A hag(z) = § Toita if A < |2 < 0N,
Az| =30+ 1)A? if [z] > OA.
Exp[17] A ha(z) = e Mol — 1 4 ||
log(1+460|x
Log[106] log($+9) he(z) = 10g(?+9)|m| - 1§(g(1r+‘(9)|)'
0,0 < p < 1)[37] 2 hep(z) = 020 a| — (|z| +)°.
l,(p < 0)[88] —pb ho(x) = —pOlz| — 1 + (1 + 0|x|)P.

Figure 5.1: Graphs for various constraints along with ¢;. For £,(0 < p < 1), we have e = 0.1 .
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The KKT condition For Problem (5.5), we say that x is the (stochastic) (¢, ¢)- KKT solution

if there exists T and § > 0 such that g(7) < n, E |z — z|* < §

Elglg(z) —n]l <e
(5.7)

E [dist (0,£(Z,5),0)]> < &
Moreover, for ¢ = § = 0, we have that T is the KKT solution or satisfied KKT condition. If
d = O(e), we refer to this solution as an -KKT solution in order to be brief.
It should be mentioned that local or global optimality does not generally imply the KKT condi-
tion. However, it is shown to be necessary for optimality when Mangasarian-Fromovitz constraint

qualification (MFCQ) holds [16]. Below, we make MFCQ assumption precise:

Assumption 5.2.2 MFCQ [16]) Whenever the constraint is active: g(T) = 1, there exists a di-
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rection z such that max,coq(z) vz <0.

For differentiable g, MFCQ requires existence of z such that 27 Vg(Z) < 0, reducing to the classi-
cal form of MFCQ [12]. Below, we summarize necessary optimality condition under MFCQ from

Chapter 4.

Proposition 5.2.1 (Necessary condition) Let = be a local optimal solution of problem (5.5). If &

satisfies Assumption 5.2.2, then there exists y = 0 such that (5.7) holds with e = § = Q.

Consider the following LCPP method: LCPP method solves sequence of convex subproblems

Algorithm 4 Level constrained proximal point (LCPP) method

1: Input: 2° = 2,7 > 0,19 <7

2: fork =1to K do

30 Setmy = Mp—1 + 0x;

& gu(@) = Al — h(a*Y) — V(@) (z — 2F0);
5. Return feasible solution z* of the problem

miny () = ¢(2) + 3l — 2713, subjectto gi(x) < my (5.8)

6: end for

(5.8). In particular, note that g, () majorizes g(x): gp(x) = g(z), gp(2*™1) = g(2*~1). implying
that {g,(x) < 1.} is a convex subset of the original problem. It can also be observed that adding
a proximal term in the objective yields ¢, strongly convex for large enough v > 0. In the current
form, Algorithm 4 requires a feasible solution of (5.8) and requirement of sequence {7} is left
unspecified.

We first make the following assumptions.

Assumption 5.2.3 (Strict feasibility) There exist sequence {ny};=o satisfying:
1. no < n and a point & of such that g(&) < 1.

2. The sequence {ny} is monotonically increasing and converges to n: limy_, n = 1.

In light of Assumption 5.2.3, starting from a strictly feasible point 2°, Algorithm 4 solves subprob-

lems (5.8) with gradually relaxed constraint levels. This allows us to assert that each subproblem
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is strictly feasible. Indeed, we have g (%) < n; = gry1(z¥) = g(2%) < gr(@®) < M < Moy
This implies the existence of KKT solution for each subproblem. A formal statement can be found
in the appendix. Moreover, all the proofs of our technical results can also be found in the appendix

and we just make statements in the main article henceforth.

5.3 Convergence Analysis

First we look at the asymptotic convergence results.

5.3.1 Asymptotic convergence of LCPP method and boundedness of the optimal dual

Our next goal is to establish asymptotic convergence of Algorithm 4 to the KKT points. To this
end, we require a uniform boundedness assumption on the Lagrange multipliers. First, we prove
asymptotic convergence under this assumption then we justify it under MFCQ. Before precisely

stating the convergence results, we make the following boundedness assumption.

Assumption 5.3.1 (Boundedness of dual variables) There exists B > 0 such that sup,, ij* < B.

The following asymptotic convergence theorem is in order.

Theorem 5.3.1 (Convergence to KKT) Let 7, denotes the randomness of x*,z?, ..., 2" 1. As-

sume that there exists a p € [0,y — u] and a summable nonnegative sequence j, such that

E[¢(2*) — i(@")Im] < §112° — 2713 + G (5.9)

Then, under Assumption 5.2.3 and 5.3.1 for any limit point T of the proposed algorithm, there

exists a dual variable ¥y such that (T,7%) satisfies KKT condition, almost surely.

This theorem shows that any limit point of Algorithm 4 converges to a KKT point. However,
it makes the assumption that dual is bounded. Since the optimal dual depends on the convex

subproblems (5.8) which are generated dynamically in the algorithm, it is important to justify
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Assumption 5.3.1. To this end, we show that Assumption 5.3.1 is satisfied under a well-known

constraint qualification.

Theorem 5.3.2 (Boundedness condition) Suppose Assumption (5.2.3) and relation (5.9) are sat-
isfied and all limit points of Algorithm 4 exists a.s., and satisfy the MFCQ condition. Then, §* is

bounded a.s.

This theorem shows the existence of dual under the MFCQ assumption for all limit points of
Algorithm 4. MFCQ is a mild constraint qualification frequently used in the existing literature
[12]. In certain cases, we also provide explicit bounds on the dual variables. These bounds quantify
how “closely” the MFCQ assumption is violated and provides its effect on the magnitude of the
optimal dual. Additional results and discussion in this regard are deferred to the last section. For
our purpose now, we assume that the dual variables remain bounded henceforth.

In the next subsection, we show convergence complexity results for the LCPP method.

5.3.2 Complexity of LCPP method

Our goal here is to analyze the complexity of the proposed algorithm. Apart from the negative
lower curvature guarantee (5.6) of the objective function, we impose that A has Lipschitz contin-
uous gradients, |[Vh(z) — Vh(y)||y < Lu||z — yl|5. This is satisfied by all functions in Table 5.2.
Below, we discuss a general convergence result of LCPP method for original nonconvex problem

(5.5).

Theorem 5.3.3 Suppose Assumption 5.2.3 and 5.3.1 hold such that ), = ) forall k = 1. Let

=10
k(k+1

x* satisfy (5.9) where p € [0,y — ] and {(}.} is a summable nonnegative sequence. Moreover, x*

is a feasible solution of the k-th subproblem, i.e.,

(") < 1. (5.10)
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K+1

5 J to K then there exists a pair (z*, y*) satisfying

If k is chosen uniformly at random from [

: —k —k 16(y2+B2L2) [~
E[dist(0,£(a",5).0)°] < i (GRega’ + 2),

B3 (a9) - ) € 28 (582 A0 4 27) + 224,

E_ =kyp2 4p(y—p+p) 0 8Z
Ef]Jx 7] < K(W—H)Q(’Y—IL—P)A + K(yv—p—p)’
where, A° := (2°) — (2%), Z = 2521@ and expectation is taken over the randomness of k

and solutions z*, k = 1,... K.

Note that Theorem 5.3.3 assumes that subproblem (5.8) can be solved according to the framework
of (5.9) and (5.10). When the subproblem solver is deterministic then we ignore the expectation
in (5.9). It is easy to see from the above theorem that for 2% to be an e-KKT point, we must have
K = O(1/e) and ¢}, must be small enough such that Z is bounded above by a constant. The
complexity analysis of different cases now boils down to understanding the number of iterations
of the subproblem solver needed in order to satisfy these requirements on p and {(;} (or 2).

In the rest of this section, we provide a unified complexity result for solving subproblem (5.8)

in Algorithm 4 such that criteria in (5.9) and (5.10) are satisfied for various settings of the objective

().

Unified method for solving subproblem (5.8) Here we provide a unified complexity analysis
for solving subproblem (5.8). In particular, consider the form of the objective ¢ (z) = E¢[¥(z, §)],

where ¢ is the random input of W (x, {) and () satisfies the following property:

() —(y) — W' y), e —y) < Sz —yll5 + Mz -y,

Note that, when M = 0, function 1) is Lipschitz smooth whereas when L = 0, it is nonsmooth. Due
to the possible stochastic nature of W, negative lower curvature in (5.6) and the combined smooth-
ness and nonsmoothness property above, we have that ¢ can be either smooth or nonsmooth,

deterministic or stochastic and convex (1 = 0) or nonconvex (i > 0). We also assume bounded
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second moment stochastic oracle for ¢/’ when 1) is a stochastic function: For any x, we have an
oracle whose output, U’ (x, §), satisfies E¢[¥'(z, )] = ¢'(z) and E[|| ¥’ (x, &) — ¢'(2)]|3] < o?

For such a function, we consider an accelerated stochastic approximation algorithm (AC-SA)
proposed in [39] for solving the subproblem (5.8) which can be reformulated as min, ¢y (z) +
Iiy, (2)<n} (), where I is the indicator set function. AC-SA algorithm can be applied when v > p.
In particular, vy (z) := ¢(z) + 3|lo — «*7!||3 is (v — p)-strongly convex and (L + ~)-Lipschitz
smooth. Moreover, AC-SA requires computation of a single prox operation of the following form
in each iteration:

argminw’ x + ||z — Z|3 + Lig, (o)< (%), (5.11)

for any w,z € R% We show an efficient method for solving this problem at the end of in this

section. For now, we look at convergence properties of the AC-SA:

Proposition 5.3.4 [39] Let 2" be the output of AC-SA algorithm after running T}, iterations for the

subproblem (5.8). Then g (x*) < ny and B[y, (2%) — ¢ (7%)] < & Lﬂ 2%t — %)% + 8((553;:)

Note that convergence result in Proposition 5.3.4 closely follows the requirement in (5.9). In

2
particular, we should ensure that T}, is big enough such that £ < (?57 and (; = iw :);k) sum to

a constant. Consequently, we have the following corollary:

Corollary 5.3.5 Let 1) be nonconvex such that it satisfies (5.6) with u > 0. Set v = 3 and run
AC-SA for T}, = max{2 (% +3) 1/2, K (M+o0)} iterations where K is total iterations of Algorithm 4.
Then, we obtain that 2 is an (€1, €2)-KKT point of (5.5), where k is chosen according to Theorem

5.3.3 and

_ (3A0 | 8(M+o) 8(9u*+B%L}) 2BL,, 2B(n—mo) _ 3A° | 32(M+o)
51_(21{"" K )max{ m , u}‘i‘ o 2= T x

Note that Corollary 5.3.5 gives a unified complexity for obtaining KKT point of (5.5) in various
settings of nonconvex objective (1 > 0). First, in order to get an e-KKT point, K must be of

O(1/¢). If the problem is deterministic and smooth then M = ¢ = 0. In this case, T}, = 2( +3)1/2
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is a constant. Hence, the total iteration count is ZkK:lT . = O(K), implying that total iteration
complexity for obtaining an e-KKT point is of O(1/¢). For nonsmooth or stochastic cases, M or o
is positive. Hence, T, = O(K (M + o)) implying the total iteration complexity ZleTk = O(K?),

which is of O(1/¢?). Similar result for the convex case is shown in the appendix.

Efficient projection We conclude this section by formally stating the theorem which provides
an efficient oracle for solving the projection problem (5.11). Since gi(x) = A||z||; + {v, z), the
linear form along with ¢, ball breaks the symmetry around origin which is used in existing results
on (weighted) ¢;-ball projection [30, 51]. Our method involves a careful analysis of Lagrangian
duality equations to convert the problem into finding the root of a piecewise linear function. Then
a line search method can be employed to find the solution in O(d log d) time. The formal statement

is as follows:

Theorem 5.3.6 There exists an algorithm that runs in O(dlog d)-time and solves the following
problem exactly:

min Ha—vl3 subjectto |z|, + {u,z) < . (5.12)
zeR

In conclusion, note that (5.11) and (5.12) are equivalent where v in (5.12) can be replaced by

T+ %w of (5.11) to get the equivalence of the objective functions of the two problems.

