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4.5.3 Erdős-Rényi sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.6.1 Limitations of the ROC model . . . . . . . . . . . . . . . . . . . . . . 143

4.6.2 ROC as a model for real-world graphs. . . . . . . . . . . . . . . . . . 146

vi



4.6.3 ROC as a limit object . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.6.4 Additional open questions. . . . . . . . . . . . . . . . . . . . . . . . . 150

4.7 ROC model supplementary section . . . . . . . . . . . . . . . . . . . . . . . 151

4.7.1 Limitations of previous approaches . . . . . . . . . . . . . . . . . . . 151

4.7.2 Connectivity of the ROC model . . . . . . . . . . . . . . . . . . . . . 152

Chapter 5:Sampling from sparse graphs with overlapping communities and
heterogeneous degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.1.1 The convergence of p-samples from CCM graphs . . . . . . . . . . . . 158

5.1.2 Community detection under p-sampling . . . . . . . . . . . . . . . . . 160

5.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2 Sampling convergence, graphexes, and the limit of CCMs . . . . . . . . . . . 164

5.2.1 An overview of sampling convergence and graphexes . . . . . . . . . . 164

5.2.2 Main result: the graphex limit of CCMs . . . . . . . . . . . . . . . . 166

5.3 Connections to established models with overlapping community structure . . 171

5.3.1 The mixed membership configuration model MMCM . . . . . . . . . 172

5.3.2 The Ball-Karrer-Newman (BKN) model . . . . . . . . . . . . . . . . 175

5.3.3 Todeschini-Miscouridou-Caron (TMC) model . . . . . . . . . . . . . . 176

5.4 Hypothesis testing on power law CCMs . . . . . . . . . . . . . . . . . . . . . 177

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.5.1 A CCM “regularity” lemma . . . . . . . . . . . . . . . . . . . . . . . 182

5.6 Sampling convergence: proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 183

vii



5.6.1 Pairing and switching lemmas . . . . . . . . . . . . . . . . . . . . . . 183

5.6.2 Random adjacency measures based on degree measures . . . . . . . . 189

5.6.3 Proof of Theorem 5.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.7 Hypothesis testing: proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.7.1 Hypothesis testing given access to the whole graph . . . . . . . . . . 199

5.7.2 Hypothesis testing given access to a sample . . . . . . . . . . . . . . 206

5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.8.1 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.8.2 Proofs of Corollaries 5.3.5 and 5.3.6 . . . . . . . . . . . . . . . . . . . 230

Chapter 6:A Markov chain for the hard sphere model . . . . . . . . . . . . . 232

6.1 The hard sphere model, single-center dynamics, and critical fugacity . . . . . 232

6.1.1 The hard sphere model . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6.1.2 Single-center dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.1.3 Rapid mixing and critical values . . . . . . . . . . . . . . . . . . . . . 234

6.2 Markov chain mixing basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.3 Proof that single-center dynamics are fast-mixing . . . . . . . . . . . . . . . 238

6.3.1 Proof of Theorem 6.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 239

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

viii



LIST OF FIGURES

3.1 For .38 . t . 0.62, there exists a probability distribution on F1 and F2 that
yields an iterative tree that converges quadratically to a t-threshold function.
For .26 . t . 0.74, there exists a probability distribution on V1 and V2 that
yields an iterative tree that converges quadratically to a t-threshold function. 20

3.2 A function that converges to a 1/2-threshold function. . . . . . . . . . . . . . 27

3.3 For k ≥ 4, the function (fAk + fBk)/2 has five fixed points on the interval [0, 1]
and 1/2 is an attractive fixed point. . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Left: in each step of the construction of a ROC(n, d, s, q) graph, an instance of
Gs,q is added on a set of s randomly selected vertices. Right: three communities
of a ROC graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Left: A wide range of s and q yield the same R3 and R4 ratio (left and right
respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 The clustering coefficient in real world graphs is much greater than that of an
E-R random graph of the same density. Data from Table 3.1 of [New03]. . . 73

4.4 A comparison of the degree distributions and clustering coefficients of 100
graphs with average degree 25 drawn from eachG10000,0.0025, ROC(10000, 25, 30, 0.2),
and ROC(10000, 25, 30, 0.1). The mean clustering coefficients are 0.00270,
0.06266, and 0.01595 respectively. . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 The above walks begin and end at the circled vertex and proceed left to right.
Each is labeled with its cycle permutation. . . . . . . . . . . . . . . . . . . 106

ix



SUMMARY

This thesis contains four main research directions, united by the themes of using

randomness to (i) construct structure and (ii) uncover structure. Randomness has long

been used for these tasks. Random models are defined to mirror some system, and the

probabilistic analysis of the model then provides insight into the properties and behavior of

the system. Using random choices in algorithms yields faster results that are very accurate

for most cases. The middle two research directions presented here focus on random graph

models, in particular developing a theory of sparse graph limits. The first and final directions

exemplify the themes in other contexts.

(1) Inspired by how computation may happen in the brain, we describe a method of building

a threshold function by randomly connecting small primitive Boolean circuits. Our

construction demonstrates the theme that a series of random choices can produce a

structured object, in this case a Boolean circuit that computes a threshold function.

(2) We introduce the Random Overlapping Communities (ROC) model in order to model

the local structure of sparse graphs. We show that the model can be tuned to produce

graphs with a wide range of normalized closed walk counts, including the closed walk

counts of the hypercube sequence. This direction also illustrates the first theme; the

randomness in the model produces graphs with a specified set of closed walk counts.

(3) Fitting with the second theme, we explore the extent to which a small sample of a large

graph can be used to deduce properties of the large graph. We introduce the Community

Configuration model (CCM) to model graphs with overlapping community structure and

varied degree distributions. We describe the sampling limit for sequences of CCMs and

use the limit to draw parallels between CCMs and random graph models established

in the literature. We also describe a hypothesis test to determine whether a graph was

x



produced from a CCM or a configuration model without community structure given

access to a small random sample.

(4) The hard sphere model is a well-known statistical physics model of monatomic gases. We

describe a Markov chain for sampling from the model that achieves rapid mixing for

a wider range of fugacity parameters than previously known. Analyzing the sampling

process governed by the Markov chain allows us deduce properties of the infinite volume

limit of the model, thus demonstrating the second theme.

xi



CHAPTER 1

INTRODUCTION

The work presented here is united by two related themes: (i) using randomness to construct

an object with a desired structure, and (ii) using randomness to uncover structure. Graphs

are a canonical example of an “object” in this context. To exemplify these themes, we begin

with a brief overview of random graphs, property testing on graphs, and how these tasks are

tied together by the beautiful theory of regularity (Section 1.1). Then we describe the results

contained in this thesis and how they relate to these themes (Section 1.2).

1.1 Randomness in the study of graphs

We begin by discussing random graphs, the Szemerédi regularity lemma, graphons, property

testing, and how together these ideas form an elegant theory of dense graph limits. A

substantial part of this thesis is motivated by the goal of developing an analogous theory

for sparse graphs (see Chapters 4 and 5). The following summary is brief and informal; see

Chapter 2 for the formal statements of the definitions and theorems.

1.1.1 Random graph models

In 1959, Erdős and Rényi [ER59, ER60] introduced the first random graph model, and in

doing so initiated a long line of research that uses randomness to model and understand the

structure of graphs. Their model (which is also attributed to Gilbert [Gil59]), denoted Gn,p,

constructs a random graph on n vertices by connecting every pair of vertices independently

with probability p. Mathematicians have extensively studied properties of graphs generated

from the Erdős and Rényi model and used the model to prove the existence of graphs with
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certain properties. (See [FK15] for a survey.) In computer science, random graphs are often

used to benchmark the runtime of graph algorithms. Moreover, the comparison of biological

and social networks to random graph models is a popular technique for highlighting features

of the network’s structure [New03, New05, Son+05].

As Erdős and Rényi predicted, their work inspired more sophisticated models designed to

mimic properties of real-world graphs. In their pre-internet article [ER59], they state

This may be interesting not only from a purely mathematical point of view ... if

one aims at describing such a real situation, one should replace the hypothesis

of equiprobability of all connections by some more realistic hypothesis. It seems

plausible that by considering the random growth of more complicated structures

one could obtain fairly reasonable models of more complex real growth processes.

The Watts-Strogatz and Barabási-Albert models are two of many influential random graph

models defined to produce graphs that have a particular structural feature observed in real

world networks. The Watts-Strogatz small world model [WS98] generates graphs with small

diameter and high clustering coefficient (the probability that two neighbors of a randomly

selected vertex are adjacent). The Barabási-Albert preferential attachment model exhibits

a power law in the distribution of vertex degrees. In this thesis, we will introduce two

random graph models: the Random Overlapping Communities model and the Community

Configuration model, both of which are designed to reflect community structure in sparse

graphs.

1.1.2 The Szemerédi regularity lemma and graph limits

Informally, the Szemerédi regularity lemma states that a random graph model called the

Stochastic Block Model can be used to succinctly summarize large dense graphs. The lemma

guarantees the existence of a partition the vertices of a graph into a small number of blocks

2



such that the distribution of edges within a block and between most pairs of blocks resembles

a random graph of prescribed density. The corresponding block model is a matrix that stores

the densities between the partition classes. This representation encodes homorphism densities

of the original graph (the chance of finding small subgraphs among randomly selected vertices)

and the cut norm (which expresses the graph’s cut structure). Moreover, sampling from the

block model produces a smaller graph of desired size with similar properties as the original.

This illustrates the first theme– using randomness to build a structured object.

The remarkable feature of the regularity lemma is that the size of the block model

description is a constant, independent of the size of the original graph; the number of

partition classes (and hence the total size of the description of the approximation) required

to produce an approximation with absolute error ε > 0 in the cut norm is only a function

of ε. Frieze and Kannan’s weak regularity theorem [FK96] gives a weaker approximation

(additive ε approximation in the cut norm), and the number of blocks needed is a much

smaller function of ε. (Weak regularity requires 22/ε blocks, whereas the original form requires

a tower function of height at least 1/ε2.) This work has lead to to efficient approximation

algorithms for problems such as max-cut.

The closely related theory of graph limits shows that any sequence of graphs has a

convergent subsequence, whose limit captures the limit of homomorphism densities and

normalized cuts of the graphs, and is itself a probability distribution over the unit square (called

a graphon). Moreover, if two graphs are close in the cut metric, then their homomorphism

densities are also close. Qualitatively, these theorems give an essentially complete theory for

the approximation of dense graphs, where the number of edges is Ω(n2). For sparse graphs,

where the number of edges is o(n2), the cut norm and homomorphism densities are trivially

zero and so this theory is not insightful; the limit of any sequence of sparse graphs is the

empty graphon.

Beyond approximating dense graphs, the regularity lemma has been fundamental in many
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other areas of math including arithmetic combinatorics and extremal graph theory, see [KS96]

for a survey. Next we will see that the regularity lemma is central in characterizing when

property testing is possible.

1.1.3 Property testing on graphs

Property testing seeks to determine if an object satisfies a particular property or is far from

any object satisfying the property. The notion was first introduced in [RS96] for functions

with distance defined as the fraction of the domain where the functions disagree. In [GGR98]

Goldreich et. al. formulate property testing for graphs. Given the ability to query whether or

not a pair of vertices are adjacent in a graph G, the goal is determine with high probability

if G satisfies property P or is ε-far from satisfying property P , meaning no graph obtained

by adding or deleting at εn2 edges of G satisfies property P . A property is said to be testible

if there exists an algorithm that determines with accuracy at least 2/3 whether G satisfies P

or is ε-far from satisfying P, and the total number of queries used is a function of ε (and

therefore independent of the size of G). Randomized property testing algorithms exemplify

the second theme of the thesis– using randomness to uncover some property of the system.

Using a variant of the regularity lemma, Alon and Shapira [AS08], showed that any

monotone graph property is testible. Then Alon et. al. completely characterized testibility

[Alo+09]; a graph property P testible if and only if knowing a regular partition of the graph

is sufficient to determine whether G is close to satisfying P .

1.2 Summary of contributions

This thesis contains four main research directions, united by the themes of using randomness

to (i) construct structure and (ii) uncover structure. The middle two directions focus on

developing a theory of sparse graph limits. The first and final directions exemplify these

themes in other contexts. In the remainder of this Section, we introduce each research

4



directions (Sections 1.2.1 to 1.2.4). Then in Chapter 2, we give a formal introduction to

graph limit theory (Chapter 2). Chapters 3 to 6 describe the above four research directions

respectively.

1.2.1 Randomized construction of a threshold function

This research direction is joint work with Christos Papadimitriou and Santosh Vempala,

published in [PPV16].

The motivation for this work is to construct a threshold function in neurally plausible

way, meaning in a highly distributed manner using simple primitives.

We build a threshold function on n input bits1 by constructing a circuit of AND/OR

functions. A sequence of AND/OR functions can be represented as a tree in which the leaves

are input bits and all other nodes are labeled with either “AND” or “OR”. A node computes

the function of its label applied to its children, and the tree returns the bit computed at the

root. The basic algorithm for building a threshold function is as follows:

IterativeTree(L,m,C,X):

For each level j from 1 to L, apply the following iteration m times:
(level 0 consists of the input nodes X)

1. Choose a tree T according to C.

2. Choose nodes at random from the nodes on level j − 1.

3. Build the tree T with these nodes as leaves. The root of T is a node on level j + 1.

We show that a node at the highest level of the tree computes a t-threshold function whp.

The distribution C over function trees determines the threshold t, and the width of the layers

m and height L determine the accuracy. We show that it is possible to achieve any threshold

t w.h.p. (with high probability) in this framework. The size of the function trees needed

1We say f is a t-threshold function if f(X) = 1 if and only if at least tn bits of X are one.
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grows as t tends toward 0 or 1.

1.2.2 Approximating local structure with the random overlapping community (ROC) model

This Section describes joint work with Santosh Vempala, written in [PV18].

As discussed in Section 1.1.2, the regularity lemma and the subsequent theory of graphons

provide an elegant framework for approximating dense graphs and describing the limit of

dense graph sequences. Existing theories are limited in what they can achieve for families

of graphs which are neither dense nor bounded-degree. In particular, they seem unable to

answer the following representative question: What is the limit of the sequence of hypercube

graphs?

We focus on approximating the simple cycle and closed walk counts of sparse graphs and

graph sequences appropriately normalized. These counts encode information about the local

structure of the graph and are related to its spectral properties; the number of closed k-walks

in a graph is equal to the kth moment of the graph’s eigenspectrum.

We introduce a simple, easy to sample, random graph model that captures the limiting

spectra of many sequences of interest, including the sequence of hypercube graphs. The

Random Overlapping Communities (ROC) model is specified by a distribution on pairs (s, q),

s ∈ Z+, q ∈ (0, 1]. A graph on n vertices is generated by repeatedly picking pairs (s, q)

from the distribution, adding an Erdős-Rényi random graph of edge density q on a subset of

vertices chosen by including each vertex with probability s/n, and repeating this process so

that the expected degree is d. A variant of the model allows for bipartite communities. The

selected subset of vertices is partitioned into two groups by assigning a vertex to either group

with probability half, then a bipartite Erdős-Rényi random graph of edge density q is added.

Our main results are as follows:

1. For almost all pairs of triangle-to-edge and four-cycle-to edge ratios, there exists a ROC

construction with one community type that produces graphs with matching ratios.
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2. We give a characterization based on the Stieltjes moment condition for when a vector

of normalized closed walk counts can be realized by a family of ROC parameters.

3. We show that for any k, there exists parameters of the ROC model that produce graphs

with the same normalized closed 3, 4 . . . and k walk counts as the hypercube sequence.

The core of the proof is showing that two Hankel matrices (consisting of the normalized

closed walk counts of the hypercube) are positive semi-definite.

1.2.3 Sampling from sparse graphs with overlapping communities and heterogenous degrees

This section describes joint work with Christian Borgs, Jennifer Chayes, Souvik Dhara, and

Subhabrata Sen.

Large graphs are ubiquitous in scientific and technological applications. However,

computations involving the entire graph may be infeasible due to computational or privacy

limitations. To this end, our goal is study small samples of large graphs. We study a specific

notion of vertex sampling, referred to as p-sampling. A p-sample of a graph is obtained by

selected each vertex with probability p and returning the induced subgraph on the selected

vertices minus any isolated vertices (see Definition 5.1.1). This notion has its roots in the

theory of sparse graph limits [VR16a, Bor+17a]. We demonstrate the power of p-samples in

two ways: establishing connections among various graph models with overlapping communities

proposed in the recent literature and detecting the presence of community structure.

We focus on the p-samples of graphs drawn from the Community Configuration model

(CCM), a random graph model we designed to reflect the varied degree distributions and

overlapping community structure characteristic of many real-world graphs. A CCM is

determined by two parameters: a sequence of vectors containing colored half-edge counts

and a matching that describes how to randomly pair the half-edges by color. Each color or

pair of colors represent a community. Since vertices may have half-edges of many colors, the

communities overlap.
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First, we consider the limiting distributions of p-samples from increasingly large graphs

drawn from CCMs and other popular models in the statistical physics literature including

[HSM16, BKN11a, TMC16a]. By showing there exists parameterizations of the CCM and

these models such that their limiting distributions of p-samples are the same, we establish a

conceptual link between these models.

Second, we build on a large body of recent work that investigates the computational and

information theoretic limits for community detection and clustering in stochastic block models

(see [Abb17a]) by formulating analogous questions for CCMs. We describe a hypothesis

test to determine if a graph came from a configuration model or a configuration model

with community structure using only a p-sample. Under some mild assumptions, the test is

accurate with probability (1− o(1)) when p is Ω(∆3/E(G)2) where ∆ denotes the maximum

degree of G.

We note the CCM and ROC models are designed with different types of sparse graphs in

mind. The p-samples cannot distinguish between approximately regular graphs with average

degree o(
√
n) since the sample will almost always isolated edges for all such graphs. The

p-sampling distribution is interesting when the degree distribution of the graph is highly

varied, whereas a ROC graph cannot express graphs with a large range of degrees.

1.2.4 A Markov chain for the hard sphere model

This section describes joint work with Will Perkins and Tyler Helmuth.

For a fixed radius r > 0, the hard sphere model in a volume Λ ⊂ Rd at fugacity λ ≥ 0 is

a probability measure µΛ,λ on collections of non-overlapping spheres of radius r defined by

conditioning a Poisson point process of intensity λ on Λ on the event that the points are at

pairwise distance at least 2r and distance at least r from Λc. When the fugacity parameter

λ is higher the probability measure favors configurations with more spheres. Conditioned

on k the number of spheres, the distribution is uniform over all sphere packings of Λ with k
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spheres.

It is an open mathematical problem to prove the existence of a phase transition in the

hard sphere model. The critical fugacity λc(d) is the supremum over λ such that the hard

sphere model has a unique infinite volume limit in the sense of van Hove, i.e., such that the

set of weak limit points of {µΛ,λ}Λ is a singleton set. The critical density is the limiting

expected packing density of the hard sphere model at the critical fugacity. We improve upon

all the best known lower bounds on the critical fugacity and critical density of the hard sphere

model in dimensions two and higher. As the dimension tends to infinity our improvements

are by factors of 2 and 1.7, respectively.

We describe single-center dynamics and show that these dynamics are a rapidly mixing

Markov chain for the hard sphere model at fugacity λ < 21−d. To prove this, we follow the

approach of [Vig01], and apply path coupling with an optimized metric. Then using an

equivalence between optimal spatial and temporal mixing for hard spheres, we show that

21−d is also an upper bound for the critical fugacity. Using lower bounds on the expected

packing density of the hard sphere model, we translate this result to a lower bound on the

critical density.
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CHAPTER 2

GRAPH LIMIT BACKGROUND

In this Section, we formalize the definitions and theorems discussed in Section 1.1.2.

2.1 Szemerédi’s Regularity Lemma

Definition 2.1.1. Let G = (V,E) be a graph. For subsets X, Y ⊆ V , let dG(X, Y ) = eG(X,Y )
|X||Y |

denote the density of edges between X and Y . A pair of disjoint subsets X and Y is ε-regular

if

|dG(X, Y )− dG(A,B)| < ε

for all A ⊆ X and B ⊆ Y satisfying

|A| > ε|X| and |B| > ε|Y |.

Definition 2.1.2. A partition {V0, V1, . . . Vk} of a vertex set V is ε-regular if the following

three conditions hold:

(i) |V0| ≤ ε|V |,

(ii) |V0| = |V1| = · · · = |Vk|,

(iii) all but at most εk2 of the pairs Vi, Vj with 1 ≤ i < j ≤ k are ε-regular.

Theorem 2.1.3 (Szemerédi’s Regularity Lemma, [Sze75, Sze76]). For all ε > 0 and integers

m ≥ 1, there exists an integer M = M(ε) such that every graph on at least m vertices has a

ε-regular partition {V0, V1, . . . Vk} with m ≤ k ≤M .
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The proof of the lemma gives and upper bound on M(ε) that is a tower function of height

1/ε; similar lower bounds are given in [Gow97]. Frieze and Kannan developed weaker notion

of regularity that requires fewer partition classes [FK96].

Definition 2.1.4. A partition V1, V2, . . . Vk is an ε-regular-FK partition if

∣∣∣∣eG(S, T )−
k∑

i,j=1

dG(Vi, Vj)|S ∩ Vi||T ∩ Vj|
∣∣∣∣ ≤ ε|V |2

for all S, T ⊆ V .

Theorem 2.1.5 ([FK96], in the notation of [FLZ19]). Every graph has an ε-regular-FK

partition with at most 22/ε parts.

2.2 Graph limits: graphons

Next we review graphons and the associated theory of graph limits. All results in this section

are as stated in [Lov12].

Definition 2.2.1. A bounded symmetric measurable function W : [0, 1]2 → [0, 1] is called a

graphon. We denote the set of graphons W .

The empirical graphon is a graphon representation of a graph

Definition 2.2.2. Let G be a simple graph on a set of n vertices uniquely labeled with [n].

The empirical graphon fG : [0, 1]2 → [0, 1] is defined as follows:

fG(x, y) =


1 (dnxe, dnye) is an edge in G

0 otherwise.

In order to view graphons as limit objects, one needs to construct a space of graphons

and introduce a notion of distance. The cut metric will be used for this purpose. We begin

11



by defining the cut metric on graphs, and then we will extend the definition to graphons.

Definition 2.2.3. The cut distance between two graphs G and G′ on the same vertex set is

d�(G,G′) = max
U,W⊂V

|eG(U,W )− eG′(U,W )|
|V |2

.

Definition 2.2.4. The cut norm between two graphons U,W ∈ W is

d�(U,W ) = max
S,T⊆[0,1]

∣∣∣∣∫
S×T

U(x, y)−W (x, y)dxdy

∣∣∣∣ .
Note that the above metric depends on the labeling of vertex set of the graph or the

embedding into [0, 1]. Next we define the cut distance, a pseudometric to compare the cut

structure of unlabeled graphons. Let S[0,1] be the group of invertible measure preserving

maps [0, 1]→ [0, 1].

Definition 2.2.5. The cut distance between two graphons U,W ∈ W is

δ�(U,W ) = inf
ψ∈S[0,1]

d�(U,Wψ).

Define the relation U ∼ W if δ�(U,W ) = 0 and let W̃ = W/∼ be the set of unlabeled

graphons.

Theorem 2.2.6. The space (W̃ , δ�) is compact.

The cut structure of a graph is a global property. It turns out that if two graphs are close

in cut distance, they must also look similar locally in terms of how often particular subgraphs

appear. For a finite graph H = (V,E) and graphon W , define the homomorphism density

t(H,W ) =

∫
[0,1]V

∏
ij∈E

W (xi, xj)
∏
i∈V

dxi.

12



Lemma 2.2.7 (Counting Lemma). Let H be a simple graph and let W,U ∈ W0 be graphons.

Then

|t(H,W )− t(H,U)| ≤ |e(H)|δ�(W,U).

Lemma 2.2.8 (Inverse Counting Lemma). Let k ∈ Z+ and let W,U ∈ W0 be graphons.

Assume that for every simple graph H on k nodes,

|t(H,U)− t(H,W )| ≤ 2−k
2

.

Then

δ�(W,U) ≤ 50√
log(k)

.

Theorem 2.2.9. Let (Wn) be a sequence of graphons in W0 and let W ∈ W0. The sequence

t(H,Wn) converges for all finite simple graphs H if and only if Wn is Cauchy in the δ� distance.

Moreover, t(H,Wn)→ t(H,W ) for all finite simple graphs H if and only if δ�(Wn,W )→ 0.
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CHAPTER 3

A RANDOMIZED CONSTRUCTION OF A THRESHOLD FUNCTION

This chapter is joint work with Christos Papadimitriou and Santosh Vempala, and appears

as [PPV16].

3.1 Background and summary of results

We study a family of simple algorithmic processes motivated by neurally feasible computation.

In particular, we focus on Boolean functions of an arbitrary number of input variables that can

be realized by simple iterative constructions based on constant-size primitives. This restricted

type of construction needs little global coordination or control and thus is a candidate for

neurally feasible computation. We generalize Valiant’s recursive construction of a majority

function to realize any uniform threshold function in this neurally plausible manner. We

study the rate of convergence, finding that while linear convergence to the correct function

can be achieved for any threshold using a fixed set of primitives, for quadratic convergence,

the size of the primitives must grow as the threshold approaches 0 or 1.

We also study finite realizations of this process and the learnability of the functions

realized. We show that the constructions realized are accurate outside a small interval near

the target threshold, where the size of the construction grows as the inverse square of the

interval width. This phenomenon, that errors are higher closer to thresholds (and thresholds

closer to the boundary are harder to represent), is a well-known cognitive finding.

Cortical computation. Among the many unexplained abilities of the cortex are learning

complex patterns and invariants from relatively few examples. This is manifested in a range of

cognitive functions including visual and auditory categorization, motor learning and language.

14



In spite of the highly varied perceptual and cognitive tasks accomplished, the substrate

appears to be relatively uniform in the distribution and type of cells. How could these 80

billion cells organize themselves so effectively?