5.4 Numerical Experiments

The goal of this section is to illustrate the empirical performance of LCPP. For simplicity, we will

consider the following logistic regression problem:

mxin () = %Z?:I log(1 + exp(—b;alz)), st g(z) <n,

where a; € R? is the training sample, b; € {+1} is the training label, and g(x) is the MCP penalty

(see Table 5.2). Details of the testing datasets are summarized in Table 5.3. As we have stated,
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LCPP can be equipped with projected first order methods for fast iteration. We compare the ef-
ficiency of (spectral) gradient descent [41], Nesterov accelerated gradient and stochastic gradient
[108] for solving LCPP subproblem. We find that spectral gradient outperforms the other meth-
ods and hence use it in LCPP for the remaining experiment. Due to the space limit, we leave the
discussion of this part in appendix. The rest of the section will compare the optimization effi-
ciency of LCPP with the state-of-the-art nonlinear programming solver, and compare the proposed
sparse constrained models solved by LCPP with standard convex and nonconvex sparse regular-
ized models. Our first experiment is to compare LCPP with existing optimization library for their

Table 5.3: Dataset description. mnist is formulated as a binary problem to classify digit 5 from
the other digits. real—sim is randomly partitioned into 70% training data and 30% testing data.

Datasets Training size Testing size Dimensionality Ratio of Nonzeros
real—-sim 50347 21962 20958 0.25%
rcvl.binary 20242 677399 47236 0.16%
mnist 60000 10000 784 19.12%
gisette 6000 1000 5000 99.10%

optimization efficiency. To the best of our knowledge, DCCP ([95]) is the only open-source pack-
age available for the proposed nonconvex constrained problem. While the work [95] has made its
code available online, we found that their code had unresolved errors in parsing MCP functions.
Therefore, we replicate their setup in our own implementation. DCCP converts the initial problem
into a sequence of relatively easier convex problems amenable to CVX ([28]), a convex optimiza-
tion interface that runs on top of popular optimization libraries. We choose DCCP with MOSEK

as the backend as it consistently outperforms DCCP with the default open-source solver SCS.

Objs
Obji
; Ob];ct\ve
é . Ob;[eclwes :
[
/
e

0 3000 %00 500 oao 7000 5 W ww o ww w300 T i w0 30 a0 e
Running time Running time Running time Running time

Figure 5.2: Objective value vs. running time (in seconds). Left to right: mnist (n = 0.1d),
real-sim(n = 0.001d), rcvl.binary (n = 0.05d) and gisette (n = 0.05d). d stands for
the feature dimension.

To fix the parameters, we choose v = 1075 for gisette dataset and v = 10~* for the other
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datasets. For each LCPP subproblem we run gradient descent at most 10 iterations and break
when the criterion ||z¥ — 2%7!|/|2*|| < € is met. We set the number of outer loops as 1000 to
run LCPP sufficiently long. We set A = 2,6 = 0.25 in the MCP function. Figure 5.2 plots the
convergence performance of LCPP and DCCP, confirming that LCPP is more advantageous over
DCCP. Specifically, LCPP outperforms DCCP, sometimes reaching near-optimality even before
DCKCEP finishes the first iteration. This observation can be explained by the fact that LCPP leverages
the strengthen of first order methods, for which we can derive efficient projection subroutine. In
contrast, DCCP is not scalable to large dataset due to the inefficiency in dealing with large scale
linear system arising from the interior point subproblems.

Our next experiment is to compare the performance of nonconvex sparse constrained models,

which is then optimized by LCPP, against regularized learning models in the following form:

mxin () = %Z?:l log(1 + exp(—b;alz)) + ag(z).
In above, g(x) is the sparsity-inducing penalty function. We consider both convex and nonconvex
functions, namely Lasso-type penalty g(x) = |z|; and MCP penalty (see Table 5.2). We solve the
Lasso problem by Sklearn [83] logistic regression solver and solve the MCP regularized problem
by GIST algorithm [41]. For simplicity, both GIST and LCPP set A = 2 and § = 5 in MCP
function, and set the maximum iteration number as 2000 for all the algorithms. Then we use a grid
of values « for GIST and LASSO, and n for LCPP accordingly, to obtain the classification error
under various sparsity levels. Experiment results on average of 10 runs are presented in Figure 5.3.
We can clearly see the advantage of our proposed models over Lasso-type estimators. We observe
that nonconvex models LCPP and GIST both perform more robustly than Lasso across a wide
range of sparsity levels. Lasso models tend to overfit with increasing number of selected features

while LCPP is less affected by the feature selection.
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Figure 5.3: Testing error vs number of nonzeros. From left to right: mnist, real-sim,
rcvl.binary and gisette.

5.5 Auxiliary results

5.5.1 Existence of KKT points

Proposition 5.5.1 Under Assumption 5.2.3, let 2° = &. Then, for any k > 1, we have x*~! is

strictly feasible for the k-th subproblem. Moreover, there exists %, 4% > 0 such that gy, (f’“) < Mg

and:
(T + v (ik — xk_l) + 7" (&gk(f’“)) 50

7" (gi (%) —mi) =0

(5.13)

Proof. Since z° satisfies g(z°) < 79 < 1, so we have that first subproblem is well defined. We
prove the result by induction. First of all, suppose %! is strictly feasible for k-th subproblem:
gr(z*"1) < mi. Then we note that this problem is also valid and a feasible 2% exists. Hence,

algorithm is well-defined. Now, note that

g1 (2¥) = g(z*) < gi(2®) < M < M.

where first inequality follows due to majorization, second inequality follows due to feasibility of
x* for k-the subproblem and third strict inequality follows due to strictly increasing nature of se-
quence {7 }.

Since k-th subproblem has 2%~ as strictly feasible point satisfying Slater condition so we obtain

existence of ¥ and ¢* > 0 satisfying the KKT condition (5.13). =
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5.5.2 Proof of Theorem 5.3.1

In order to prove this theorem, we first state the following intermediate result.

2

Proposition 5.5.2 Let 7, denotes the randomness of ', x?, ..., x*~1. Assume that there exists a

p € [0,y — u| and a summable nonnegative sequence (. (¢ = 0, ZZO:le < o) such that

E [vi(z*) — o (z")|me] < &l|lz* — 2713 + G (5.14)

Then, under Assumption 5.2.3, we have

1. The sequence E[1)(z*)] is bounded;

2. limy_,o ¥(2%) exists a.s.;

3. limy o ||2%71 — ZF]° a.s.,

4. If the whole algorithm is deterministic then 1(x*) is bounded. Moreover, if (;, = 0, then the

sequence 1)(x*) is monotonically decreasing and convergent.

Proof. Due to the strong convexity of 1;(z), we have

Yi(T*) < gn(e) — )" - 23, (5.15)

k—

for all x satisfying gi(x) < 1. Taking x = 2%~ and using feasibility of 2%~ (g, (2F1) < 1) we

have

Y(@*) = (@) + 17" — 2 + [ - 23

Together with (5.9) we have

G+ (@) = E[y(a*) + Flla* — "3 ]
(5.16)

o A

Since {(;} is summable, taking the expectation of 7, and summing up all over all k, we have

E[y(zF)] < (2°) + 2521@ < 0. Moreover, Applying Supermartingale Theorem 5.5.11 to
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(5.16), we have lim;_,o, 1 (z*) exists and . ||[z*~' — Z*||2 < oo a.s. Hence we conclude
k=1 2

limy,_,o||2%~1 — Z*¥||, = 0 a.s. Part 4) can be readily deduced from (5.16). 0

Now we are ready to prove Theorem 5.3.1.
For simplicity, we assume the whole sequence generated by Algorithm 4 converges to 7. Due

to Proposition 5.5.1, there exists a KKT point (Z*, 3/*). The optimality condition yields

7

5 izt — 252 + gFgu(z¥), VY (5.17)

I~ 23 + oue) > (a*) + 2

o(x) +

Since #* is bounded, there exists a convergent subsequence {i;} that lim_,,, ** = % for some
7 = 0. Let us take k — o0 in (5.17). In view of Proposition 5.5.2, Part 3, we have lim,_,,, 7% =
limy_, z%* ! = T almost surely. Then limy,_,, h(z%* ') = h(Z) and limy_,,, VA(z"* 1) = VA(T)

a.s. due to the continuity of h(x) and VA(x), respectively. Then we have
7 ~ ~ ~ ~ ~ ~ ~ ~
V(@) + S lle =25+ § Nzl = (@) = (VA@), 2 = D)] = 0(@) + Tg(T),  as.

implying that Z minimizes the loss function ¢(z) + ||z — 2|3+ 7 [ M|z h(Z) — (VA(Z),z — T)].
Due to the first order optimality condition, we conclude 0 € 0v(Z) + 7dg(Z), a.s.

Moreover, using the complementary slackness, we have 0 = % (g;, (z) — n;,). Taking the
limit of £ — o0 and noticing that limy_,,, 7;, = 7, we have 0 = § (¢ () — n) a.s . As a result, we

conclude that (7, %) is a KKT point of problem (5.5), a.s.

5.5.3 Proof of Theorem 5.3.2

From KKT condition of (5.13), z* is the optimal solution of the problem min,cga ¥ (z)+7* (gr(z) — 2) -

Therefore, for any = € R?, we have

V(@) + T gi(z) = (@) + 7" g (") (5.18)

We prove that {i*} is bounded a.s. by contradiction. If {g’“} has unbounded subsequence with
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positive probability, then conditioned under that event, there exists a subsequence {7} such that
y'* — oo. Let us divide both sides of (5.18) by #* and expand g;, by its definition. After placing
k = i3, we have for all x

¥ (@) + Alzlly — VA" e

gk (5.19)
> oty (T%) + A2 ||, — V()T

Let ¥ be any limiting point a.s. of the sequence {z’*~'}. By the statement of the theorem,
we know that it exists and satisfies MFCQ assumption. Passing to some subsequence if neces-
sary, we have limy_,., 2%*~1 = T a.s. Using Proposition 5.5.2 Part 3, we have lim;_,,, % = T
a.s. Moreover, using Proposition 5.5.2 Part 2, we have limy_,,, ¢ (Z'*) exists a.s. This implies
limy o gik@/)lk(f“ﬁ) =0a.s.

Taking & — oo, since v, () is bounded a.s. (due to existence of 7 a.s.), we have limy_, giszk (x) =
0. From Lipschitz continuity of /; norm and Vh(z), we have limy_,., A||Z* ||, = A||Z||; a.s., and
limg_o, Vh(z"* 1) = VI(T) a.s., respectively. It then follows from (5.19) that for all =, we have

Mz|ly = <{Vh(Z),z) = N|Z||; — {(VI(Z),T). In other words, we have
0 € ON\|Z||, — VA(Z) = 09(T), a.s. (5.20)

Moreover, due to complementary slackness and y'* > 0, the equality g;, (Z"*) = n;, holds. Hence,
in the limit, we have the constraint ¢(¥) = 7 active a.s. Under MFCQ, there exists z such that
MaX,ecog(3) 2Tv < 0. However, from (5.20) we have 0 = 270 since 0 € 0g(), leading to a contra-
diction to the event that {#*} contained unbounded sequence with positive probability. Hence, 7 is

bounded a.s.

5.5.4 Explicit and specialized bounds on the dual

Here, we discuss some of the results for explicit bounds on the dual. In particular, we focus on

the SCAD and MCP case. Similar results can be extended for Exp and ¢, p < 0 case since these
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function follows two key properties (as we will see later in the proofs):
1. |Vh(x)| < Afor all x for each of these functions.
2. They remain bounded below a constant. See Figure 5.1.