Cortical algorithms must therefore be highly distributed, require little synchrony (number

of pairs of events that must happen in lock-step across neurons), little global control (longest

chain of events that must happen in sequence) and be based on a small number of very simple

primitives [PV15a]. Assuming that external stimuli are parsed as sets of binary sensory

features, our central question is the following:

What functions can be represented and learned by cortical algorithms?

Perhaps the most natural primitives are the AND and OR functions on two input variables.

These functions are arguably neurally plausible. They were studied as JOIN and LINK by

[Val94, Val00, Val05, FV09], who showed how to implement them in the neuroidal model.

An item is a collection of neurons (corresponding to a neural assembly in neuroscience) that

represents some learned or sensed concept. Given two items A,B, the JOIN operation forms

a new item C = JOIN(A,B), which “fires” when both A and B fire, i.e., C represents

A ∧B. LINK(A,B) captures association, and causes B to fire whenever A fires. By setting

LINK(A,C) and LINK(B,C), we achieve that C is effectively A ∨ B. While the precise

implementation and neural correlates of JOIN and LINK are unclear, there is evidence that

the brain routinely engages in hierarchical memory formation.

Monotone Boolean functions. Functions constructed by recursive processes based on

AND/OR trees have been widely studied in the literature, motivated by the design of reliable

circuits as in [MS56] and more recently, understanding the complexity-theoretic limitations

of monotone Boolean functions. One line of work studies the set of functions that could be

the limits of recursive processes, where at each step, the leaves of a tree are each replaced

by constant-size functions. [MS56], showed that a simple recursive construction leads to
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stable circuits and to threshold functions. [Val84] used their 4-variable primitive function

(A ∨B) ∧ (C ∨D) to derive a small depth and size threshold function that evaluates to 1 if

at least (2− φ) ≈ 0.38 fraction of the inputs are set to 1 and to zero otherwise. The depth

and size were O(log n) and O(n5.3) respectively. Calling it the amplification method, [Bop85]

showed that Valiant’s construction is optimal. [DZ92] extended the lower bound to classes of

read-once formulae. [HMP06] gave smaller size Boolean circuits (where each gate can have fan

out more than 1), of size O(n3) for the same threshold function. [LMS98] gave an alternative

analysis of Valiant’s construction along with applications to coding. The construction of a

Boolean formula was extended by [Ser04] to monotone linear threshold functions, in that

they can be approximated on most inputs by monotone Boolean formulae of polynomial size.

[Fri86] gave more efficient constructions for threshold functions with small thresholds.

Savicky gives conditions under which the limit of such a process is the uniform distribution

on all Boolean functions with n inputs [Sav87, Sav90] (see also [BP05, FGG09]). In a different

application, [GKS93] showed how to use properties of these constructions to identify read-once

formulae from their input-output behavior.

Our work. Unlike previous work, where a single constant-sized function is chosen and

applied recursively, we will allow constructions that randomly choose one of two constant-sized

functions. To be neurally plausible, our constructions are bottom-up rather than top-down,

i.e., at each step, we apply a constant-size function to an existing set of outputs. In addition,

the algorithm itself must be very simple — our goal is not to find ways to realize all Boolean

functions or to optimize the size of such realizations. Here we address the following questions:

What functions of n input items can be constructed by cortical algorithms in this iterative

manner? Can arbitrary uniform threshold functions be realized? What size and depth of

iterative constructions suffices to guarantee accurate computations? Can such functions

and constructions be learned from examples, where the learning algorithm is also neurally
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plausible?

Our rationale for uniform threshold functions is two-fold. First, uniform threshold

functions are fundamental in computer science and likely also for cognition. Second, the

restriction to JOIN and LINK as primitives ensures that any resulting function will be

monotone since negation is not possible in this framework. Moreover, if we require the

construction to be symmetric, it would seem that the only obtainable family of Boolean

functions are uniform thresholds. However, as we will see, there is a surprise here, and in fact

we can get probabilistic thresholds, i.e., functions whose output is 0 in an interval including 0,

then equally likely to be 0 or 1 in an interval, then 1 in an interval including 1. To be able to

describe our results precisely, we begin with a definition of iterative constructions.

3.1.1 Iterative constructions

A sequence of AND/OR operations can be represented as a tree. Such a tree T with n

leaves naturally computes a function gT : {0, 1}n → {0, 1}. We can build larger trees in a

neurally plausible way by using a set of small AND/OR trees as building blocks. Let C be a

probability distribution on a finite set of trees. We define a iterative tree for C as follows.

IterativeTree(L,m,C,X):

For each level j from 1 to L, apply the following iteration m times:
(level 0 consists of the input items X)

1. Choose a tree T according to C.

2. Choose items at random from the items on level j − 1.

3. Build the tree T with these items as leaves.

The construction of small AND/OR trees is a decentralized process requiring a short

sequence of steps, i.e., the synchrony and control parameters are small. Therefore, we consider

them to be neurally plausible.
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The above construction has a well-defined sequence of levels, with items from the next

level having leaves only in the current level. A construction that needs even less coordination

is the following: each item has a refractory period and the probability that it participates in

future item creation decays exponentially with time. The weight of an item starts at 1 when

it is created and decays by a factor of e−α each time unit. We refer to such constructions as

exponential iterative constructions. An extreme version of this, which we call wild iterative

construction, is to have α = 0, i.e, all items are equally likely to participate in the creation of

new items.

3.1.2 Results

We are interested in the functions computed by iterative constructions. In the limit with

respect to the width of the levels, the function computed by a high-level item of the iterative

tree does not depend on the width of each level. However, as we discuss in Section 3.4, in a

“bottom-up” construction in which the items at level j − 1 are fixed before the items at level

j are created, the width of the levels becomes important. The smaller the width of the levels

the more likely the function computed deviates from expectation. The following theorems

describe in the limit with respect to the width to the levels, the probability that a high level

item of an iterative tree computes a threshold function.

To start, we restate Valiant’s result [Val84] as a bottom-up construction. Here φ =

(
√

5 + 1)/2 is the golden ratio (2− φ ≈ 0.38).

Theorem 3.1.1. Let R be the tree that computes (A∨B)∧(C∨D). Then, in the limit, an item

at level Ω(log n+ log k) of an iteratively constructed tree for R computes a (2− φ)-threshold

function accurately with probability at least 1− 2−k.

In this construction, the iterative tree that computes the 2− φ threshold function is built

using only one small tree. We show that it is possible to achieve arbitrary threshold functions
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if we allow our iterative tree to be built according to a probability distribution on two distinct

smaller trees.

Theorem 3.1.2. Let 0 < t < 1 and let R = {P(T1) = t,P(T2) = 1− t} where T1 is the tree

that computes (A ∨B) ∧ C and T2 is the tree that computes (A ∧B) ∨ C. Then, in the limit,

an item at level Ω(log n+ k) of an iteratively constructed tree for R computes a t-threshold

function accurately with probability at least 1− 2−k.

The rate of convergence of this more general construction is linear rather than quadratic.

While both are interesting, the latter allows us to guarantee a correct function on every input

with depth only O(log n), since there are 2n possible inputs.

Definition 3.1.3. A construction exhibits linear convergence if in expectation items at level

Ω(log n+ k) accurately compute the threshold function with probability at least 1− 2−k. A

construction exhibits quadratic convergence if in expectation items at level Ω(log n+ log k)

accurately compute the threshold function with probability at least 1− 2−k.

The next theorem gives constructions using slightly larger trees with 4 and 5 leaves

respectively (illustrated in Figure 3.1) that converge quadratically to a t-threshold function

for a range of values of t, with more leaves giving a larger range. Moreover, these ranges

are tight, i.e. no construction on trees with 4 or 5 leaves yields quadratic convergence to a

t-threshold function for t outside these ranges.

Theorem 3.1.4. (A) Let 2 − φ ≤ t ≤ φ − 1 and α(t) = 1−t−t2
2t(t−1)

. Define R = {P(F1) =

α(t),P(F2) = 1 − α(t)} be the probably distribution on trees in Figure 3.1. Then, in the

limit, an item at level Ω(log n + log k) of an iteratively constructed tree for R computes a

t-threshold function accurately with probability at least 1− 2−k. Moreover, for t outside this

range, there exists no such construction on trees with four leaves that converge quadratically

to a t-threshold function.
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Figure 3.1: For .38 . t . 0.62, there exists a probability distribution on F1 and F2 that yields
an iterative tree that converges quadratically to a t-threshold function. For .26 . t . 0.74,
there exists a probability distribution on V1 and V2 that yields an iterative tree that converges
quadratically to a t-threshold function.

(B) Let α(t) = −1+5t−4t2+t3

5t(t−1)
and let t be a value for which 0 ≤ α(t) ≤ 1, so 0.26 . t . 0.74.

Let R = {P(V1) = α(t),P(V2) = 1− α(t)} be the probably distribution on trees in Figure 3.1.

Then, in the limit, an item at level Ω(log n+ log k) of an iteratively constructed tree for R

computes a t-threshold function accurately with probability at least 1− 2−k . Moreover, for t

outside this range, there exists no such construction on trees with five leaves that converges

quadratically to a t-threshold function.

As the desired threshold t approaches 0 or 1, we show that an iterative tree that computes

the t-threshold function must use increasingly large trees as building blocks.

Theorem 3.1.5. Let t be a threshold, 0 < t < 1 and let s = min{t, 1 − t}. Then, the

construction of an iterative tree whose level Ω(log n + log k) items compute a t-threshold

function with probability at least 1− 2−k must be defined over a probability distribution on

trees with at least 1√
2s

leaves.

This raises the question of whether it is possible to have quadratic convergence for any

threshold. We can extend the constructions described in Theorem 3.1.4 by using analogous

trees with six and seven leaves to obtain quadratic convergence for thresholds in the ranges
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0.15 . t . 0.85 and 0.11 . t . 0.89 respectively. However, it is not possible to generalize this

construction beyond this point. Instead, we observe the emergence of probabilistic thresholds.

We define Ak as a tree on 2k leaves that computes (x1∨x2∨· · ·∨xk)∧(xk+1∨xk+2∨· · ·∨x2k)

and Bk as a tree on 2k leaves that computes (x1 ∧ x2 ∧ · · · ∧ xk) ∨ (xk+1 ∧ xk+2 ∧ · · · ∧ x2k).

Theorem 3.1.6. Let k ≥ 4. Consider an iterative construction in which Ak and Bk are each

selected with probability 1/2. Then there exists ε > 0 such that for inputs in which the fraction

of items firing is in the range [1/2− ε, 1/2 + ε], high level items of the iterative construction

fire with probability half.

To achieve quadratic convergence for thresholds near the boundaries, we turn to the

following construction, which asymptotically matches the lower bound of Theorem 3.1.5.

Theorem 3.1.7. For any 0 < t ≤ 2− φ, there exists k and a probability distribution on Ak

and Ak+1 that yields an iterative tree with quadratic convergence to the uniform t-threshold

function. Similarly for any φ− 1 ≤ t < 1, there exists k and a probability distribution on Bk

and Bk+1 that yields an iterative tree with quadratic convergence to the uniform t-threshold

function.

There is a trade-off between constructing iterative trees that converge faster and requiring

minimal coordination in order to build the subtrees. Building a specified tree on a small number

of leaves requires less coordination than building a specified tree on many leaves. Therefore,

as t approaches 0 or 1, constructing an iterative tree with quadratic convergence becomes

less neurally feasible because the construction of each subtree requires much coordination.

These results are in line with behavioral findings [Ros+76, Ros78] and computational models

[AV06, Arr+15] about categorization being easier when concepts are more robust.

Next we turn to finite realizations of iterative trees. The above theorems analyze the

behavior of an iterative construction in the limit with respect to the width of the levels. We

assumed that for any input the number of items turned on at given level of the tree is equal
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to its expectation. This assumption holds when the width of each level is infinite; however,

imagining a “bottom up” construction, we note that the chance that the number of items

firing at a given level deviates from expectation is non-trivial. Such deviations percolate

up the tree and effect the probability that high level items compute the threshold function

accurately. The smaller the width of a level, the more likely that the number of items on at

that level deviates significantly from expectation, rendering the tree less accurate. How large

do the levels of an iteratively constructed tree need to be in order to ensure a reasonable

degree of accuracy?

Theorem 3.1.8. Consider a construction of a t-threshold function with quadratic convergence

described in Theorem 3.1.4 or Theorem 3.1.7 in which each level ` has m` items and the

fraction of input items firing is at least ε from the threshold t. Then, with probability at

least 1− γ, items at level Ω(log 1
γ

+ log 1
ε
)) will accurately compute the threshold function for

m1 = Ω
(

ln(1/γ)
ε2

)
and

∑
`m` = O(m1).

As a direct corollary, by setting ε = O(1/n) and γ = 2−n−1, we realize a t-threshold

construction of size O(n3) for any t, matching the best-known construction which was for a

specific threshold [HMP06]. The finite-width version of Theorem 3.1.2 is given in Section 3.4.

The exponential iterative construction also converges to a t-threshold function. We give the

statement here for the wild iterative construction (with no weight decay).

Theorem 3.1.9. Consider a wild iterative construction on n inputs corresponding to a

polynomial f that converges to a t-threshold function. Then after O
(
n2

ε

)
items are created

in the wild iterative construction, the next item will accurately compute the threshold function

with probability at least 1− ε.

Finally, in Section 3.5, we give a simple cortical algorithm to learn a uniform threshold

function from a single example. We also discuss how a more complex setting of a noisy

threshold function with monotone noise can be learned from multiple examples.
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Theorem 3.1.10. Let X ∈ {0, 1}n such that ||X||1 = tn, L = Ω
(

log 1
γ

+ log 1
ε

)
, and

ε = Ω

(√
ln(1/γ)
m

)
. Then, on any input in which the fraction of input items firing is outside

[t− ε, t+ ε], items at level L of an iterative tree produced by LearnThreshold(L,m,X) will

compute a t-threshold function with probability at least 1− γ.

The next section provides the groundwork for these theorems, and the proofs are in

Sections 3.3, 3.4, 3.5 and 3.6. We discuss several open questions and directions for future

research in Section 3.7.

3.2 Polynomials of AND/OR Trees

Let gT : {0, 1}n → {0, 1} be the Boolean function computed by an AND/OR tree T with n

leaves. We define fT as the probability that T evaluates to 1 if a p-fraction of input items

are set to 1.

fT (p) = P (gT (X) = 1 | ‖X‖1 = pn) .

We analogously define fC(p) for probability distributions on trees; let fC be the probability

that a tree chosen according to C evaluates to 1 if a p-fraction of input items are set to 1.

Let λT be the probability of T in distribution C. We have

fC(p) =
∑
T∈C

λTfT (p).

In an iterative construction for the probability distribution C, an item at level k evaluates

to 1 with probability fC(pk−1) where pk−1 is the probability that an item at level k − 1

evaluates to 1. Thus, in expectation the probability that items at level k evaluate to 1 is

f
(k)
C (p) where p is the probability an input is set to 1. This follows directly from the recurrence

relation:

f
(k)
C (p) = fC(f

(k−1)
C (p)).
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In the remainder of this section, we collect properties of polynomials of AND/OR trees to

be used in the analysis of iterative trees. The proofs are provided in Section 3.6.1.

We call a polynomial achievable if it can be written as fT for some AND/OR tree T . We

call a polynomial achievable through convex combinations if it can be written as fC for some

probability distribution on AND/OR trees C. Table 3.1 lists all achievable polynomials with

degree at most five. Note that A is closed under the AND and OR operations. If a, b ∈ A,

then a · b ∈ A and a + b − a · b ∈ A. The set of polynomials achievable through convex

combinations is the convex hull of A.

Degree Polynomials in A
1 (0,1)
2 (0, 0, 1)

(0, 2, -1)
3 (0, 0, 0, 1)

(0, 1, 1, -1)
(0, 0, 2, -1)
(0, 3, -3, 1))

4 ((0, 0, 0, 0, 1)
(0, 1, 0, 1, -1)
(0, 0, 1, 1, -1)
(0, 2, 0, -2, 1)
(0, 0, 0, 2, -1)
(0, 1, 2, -3, 1)
(0, 0, 3, -3, 1)
(0, 4, -6, 4, -1)
(0, 0, 2, 0, -1)
(0, 0, 4, -4, 1))

Degree Polynomials in A
5 (0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 1, -1)
(0, 0, 1, 0, 1, -1)
(0, 2, -1, 1, -2, 1)
(0, 0, 0, 1, 1, -1)
(0, 1, 1, 0, -2, 1)
(0, 0, 2, 0, -2, 1)
(0, 3, -2, -2, 3, -1)
(0, 0, 0, 0, 2, -1)
(0, 1, 0, 2, -3, 1)
(0, 0, 1, 2, -3, 1)
(0, 2, 1, -5, 4, -1)
(0, 0, 0, 3, -3, 1)
(0, 1, 3, -6, 4, -1)
(0, 0, 4, -6, 4, -1)
(0, 5, -10, 10, -5, 1)
(0, 0, 0, 2, 0, -1)
(0, 1, 2, -2, -1, 1)
(0, 0, 0, 4, -4, 1)
(0, 1, 4, -8, 5, -1)
(0, 0, 1, 1, 0, -1)
(0, 0, 3, -1, -2, 1)
(0, 0, 2, 1, -3, 1)
(0, 0, 6, -9, 5, -1)

Table 3.1: Achievable polynomials for AND/OR trees. The polynomial a0 + a1x1 + a2x2 +
a3x3 + a4x4 + a5x

5 is denoted by (a0, a1, a2, a3, a4, a5).
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Lemma 3.2.1. Let A be the set of achievable polynomials. Let A(x) = a0 +a1x1 + · · ·+anx
n

be a polynomial in A. Then,

1. a0 = 0

2. an = −1 or 1

3.
∑n

i=0 ai = 1

4. If A(x) has degree d, then A(x) is the polynomial for a tree on d leaves.

Next we prove bounds on the values of the coefficients of achievable polynomials.

Lemma 3.2.2. Let f ∈ A be an achievable polynomial of degree d, f = a0 + a1x + a2x
2 +

. . . adx
d. Then |a`| ≤ d`.

We observe a relationship between the polynomial of a tree and the polynomial of its

complement. We define the complement of the AND/OR tree T to be the tree obtained from

T by switching the operation at each node.

Lemma 3.2.3. Let A and B be complementary AND/OR trees and let fA and fB be the

corresponding polynomials. Then fB(1− p) = 1− fA(p) for all 0 < p < 1.

Let fA be a polynomial achievable through convex combinations, fA =
∑n

i=1 λifAi . Let

Ai and Bi be complementary AND/OR trees. Let fB =
∑n

i=1 λifBi . We say that fA and fB

are complementary polynomials.

Corollary 3.2.4. Let fA and fB be complementary polynomials. Then

1. For all 0 < p < 1, fB(1− p) = 1− fA(p)

2. If p is a fixed point of fA then 1− p is a fixed point of fB

3. For all 0 < p < 1, f
(k)
B (1− p) = 1− f (k)

A (p).
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Finally, we make some observations about the polynomials associated with the specific

family of trees we use in many of our constructions.

Definition 3.2.5. Let Ak be a tree on 2k leaves that computes (x1∨x2∨· · ·∨xk)∧(xk+1∨xk+2∨

· · ·∨x2k). Let Bk be a tree on 2k leaves that computes (x1∧x2∧· · ·∧xk)∨(xk+1∧xk+2∧· · ·∧x2k).

Lemma 3.2.6. Let fAk and fBk be the polynomials corresponding to Ak and Bk respectively.

Then fAk has a unique fixed point in the interval
(

1
k2
, 1
k(k−1)

)
and fBk has a fixed point in the

interval
(

1− 1
k(k−1)

, 1− 1
k2

)
.

Lemma 3.2.7. Let 0 ≤ α ≤ 1 and f = αfBk + (1 − α)fBk+1
where fBk is the polynomial

corresponding to Bk. Let t be the fixed point of f in (0, 1). Then g(p) = f(p)−p
p(1−p)(p−t) ≥

1
t

for

all p ∈ [0, 1].

Lemma 3.2.8. Let fAk and fBk be the polynomials corresponding to Ak and Bk respectively.

For t ≤ 2− φ, there exists some k and α such that fA = αfAk + (1− α)fAk+1
has fixed point

t. Moreover, t−fA(p)
t−p ≥

(
1 + p(1−p)

t

)
. Similarly, for t ≥ φ− 1, there exists some k and α such

that fB = αfBk + (1− α)fBk+1
has fixed point t. Moreover, t−fB(p)

t−p ≥
(

1 + p(1−p)
t

)
.

3.3 Convergence of iterative trees to threshold functions

In the previous section, we showed that in the limit with respect to the width of the levels

items at level k of an iterative tree evaluate to 1 with probability f
(k)
C (p) when the inputs are

set according to a Bernoulli distribution with probability p. In this section, we demonstrate

ways of selecting C so that f
(k)
C (p) converges to a t-threshold function.

By an abuse of notation, we say that f(p) converges to a t-threshold function if

lim
k→∞

f (k)(p) =


1 0 ≤ p < t

0 t < p ≤ 1

p p = r.
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Moreover, we say that f converges quadratically to a t-threshold function if the corresponding

iterative construction exhibits quadratic convergence. The function depicted in Figure 3.2

converges to a t-threshold function.

Figure 3.2: A function that converges to a 1/2-threshold function.

Lemma 3.3.1. The fixed points of fC(p) are the roots of the polynomial fC(p)− p.

We now prove that the construction described in Theorem 3.1.2 converges to a t-threshold

function.

of Thm. 3.1.2. Let fR be the polynomial that describes the iterative construction in which

T1 and T2 are selected with probability t and 1− t respectively. Since, fT1(p) = 2p2 − p3 and

fT2(p) = p+ p2 − p3,

fR(p) = tfT1(p) + (1− t)fT2(p) = (1− t)p+ (1 + t)p2 − p3.

Since fR(p)− p = p(1− p)(p− t), the fixed points of fR are 0, t, and 1. We claim that fR

exhibits linear convergence to a t-threshold function.

Let p be the probability that an input item fires. It suffices to consider the case when

p ≤ t−1/n. By Corollary 3.2.4, convergence to 1 for p ≥ t+ 1
n

follows from the complementary

construction.
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First we show that the probability an item at level Ω(log n) fires is less than t
2
. By

definition p− f(p) = p(1− p)(t− p). Observe that for t/2 < p ≤ t− 1/n

t− f(p)

t− p
= 1 +

p− f(p)

t− p
= 1 + p(1− t) ≥ 1 +

t(1− t)
2

.

It follows that

t− f (l)(p) ≥
(

1 +
t(1− t)

2

)l
(t− p) ≥

(
1 +

t(1− t)
2

)l
1

n
.

For l = log
1+

t(1−t)
2

tn
2
, f l(p) < t

2
.

Next, we show that at Ω(k) additional levels, the probability an items fires is less than

2−k. For p < t
2
,

f(p) = p(1− p)(p− t) + p = p(1− (1− p)(t− p)) ≤ p

(
1−

(
1− t

2

)
t

2

)
.

It follows

f (l)(p) <

(
1−

(
1− t

2

)
t

2

)l
p <

(
1−

(
1− t

2

)
t

2

)l
t

2
.

Thus, for l = log(1−(1− t
2) t2)

1
t2k−1 , f l(p) < 2−k. We have shown that when the input items

fire with probability p ≤ t− 1/n, items level Ω(k + log n) will evaluate to 1 with probability

less than 2−k.

3.3.1 Quadratic convergence from iterative trees with small building blocks

In this section we show that using trees with four or five leaves as building blocks, we

can construct an iterative tree that converges quadratically to a t-threshold function for

restricted values of t. We begin with a lemma that provides sufficient conditions for quadratic

convergence.
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Lemma 3.3.2. Let f be a function corresponding to an iterative construction on n inputs

that satisfies the following conditions:

� On the interval [0, 1], f has precisely three fixed points: 0, t, and 1.

� (Linear Divergence) There exists constants u, v satisfying 0 < u < t and t < v < 1 and

constants c1, c2 > 1 such that

1. t− f(p) ≥ c1(t− p) for p ∈ [u, t− 1
n
], and

2. f(p)− t ≥ c2(p− t) for p ∈ [t+ 1
n
, v].

� (Quadratic Convergence) For the constants u, v as above, there exists constants c3, c4

such that c3u < 1 and c4(1− v) < 1 and

1. f(p) < c3p
2 for p ∈ (0, u), and

2. 1− f(p) < c4(1− p)2 for p ∈ (v, 1).

Then f exhibits quadratic convergence to a t-threshold function, meaning that in expectation

items at level Ω(log n+log k) of the corresponding iterative construction compute a t-threshold

function with probability at least 1− 2−k.

Proof. Let p be the probability an input item fires. First we consider the case when p ≤ t− 1
n
.

By the linear divergence assumption, t− f(p) ≥ c1(t− p) for p ∈ [u, t− 1
n
]. It follows that

t− f (`)(p) ≥ c`1(t− p) ≥ c`1(1/n).

Thus for ` = logc1 n(t− u), f (`)(p) ≤ u. Therefore, level Ω(log n) items fire with probability

at most u. Next we show that given a level in which items fire with probability at most

u, the items at Ω(log k) levels higher in the iterative tree fire with probability at most 2−k.

Let p′ be the probability an item fires at the first level for which the probability an item
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fires is below u. By the quadratic convergence assumption, f(p′) < c3(p
′)2 for p′ ∈ (0, u).

It follows that for ` > log2(logc3(1/2)) + log2(k) − log2(1 + logc3(t − 1/n)) + 1, f (`)(p′) ≤

c2l−1(p′)2l ≤ c2l−1u2l < 2−k. We have shown that in expectation items at Ω(log n+ log k) fire

with probability less than 2−k when p ≤ t− 1
n
.

Next we consider the case when p ≥ t + 1
n
. By the linear divergence assumption,

f(p)− t ≥ c2(p− t) for p ∈ [t+ 1
n
, v]. It follows that

f (`)(p)− t ≥ c`2(p− t) ≥ c`2(1/n).