We exploit these two structural properties of these sparse constraints to obtain specialized and

explicit bounds on the optimal dual of problem 5.5. The following lemma is in order.

Lemma 5.5.3 Let h : R — R be the the convex function which satisfies |Vh(x)| < A forall x € R.
Then the minimum value of g(x; ) : R — R defined as g(z; ) := Mz| — h(Z) —{Vh(Z),z — T)

is achieved at O for all T € R.

Proof. Note that g is a convex function for any = € R. So by first order optimality condition, if

is the minimizer of g then 0 € dg(Z; z). This implies
A|Z| — Vh(z) 0.

Note that Z = 0 satisfies this condition since in that case A\0|Z| = [\, A]. And due to assumption

on h, we have Vh(Z) € [\, A]. Hence Z = 0 is always the minimizer. o

Now note that h) y functions defined for our examples, such as SCAD or MCP. satisfy the assump-
tion of bounded gradients in Lemma 5.5.3. Now we use this simple result to show that 0 is the
most feasible solution for each of the subproblem (5.8) generated in Algorithm 4 and hence we can

give an explicit bound for the optimal dual value for each subproblem.

Lemma 5.5.4 Suppose all assumptions in Lemma 5.5.3 are satisfied. Then we have for any k > 1,

—k Y5 (0) =ty (2)
Y < — —. (5.21)
me—g(@t+ 2 (A — [Vh(zE)])|2F 7

Proof. Note that g, (z) = 3% (;; 257 1) where 7 is defined in Lemma 5.5.3. Since assumptions

i

of Lemma 5.5.3 hold, so we have that each individual g is minimized at z; = 0. Hence g4(0) is the
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minimum value of g;. In view of Proposition 5.5.1, we have that x;_; is strictly feasible solution

with respect to constraint g (x) < 1, implying g (z*~!) — n, < 0. Hence, we have

M — 9(0)

= m— [0l = S (e ) + VA1) (0 — 27 )]
=+ Sy h(af ™) = XL V(e

= — g(" ) + [g(a*7) + At = XL, Vh(af Tt
> — g(2*7h) + Al = S VA |2

= — g(" ) + S (A — [Vh(zE]lat ™

> 0.

Here, last strict inequality follows due to the fact that A > |VA(2*')| and . > g(2*~1). Then,

we have, optimal dual 7* satisfies for all z:

Un(Z) < (@) + i7" (g(x) — i)

= (") < r(0) + 7*(91(0) — 1)

—k ¥ (0) =ty (z)
=Y S Mk —9gx(0)

dwk(O)—wk(:f’“)
g1+ Y (A — [Vh(f )|zl

~

where third inequality follows due to the fact that n, — g,(0) > 0 Hence, we conclude the proof. o

Note that the bound in (5.21) depends on z*~! which can not be controlled, especially in the
stochastic cases. In order to show a bound on yk irrespective of 2*=1, we must lower bound
the denominator in (5.21) for all possible values of 2*~!. To accomplish this goal, we show the
following two theorems in which we lower bound the term 37 | (A — |[Vh(z571)|)[zF~!|. Bach of

these theorem is a specialized result for SCAD and MCP function, respectively.
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Figure 5.4: Plot of z(y) for SCAD function where A = 1, § = 5. z : [0,3] — R, where
2(0) = z(3) = 0 otherwise z is strictly positive.

Theorem 5.5.5 Let g be the SCAD function and x € R? such that g(z) = . Also, let v =

— == 2% (GH where [ is the largest nonnegative integer such that v > 0. Then, Z(.i, (N —

« =1

|Vh(z;)|)|zi| = z(y) where z : |0, AQ(ZH)] — Ry is the function defined as

g if0<y< A\
() =

v [ 2 [X%(6+1) (9+1) .

Wiy Tz -y i<y <
Theorem 5.5.6 Let g be the MCP function and v € R? be such that g(x) = a. Also let v =
a—ﬁ% where (3 is the largest nonnegative integer such that v = 0. Then 2?210\_ \Vh(x)|)|z:| =

z(7y) where z : |0, %] — Ry is the function defined as z(y) := y4/1 — 9/\2

A2 (9+1)

Note that Theorem 5.5.5 states that lower bound z(y) = 0 when v = 0 or . In essence,

M then lower bound turn out to be zero. However, for all

when « is exact integral multiple of
other values of «, the corresponding z(+y) is strictly positive. This can be seen from the graph of
z(7y) below. Similar claims can be made with respect to MCP in Theorem 5.5.6.

Now we are ready to show a bound on 7" irrespective of 2*~1. We give a specific routine to

choose the values of 7, such that we can obtain a provable bound on the denominator in (5.21)

hence obtaining an upper bound on the #/* for all k irrespective of z*~1

Proposition 5.5.7 Let g be the SCAD function and n = (>-2+1 9“ + 1] where [3 be the largest

nonnegative integer such that 7j = 0. Then, for properly selected ny, we have that n, — g(z*1) +
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S = VA D]l = mingA?, 22,

2

We note that very similar proposition for MCP can be proved based on Theorem 5.5.6. We skip

that discussion in order to avoid repetition.

Connection to MFCQ In this section, we show the connection of MFCQ assumption in Theorem
5.3.2 with the bound in Theorem 5.5.5.

Note that for the boundary points of the set g(z) < n; where 1, = m then the lower bound
z(n1) = 0. In fact, carefully following the proof of Theorem 5.5.5, we can identify that the lower
bound is tight for 2’s such that one of the coordinate x; satisfy |x;| > A0 and all other coordinates
are 0. In this case, we see that such points do not satisfy MFCQ. At such points, we don’t have

any strictly feasible directions required by MFCQ assumption. This can be easily visualized in the

leftmost figure in Figure 5.5. Note that A@ = 5 and for any |z| > 5, the feasible region is merely

the axis and hence there is no strict feasible direction. This implies MFCQ indeed fails at these

Ve A

points.

n n 2 0 2 0 g

Figure 5.5: All figures are plotted for A = 1 and # = 5. From left to right: 7; = 3,7, = 2.8 and
n3 = 3.2. Then n, = w = 3. In first figure, we see that for || > 5, the MFCQ assumption
is violated since only x-axis is feasible. Similar observation holds for y-axis as well. However, in
second and third figure such claims are no longer valid.

For g(x) = 1y < m; the lower bound z(7),) is nonzero and same holds for g(z) = n3 > 7.
Indeed, we see that for such cases, the points not satisfying MFCQ in case of 7; vanish. This can
be observed in second and third figure in Figure 5.5. For the case of 7, in part (b), these points
become infeasible and for the case of 73 in part (c), they are no longer boundary points.

Looking back at MFCQ from the result of Theorem 5.5.5, we can see that how close 7 is to
A2(0+1)

=—5— shows how ‘close’ the problem is for violating MFCQ. Moreover, the lower bound z(-) on
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the denominator of (5.21) shows how quickly the dual will explode as the problem setting gets
closer to violating MFCQ.
We complete this discussion by showing the proof of Theorem 5.5.5 and Theorem 5.5.6. We

also note that similar theorems can be proved for ¢, p < 0 and Exp function in Table 5.2.

Proof of Theorem 5.5.5

First, we show a lower bound for one-dimensional function and then extend it to higher dimensions.
Suppose u € R be such that g(u) = «. Note that since g is SCAD function so o must lie in the set
[0, @] Key to our analysis is the lower bound on (A — |Vh(u)|)|u| as a function of . Note
that since

glu) =a= ANMu| = a=|u| > (5.22)

>/IQ

Also note that for all |u| < A, we have g(u) = Alu| and Vh(u) = 0 which implies VA(u) = 0 for

all g(u) = a < \?. Hence, using this relation along with (5.22), we obtain
A= |Vh)|u| = Alu| =a  if0<a <A (5.23)
We note that |[Vh(u)| = A forall w > A\ and g(u) = o = (GH) for all u > 0. Hence,

A= [VR(u)|u| =0  ifa =& (5.24)

Now we design a lower bound when o € (\? @) For such values of o, we have

wl—2)2
g(u) =Mu| — (|2(|9_)i)) =
=u? —2M|ul + A +2a(0 - 1) =0

fu] = 20— /20 — 1)[2EL _ ]

:>|Vh(U)| |u| )\ — )\ — / /)\2(9+1
=X — |Vh(u)| = 4/%«/%—&
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. . A2(0+1)
Then, above relation along with (5.22), we have (A — [Vh(u)|)|u| = 4/ 725 %4/ — a for all

ae (N2 @) Using this relation along with (5.23), (5.24) and noting the definition of function
z(+), we obtain a lower bound (A — |Vh(u)|)|u| = z(«) where o = g(u).

Now note that for general high-dimensional € R%, we have g(z) = 3.7 g(x;) = a. Then
a € [0, %]. Since each individual g(z;) > 0, we can think of v as a budget such that sum

of g(z;) must equal . In order to minimize the lower bound on (A — |Vh(x;)|)|x;|, we should

exhaust the largest budget from Zle g(x;) = o while maintaining the lowest possible value of the

A2(0+1)
7 -

lower bound on (A — |Vh(x;)|)|x;|. This clearly holds by setting |z;| such that g(z;) =

This can be clearly observed in the figure below.

2lalpha)

15
alpha [=g(u)]

Figure 5.6: Plot of function z(«) on y-axis and « on z-axis for A\ = 1, § = 5. The largest possible

value g(u) is )‘Q(ZH) = 3 is achieved for u > A0 = 5 and lower bound z(3) = 0. Hence, setting

u = A0 maximizes the g(u) and minimizes z(a) = z(g(u)).

Hence, if a € [5 A0+ ,(B+1 )A (GH)) for some nonnegative integer (3, then we should set

A2(0+1)

/3 coordinates of x satisfying |z;| > A6 in order to exhaust the maximum possible budget, ~——5—=,

from « and still keep the value of the lower bound on (A — |VA(u)|)|u| as 0. Hence, noting the
definition of +, the problem reduces to ). g(z;) = ~ where summation is taken over remaining
coordinates of x and v € [O, @)

Lets recall from the analysis in 1-D case that if g(x;) = «a; then (A — |[VA(x))|)|x:| = 2(a)
so we obtain the lower bound . z(«a;) while «;’s satisfy the relation } ,a; = . Moreover, z

A2(6+1) . . . . . ..
[0,5—] — Ry is a concave function with 2(0) = 0. Then we show that z is a subadditive

function. Using Jensen’s inequality, for all ¢ € [0, 1], we have z(tz+(1—t)y) = tz(x)+(1—1)z(y).
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Using y = 0 and the fact that z(0) = 0, we have z(tz) > tz(z) for any ¢ € [0, 1]. Now using this

relation along with ¢ = 7 € [0, 1] (for z,y = 0) we have

z2(z) = z(t(x +y)) = tz(z + y).

2(y) =20 =)z +y) = A -t)z(z +y).

Adding the two relations, we obtain z(z) + z(y) > z(z + y). Hence, z is a subadditive function.
Since ), .«; = +y then the we have . z2(a;) = 2z(D,,;) = z(7). This bound is indeed achieved

when we set one of «; = «y and rest to 0. Hence, we conclude the proof.

Proof of Theorem 5.5.6

As before, we proceed by assuming 1-D case, i.e., v € R and g(u) = « and then extend it to
general d-dimensional setting. Then, « € [0, %] Then, we write function (A — |VA(u)|)|u| in

term of «. Note that

= Ju| = OA(1 — /1 — 2%)

= |Vh(u)| =4 = \(1—4/1 - &)

Moreover, we also have (5.22). Then, noting the definition of z(-), we obtain that (A—|Vh(u)|)|u| =
z(a).