Thus for ` = logc2 n(v − t), f (`)(p) ≥ v. Therefore, level Ω(log n) items fire with probability

at least v. Next we show that given a level in which items fire with probability at least v,

the items at Ω(log k) levels higher in the iterative tree fire with probability at most 2−k in

expectation. Let p′ be the probability an item fires at the first level for which the probability

an item fires is at least v. By the quadratic convergence assumption, 1−f(p′) < c3(1−p′)2 for

p′ ∈ (v, 1). It follows that for ` > log2(logc4(1/2)) + log2(k)− log2(1 + logc4(1− (t+ 1/n))) + 1,

1− f (`)(p′) ≤ c2`−1(1− p′)2` ≤ c2`−1(1− v)2` < 2−k. We have shown that in expectation items

at Ω(log n+ log k) fire with probability at least 1− 2−k when p ≥ t+ 1
n
.

Remark 3.3.3. Let f be a function corresponding to an iterative construction with fixed

point t. Then there exists u and v for which the quadratic convergence condition of Lemma

3.3.2 holds if and only if f ′(0) = 0 and f ′(1) = 0.

Proof. Quadratic convergence to 0 is observed if and only if there exists some positive constant

u sufficiently close to 0 for which all x < u, f(x) = O(x2). Writing f(x) according to its

Taylor series expansion about 0 implies that such behavior occurs if and only if f ′(0) = 0.

Similarly, the observing the Taylor series expansion about 1 allows us to conclude that

quadratic convergence to 1 is observed if and only if f ′(1) = 0.

Next, we prove that the construction given in Theorem 3.1.4A converges quadratically to
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t- threshold functions. The proof of Theorem 3.1.4B is provided in Section 3.6.2.

Proof. (of Theorem 3.1.4A)

Since 2− φ ≤ t ≤ φ− 1, 0 ≤ α(t) ≤ 1 and the probability distribution R is well-defined.

By construction, fF1(p) = 4p2 − 4p3 + p4 and fF2(p) = 2p2 − p4, so

fR(p) =
1 + t− 3t2

t(1− t)
p2 +

−2 + 2t+ 2t2

t(1− t)
p3 +

1− 2t

t(1− t)
p4.

We apply Lemma 3.3.2. First note that 0, t, and 1 are fixed points. Let p be the fraction of

input items firing. It suffices to show convergence to 0 when p ≤ t− 1
n
. By Corollary 3.2.4,

convergence to 1 for p ≥ t+ 1
n

follows from the complementary construction.

First we show linear divergence from t. Let g(p) = f(p)−p
p(1−p)(p−t) = 1

t
+ p(2t−1)

(1−t)t . We claim

g(p) ≥ 1 for 0 ≤ p ≤ 1. If t ≥ 1
2
, then g(p) ≥ 1

t
> 1. If t < 1

2
, then g(p) ≥ 1

t
+ 2t−1

(1−t)t = 1
1−t ≥ 1.

Observe that for any constant 0 < u < t and u < p ≤ t− 1/n

t− f(p) = t− (p+ p(1− p)(p− t)g(p)) ≥ (t− p) (1 + p(1− p)) ≥ (t− p) (1 + u(1− t)) .

Thus c1 = 1 + u(1− t) satisfies the first linear divergence condition.

Next, we show quadratic convergence. Let u = 1/5. Observe that

f(p) ≤ 4p2 − 4p3 + p4 < 4p2.

Since (1/5)4 < 1, taking c3 = 4 satisfies the first condition of quadratic convergence. Thus,

we may apply Lemma 3.3.2 to conclude that items at level Ω(log n+ log k) in the limit of the

iterative construction compute a t-threshold function with probability at least 1− 2−k.

It remains to show that no construction using trees with four leaves will yield quadratic

convergence to a t-threshold function for t outside the range 2− φ ≤ t ≤ φ− 1. A t-threshold
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function with quadratic convergence must satisfy the following five constraints: (i) f(0) = 0,

(ii) f(1) = 1, (iii) f(t) = t, (iv) f ′(0) = 0, (v) f ′(1) = 0. Solving these equations gives the

function

f(p) =
1 + t− 3t2

t(1− t)
p2 +

−2 + 2t+ 2t2

t(1− t)
p3 +

1− 2t

t(1− t)
p4.

Suppose that f can realized by a convex combination of degree four polynomials. Then the

leading coefficient of f must be between −1 and 1 since all achievable polynomials have

leading coefficient −1 or 1. Thus, 0 ≤ 1−2t
t(1−t) ≤ 1, which implies that 2− φ ≤ t ≤ φ− 1.

Using a similar technique as in the proof above, it is possible to show that the analogous

constructions on six and seven leaves yield iterative constructions that converge quadratically

to threshold functions for thresholds in the ranges 0.15 . t . 0.85 and 0.11 . t . 0.89

respectively. However, it is not possible to generalize such a construction beyond this point.

Instead, we observe the emergence of probabilistic thresholds.

3.3.2 The emergence of probabilistic thresholds

For k ≥ 4, the function h = (fAk + fBk)/2 does not exhibit quadratic convergence to a

threshold function. The function h has a fixed point s ∈ (0, 1/2), a fixed point t ∈ (1/2, 1),

and a fixed point at 1/2. Figure 3.3 illustrates h6(p). There is no linear divergence away from

1/2; instead 1/2 is an attractive fixed point. Therefore with high probability, high level items

of such an iterative construction return 0 or 1 with equal probability for inputs in the interval

(s, t), return 0 for inputs in the interval [0, s), and return 1 for inputs in the interval (t, 1].

of Theorem 3.1.6. Let h = (fAk + fBk)/2. It suffices to show that for k ≥ 4, 1/2 is an

attractive fixed point of h. First, note 1/2 is a fixed point of h since h(1/2) = 1/2. We show

that 1/2 is an attractive fixed point by proving that there is some ε neighborhood of 1
2

such

that h(p) − p > 0 for p > 1
2
− ε and h(p) − p < 0 for p < 1

2
+ ε. Let d(p) = h(p) − p. By

32



Figure 3.3: For k ≥ 4, the function (fAk + fBk)/2 has five fixed points on the interval [0, 1]
and 1/2 is an attractive fixed point.

definition

d(p) =
2pk − p2k + 1− 2(1− p)k + (1− p)2k

2
− p.

We compute the derivatives,

d′(p) = k
(
pk−1 + (1− p)k−1

)
− k

(
p2k−1 + (1− p)2k−2

)
− 1

d′′(p) = k(k − 1)
(
pk−2 − (1− p)k−2

)
− k(2k − 1)

(
p2k−1 − (1− p)2k−2

)
d′′′(p) = k(k − 1)(k − 2)

(
pk−3 + (1− p)k−3

)
− k(2k − 1)(2k − 2)

(
p2k−3 + (1− p)2k−3

)
.

Evaluating at p = 1/2 we obtain

d′′(1/2) = 0

d′′′(1/2) =
k

2k−2

(
(k − 1)(k − 2)− (2k − 1)(2k − 2)

2k

)
.

Note that 1/2 is both a zero and an inflection point of d. For k ≥ 4, d′′′(1/2) > 0 meaning

d(p) changes from concave down to concave up at 1/2. It follows that for some ε, d(p) > 0

for 1/2− ε < p < 1/2 and d(p) < 0 for 1/2 < p < 1/2 + ε.

Since iterative constructions achieved by averaging Ak and Bk do not yield threshold

functions for k ≥ 4, we must employ a new strategy to achieve threshold functions near 0 or
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1.

3.3.3 Quadratic convergence for arbitrary thresholds.

In this section we show that as t approaches 0 or 1, increasingly large building blocks trees are

needed to construct an iterative tree that converges quadratically to a t- threshold function.

Further, we give a construction that exhibits quadratic convergence for arbitrary thresholds

near 0 and 1. We begin by proving Theorem 3.1.5, which can also be restated as follows: Let f

be an achievable polynomial with fixed points 0, t, and 1 that exhibits quadratic convergence

to a t-threshold function. Then, f has degree at least 1√
2s

where s = min{t, 1− t}.

Proof. (of Thm. 3.1.5.) Let f be an achievable polynomial with fixed points 0, t, and 1 that

exhibits quadratic convergence. Then for ε sufficiently small, f(ε) = O(ε2), which implies

a1 = 0. For x < 1
2d

, we have

f(x) = a2x
2 + a3x

2 + · · ·+ adx
d ≤ d2x2 + d3x3 + . . . ddxd < d2x2

(
1

1− dx

)
< 2d2x2.

Since t is a fixed point of f , f(t) = t. Thus, t < 2d2t2. It follows that d > 1√
2t

. By Lemma

3.2.3, if there exists an achievable polynomial with fixed point t, then there also exists a

complementary achievable polynomial with fixed point 1− t. Thus, d > 1√
2(1−t)

.

We now prove that a nearly matching iterative construction exists. To achieve quadratic

convergence to thresholds near 0 or 1, we average trees of the form Ak and Ak+1 or Bk and

Bk+1 respectively.

Proof. (of Thm. 3.1.7.) By Corollary 3.2.4, it suffices to prove the theorem for 1− φ ≤ t < 1.

The complement of a construction that achieves quadratic convergence to a t-threshold function
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yields quadratic convergence for to a (1− t)-threshold function. By Lemma 3.2.8, there exists

k and α such that f = αfBk + (1−α)fBk+1
has fixed point t. Moreover, t−f(p)

t−p ≥
(

1 + p(1−p)
t

)
.

We apply Lemma 3.3.2 to prove that f converges to a t-threshold function. Let p be the

probability an input item is on. First suppose that p ≤ t − 1
n
. We show linear divergence

away from t. For any constant 0 < u < t, and u ≤ p ≤ t− 1
n

by Lemma 3.2.8 we have

t− f(p) ≥ (t− p)
(

1 +
p(1− p)

t

)
≥ (t− p)

(
1 +

u(1− t)
t

)
.

Thus, c1 = 1 + u(1−t)
t

is a valid choice for c1 in Lemma 3.3.2.

Next, we claim that u = 1 − 1
k−1

is a valid starting point for quadratic convergence

towards 0. We write f(p) = p2(αdk(p) + (1− α)dk+1(p)) where dk(p) = 2pk−2 − p2k−2. Let

d(p) = αdk(p) + (1− α)dk+1(p). Note that d(p) is increasing on the interval (0, u) since each

dk increases on this interval. For p < u,

2k − 4

2k − 2
= u > uk > pk.

It follows that d′k(p) = pk−3((2k− 4)− (2k− 2)pk) > 0. Thus, dk is increasing on the interval

(0, u). Thus, c3 = d(u) is a valid choice for c3 in Lemma 3.3.2.

It remains to show that for p ≥ t+ 1
n

we observe linear divergence from t then quadratic

convergence to 1. We show linear divergence away from t. For any constant t < v < 1, and

t+ 1
n
≤ p ≤ 1 by Lemma 3.2.8 we have

f(p)− t ≥ (p− t)
(

1 +
p(1− p)

t

)
≥ (p− t)

(
1 +

t(1− v)

t

)
.

Thus, c2 = 1 + t(1−v)
t

is a valid choice for c2 in Lemma 3.3.2.

We claim that v > 1− 1
8(k+1)2

is a valid starting point for quadratic convergence to 1. By
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Corollary 3.2.4, fAk(1− p) = 1− fBk(p). It follows

1− f(p) = α− αfBk(p) + (1− α)− (1− α)fBk+1
(p) = αfAk(1− p) + (1− α)fAk+1

(1− p).

Recall from the proof of Theorem 3.1.5, f(x) < 2dx2 where d is the degree of x. Therefore,

fAk(1− p) < 8k2(1− p)2 < 8(k + 1)2(1− p)2 and fAk+1
(1− p) < 8(k + 1)2(1− p)2.

Since (1− v)8(k + 1)2 < 1, c4 = 8(k + 1)2 is a valid choice for c4 in Lemma 3.3.2.

3.4 Finite iterative constructions of threshold trees

In the above section, we analyzed the behavior of iterative trees in the limit with respect to

level width. We assumed that for any input the number of items turned on at level l of the

tree is equal to its expectation, mf (l)(p) where m is the width of level l and p is the fraction

of the inputs turned on. In a “bottom up” construction in which the items of one level are

fixed before the next level is built, we note that the chance that the number of items that fire

at a given level deviates from expectation is non-trivial. In this section, we give a bound on

the width of the levels required to achieve a desired degree of accuracy for a finite realization

of iterative constructions.

Remark 3.4.1. We can use a transition matrix to directly compute the probability that a

high level item of an iterative construction fires given the width of the levels. Let f be the

function corresponding to the construction, p be the fraction of input items firing, and m the

width of the levels. Define s ∈ R1×(m+1), A ∈ R(m+1)×(m+1), and t ∈ R1×(m+1)

si =

(
m

i

)
f(p)i (1− f(p))m−i , Ai,j =

(
m

j

)
f

(
i

m

)j (
1− f

(
i

m

))m−j
, ti = i
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for i, j = 0, 1, . . .m. Then the probability that an item at level L fires is sAL−1tT .

We will use the following concentration inequalities.

Lemma 3.4.2. (Chernoff) Let Y1, Y2, . . . Ym be independent with 0 ≤ Yi ≤ 1 and Y =
∑n

i=1 Yi.

Then, for any δ > 0,

P(Y − E(Y ) ≥ δE(Y )) ≤ exp

(
−δ2mE(Y )

2 + δ

)
.

Lemma 3.4.3. Let X be a sum of n binomial random variables with mean µ. Then, for

k ≥ nµ,

P(X ≥ k) =
n∑
i=k

(
n

i

)
µi(1− µ)n−i < exp (−nH(µ, k/n))

where H(p, q) = q log(q/p) + (1− q)log((1− q)/(1− p)).

The following lemma describes linear divergence for finite width constructions.

Lemma 3.4.4. Consider the construction of a t-threshold function in which each level ` has

m` items and the fraction of input items firing is at least ε below the threshold t. Let d be the

minimum value of f(p)−p
p(1−p)(p−t) on the interval [0, 1]. Then, with probability at least 1− γ, the

fraction of inputs firing at level Ω(1
ε
) will be less than any fixed constant u when

m` =
8 ln( 1

u(1−t)γ )

d2u(1− t)2
(
1 + c1

2

)`−1
ε2

where c1 is the linear divergence constant.

Proof. Let Xi be the fraction of items firing at level Xi. Then E(Xi) = f(Xi−1). In

expectation, the sequence X1, X2, X3, . . . convergences to 0. We will show that with
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probability at least 1− γ, the sequence obeys the half-progress relation Xi+1 ≤ Xi+f(Xi)
2

and

therefore XL < u for L = Ω(1
ε
).

Write f(p)− p = p(1− p)(p− t)g(p) where g is a polynomial in p. Let d be the minimum

value obtained by g on the interval [0, 1]. First we compute probability that Xi+1 >
Xi+f(Xi)

2

by applying Lemma 3.4.2. Observe

P
(
Xi+1 >

Xi + f(Xi)

2

)
= P

(
Xi+1 − E(Xi+1) >

Xi − f(Xi)

2

)

≤ exp

−
(
Xi−f(Xi)

2f(Xi)

)2

mf(Xi)

2 + Xi−f(Xi)
2f(Xi)


= exp

(
− (Xi(1−Xi)(Xi − t)g(Xi))

2m

2(Xi + 3(Xi +Xi(1−Xi)(Xi − t)g(Xi)))

)
≤ exp

(
−Xi(1−Xi)

2(t−Xi)
2d2m

8

)

Let εi = t−Xi and α = u(1−t)2d2
8

. Then for u ≤ Xi ≤ t− ε,

P
(
Xi+1 >

Xi + f(Xi)

2

)
< exp

(
−αmε2

i

)
.

Next we compute the probability that i is the first value for which the half-progress

relation is not satisfied given Xi > u. If the half-progress relation is satisfied meaning

Xi+1 >
Xi+f(Xi)

2
, then εi+1 ≥ εiβ where β = 1 + u

2
(1− t). It follows that if the half-progress

relation is satisfied for all j < i, then εi+1 ≥ εβi. Thus,

P
(
i is the first value for which Xi+1 >

Xi + f(Xi)

2

)
≤ exp

(
−αmε2β2i

)
.

By linear divergence, there exists L = Ω(log(1
ε
)) such that if the sequence satisfies the

half-progress relation for all i < L, then XL < u. We bound the probability that this does
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not happen. Let m` =
8 ln( 1

u(1−t)γ )

d2u(1−t)2βiε2 . For ease of notation, let c = ln 1
u(1−t)γ < 1. Observe

P(XL > u) ≤
L∑
i=0

exp
(
−αm`ε

2β2i
)

=
L∑
i=0

exp
(
−cβi

)
≤

L∑
i=0

exp (−c(1 + iu(1− t)))

< exp (−c)
L∑
i=0

e−iu(1−t))

<
exp (−c)

1− exp (−u(1− t))

<
exp (−c)
u(1− t)

= γ.

Theorem 3.4.5. Consider the construction of a t-threshold function with linear convergence

given in Theorem 3.1.2 in which each level ` has m` items and the fraction of input items

firing is at least ε from the threshold t. Then, with probability at least 1− γ, items at level

Ω(log 1
γ

+ log 1
ε
)) will accurately compute the threshold function for m = Ω

(
ln( 1

γ
)( 1
γ

+ 1
ε2

)
)
.

Proof. Let Xi be the fraction of items firing at level Xi. Then E(Xi) = f(Xi−1). By Corollory

3.2.4, it suffices to consider the case when the fraction of inputs firing is less that t − ε.

As proved in Theorem 3.1.2, in expectation, the sequence X1, X2, X3, . . . convergences to

0. We will show that with probability at least 1 − γ
2
, the sequence drops below γ

2
. First

we apply Lemma 3.4.4. Recall that the polynomial corresponding to this construction is

f(p) = p+ p(1− p)(p− t) and therefore d in the statement of Lemma 3.4.4 is 1. Let u be a

constant 0 < u < t, m ≥
8 ln( 4

u(1−t)γ )

u(1−t)2ε2 and L = Ω(1
ε
). Thus, XL < u with probability at least

1− γ
4
.

Next we show that given XL < u the probability that the sequence continues to obey the
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half-progress relation (as defined in Lemma 3.4.4) and drops below γ
2

is at least 1− γ
4
. Let

α = (1−u)2(t−u)2

8
. For Xi < u,

P
(
Xi+1 >

Xi + f(Xi)

2

)
< exp

(
−αmX2

i

)
.

We compute the probability that N + i is the first value for which the half-progress relation

is not satisfied given XL < u. If Xi < u and the half-progress relation is satisfied at i then

Xi+1 ≤ Xi(1 − β) where β = 1
2
(1 − u)(t − u). It follows that if the half-progress relation

is satisfied for all j < i, then XN+i ≤ (1 − β)iu. Let L′ = 4
(1−u)(t−u)

log2

(
2u
γ

)
. If for all

L ≤ i ≤ L+L′, the half-progress relation is satisfied then XL+L′ < u(1−β)L
′
< γ

2
. We bound

the probability that this does not happen. Let m ≥
16 ln ( 16

(1−u)(t−u)γ )
(1−u)2(t−u)2γ

. For ease of notation, let

c = ln
(

8
βγ

)
. Observe

P
(
XL+L′ >

γ

2

)
≤

L′∑
i=0

exp (−mXiα)

=
L′∑
i=1

exp

(
−2cXi

γ

)

≤
L′∑
i=0

exp
(
−c(1− β)−(L′−i)

)
=

L′∑
i=0

exp
(
−c(1− β)i

)
≤

βL′∑
i=0

1

β
exp
(
−cei

)
≤ 2exp (−c)

β

=
γ

4
.

Therefore, with probability at least 1 − γ
2
, items at level Ω(log 1

γ
+ log 1

ε
)) of an iterative
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construction with width m fire with probability at most γ
2

for m = Ω
(

ln( 1
γ
)( 1
γ

+ 1
ε2

)
)
. Thus,

the iterative construction accurately computes the threshold function with probability at

least (1− γ
2
)2 > 1− γ.

We give a tighter bound for the accuracy of the finite width construction for functions

with quadratic convergence. We now prove Theorem 3.1.8, which can be restated as follows:

in order to accurately compute, with probability at least 1 − γ, a t-threshold function for

inputs in which the fraction of inputs firing is within ε of t , the width of the levels must be

Ω
(

ln(1/γ)
ε2

)
.

of Theorem 3.1.8. Let Xi be the fraction of items firing at level Xi. Then E(Xi) = f(Xi−1).

By Corollory 3.2.4, it suffices to consider the case when the fraction of inputs firing is less that

t− ε. As proved in Lemma 3.3.2, in expectation, the sequence X1, X2, X3, . . . convergences

to 0. We will show that with probability at least 1− γ, the sequence reaches 0.

First we apply Lemma 3.4.4. Recall from the proof of Theorem 3.1.4, that the minimum

value of g(p) = f(p)−p
p(1−p)(p−t) is 1 on the interval [0, 1]. Therefore for such constructions d in the

statement of Lemma 3.4.4 is 1. For constructions described in Theorem 3.1.7, the minimum

value of g(p) = f(p)−p
p(1−p)(p−t) is 1

t
on the interval [0, 1], as proved in Lemma 3.2.8. Therefore for

such constructions d in the statement of Lemma 3.4.4 is 1
t
. Let u be the constant 0 < u < t

in quadratic convergence as in Lemma 3.3.2, m` ≥
8 ln( 4

u(1−t)γ )

d2u(1−t)2(1+(c1/2)`−1ε2
and L = Ω(1

ε
). Thus,

XL < u with probability at least 1− γ
2
.

Next, we bound the probability given XL < u, that XL+r = 0. We say that Xk+1 regresses

if Xk+1 ≥ u. For m ≥ l
u

and c3 as in Lemma 3.3.2, we apply Lemma 3.4.3 and obtain

P(Xk+1 ≥ Xk) =
m∑

i=du
e
ne

(
m

i

)
f(p)i(1− f(p))m−i

≤ exp

(
−m

(
p log

(
p

f(p)

)
+ (1− p) log

(
1− p

1− f(p)

)))

41



≤ exp

(
−m

(
p log

(
1

c3p

)
+ (1− p) log

(
1− p− f(p)

1− f(p)

)))
≤ exp

(
−m

(
p log

(
1

c3p

)
+ (1− p)

(
−p− f(p)

1− f(p)

)))
≤ exp

(
−m

(
p log

(
1

c3p

)
− p(1− p)

))
≤ exp

(
−mp log

(
1

c3pe

))
≤ (c3ue)

l

It follows that

P(XL, XL+1, . . . XL+r do not regress) ≥ 1− r(c3ue)
l.

Next we bound the probability that given Xk < u, Xk+1 = 0.

P(Xk+1 = 0|Xk ≤ u) = (1− f(Xk))
m ≥ (1− u2)m ≥ 1−mu2 = 1− lu.

Therefore

P(XL+r = 0|XL, XL+1, . . . XL+r do not regress) ≥ 1− (lu)r.

Let l = r = max
{
c3e,min

{
1

2u
, log2

(
4
γ

)}}
. It follows log2

(
4
γ

)
< l log2

(
1
lu

)
and therefore

4
γ
<
(

1
lu

)l
. We now compute

P(XL+r = 0) ≥ 1− r(c3ue)
l − (lu)r ≥ 1− 2(lu)l ≥ 1− γ

2
.

We have shown that given XL < u, P(XL+r > 0) ≤ γ
2
. Therefore, with probability at

least 1− γ, items at level Ω(log 1
γ

+ log 1
ε
)) do not fire for m = Ω

(
ln( 1

γ
)

ε2

)
.
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3.4.1 Exponential and wild constructions

In this section, we analyze exponential constructions, where items are chosen with probabilities

proportional to their weights, and the latter decay exponentially with time.

We begin with a precise analysis of the wild construction corresponding to no decay of

weights. Each new item is the root of a tree chosen according to the probability distribution

with leaves chosen uniformly at random from all existing items and inputs. We now prove

Theorem 3.1.9, which can be restated as follows: After O
(
n2

ε

)
items are created in a wild

iterative construction on n inputs, the next item will accurately compute the threshold

function probability less than ε.

of Theorem 3.1.9. Let x0 be the fraction of inputs that fire and let xk be the probability an

item chosen at random from the n inputs and k constructed items fires. We have

xk+1 =
(n+ k)xk + f(xk)

n+ k + 1
.

Equivalently,

xk − xk+1 =
xk − f(xk)

n+ k + 1
.

For xk+f(xk)
2

≤ x ≤ xk,

x− f(x) ≥ xk + f(xk)

2
− f(xk) =

xk − f(xk)

2
.

By Corollary 3.2.4, it suffices to consider the case when x0 < t. We will show that xk

converges to zero by analyzing the progress towards zero in phases. Items k+1, k+2, . . . k+g

form a phase if f(xk+g) ≤ 3xk+f(xk)
4

. We show that the number of items in each phase is at

most one more than the number of existing items at the start of the phase (which includes
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both the inputs and the items constructed in previous phases). For g = n+ k + 1 observe

xk − xk+g =

g∑
i=1

xk+i − f(xk+i)

j + k + i+ 1
≥ g(xk − f(xk))

2(n+ k + g + 1)
=
xk − f(xk)

4

Therefore f(xk+g) ≤ 3xk+f(xk)
4

.

Let f(x) = 3xk+f(xk)
4

and L be the smallest integer such that f
(L+1)

(x) ≤ ε for all

x ≤ t − 1
n

and f
(L+1)

(x) ≥ 1 − ε for all x ≥ t + 1
n
. Since f exhibits linear divergence,

L = Ω
(
log(n) + log(1

ε
)
)
. Then after L phases, the expected value of an item chosen at

random from all items is less than f
(L)

(x0). The next item created will fire with probability

at most f
(L+1)

(x0) ≤ ε. Let Ni be the maximum number of total items after phase i and

N0 = n. Using the recurrence relation Ni+1 = 2Ni + 1, we conclude that total number of

items in L phases is bounded above by 2L(n+ 1). Therefore after Ω(2Ln) = Ω(n
2

ε
) items are

created, the next item will fire probability less than ε, as desired.

Now we discuss exponential constructions with α > 0. Suppose we start with n items of

which a y0 = p fraction are set to 1. Let yj be the probability that the jth item is a 1. At

time k, when k items have been created, the weight of the jth item is e−α(k−j) since at step

the weight decreases by a multiplicative e−α. Since the (k + 1)th item is picked according to

these weights and the function applied,

yk+1 = f

(
ne−αky0 +

∑k
j=1 e

−α(k−j)yj

ne−αk +
∑k

j=1 e
−α(k−j)

)
.