For high dimensional 2 € R?, we use similar arguments as in the proof of theorem 5.5.5. In
particular, we set J coordinates x satisfying |x;| = A0 which exhausts the maximum possible
budget )‘726 from « and still keeps the value of the lower bound on (A — |V h(x;)|)|x;| as 0. Finally,
we reduce the problem to > .g(x;) = >,.c; = 7 and lower bound is )} z(c;). As in the previous

case, z is concave function on nonnegative domain with z(0) = 0 hence it must be subadditive. So
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we obtain that ). z(a;) = 2(D,,«;) = z(7). Hence, we conclude the proof.

Proof of Proposition 5.5.7

We note that n = 3 M + 17, where (3 is the largest nonnegative integer such that 7 > 0. Clearly

~

2
e [0, #) Now, we divide our analysis in two cases:

< A2, Then we define 7, for Algorithm 4 as 1y = /3 —’\2(6;1) +

N |32

Case 1: Suppose

N3

<
Now, if g(zF71) < ﬂﬂ then we have that n,_, — g(z* ™) = 1y — g(z*"') > L. In this case,
we obtain that denominator of (5.21) is at least 121
In other case, suppose that g(z*1) > Bm. We also note that g(2*1) < gx_1(2"1) < me_y <
n. Hence, we obtain g(zF 1) < n = g2 (HH) + 7j. This implies §(zF~1) := g(aF1) — JpsCA)) 9;1

[0, A?]. Then, using Theorem 5.5.5, we obtain that 3.7 (A — [VA(zE~1)|)[2F~| = 2(G(zF 1)) =
)

J(z*1). Using this relation, we obtain that 7, 1 — g(z*~1) + 2L (A — |Vh(zE1)))]2F~!| =
~ _ 2 N -

Moot — g(@* 1) + G = oy — B =y = L

So, when 7] < A2, we obtain that the denominator in (5.21) is at least n, — gy, + =52 = §;, + 552 Z(") >

2(

)-

Case 2: Now, we look at the second case where 7 > A\2. In this case, we define 1y = /3 @ +

A(9+)

~

min{\2, z(7)}. Then, we again note that g(z*~!) < S22~ implies ny_; — g(z*1) = Th_1 = 7o.

In other case, we assume that g(z*~!) € [ (9;1) , B2 (9;1 + A?], then again using Theorem 5.5.5,
we obtain Y31, (A — [Vh(z} ™)) |27 = (g(fb“k_l)) =9
S = (VA = e — B — f > .
Finally, g(z*1) > g2+l 9“ + A2 then G(z* ) (A2, 7)) then due to concavity of z, we obtain that
2(g(2*71)) = min{A?, 2(7)} = 7o

Hence, combining the bounds in both cases, we obtain that denominator in (5.21) is always

(2*~1). This implies 7,1 — g(z*~ 1) +

bounded below by min{\?, 2.
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5.5.5 Proof of Theorem 5.3.3

As in the previous case, we show an important recursive property of iterates. We first state the

theorem again:

Theorem 5.5.8 Suppose Assumption 5.2.3, 5.3.1 hold such that 9, = k:+1 forall k = 1. Let 7y,

denote the randomness of ', . . ., x*~1. Suppose for k-th subproblem (5.8), the solution z* satisfies

Eln(a") — (@) |m] < §ll"" = 2|13 + G,

gr(z") <

where p lies in the interval [0,y — ] and {(} is a sequence of nonnegative numbers. If k is chosen

k

uniformly randomly from [K; 1J to K then corresponding to x* there exists pair (T ) satisfying

E; [ dist (a L£(z*,74),0)%] < 2P (ito A0 4y 97,),

= K(y—p—p)

_i 2BL +p AO 2B(n—mo)

]El%[y ‘g( nu = K(y— ,uh p) (PY'yu,upA + 221) ?;(170 )
kE =ky2 4p(y—p+ 0, 87

Eifl2” =27 < K(vf/]) (l; Z 72 Koy

where, A® := 1p(2°) — p(x*) and Z, := Yr_ G

We first prove the following important relationship on the sum of squares of distances of the iter-

ates.

Proposition 5.5.9 Let requirements of Theorem 5.3.3 hold. Then for any s > 2, we have

K — - 2(As+2Zs
N [ (5.25)
K _ As ;
E[Zk:stk B iCkH§|7T371] S (7—/3?7—#—0) + vzi—p (5.26)

where A, = 1=EEL (4 (2572) — op(a*)] and Z, = ZkK:quk'

Y-
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Proof. Note that since for all k¥ > 1 we have feasibility of % for k-th subproblem (due to (5.10)),
then in view of Proposition 5.5.1, we have that 2"~ is strictly feasible for the k-th subproblem.
Consequently, using strong convexity of ¢, and optimality of Z¥, we have 252|[2* ! — Z*||3 <
Y (x¥1) — 1y, (Z%). Therefore, taking expectation conditioned on 7;,_; ob both sides of the above

relation, we obtain

GEE[)|2* — 25 |me1] < E[n(2®1) — ¢u(Z*) | ma]
< E[tp-1 (2" ") — (@) |mi1]

< e () ~ B[ ] + §l1e 72— 2+ G

where second inequality follows from 9y (z*~1) = (2*"1) < w1 (2*1) and third inequality

follows from (5.9). Placing the definition of /() in above relation, we have
BR[| = 2|3 me] < (@) — B[ @) [me] + 52025 = 2 HE + G
Summing up over k = s, s + 1,..., K and taking expectation conditioned on 7,1, we have

By ElllzF ! = 2 5] < (@) — Eg(z")

+ 5 Bl = 2 ] + G
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It then follows that

B[N T = e ] < (@) — B (@) + T2 - 2 4+ 2 G
< Psea(777) — E(z")

+ ﬁ [ws—l(xs_z) - ws—l(i‘s_l)] + Zf:ka—l

+ 2 [¢(x8_2) — e (zN)] + Z?:ka—l
< 2 [h(a°2) — p(a*)] + T G,

T—H

where the third and the last inequality follow from the property

Y(@") = (@) = (@) = (3% = Y (7).

Note that solution z* is feasible for the k-th subproblem and hence, in view of Proposition 5.5.1,
we have that g(7*) < ¢x(Z*) < . < n and hence Z* is feasible solution for the main problem
implying 1 (Z"*) > 1 (z*) in the above relation. Then (5.25) immediately follows.

Now we prove that (5.26) holds. Note that

E[lla" — 2 3lm] < 2B [vn(2®) — vu(@®)|m] < 22 [Sla" = 285 + G

where first inequality follows due to strong convexity v, as well as optimality of z* and second
inequality follows due to (5.9). Now summing the above relation from k£ = s to K and taking

expectation conditioned on v,_1, we obtain

K — K — — K
B[S llr* = 2 13im-1 | < 72 | S et = Bl | + 5520 G

2PA5 27
(v=w)(y=p—p) = y—u—p’

<

where last inequality follows from (5.25) and definition of Z,. Hence, we conclude the proof. o
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Now we present the unified convergence of proximal point as stated in Theorem 5.3.3.

Proof of Theorem 5.3.3

Due to the KKT condition for the subproblem (5.8), we have

0 ap(z®) +~ (2" — ") + ¢* (92", — VA(z"))
(5.27)
0 =" (AIz"]ly = h(z""") = (VA(*1), 25 — 2571 — )

Using triangle inequality along with first relation in the above equation, we have dist (8x£(5ck’ L), O) <
yl|Z* — 2|, + gF || Vh(x*t) — Vh(Z*)||,. Therefore, noting the bound on 7* from Assumption

5.3.1, we have

dist (0,L(z",7),0)" < 29%7" — ¥ |3 + 2B%|VA(z* ") — h(z")|I3

<2(v + B2L}) ||I7* — 2",

where the second inequality uses Lipschitz smoothness of 4(x). Summing the above relation from

k = s,..., K and the taking expectation conditioned on 7,_; on both sides, we obtain

E[Ziﬁﬁﬁ(@ﬁﬁﬂyﬂﬁthJ]<2m2+BﬁimﬂZﬁgmhi—jﬂ@h%J

<AOHBR) 44 7., (5.28)

YH—P

For the complementary slackness part of the KKT condition, first notice that n, = 1y + Zleét =

ko = k 1
Mo + thl% = 1" + 71 'o- Therefore,

K K - s
Zk:s (n—m) = Zk:snk-:]lo < K:Jrl1 (n—mn0).
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To prove the error of complementary slackness condition, observe that

7" NZE ] — h(E*) — 0] < gF NZ0] - R — (Vh(EY), 28— 2 —
+ 5 [h(@" 1) + (Vh(aFh), 78 — 21 — h(E@)| + 5 (i — me)

< Pprllat =2t HE + B (n —m) .

where second inequality follows due to second relation in (5.27) and bound on 7* from Assumption
5.3.1. Summing the above relation from k£ = s, ..., K and taking expectation conditioned on m,_;

on both sides, we obtain

B[S0 |9@) = | Imor | < SICE[25 2 — 24 + B (1 = ) Imo ]
< BLg S 17 — 4 e | + BEE, 07— m)

< Lh(A, + Z,) + B 00mm), (5.29)

Now note that A, = %‘L;p[w(ﬁ”) — 9p(z*)] is a random variable due to randomness of z*~ 2,

Now we bound expectation of 1 (2°~2). In view of (5.9), we have

E[¢n(a")|me] < on(@") + §l1a" = 2*)5 + G

< () = 2l = 2|y + G
Since, 7 — p — p = 0 and noting that 1, (2*~1) = ¢(2F1), Y(z*) = (%), we have
E[y(z")|m] < ¢ (") + G

Taking expectation on both sides of the above relation and then summing from k£ = 1to s — 2, we
get
E[g(*2)] < () + 300G
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Using the above relation, we obtain
E[A,] < LA 423 070¢, (5.30)

where A? = ¢)(2) — 1(z*). Note that here we used the fact %’L;” < 2. Now taking expectation

on both sides of (5.28) and using bound on E[A,] in (5.30), we obtain

B[S, dist (0,£(2*,5),0)" oy | < M (1222 A0 4 950706, 4+ 3,1

4(v*+B2L}) (y—p+p A O
S T (WMA+221)

Similarly, taking expectation on both sides of (5.29) and using (5.30), we obtain

B[S0 |9(2%) — ] Ime-a | < 322 (525200 + 22,) + K== By — o).

Y—H—Pp N YTH

Taking expectation on both sides of (5.26) and using (5.30), we obtain

[Zk Jla* = ZF] < 7 - p)(’ny:pA0+22k 1Ck> 'yzfip
< _20(0—p+p) AO 4z
= (v (y—p—p) Y—p—p°

Finally, setting s = [%J we have % < s < % Therefore, we have

E; ldwt(@E ,y ,0)2

B |7 Jote) o <

K'YHP YK

] < 8(~y +BQL2 'y u+pAO+QZl)

2BLh 7 ptp A0 —|—2Z) (7;{ 70)

K(y—p—p)\ y—p !

and

4p(y—p+p) A 871
w2 (y—p—p) K(y—p—p)"

Eylle — )3 < 72

Hence, we conclude the proof.
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5.5.6  Proof of Corollary 5.3.5

2(L+v) _ 2(L+3p)

Since T}, > 2 ﬁ + 3, we have that =
k

> < g = g. Moreover, we see that p = 1 <

v — f¢ = 2p. Finally, since T}, > K (M + o) so we have (j, < ;%K implying that Z; = Zf;lé”k < ;%'

Then, applying Theorem 5.3.3, we obtain that 2F is an (€1, €2)-KKT solution of the problem (5.5).

5.5.7 Convergence for the (stochastic) convex case

We have the following Corollary of Theorem 5.3.3 for the case in which objective 1) is convex, i.e.

w=0.

Corollary 5.5.10 Let 1) be convex function such that it satisfies (5.6) with = 0. Set v = L
where 5 € [0,1) be a small constant and run AC-SA for T, = max{2 w, K(M + o)}
iterations where K is total number of iterations of Algorithm 4. Then, we obtain that 2 is an
(€1, €2)-KKT point of the problem (5.5) where

_[3A0 | 16(M+o) 16(82°L*+B%L}) 4BL 2B(n—mo)
51_(W+ BKL )max{ T ,BLh}+ I

3A0 + 128(M+0o)

E9 =

28LK BL2K
Proof. Since T}, > 2 %’ we have Q(LT;”) = 2(1;5 )L < %L = g. Moreover, note that
k k

8(M2+0?) < 8(M+o)

T < 5k Hence,

p = %L < v = L. Finally, since T, = K(M + o) so we have (; =

Z) = Zlegk < 8M+9) Then, applying Theorem 5.3.3, we obtain that z* is an (e1,€2)-KKT

BL -
solution of problem (5.5). o
Finite-sum problem A special case of objective takes the finite-sum form f(z) = %Zznzlﬁ(x)

thereby leading to the following subproblem
ming(z) = L3, Fie) + B(a)
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It is known that finite-sum problem can be efficiently solved by using variance reduction or ran-
domized incremental gradient method [108, 57]. The complexity of LCPP on finite-sum problem
can be further improved if we apply variance reduction technique for solving the subproblem. We
comment on the complexity result in brief. In the finite-sum setting, the Nesterov’s accelerated
gradient-based LCPP requires T, = O(n %ﬁ) and T, = O(n3~"/2) number of stochastic gra-
dient computations to solve each LCPP subproblem. Even though this number is a constant in
terms of dependence on K, number of terms (n) in the finite sum can be large. In comparison
to these standard methods, the complexity of SVRG (stochastic variance reduced gradient) based
LCPP method can be improved to 7}, = (5(71 + %) for the case when 1) is nonconvex satisfying
(5.6) with 1 > 0, and to T}, = O(n + 1) for convex problem where i = 0. This will be verified

in the numerical experiments section.

5.5.8 Proof for the projection algorithm for problem (5.11)

Here, we describe an efficient algorithm for solving the (5.11). Specifically, we formulate the

update as the following problem
min Y=ol st ||z], + (u,z) < 7. (5.31)
zeR

Since the objective is strongly convex, problem (5.31) has a unique global optimal solution. More-
over, the problem is strictly feasible because of the strict feasibility guarantee (5.5.1) in the context

of problem (5.8). Therefore, KKT condition guarantees that there exists y > 0 such that

Oex—v+yu+yd|z|, (5.32)

0=y (u,x)+ ||z||, — 7). (5.33)

The algorithm proceeds as follows. First, we check whether v is feasible, if it is the case, then
x = v 1s the optimal solution. Otherwise, the constraint in (5.31) is active. Next, we explore the

optimality condition (5.32). Given the optimal Lagrangian multiplier y > 0, for the i-th coordinate
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of the optimal z, one of the following three situations will occur:
l. z; >0and z; = v; — (u; + 1)y.
2. z; <0and z; = v; — (u; — 1)y.
3. z; =0and (u; — 1)y < v; < (u; + 1)y.

For simplicity, let us denote [a]+ = max{a, 0} and [a, b]; = max{a, b, 0}. Based on the discussion

above, we can express x as a piecewise linear function of y.

zi(y) = [vi — (wi + Dyl — [(wi = Dy —vi], .

Let us denote /(y) = (u,z(y)) + ||z(y)||,. We can deduce that

Uy) = X yuwii(y) + iz, max{z;(y), —i(y))
= S [on = (s + Dyl = S u [(w = Dy — vl
+ 2550 [on = (i + D)y, (wi — Dy — vily
= Xy [o = (i + Dyl — X [ — Dy — wil,
= S (s = 1) [os = (wi + 1)y],
= 2 (s + 1) [(w = Dy — vl

+ 22?:1[“2‘ — (wi + Dy, (u; — 1)y — v+

Above, the second equality uses the identity: max{p — ¢,q — p} = 2max{p, q} — p — ¢ for any
p,q € R. It can be readily seen that /(y) is a piecewise linear function with at most 3d breaking
points. We can sort these points in O(dlogd) and then apply a line-search to find the root of

((-) = 7in O(d) time.

5.5.9 Supermartingale convergence theorem

In below, we state a version of supermartingale convergence theorem developed by [90].
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Theorem 5.5.11 Let (2, F', P) be a probability space and Fy < F, S ... & Fp < be some

sub-o-algebra of F. Let by, cy, be nonnegative Fy-measurable random variables such that
E [brs1 | Fr)] < b + & — i,
where {& }o<k<o IS a non-negative and summable: Z;O:ng < +00. Then we have

. . o0
lim by, exists, and Y, _ ¢, < +0, a.s.
k—o0 -
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CHAPTER 6
FASTER WIDTH-DEPENDENT ALGORITHM FOR MIXED PACKING AND
COVERING LPS

In chapter 3, we saw a primal-dual type algorithm for solving function constrained optimization
problem. In that problem, we assumed that the primal feasible set X is a simple set whose radius
is not too big. However, for certain important class of linear programs (LPs), we need to set X
to be an (,-ball. Such LPs arise quite naturally in combinatorial optimization and hence require
special attention. Note that the radius is of an /.,-ball is at least 2(1/n) where n is the dimension
of LP which can be quite large for many practical applications. In this chapter, we focus on this

well-known /., barrier and propose a new algorithm that can overcome it.

6.1 Mixed Packing and Covering LPs

Mixed packing and covering linear programs (LPs) are a natural class of LPs where coefficients,
variables, and constraints are non-negative. They model a wide range of important problems in
combinatorial optimization and operations research. In general, they model any problem which
contains a limited set of available resources (packing constraints) and a set of demands to fulfill
(covering constraints).

Two special cases of the problem have been widely studied in literature: pure packing, formu-
lated as max,{b’z | Pz < p}; and pure covering, formulated as min,{b"z | Cx > c} where
P, p,C,c,b are all non-negative. These are known to model fundamental problems such as max-
imum bipartite graph matching, minimum set cover, etc. [66]. Algorithms to solve packing and
covering LPs have also been applied to great effect in designing flow control systems [7], schedul-
ing problems [85], zero-sum matrix games [77] and in mechanism design [120]. In this paper,
we study the mixed packing and covering (MPC) problem, formulated as checking the feasibility

of the set: {x | Px < p,Cx > ¢}, where P,C,p,c are non-negative. We say that z is an -
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approximate solution to MPC if it belongs to the relaxed set {x | Px < (1 + ¢)p,Cz = (1 — €)c}.
MPC is a generalization of pure packing and pure covering, hence it is applicable to a wider range
of problems such as multi-commodity flow on graphs [111, 96], non-negative linear systems and
X-ray tomography [111].

General LP solving techniques such as the interior point method can approximate solutions to
MPC in as few as O(log(1/¢)) iterations - however, they incur a large per-iteration cost. In contrast,
iterative approximation algorithms based on first-order optimization methods require poly(1/¢)
iterations, but the iterations are fast and in most cases are conducive to efficient parallelization.
This property is of utmost importance in the context of ever-growing datasets and the availability
of powerful parallel computers, resulting in much faster algorithms in relatively low-precision

regimes.

6.1.1 Previous work

In literature, algorithms for the MPC problem can be grouped into two broad categories: width-
dependent and width-independent. Here, width is an intrinsic property of a linear program which
typically depends on the dimensions and the largest entry of the constraint matrix, and is an in-
dication of the range of values any constraint can take. In the context of this paper and the MPC
problem, we define wp and we as the maximum number of non-zeros in any constraint in P and
C respectively. We define the width of the LP as w := max(wp, w¢).

One of the first approaches used to solve LPs was Langrangian-relaxation: replacing hard con-
straints with loss functions which enforce the same constraints indirectly. Using this approach,
Plotkin, Schmoys and Tardos [85], and Grigoriadis and Khachiyan [43] obtained width-dependent
polynomial-time approximation algorithms for MPC. Luby and Nisan [66] gave the first width-
dependent parallelizable algorithm for pure packing and pure covering, which ran in 5(5_4) par-
allel time, and 5(N e~1) total work. Here, parallel time (sometimes termed as depth) refers to the
longest chain of dependent operations, and work refers to the total number of operations in the

algorithm.
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Young [111] extended this technique to give the first width-independent parallel algorithm
for MPC in O(e*) parallel time, and O(mde=2) total work!. Young [112] later improved his
algorithm to run using total work O(Ne~2). Mahoney et al. [68] later gave an algorithm with a
faster parallel run-time of O(c~3).

The other most prominent approach in literature towards solving an LP is by converting it into
a smooth function [77], and then applying general first-order optimization techniques [77, 79]. Al-
though the dependence on ¢ from using first-order techniques is much improved, it usually comes
at the cost of sub-optimal dependence on the input size and width. For the MPC problem, Nes-
terov’s accelerated method [79], as well as Bienstock and Iyengar’s adaptation [14] of Nesterov’s
smoothing [77], give rise to algorithms with runtime linearly depending on %, but with far from
optimal dependence on input size and width. For pure packing and pure covering problems, how-
ever, Allen-Zhu and Orrechia [2] were the first to incorporate Nesterov-like acceleration while still
being able to obtain near-linear width-independent runtimes, giving a 5(N e~!) time algorithm for
the packing problem. For the covering problem, they gave a 5(N e~ 19) time algorithm, which was
then improved to 5(]\7 e~1) by [103]. Importantly, however, the above algorithms do not generalize

to MPC.

6.1.2 Our contributions

We give the best parallel width-dependent algorithm for MPC, while only incurring a linear depen-
dence on 7! in the parallel runtime and total work. Additionally, the total work has near-linear

dependence on the input-size. Formally, we state our main theorem as follows.

Theorem 6.1.1 There exists a parallel s-approximation algorithm for the mixed packing covering
problem, which runs in 6(11) -e71) parallel time, while performing 6(11) - N -e71) total work, where

N is the total number of non-zeros in the constraint matrices, and w is the width of the given LP.

Table 6.1 compares the running time of our algorithm to previous works solving this problem.

!d here is the maximum number of constraints that any variable appears in.
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Table 6.1: Comparison of runtimes of e-approximation algorithms for the mixed packing covering
problem.

| Parallel Runtime | Total Work |  Comments
Young [111] O(e™) ‘ O(md=2) ‘ d is column-width
Bienstock and Iyengar [14] ‘ 5(71 whSwe™ ‘ width-dependent
Nesterov [79] O(wy/ne™) ‘ O(w - Ny/ne~ ‘ width-dependent
Young [112] O(e™) ‘ O(Ne~2) ‘
Mahoney et al. [68] O(e™) ‘ O(Ne™3) ‘
This paper O(we™) ‘ O(wNe™1) ‘ width-dependent

Sacrificing width independence for faster convergence with respect to precision proves to be
a valuable trade-off for several combinatorial optimization problems which naturally have a low
width. Prominent examples of such problems which are not pure packing or covering problems
include multicommodity flow and densest subgraph, where the width is bounded by the degree of a
vertex. In a large number of real-world graphs, the maximum vertex degree is usually small, hence
our algorithm proves to be much faster when we want high-precision solutions. We explicitly show
that this result directly gives the fastest algorithm for the densest subgraph problem on low-degree

graphs in Appendix ??.