To solve this, as before, let xk be the probability that a random item chosen from the

above distribution is 1, i.e.,

xk =
ne−αky0 +

∑k
j=1 e

−α(k−j)yj

ne−αk +
∑k

j=1 e
−α(k−j)

and yk+1 = f(xk).
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Therefore,

xk+1 =
e−α(ne−αk +

∑k
j=1 e

−α(k−j))xk + f(xk)

ne−α(k+1) +
∑k+1

j=1 e
−α(k+1−j)

.

To see this, just note that the probability of picking one of the first k items is proportional

to the multiplier in the numerator above, while the probability of picking the new item is

proportional to 1 (its current weight). The denominator is the sum of all weights. This gives

xk − xk+1 =
(xk − f(xk))

ne−α(k+1) +
∑k+1

j=1 e
−α(k+1−j)

≥ (1− e−α)(xk − f(xk)).

For these xk’s to represent the true probabilities, and for this analysis to be valid, the xk’s

should be close to their expectation. If we start at distance ε from the threshold, then the

deviation from expectation in the beginning should be smaller than ε. For this, it will suffice

to set α = O(1/ε2) so that the weights decay only by a constant factor after O(1/ε2) steps.

3.5 Learning

So far we have studied the realizability of thresholds via neurally plausible simple iterative

constructions. These constructions were based on prior knowledge of the target threshold.

Here we study the learnability of thresholds from examples. It is important that the learning

algorithm should be neurally plausible and not overly specialized to the learning task. We

believe the simple results presented here are suggestive of considerably richer possibilities.

We begin with a one-shot learning algorithm. We show that given a single example of a

string X ∈ {0, 1}n with ‖X‖1 = tn, we can build an iterative tree that computes a t-threshold

function with high probability. Let T1 and T2 be the building block trees in the construction

given in Theorem 3.1.2.

This simple algorithm has the guarantee stated in Theorem 3.1.10, which follows from

Theorem 3.1.2.

Now we consider a more complex scenario, where multiple labeled examples are presented.
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LearnThreshold(L,m,X):
Input: Levels parameter L, a string X ∈ {0, 1}n such that ‖X‖1 = tn, width parameter m.
Output: A finite realization of iterative tree with width m.

For each level j from 1 to L, apply the following iteration m times:
(level 0 consists of the input items X)

1. Pick a random input item i.

2. If Xi = 1 then let T = T1, else let T = T2.

3. Pick 3 items from the previous level.

4. Build T with these items as leaves.

We assume that the labels +,−, correspond to a uniform threshold function, but are noisy

close to the threshold, i.e., the probability of the label being positive goes from 0 to 1

monotonically near the threshold. This is a natural model of noise in the literature. In this

setting, we propose to modify the learning algorithm as follows. On the first example it

learns an iterative threshold as above. The prediction of the learned structure is given by

uniformly sampling a random top-level item. A future example is first evaluated using the

existing structure. If the label produced is correct, then no change is made to the structure.

Otherwise, if the true label is positive, a new iterative tree is built (and the prediction of

the structure would sample from all existing top-level items). If the true label is negative,

then top-level items that predicted positive are each destroyed independently with a fixed

probability (say 1/2). This effectively builds a structure with a monotone probability of

predicting that the label is positive.

This construction highlights two aspects of interest to cognition: (1) the first example

presented is crucial and (2) updates to the existing structure become less and less frequent

(they are made only on errors).
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3.6 Proofs

3.6.1 Properties of achievable polynomials

Proof. (of Lemma 3.2.1.) We proceed by induction on the degree of A(x). For d = 1,

A(x) = x is the only polynomial in A and all the above properties hold. Next assume all the

properties hold for polynomials of degree less than d. Let A(x) be an achievable polynomial

of degree d. Then the root of the tree for A, which we call TA, is either an AND or an OR

operation. In the former case, A = B · C and in the latter case A = B + C − B · C where

B,C ∈ A and B has degree k and C has degree d − k for 0 < k < d. In either case, the

first three properties follow trivially from the inductive hypothesis. For item (5), let TB and

TC be trees that correspond to B and C respectively. Then TB and TC have k and d − k

leaves respectively. Since TA is TB adjoined with TC with an AND or OR operation, TA has

d leaves.

Proof. (of Lemma 3.2.2.) Proceed by induction. The only achievable polynomial of degree 1

is f(x) = x, so the statement clearly holds. Next, assume |al′ | ≤ dl
′

holds for all l′ < l. Let f

be a degree d achievable polynomial. We may assume f = g + h − gh or f = gh where g

and h are achievable polynomials with degree k and d− k respectively where k ≤ l
2
. First

consider the case when f = g + h− gh, meaning the root of the tree corresponding to f is an

OR operation. Observe

|a`(f)| =
∣∣a`(g) + a`(h)−

l−1∑
i=1

ai(g)al−i(h)
∣∣

≤ kl + (d− k)l +
l−1∑
i=1

ki(d− k)l−i

≤ kl + (d− k)l + (l − 1) max
i
{ki(d− k)l−i}

≤ kl + (d− k)l + l(k)(d− k)l−i
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≤ ((d− k) + k)l

= dl.

Next consider the case when f = gh, meaning the root of the tree corresponding to f is

an AND operation. Observe that

|a`(f)| =
∣∣ l−1∑
i=1

ai(g)al−i(h)
∣∣ ≤ l−1∑

i=1

ki(d− k)l−i < dl.

of Lemma 3.2.3. Proceed by induction on the number of leaves of the tree. For a tree on one

leaf, the statement holds trivially. Without loss of generality, assume that the root of tree

A is an AND operation. Then fA(x) = a1(x)a2(x) and fB(x) = b1(x) + b2(x) − b1(x)b2(x)

where the trees corresponding to a1 and b1 are complements and the trees corresponding

to a2 and b2 are also complements. By the inductive hypothesis, a1(p) = 1− b1(1− p) and

a2(p) = 1− b2(1− p). Observe

1− fA(p) = 1− a1(p)a2(p)

= 1− (1− b1(1− p))(1− b2(1− p))

= b1(1− p) + b2(1− p)− b1(1− p)b2(1− p)

= fB(1− p).

The proof of Lemma 3.2.6 will use the following elementary inequality.

Lemma 3.6.1. For x ∈ (0, 1), and any integer k ≥ 0, 1− kx < (1− x)k < 1− kx+
(
k
2

)
x2.

of Lemma 3.2.6. It suffices to show that g(x) = fAk(x) − x has a zero on the interval
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(
1
k2
, 1
k(k−1)

)
. We will show that g(1/k2) < 0 and g(1/(k(k − 1))) > 0 and apply the

intermediate value theorem. Using Lemma 3.6.1, for x = 1/k2,

(1− (1− x)k)2 − x < (1− (1− kx))2 − x = k2x2 − x = 0.

Similarly, for x = 1/(k(k − 1)),

(1− (1− x)k)2 − x >
(

1−
(

1− kx+
k(k − 1)x2

2

))2

− x

=

(
1

k − 1
− 1

2k(k − 1)

)2

− 1

k(k − 1)

=
1

(k − 1)2

(
1− 1

2k

)2

− 1

k(k − 1)

=
1

(k − 1)2

(
1− 1

k
+

1

4k2
− (1− 1

k
)

)
=

1

4k2(k − 1)2
> 0.

It follows from Corollary 3.2.4 that fBk has a fixed point in the interval
(

1− 1
k(k−1)

, 1− 1
k2

)
.

Uniqueness follows from Lemma 3.2.7.

Proof. (of Lemma 3.2.7.) By definition

g(p) =
f(p)− p

p(1− p)(p− t)
=
α(1− 2pk−1 + p2k−1) + (1− α)(1− 2pk + p2k+1)

(1− p)(t− p)
.

Since 1 and t are fixed points of f(p), (1 − p) and (t − p) divide f(p) − p. Therefore, we

may write g = a0 + a1p · · ·+ a2k−1p
2k−1 polynomial. We claim that all coefficients of g are

positive. Note that

(t− p)
2k−1∑
i=0

aip
i =

α(1 + p · · ·+ pk−2 − pk−1 − pk · · · − p2k−2) + (1− α)(1 + p · · ·+ pk−1 − pk − pk+1 · · · − p2k).
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Observe

ai =
1

t
for i = 0

ai =
ai−1 + 1

t
for 1 ≤ i ≤ k − 2

ai =
ai−1 + 1− 2α

t
for i = k − 1

ai =
ai−1 − 1

t
for k ≤ i ≤ 2k − 2

ai =
ai−1 − (1− α)

t
for i = 2k − 1.

Note that 1
t

= a0 < a1 < · · · < ak−2, so ai > 0 for all 0 ≤ i ≤ k − 2. Next observe

that a2k−1 = 1 − α since comparing the coefficients of the p2k terms on both sides gives

−a2k−1 = −(1 − α). It follows that a2k−2 = t(1 − α) + 1 − α. For all k ≤ i ≤ 2k − 2,

ai−1 = tai + 1. Therefore ai > 0 for all k − 1 ≤ i ≤ 2k − 3.

Since all coefficients of g are positive, all derivatives are increasing. In particular the

first derivative of g(p) is increasing on the interval (0, 1). Therefore g(p) ≥ g(0) = 1
t

for all

p ∈ [0, 1].

Proof. (of Lemma 3.2.8.) By Corollary 3.2.4, it suffices to prove the theorem for φ−1 ≤ t < 1.

By Lemma 3.2.6, fBk has a single fixed point in the range
(
1− 1

k(k−1)
, 1− 1

k2

)
. Let bk be the

fixed point fBk . Note that for 0 < p < 1,

fBk+1
(p) < fBk(p).

It follows that bk < bk+1. We obtain an increasing sequence b2, b3, b4 . . . that converges to 1.

Let k be the value for which bk ≤ t < bk+1. Let f = αfBk + (1− α)fBk+1
where α is chosen

so that f has fixed point t.
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Next we show that t−f(p) ≥ (t−p)
(

1 + p(1−p)
t

)
. By Lemma 3.2.7, g(p) = f(p)−p

p(1−p)(p−t) ≥
1
t

for 0 ≤ p ≤ 1. Therefore

t− f(p) = (t− p)(1 + p(1− p)g(p)) ≥ (t− p)
(

1 +
p(1− p)

t

)
.

3.6.2 Quadratic convergence for trees with five leaves

Proof. (of Theorem 3.1.4B.) By construction fV1(p) = p2 + p3 − p5 and fV2(p) = 6p2 − 9p3 +

5p4 − p5, so

fR(p) =
1 + t− 2t2 − t3

t(1− t)
p2 +

−2 + t+ t2 + 2t3

t(1− t)
p3 +

1− t2 − t3

t(1− t)
p4 − p5.

We apply Lemma 3.3.2. First note that 0, t, and 1 are fixed points. Let p be the fraction of

input items firing. It show convergence to 0 when p ≤ t− 1
n
. By Corollary 3.2.4, convergence

to 1 for p ≥ t+ 1
n

follows from the complementary construction.

First we show linear divergence from t. Let g(p) = f(p)−p
p(1−p)(p−t) = 1

t
− t2+t−1

t(t−1)
p + p2 =

1
t

+ p(− t2+t−1
t(t−1)

+ p). We claim that g(p) ≥ 1 for 0 ≤ p ≤ 1. If − t2+t−1
t(t−1)

+ p ≥ 0, then

g(p) ≥ 1
t
≥ 1. If − t2+t−1

t(t−1)
+ p < 0, then g(p) ≥ 1

t
− t2+t−1

t(t−1)
+ 1 = 1

1−t ≥ 1. Thus as in the

proof of part A, c1 = 1 + u(1− t) satisfies the first linear divergence condition. Next we show

quadratic convergence. Let u = 1/7. Note that

f(p) ≤ p2(6− 9p+ 5p2 − p3) < 6p2.

Since 6(1/7) < 1, taking c3 = 6 satisfies the first condition of quadratic convergence. Thus,

we may apply Lemma 3.3.2 to conclude that in expectation items at level Ω(log n+ log k) of

the iterative construction compute a t-threshold function with probability at least 1− 2−k.

51



It remains to show that no construction using trees with five leaves will yield quadratic

convergence to a t-threshold function for t outside the range 0.26 . t . 0.74. A t-threshold

function with quadratic convergence must satisfy the following five constraints: (i) f(0) = 0,

(ii) f(1) = 1, (iii) f(t) = t, (iv) f ′(0) = 0, (v) f ′(1) = 0. Such a function will have the form:

zd,t(p) =
1 + t− (3 + d)t2 + dt3

(1− t)t
p2 +

−2 + (2 + d)t+ (2 + d)t2 − 2dt3

(1− t)t
p3

+
1− (2 + 2d)t+ dt2 + dt3

(1− t)t
p4 + dp5.

Since each achievable polynomial has leading coefficient −1 or 1, if zd,t(p) can written as a

convex combination of achievable polynomials of degree five, then

zd,t(p) = βz−1,t(p) + (d+ β)z1,t(p),

where z−1,t(p) and z1,t(p) are convex combinations of achievable polynomials of degree five

with leading coefficient −1 and 1 respectively and 0 ≤ β ≤ 1. Thus, it suffices to determine

the values of t for which z−1,t(p) is achievable through convex combinations and the values of

t for which z1,t(p) is achievable through convex combinations.