6.2 Notation and Definitions

For any integer ¢, we represent using ||-||, the g-norm of any vector. We represent the infinity-norm
as ||-||... We denote the infinity-norm ball (sometimes called the /., ball) as the set B, (r) := {x €
R™ . ||lz|l, < r}. The nonnegative part of this ball is denoted as B ,(r) = {r €e R" : v >
0., ||z||,, < r}. For radius = 1, we drop the radius specification and use the short notation 57
and B’} . We denote the extended simplex of dimension k as Af i={xeR": ZZ L i < 1}. For
any y > O, proja+(y) = y/llylly if [[yll; = 1. Further, for any set K, we represent its interior,
relative interior and closure as int(K), relint(K) and cl(K), respectively. The function exp is

applied to a vector element wise. The division of two vectors of same dimension is also performed
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element wise.
For any matrix A, we use nnz(A) to denote the number of nonzero entries in it. We use A, .
and A. ; to refer to the ith row and jth column of A respectively. We use notation A;; (or A, ;

alternatively) to denote an element in the i-th row and j-th column of matrix A. || A||,, denotes the

A . . . . .
operator norm || A|| . _,., 1= sup,_ % For a symmetric matrix A and an antisymmetric matrix
A _B . ., . . .
B, we define an operator >; as A >; B < is positive semi-definite.
B A

We formally define an e-approximate solution to the mixed packing-covering (MPC) problem

as follows.

Definition 6.2.1 We say that x is an c-approximate solution of the mixed packing-covering prob-

lem if x satisfies x € B ,, Pr < (1 +¢)1,and Cx = (1 —¢)1..

+,00?
Here, 1, denotes a vectors of 1’s of dimension £ for any integer k.

The saddle point problem on two sets x € X and y € Y can be defined as follows:

min max L(z,y), (6.1)

where L(z,y) is some bilinear form between x and y. For this problem, we define the primal-
dual gap function as sup ; ;e x <y £(v,y) — L(Z, y). This gap function can be used as measure of

accuracy of the above saddle point solution.

Definition 6.2.2 We say that (x,y) € X xY is an e-optimal solution for (6.1) if Sup z ;e x xy £(,9)—

L(z,y) <e.

6.3 Technical overview

The mixed packing-covering (MPC) problem is formally defined as follows.

Given two nonnegative matrices P € RP*", C' e R*", find an z € R", z > 0, ||z, < 1 such that

Pz <1,and Cx > 1. if it exists, otherwise report infeasibility.
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Note that the vector of 1’s on the right hand side of the packing and covering constraints can
be obtained by simply scaling each constraint appropriately. We also assume that each entry in the
matrices P and C' is at most 1. This assumption, and subsequently the ¢,, constraints on x also
cause no loss of generality?.

We reformulate MPC as a saddle point problem, as defined in Section 6.2;

A* = min max  L(z,y,z2), (6.2)

n
zeBY o yeAT, zeAS

P -1,

where L(z,y,z) = [yT 27] . The relation between the two formulations is

-C 1. 1

shown in Section 6.4. For the rest of the paper, we focus on the saddle point formulation (6.2).

n(x) = max en+ .enr L(7,y, ) is a piecewise linear convex function. Assuming oracle ac-
cess to this “inner” maximization problem, the “outer” problem of minimizing 7(x) can be per-
formed using first order methods like mirror descent, which are suitable when the underlying prob-
lem space is the unit /,, ball. One drawback of this class of methods is that their rate of conver-
gence, which is standard for non-accelerated first order methods on non-differentiable objectives,
is O(z) to obtain an e-approximate minimizer « of  which satisfies n(x) < n* + €, where n* is
the optimal value. This means that the algorithm needs to access the inner maximization oracle
O(E%) times, which can become prohibitively large in the high precision regime.

Note that even though 7 is a piecewise linear non-differentiable function, it is not a black box
function, but a maximization linear functions in x. This structure can be exploited using Nesterov’s
smoothing technique [77]. In particular, 1(z) can be approximated by choosing a strongly convex®

function ¢ : A7 x Al — R and considering

ﬁ(x) = max L({L‘,y, Z) o ¢(y7 Z)

yeAT zeAS

2This transformation can be achieved by adapting techniques from [103] while increasing dimension of the problem
up to a logarithmic factor. Details of this fact are in Appendix 6.5.11 in the full version of this paper. For the purpose
of the main text, we work with this assumption.
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This strongly convex regularization yields that 7} is a Lipschitz-smooth® convex function. If L is the
constant of Lipschitz smoothness of 77 then application of any of the accelerated gradient methods
in literature will converge in O(\/g ) iterations. Moreover, it can also be shown that in order to
construct a smooth e-approximation 7] of 7, the Lipschitz smoothness constant L can be chosen
to be of the order O(2), which in turn implies an overall convergence rate of O(2). In particu-
lar, Nesterov’s smoothing achieves an oracle complexity of O((|| P||%||C ||<))0Dx max{D,, D,}e1),
where where D,, D, and D, denote the sizes of the ranges of their respective regularizers which
are strongly convex functions. D, and D, can be made of the order of log p and log c, respectively.
However, D, can be problematic since x belongs to an /., ball. More on this will soon follow.

Nesterov’s dual extrapolation algorithm[78] gives a very similar complexity but is a different
algorithm in that it directly addresses the saddle point formulation (6.2) rather than viewing the
problem as optimizing a non-smooth function 7. The final convergence for the dual extrapolation
algorithm is given in terms of the primal-dual gap function of the saddle point problem (6.2).
This algorithms views the saddle point problem as solving variational inequality for an appropriate
monotone operator in joint domain (z, y, z). Moreover, as opposed to smoothing techniques which
only regularize the dual, this algorithm regularizes both primal and dual parts (joint regularization),
hence is a different scheme altogether.

Note that for both schemes mentioned above, the maximization oracle itself has an analytical
expression which involves matrix-vector multiplication. Hence each call to the oracle incurs a

sequential run-time of nnz(P) + nnz(C'). Then, overall complexity for both schemes is of order

O((nmz(P) + mnz(C)) (|| P51 C|l Do max{ Dy, D.}e ™).

6.3.1 The ¢, barrier

Note that the both methods, i.e., Nesterov’s smoothing and dual extrapolation, involves a D, term,

which denotes the range of a convex function over the domain of x. The following lemma states a

3Definitions of Lipschitz-smoothness and strong convexity can be found in many texts in nonlinear programming
and machine learning. e.g. [18]. Intuitively, f is Lipschitz-smooth if the rate of change of V f can be bounded by a
quantity known as the “constant of Lipschitz smoothness”.
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lower bound for this range in case of /, balls.

Lemma 6.3.1 Any strongly convex function has a range of at least Q(\/n) on any ., ball.

Since D, = Q(4/n) for each member function of this wide class, there is no hope of eliminating
this 4/n factor using techniques involving explicit use of strong convexity.

So, the goal now is to find a joint regularization function with a small range over ¢, balls, but
still act as good enough regularizers to enable accelerated convergence of the descent algorithm. In
pursuit of breaking this ¢, barrier, we draw inspiration from the notion of area convexity introduced
by Sherman [96]. Area convexity is a weaker notion than strong convexity, however, it is still strong
enough to ensure that accelerated first order methods still go through when using area convex
regularizers. Since this is a weaker notion than strong convexity, we can construct area convex
functions which have range of O(n°®")) on £,, ball.

First, we define area convexity, and then go on to mention its relevance to the saddle point
problem (6.2).

Area convexity is a notion defined in context of a matrix A € R**® and a convex set K < R*?,

Opxp, —AT
Let My =

A OCLXCL

Definition 6.3.1 ([96]) A function ¢ is area convex with respect to a matrix A on a convex set K iff

t+u+v 1

forany t,u,v € K, ¢ satisfies ¢( 3 ) < 3 (0(t) + (u) + ¢(v)) (v—u)TMa(u—1t).

1
3v3
To understand the definition above, let us first look at the notion of strong convexity. ¢ is said to
be strongly convex if for any two points ¢, u, 3(¢(t) + ¢(u)) exceeds ¢(5(t + u)) by an amount
proportional to ||t — u||3. Definition 6.3.1 generalizes this notion in context of matrix A for any
three points z, y, z. ¢ is area-convex on set K if for any three points ¢, u, v € K, we have %(gzﬁ(t) +
¢(u) + ¢(v)) exceeds ¢(3(t + u +v)) by an amount proportional to the area of the triangle defined
by the convex hull of ¢, u, v.

Consider the case that points ¢, u, v are collinear. For this case, the area term (i.e., the term

involving M ,) in Definition 6.3.1 is O since matrix M4 is antisymmetric. In this sense, area
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convexity is even weaker than strict convexity. Moreover, the notion of area is parameterized by

—1
matrix A. To see a specific example of this notion of area, consider A = andt, u,v € R%
1 0

Then, for all possible permutations of ¢, u, v, the area term takes a value equal to +(¢;(us — v2) +
u1(vy — ta) + vi(ta — us)). Since the condition holds irrespective of the permutation so we must
have that ¢(™4) < §(o(t) +o(u) +d(v)) — ﬁg |t (uz —v2) +u1 (V2 —t2) +v1(t2 —u2)|. Butnote
that area of triangle formed by points ¢, u, v is equal to %\tl(ug — vg) 4+ uy(ve — ta) + vy (ta — ug)|.
Hence the area term is just a high dimensional matrix based generalization of the area of a triangle.

Coming back to the saddle point problem (6.2), we need to pick a suitable area convex function
¢ on the set B ,, x AF x A¥. Since ¢ is defined on the joint space, it has the property of joint
regularization vis a vis (6.2). However, we need an additional parameter: a suitable matrix M 4.
The choice of this matrix is related to the bilinear form of the primal-dual gap function of (6.2). We
delve into the technical details of this in Section 6.4, however, we state that the matrix is composed
of P,C and some additional constants. The algorithm we state exactly follows Nesterov’s dual
extrapolation method described earlier. One notable difference is that in [78], they consider joint
regularization by a strongly convex function which does not depend on the problem matrices P, C'

but only on the constraint set B’j’oo X A; x AF. Our area convex regularizer, on the other hand, is

tailor made for the particular problem matrices P, C' as well as the constraint set.

6.4 Area Convexity for Mixed Packing Covering LPs

In this section, we present our technical results and algorithm for the MPC problem, with the end
goal of proving Theorem 6.1.1. First, we relate an (1 + ¢)-approximate solution to the saddle point
problem to an ec-approximate solution to MPC. Next, we present some theoretical background
towards the goal of choosing and analyzing an appropriate area-convex regularizer in the context
of the saddle point formulation, where the key requirement of the area convex function is to obtain
a provable and efficient convergence result. Finally, we explicitly show an area convex function

which is generated using a simple “gadget” function. We show that this area convex function
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satisfies all key requirements and hence achieves the desired accelerated rate of convergence. This
section closely follows [96], in which the author chooses an area convex function specific to the
undirected multicommodity flow problem. Due to space constraints, we relegate almost all proofs
to Appendix 6.5 (in the full version) and simply include pointers to proofs in [96] when it is directly

applicable.

6.4.1 Saddle Point Formulation for MPC

Consider the saddle point formulation in (6.2) for MPC. Given a feasible primal-dual feasible
solution pair (z,y, z) and (Z, y, z) for (6.2), we denote w = (x, u,y, z) and w = (T, u, y, z) where

u, u € R. Then, we define a function Q : R*H1+r+e x Re+l+pte R ag

B o P -1, T P -1, T
Q(w,w) := [y" z"] —[y" 2]
—-C 1. U —-C 1. u
Note that if u = ©w = 1, then
sup Q(w7w) = sup L(I7g7 2) - L(:fvyvz)
weW zeBT e zeAl

is precisely the primal-dual gap function defined in Section 6.2. Notice that if (z*,y*, 2*) is a

saddle point of (6.2), then we have

L(z*,y,z) < L(z*,y*,2%) < L(z,y*, 2*)

forall x € B} .,y € Af,z € Af. From above equation, it is clear that Q(w,w*) > 0 for
all w € W where W := B} , x {1} x AF x Af and w* = (2*,1,5*,2*) € W. Moreover,
Q(w*,w*) = 0. This motivates the following accuracy measure of the candidate approximate

solution w.
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Definition 6.4.1 We say that w € W is an c-optimal solution of (6.2) iff

sup Q(w, w) < e.
weWw
Remark 6.4.1 Recall the definition of M 4 for a matrix A in Section 6.3. We can rewrite Q(w, w) =

w! Jw where J = My and

Onxn 0n><1 _PT CT
P _1p 01><n 0 117; —1T
-C 1, P -1, 0,, O,.

—C 1. Ocp Ocxe

Thus, the gap function in Definition 6.4.1 can be written in the bilinear form sup e,y 0" Jw.

Lemma 6.4.2 relates the e-optimal solution of (6.2) to the s-approximate solution to MPC.

Lemma 6.4.2 Let (x,y, 2) satisfy SUD (5 5 2)eBr  xAF xAF L(z,y,z) — L(Z,y, z) < e. Then either
1. x is an e-approximate solution of MPC, or

2.y, z satisfy y" (Px — 1,) + 2" (=CZ + 1.) > O forall T € B .

This lemma states that in order to find an e-approximate solution of MPC, it suffices to find e-
optimal solution of (6.2). Henceforth, we will focus on e-optimality of the saddle point formulation

(6.2).

6.4.2 Area Convexity with Saddle Point Framework

Here we state some useful lemmas which help in determining whether a differentiable function
is area convex. We start with the following remark which follows from the definition of area

convexity (Definition 6.3.1).

Remark 6.4.3 If ¢ is area convex with respect to A on a convex set K, and K < K is a convex

set, then ¢ is area convex with respect to A on K.
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The following two lemmas from [96] provide the key characterization of area convexity.

—1
Lemma 6.4.4 Let A € R?*? symmetric matrix. A >; < A > 0and det(A) > 1.
1 0

Lemma 6.4.5 Let ¢ be twice differentiable on the interior of convex set K, i.e., int(K).

1. If ¢ is area convex with respect to A on int(K), then d*¢(x) >; M4 for all x € int(K).

2. If @®¢(x) =; My for all x € int(K), then ¢ is area convex with respect to A on int(K).

Moreover, if ¢ is continuous on cl(K), then ¢ is area convex with respect to A on cl(K).

In order to handle the operator >; (recall from Section 6.2), we state some basic but important

properties of this operator, which will come in handy in later proofs.

Remark 6.4.6 For symmetric matrices A and C and antisymmetric matrices B and D,
1. If A>; B then A >;(—B).
2. If A= Band \ = 0 then N\A >; \B.

3. IfA>; Band C>; D then A+ C >;(B + D).

Having laid a basic foundation for area convexity, we now focus on its relevance to solving the
saddle point problem (6.2). Considering Remark 6.4.1, we can write the gap function criterion of
optimality in terms of bilinear form of the matrix .J. Suppose we have a function ¢ which is area
convex with respect to H on set WW. Then, consider the following jointly-regularized version of
the bilinear form:

H(w) := sup @’ Jw — ¢(w). (6.3)
weW

Similar to Nesterov’s dual extrapolation, one can attain O(1/<) convergence of accelerated gradient
descent for function 7j(w) in (6.3) over variable w. In order to obtain gradients of 7j(w), we need
access to argmax,, W Jw — ¢(w). However, it may not be possible to find an exact maximizer
in all cases. Again, one can get around this difficulty by instead using an approximate optimization

oracle of the problem in (6.3).
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Definition 6.4.2 A 6-optimal solution oracle (OSO) for ¢ : W — R takes input a and outputs
w € W such that

a’w — ¢(w) = sup a’w — (W) — 6.
wew

Given ¢ as a 9-OSO for a function ¢, consider the following algorithm (Algorithm ??):

Algorithm 5 Area Convex Mixed Packing Covering (AC-MPC)

Initialize wy = (0., 1, 0p+.)

fort =0,...,7T do
Wiyl < Wy + (IJ(Jwt + 2J<I>(Jwt))

end for

For Algorithm ??, [96] shows the following:

Lemma 6.4.7 Let ¢ : W — [—p,0]. Suppose ¢ is area convex with respect to 2v/3H on W. Then
for J = My and for all t = 1 we have w;/t € W and,

sup wJ 4t <6 +

=+

In particular, in £ iterations, Algorithm ?? obtain (6 + €)-solution of the saddle point problem

(6.2).

The analysis of this lemma closely follows the analysis of Nesterov’s dual extrapolation.

Note that, each iteration consists of O(1) matrix-vector multiplications, O(1) vector additions,
and O(1) calls to the approximate oracle. Since the former two are parallelizable to O(log n) depth,
the same remains to be shown for the oracle computation to complete the proof of the run-time in
Theorem 6.1.1.

Recall from the discussion in Section 6.3 that the critical bottleneck of Nesterov’s method is
that diameter of the /., ball is (4/n), which is achieved even in the Euclidean ¢, norm. This
makes p in Lemma 6.4.7 to also be €2(4/n), which can be a major bottleneck for high dimensional

LPs, which are commonplace among real-world applications.
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Although, on the face of it, area convexity applied to the saddle point formulation (6.2) has a
similar framework to Nesterov’s dual extrapolation, the challenge is to construct a ¢ for which we

can overcome the above bottleneck. Particularly, there are three key challenges to tackle:
1. We need to show that existence of a function ¢ that is area convex with respect to H on W.
2. ¢ : W — [—p,0] should be such that p is not too large.
3. There should exist an efficient -OSO for ¢.

In the next subsection, we focus on these three aspects in order to complete our analysis.

6.4.3 Choosing an area convex function

First, we consider a simple 2-D gadget function and prove a “nice” property of this gadget. Using
this gadget, we construct a function which can be shown to be area convex using the aforemen-
tioned property of the gadget.

Let 75 : R2 — R be a function parameterized by (3 defined as

vs(a,b) = baloga + Bblogb.

0 -1
Lemma 6.4.8 Suppose 3 > 2. Then d*v5(a,b) > foralla e (0,1] and b > 0.
1 0

We note in Figure 6.3 that the function 74 is indeed convex. However, its level curves become
straight near the boundary implying that this function is not strongly convex.

Now, using the function 73, we construct a function ¢ and use the sufficiency criterion provided
in Lemma 6.4.5 to show that ¢ is area convex with respect to J on V. Note that our set of interest
W is not full-dimensional, whereas Lemma (6.4.5) is only stated for int and not for relint. To get
around this difficulty, we consider a larger set YV © W such that W is full dimensional and ¢ is

area convex on Y. Then we use Remark 6.4.3 to obtain the final result, i.e., area convexity of ¢.
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Figure 6.1: Auxiliary view Figure 6.2: Level set y(x,y) < —0.5

Figure 6.3: Sublevel set for area convex function 7.

Theorem 6.4.9 Let w = (x,u,y, z) and define

p c n c
p(w) 1= 3301 235y Py (5, 9i) + 2172(% yi) + 21 '21 CijVe: (T, 2i) + 2172(% zi),
1= 1=17J= 1=

1P| el : - P
where p; = 2 = 2 TIO and ¢; = 2 = Ic; T‘O , then ¢ is area convex with respect (o 5 on
i, 01 KZERIN}
-C 1,
set W := Bifoé(l) x AF x AY. In particular, it also implies 6+/3¢ is area convex with respect to
P -1
P
24/3 on set W.
-C 1,

Theorem 6.4.9 addresses the first part of the key three challenges. Next, Lemma 6.4.10 shows an

upper bound on the range of ¢.
Lemma 6.4.10 Function ¢ : W — [—p, 0] then p = O(||P||5%p + ||C||'2c).

Finally, we need an efficient 6-OSO. Consider the following alternating minimization algo-

rithm.
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Algorithm 6 §-OSO for ¢
Input @ € R* al e R, a? e R%,§ > 0

0

Initialize (2°,u°) € B! ,, x {1} arbitrarily.

fork=1,..., K do

(y*, 2F) « argmax yTa' + 2Ta? — ¢(aF 1 ub1y, 2)
yeAd, zeA+
(2%, u¥) — argmax [z u]a — ¢(z,u, y*, 2¥)
(zw)eB? ,x{1}
end for

[9] shows the following convergence result.

Lemma 6.4.11 For § > 0, Algorithm 6 is a 6-OSO for ¢ which converges in O(log %) iterations.

We show that for our chosen ¢, we can perform the two argmax computations in each iteration of
Algorithm 6 analytically in time O (nnz(P) + nnz(C')), and hence we obtain a 6-OSO which takes
O((nnz(P) + nnz(C) log 3) total work. Parallelizing matrix-vector multiplications eliminates the

dependence on nnz(P) and nnz(C'), at the cost of another log(N) term.

Lemma 6.4.12 Each argmax in Algorithm 6 can be computed as follows:

ok = min{exp(m —1),1,} forall j € [n].

)
})

Yk = Proja+ (exp{m(al — PxFtlog k1)
)

k

2" = proja+ (exp{m(a2 — CaFtlogak—!

In particular, we can compute x*, y*, 2¥ in O(nnz(P) +nnz(C)) work and O(log N) parallel time.
As a result of the above lemma, we obtain that three key challenges are overcome due the

area convex regularization and hence, we obtain convergence to an e-solution of MPC at the rate

O(wNe™b).

6.5 Proof of auxiliary results

In this section, we include proofs of lemmas from the main paper. In some cases, the lemmas are

direct restatements of results from other papers, for which we provide appropriate pointers.

169



6.5.1 Proof of Lemma 6.3.1

Consider an arbitrary strongly convex function d. Assume WLOG that d(0) = 0. (otherwise,
we can shift it accordingly). We will show that max,epn () d(x) = "77"2 by induction on n for
set BZ(r). This suffices because B (1) is isomorphic to B%(3). The claim holds for n = 1
by the definition of strong convexity. Now, suppose it is true for n — 1. Then there exists x €
B%1(r) such that d(z) > % Moving r units in the last coordinate from Z in the direction
of nonnegative slope, suppose we reach = € B, (r). Then, due to strong convexity of d, we have

A@) > d(z) + 37 - 7% > O+ g =1

6.5.2 Proof of Lemma 6.4.2

Suppose we are given (z, y, z) such that SUD (5 5. 5)eBn  xAf x Al L(z,y,z)— L(Z,y, z) < e. If there

z,Y,2

exists Z which is feasible for MPC then choosing z = 7 then L(Z,y, z) < 0. Hence we have
sup  L(z,y,2) <e
(B,2)eAf xAF

= [Pz = L]l + [[[=C + Lefiflos < &,

where implication follows by optimality over extended simplices A¥, A¥. So we obtain, if there
exist a feasible solution for MPC then z is e-approximate solution of MPC.

On the other hand, suppose x is not an e-approximate solution. Then

max{|[[Pz = 1p]4 [, [[=Cx + L] [} > €

= sup  L(z,y,2) =[[[Pr — L]4[[o + [[[-Co + L] > €
(7,2)eAF x A
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Let (y,2) € AF x Af such that L(z, 7, Z) > ¢ then we have

sup L(ZL‘,@\, 2) - L(‘,Ev?%z) S¢€

s n
IEB+,OO

= L(x,y,2) — inf L(Z,y,2)<e¢

ey n
xEBJr,oo

= inf L(Z,y,z)>0

Pt n
:EEB+,00

Hence, if x is not e-approximate solution of MPC then (y, 2) satisfy y* (Pz—1,)+27(-Cz+1,) >

0 for all z € B} (1) implying that MPC is infeasible.

6.5.3 Proof of Lemma 6.4.4

0 -1 A —B
Let B = and T :=
1 0 B A

Then A>; B iff T" > 0 iff all principle minors of 7" are nonnegative. Now, 7" > 0 implies
A > 0. It is easy to verify that third principle minor is nonnegative iff det(4) > 1. So T > 0

implies A must be invertible. Then, applying Schur complement lemma, we obtain that 7" > 0 <

a b d —b
A+ BA™'B > 0. Now let A = then A~ = L . It is easy to verify that
b d b a

A+ BA'B = Al . This implies 7" > 0 < A > 0 and det(A) > 1. Hence we conclude

1
T det(A) )

the proof.

6.5.4 Proof of Lemma 6.4.5

This lemma appears exactly as Theorem 1.6 in [96]. The proof follows from the same.
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6.5.5 Proof of Proposition 6.4.6

A —B
A> B < >0
B A

o el Ar +yT Ay +y"Bx —2"By =0, Va,y
el Av +yTAy —y"Bx +2"By >0, Va,y

A B
= ZO@)AZi(—B)

-B A

Here, the third equivalence follows after replacing y by —y. Hence we conclude the proof of

part 1.

A —-B M —)\B
A>B < >0= >0< M > )\B
B A AB  M\A

A —-B C -D
3. A>; B implies > 0. Similarly C' >; D implies > (. Hence
B A D C

A+C —(B+D)
(B+D) (A+QC)

So we obtain A + C'>;(B + D).

6.5.6 Proof of Lemma 6.4.7

This lemma appears as Theorem 1.3 in [96], and the proof follows from the same.
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6.5.7 Proof of Lemma 6.4.8

We use equivalent characterization proved in Lemma 6.4.4. We need to show that d>ys(a,b) > 0
and det(d*yg(a,b)) = 1 forall a € (0,1] and b > 0. First of all, note that d*v; is well-defined on

this domain. In particular, we can write

% 1+ loga

d*ys(a, b) =
1+ loga g

Note that a 2 x 2 matrix is PSD if and only if its diagonal entries and determinant are nonnegative.
Clearly diagonal entries of d*vs(a, b) are nonnegative for the given values of 3, a and b. Hence, in
order to prove the lemma, it suffices to show that det(d*ys(a, b)) > 1.

det(d®vs(a,b)) = 2 — (1 + loga)? is only a function of a for any fixed value of 8 > 2.
Moreover, it can be shown that det(d?vs) is a decreasing function of a on set (0,1]. Clearly, the
minimum occurs at a = 1. However, det(d?vy3(1,0)) = 8 —1 > 1 for all b > 0. Hence we have
that det(d?vs(a, b)) = 1foralla € (0,1],b > 0 and 8 > 2.

Finally to see the claim that det(d?vg) is a decreasing function of a € (0, 1] for any 5 > 2,

consider

d B 2(1+loga)

%(det(d2’w(aab>)) - 2 a

< S 2(1+ a(12+ loga)) <0
a

where the last inequality follows from the observation that 1 + a + aloga > 0 for all a € (0, 1].

Hence we conclude the proof.

6.5.8 Proof of Theorem 6.4.9

Note that ~,,,,, are twice differentiable in the int(}V). So by Lemma 6.4.5 part 2, it is sufficient

to prove that d*¢(w) >; J for all w € int(W).
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By definition, we have ., > 2 for all i € [c] and ~,, > 2 for all i € [p]. Moreover z; € (0, 1)
and y; > 0, z; > 0 forany w = (x,u,y, z) € int(WW). Then by Lemma 6.4.8 and Proposition 6.4.6,

we have

P n
Co(w) =Y > Pyd* (x5, +Zd272 u, 4i) +220Ud Ver (5, 41) +Zd272 u, %)

i=1j=1 i=1j=1

P n
=i (Z Z 7€ @ €ny14i T Z Ent1 ® €niiti
1=1j5=1

=1

+ Z Z Ozgej ® Cn+tp+i + Z €n+1 ® 6n+1+p+i), (64)

i=17=1
where e, ® ¢, = exe] — eje}. Here we used Pijd*y,,(zj,y;) =i —Pije; @ €,414; using Lemma
6.4.8, Proposition 6.4.6 part 1, part 2 and C;;d*y., (2, y;) >; Cije; ® €4 14p1i using Lemma 6.4.8,
Proposition 6.4.6 part 2. Similar arguments can be made about terms inside the other two summa-
tions. Finally we used Proposition 6.4.6 part 3 to obtain (6.4). Note matrix in the last sum term is

in fact J.

It is clear that since d*¢ >; J hence using Proposition 6.4.6 part 2, we have d26\/§gz5 >, 64/3.J.

-1
Then by Lemma 6.4.5 part 2, we obtain 61/3¢ is area convex with respect to 21/3 g

-C 1,
on set W.
Note that the set of interest YW < W. Moreover, W is a convex subset. By Remark 6.4.3, one
_ 1p
can see that 61/3¢ is area convex with respect to 21/3 on set V. Hence we conclude
-C 1.
the proof.

6.5.9 Proof of Lemma 6.4.10

Note that y5(a,b) < 0 forany a € [0,1],b € [0,1],8 = 0. Since P;; > 0, Cy; = 0 for all possible
values of 4, j, k hence we clearly have ¢(w) < 0 for all w € WW. Now we prove that lower bound is

not too small.
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‘We have

n n

p p
Z Z i3 Tpi ‘TJ’ yz Z Z PZ] Yilj log T+ PilYi log yz)

i=1j=1

P n
ZZ i +Zplyzlogyz2
= —ZEszyll +22HPHOOZ/Z logyz

\\/

WV
|

| ME
E

“y; +22||P||ooyz log y;

= =1

\\/

—2|[P|l, logp

Note that if w € VV implies u = 1. So

p

Z Y2 (u, i) = Z 2y; log(yi) = —2logp

i=1 =1

Similarly, we have

c n C
22 Oij’}/(:i(xj)zi) = — H 6”00 - 2||C”oologc

i=1j=1
el 2) = —2loge

Taking sum of all four terms, we conclude the proof.

6.5.10 Proof of Lemma 6.4.12

Note that maximization with respect to u is trivial since u = 1 is a fixed variable. We first look at

maximization with respect to z € B! ,,(1). Writing the first order necessary condition of Lagrange
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multipliers, we have

c

0
- Z Gij E’yci (tv U)

tv)=(zj,u:)  i=1

p C
o~ (D) Puyi + YOy} logay) =0

i=1 i=1

p
0
aj — Z B avpi(tv ?))

=1

(t,v)=(zj,2i)

Here \; is the Lagrange multiplier corresponding to the case that x; = 1. By complimentary

slackness, we have \; > 0 iff x; = 1.

This implies x; = min< exp | —— — 1,1} forall j € [n].
'§1 Pijyi‘f“;l Cijzi

Now we consider maximization with respect to y, z. Note that there are no cross-terms of y;

) Vs
and z;, i.e., ;;?
1

From first order necessary condition of Lagrange multipliers for y, we have

n

Z Z]ar}/pztfu)

0
— 5 Ya(t, v) —A=0
i=1 to)=(zym) Y

(t0)=(u,y:)

= q; —EPU (zjlogx; + pi(1 +logy;)) — ulogul|,_, —2(1 +logy;) —A =0
7=1

sa—z ey logay — 2(| P E1)(1 +log ) — A =0

where last relation follows due to definition of p; and A is Lagrange multiplier corresponding to
the constraint i y; < 1. By comple mentary slackness, we have A\ > 0 iff il yi = 1.
Eliminating ) from above equations, we obtain y = proj,: (exp{ m(a1 — Pxlog ) })
Similarly, we obtain z = proj,+ (exp{m(a2 — Cxlog x)})

It is clear from the analytical expressions that for each iteration of Algorithm 6, we need

O(nnz(P) + nnz(C')) time. Hence total runtime of Algorithm 6 is O((nnz(P) + nnz(C))log ).

6.5.11 Proof of width reduction for the MPC problem

In Section 6.3, we made the assumption that all entries
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This assumption follows from the results in [103]. We outline this proof in this section for
completeness.
For the purpose of this proof, we introduce notation [k] := {1,..., k}.

Suppose we are given an instance of mixed packing covering of the form
Pr<1,Cr>1,2=>0,. (6.5

Case 1: For each column P.; associated with variable z;, let P, ; := maxje[, Pj; > 0. Then we
consider the following updates to MPC in order to reduce diameter.

Suppose, without loss of generality, ', ; = maxje[q Cj; and Co; = minje Cy. If Chy < Py
then we can update Pz = %Pz Ci':ﬂ» = #C’:ﬂ» and r; = P, ;x;. Then we observe that each
element in ]31, C_‘:J is at most 1. Moreover, due to the packing constraint Rf < 1, we note that
for any feasible z, RMEZ < 1. Finally, since P]M = 1, we have that z; < 1 lies in the support of
constraint set. So we replaced the i-th column and corresponding ¢-th variable of the system by an
equivalent system.

Similarly, if C..; > P;, ; then consider x** defined as

L itk =1

sol . __ Jist

0 otherwise.

Then 2°° is already a feasible solution of MPC. So we may assume that C.; < P;, ; < Cy;. In this

Ci
P. .

Gisi

case, define r; = and n; = [logr;|. We make n; copies of the column C",i and denote by
the tuple (i, () the columns of a new matrix a,(u) where [ € [n;]. Similarly, we add n; copies of
variable x;, denoted as 3(@1)- We make similar changes to P. ;. Note that this system is equivalent

to earlier system in the sense that any solution Z; ;), [ € [n;] can be converted into a solution of the

earlier system since x; = >}, 1 T(;,)- However, this allows us to reduce the elements of C' along
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with certain box constraints on 7;, which was our original goal. For each j € [¢]|,[ € [n;], redefine
~ _ .
Cj gy = min{Cji;, 2°P;, 3}

and for variable 7 (i,1)> add the constraint

(6.6)

Claim 6.5.1 MPC (6.5) and the new system defined by matrices C , P and variable 7 are equiva-

lent.

Proof. For this proof, let us focus on i-th column and ¢-th variable.
For any feasible solution Z, consider z; = Zle[ni] Z;;. This z; does not violate any covering
constraint since 6j7(i7l) < Cj;. The packing constraints also follow because we have not made any

changes to the elements corresponding to the packing constraints 133',(@,1)-

1

For the other direction, the key fact to note is that any feasible x satisfies z; < 5 — due to
J3,7

packing constraint P, .x < 1. Let [; be the largest index such that

- 2
Tix 5775

2lini,i
and then let

Z(ig) =
0 otherwise.
By construction, f(i,l) satisfies the constraint in (6.6) for all [ € [n;]. Moreover, for constraint j,
we must have CA’jﬁ > 1. Note that if CA’J-,(“Z,) = (C}; then there is nothing to prove. So we assume
that Cj; > CA’]-,(,-JZ.) = ZlPJM Then we must have that [; < n; in this case, by definition of n;. This

then gives Z(;;,) = ©; = ﬁ by our choice of /; being the largest possible. Then we know that
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éj,(i,li) = b P, i, and hence the j-th covering constraint is satisfied.
Packing constraints are satisfied trivially since there is no change in elements of ]3:’(“) for all

[ € [n;]. Hence the claim follows. a

A

Finally the proof follows by change of variables as 7(; ;) = 21_1]3]-1.71- and 6_‘:7(i,l) = C.(ip)-

Further, note that all elements of ]3:7(“) are at most 1 for all [ € [n;], and all elements of C_’:7(i,l) are
atmost 2 for all [ € [n;] and z;; < 1 foralll € [n,].

Case 2: Suppose P;, ; = 0.. This implies that in variable x;, this is a purely covering problem.
So we can increase z; to satisfy the jth covering constraint such that C;; > 0 independent of
the packing constraints and problem reduces to smaller packing covering problem in remaining

variables and covering constraints j such that C';; = 0. For this smaller packing covering problem,

we can apply the method in Case 1 again.
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