Claim: Let α(t) = −1+5t−4t2+t3

5t(t−1)
. If the function z−1,t(p) is achievable through convex

combinations then 0 ≤ α(t) ≤ 1, meaning 0.26 . t . 0.74.

Notice that achievable polynomials of degree five with leading coefficient−1 have coefficient

a3 ≥ −9 (see Table 3.1). It follows that

−2 + t+ t2 + 2t3

t(1− t)
≥ −9 and 2(−1 + 5t− 4t2 + t3) ≥ 0,

so α(t) ≥ 0. Next, note that the coefficient a4 of z−1,t(p) must be non-negative (see Table
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3.1). It follows that

1− t2 − t3

t(1− t)
≥ 0 and − 1 + 5t− 4t2 + t3 ≤ 5t− 5t2,

so α(t) ≤ 1.

Claim: Let γ(t) = 1−2t−t2 +t3 and β(t) = 1−3t2 +t3. If the function z1,t(p) is achievable

through convex combinations, then γ(t) ≤ 0 and β(t) ≥ 0, meaning .445 . t . .653

Assume z−1,t(p) is achievable through convex combinations. Notice that for degree five

achievable polynomials with a1 = 0 and a5 = 1, −4 ≤ a4 ≤ −2. It follows that

−4 ≤ 1− 4t+ t2 + t3

(1− t)t
≤ −2,

so γ(t) ≤ 0 and β(t) ≥ 0.

Now consider t . 0.26 or t & 0.74. By the above claims, z−1,t(p) and z1,t(p) are not

achievable through convex combinations. It follows that zd,t(p) is not achievable through

convex combinations, meaning no construction on trees with five leaves that converges

quadratically to a t-threshold function for t . 0.26 or t & 0.74.

3.7 Discussion

We have seen that very simple, distributed algorithms requiring minimal global coordination

and control can lead to stable and efficient constructions of important classes of functions.

Our work raises several interesting questions.

1. What are the ways in which threshold functions are applied in cognition? Object

recognition is one application of threshold functions in cognition. For instance, suppose

we have items representing features such as “trunk,” “grey,” “wrinkled skin,” and “big

ears,” and an item representing our concept of an “elephant.” If a certain threshold of
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items representing the features we associate with an elephant fire, then the “elephant”

item will fire. This structure lends itself to a hierarchical organization of concepts that

is consistent with the fact that as we learn, we build on our existing set of knowledge.

For example, when a toddler learns to identify an elephant, he does not need to re-learn

how to identify an ear. The item representing “ear” already exists and will fire as a

result of some threshold function created when the toddler learned to identify ears. Now

the item representing “ear” may be used as an input as the toddler learns to identify

elephants and other animals.

2. What is an interesting model and neurally plausible algorithm for learning threshold

functions of k relevant input items? In this scenario, the input is a set of sparse binary

strings of length n representing examples in which at least tk of k relevant items are

firing. The output is an iterative tree that computes a t-threshold function on the

k relevant items. We can formulate the previously described example of learning to

identify an elephant as an instance of this problem. Each time the toddler sees an

example of an elephant, many features associated with elephant will fire in addition

to some features that are not associated with elephants. There may also be features

associated with an elephant that are not present in this example and therefore not firing.

A learning algorithm must rely on information about the items that are currently firing

to learn both the set of relevant items and a threshold function on this set of items. It

might also be beneficial to utilize prediction, as e.g., done by [PV15b].

3. To what extent can general linear threshold functions with general weights be constructed/learned

by cortical algorithms?

4. A concrete question is whether the construction of Theorem 3.1.7 is optimal, similar to

the optimality of the constructions in Theorem 3.1.4.

5. Our construction of a probabilistic threshold function raises the question of what
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monotone functions g : {0, 1}n → [0, 1] can be realized by iterative constructions.

6. A simple way to include non monotone Boolean functions with the same constructions

as we study here, would be to have input items together with their negations (as in

e.g., [Sav90]). What functions can be realized this way, using a distribution on a small

set of fixed-size trees?
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CHAPTER 4

APPROXIMATING SPARSE GRAPHS: THE RANDOM OVERLAPPING

COMMUNITIES MODEL

This Section describes joint work with Santosh Vempala and appears as [PV18].

4.1 Introduction and overview of results

The goal of this direction of research is to approximate sparse graphs and sequences of sparse

graphs (with average degree unbounded and o(n)). What is a good summary of a very large

graph? Besides simple statistics like its size and edge density, one would like to know the

chance of finding small subgraphs (e.g., triangles), to estimate global properties (e.g., the

size of the minimum or maximum cut), and to be able to produce a smaller graph of desired

size with similar properties as the original. One approach is to define a random graph model,

a simple description of a probability distribution over all graphs, such that a graph drawn

from the model will likely have similar properties as the graph of interest.

A more powerful approach to graph approximation is via Szemerédi’s regularity lemma

[Sze76], as discussed in Sections 1.1.2 and 2.1. The regularity lemma’s consequences are

striking— one can approximate the homomorphism density of any fixed size graph (from

the left or right), the size of any cut to within additive error; the partition itself can be

constructed algorithmically and is easy to sample.

Such a theory is missing for sparse graphs (with o(n2) edges). All the approximations

for the dense case produce the trivial approximation of the empty graph. While there is

an intricately developed theory for bounded-degree graphs that allows one to describe the

limits of sequences of such graphs1, it is not algorithmically tractable, and it does not extend

1One can approximate a bounded-degree graph as a distribution over local neighborhood structures, i.e.,

56



to graph sequences when the degree can grow with the size of the graph. Moreover, as

we will presently see, the known objects for approximating dense graphs (block models,

regularity decompositions, graphons) are inherently unable to approximate sparse graphs.

The main motivation for this paper is to understand what properties of sparse graphs (resp.

graph sequences) can be succinctly approximated and to provide a model (limit object) for

them. Existing theories are limited in what they can achieve for families of graphs which are

neither dense nor bounded-degree. In particular, they seem unable to answer the following

representative question [LV14]:

What is the limit of the sequence of hypercube graphs?

We focus on approximating the simple cycle and closed walk counts of sparse graphs

and graph sequences appropriately normalized. These counts encode information about the

local structure of the graph and are related to its spectral properties; the number of closed

k-walks in a graph is equal to the kth moment of the graph’s eigenspectrum. For dense graphs,

stochastic block models and graphons approximate both homomorphism densities and cut

norm. However the standard cut norm is not useful for sparse graphs as the norm tends to

zero. Moreover, natural normalizations do not seem to work either, i.e., they either go to

zero or distinguish hypercubes of different sizes.

Another reason we focus on cycle and walk counts rather than cuts is that approximating

local structure is of particular interest in practice. A widely-used technique for inferring

the structure and function of a real-world graph is to observe overrepresented motifs, i.e.,

small subgraphs that appear frequently. Recent work describes the overrepresented motifs

of a variety of graphs including transcription regulation graphs, protein-protein interaction

the probability that the r-neighborhood of a vertex is a particular graph. For any r, this is a finite description
and it captures homomorphism densities and appears as a limit of a bounded-degree graph sequence.
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graphs, the rat visual cortex, ecological food webs, and the internet (WWW), [YL+04, Alo07,

Son+05, Mil+02]. The type of overrepresented motifs has been shown to be correlated with

the graph’s function [Mil+02]. A model that produces graphs with high motif counts is

necessary for approximating graphs whose function depends on the abundance of a particular

motif.

Limitations of previous approaches for capturing the cycle and walk counts.

Previous approaches do not provide a meaningful way to approximate the small cycle

counts of sparse graphs. A regularity style partition or stochastic block model inherently

cannot approximate the number of triangles unless the rank of the block model grows nearly

linearly with the size of the graph as shown in the following simple observation.

Proposition 4.1.1. Let M be a symmetric matrix with entries in [0, 1] such that each row

sum is at most d. Then the expected number of simple k-cycles in a graph obtained by sampling

M is at most dkrank(M).

The proposition follows by observing that the expected number of simple k-cycles is at most

the trace of Mk. In particular, any rank r approximation of the d-dimensional hypercube

where each vertex has degree O(d) has fewer than O(rd4) simple four-cycles, whereas the

hypercube has 2dd2 of them.

The local neighborhood distribution approach is hopeless for this setting since the degree is

not bounded and therefore there are infinitely many r-neighborhoods [BS01]. Other methods

designed for the sparse but not bounded degree setting do not produce a satisfactory limit

object for the sequence of hypercubes. The theory of Lp graphons generalizes the graphon

to a range of sparse settings [Bor+14]. While the Lp graphon gives approximations for a

generalized notion of cut metric for sparse graphs, graphs sampled from the Lp graphon limit

of the sequence may have very different normalized subgraph counts than the sequence (i.e.

no “counting lemma” is possible). Frenkel redefined homomorphism density with a different
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normalization based on the size of the subgraph, but this notion does not help distinguish the

limiting number of non-tree structures for sequences of graphs with degree tending to infinity

[Fre16]. The recently developed notion of graphex [VR16b, Bor+17b] is the limit object for

sequences of sampling convergent graphs. However, any sequence of nearly d-regular graphs

with d = o(n) is sampling convergent since the sampled object according to this notion is a

set of isolated edges with high probability. Therefore the graphex cannot distinguish between

different graph sequences that are nearly regular.

Another natural approach to constructing a graph with high simple cycle density is to

repeatedly add simple cycles on a randomly chosen subset of vertices. However, this process

yields low cycle to edge ratios for sparse graphs. For example, a graph on n vertices with

average degree less than
√
n built by randomly adding triangles will have a triangle-to-edge-

ratio at most 2/3. (See Theorem 4.7.1.) In [New09] Newman considers a similar approach

which produces graphs with varied degree sequences and triangle-to-edge ratio strictly less

than 1/3. However, it is not hard to construct graphs with arbitrarily high triangle ratio

(growing with the size of the graph).

Normalizing closed walk and cycle counts. In order to meaningfully compare the

closed walk counts and cycle counts between graphs of different sizes, it is necessary to

normalize the counts. For dense graphs, homomorphism density of a subgraph H in a graph

on n vertices is the number of copies of a subgraph H divided by n|v(H)|. This normalization

is natural because it gives the probability H is present on a random subset of vertices. For

the sparse case, this normalization causes the homomorphism density of all subgraphs tend

to zero, and so we must define a different normalization.

When considering a sequence of graphs, we can find a proper normalization of the closed

walk counts by looking at the rate of growth of the counts. A graph that locally looks like

a d-ary tree has approximately dk/2 closed k-walks at each vertex for k even. Therefore
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the appropriate normalization of the closed k-walk counts for a sequence of such graphs is

ndk/2. We will see in Section 4.3.1 that this normalization is also natural for the sequence of

hypercubes. A sequence of sparse graphs in which each vertex’s local neighborhood is dense

(e.g., a collection of d cliques of size d), the appropriate normalization for the walk counts

is ndk−1. We define the sparsity exponent of a sequence to measure the rate of growth of

the number of closed k-walks in the sequence. Let Wk(G) be the number of simple cycles of

length k in a graph G. 2

Definition 4.1.2. For 0 < α ≤ 1, we define the α normalized closed k-walk count as

Wk(G,α) =
Wk(G)

nd1+α(k−2)

where n = |V (G)| and d is the average degree of G.

Definition 4.1.3 (sparsity exponents). Let (Gi) be a sequence of graphs. Let

α = inf
b∈[1/2,1]

{
b | lim

i→∞
Wj(Gi, b) exists for all j

}
be the sparsity exponent of the sequence. For k ≥ 3, let

αk = inf
b∈[1/2,1]

{
b | lim

i→∞
Wj(Gi, b) exists for all j ≤ k

}
be the k-sparsity exponent of the sequence.

We define the minimum of the sparsity exponent to be 1/2 because all d-regular graphs

have at least Catk/2nd
k/2 closed k-walks obtained from tracing trees. For two sequences of

graphs with matching degrees, a higher sparsity exponent indicates denser local neighborhoods

and therefore more closed walks.

2Denoting the number of closed k-walks by Wk(G), and the eigenvalues of the adjacency matrix of G as
λ1(G) ≥ λ2(G), · · · ≥ λn(G), we have Wk(G) =

∑n
i=1 λ

k
i .
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While the sparsity exponent gives a natural way to normalize the closed walk counts for a

sequence of sparse graphs, it does not help determine the appropriate normalization factor for

approximating an individual graph (not contextualized in a sequence). When approximating

an individual graph, we instead choose to focus on the number of simple k-cycles denoted

Ck(G) and normalize by the number of edges in the graph. Throughout this paper, for

convenience we refer to a simple k-cycle as a k-cycle. For example, under this convention

each triangle is counted 6 times because there are 6 closed walks that traverse a triangle.

As described in the previous section, approximating Wk(G) and Ck(G) for sparse graphs

is already out-of-reach for known methods that work well in the dense and bounded-degree

settings. The main contribution of this paper is the following model which can approximate

the normalized closed walk and cycle counts for a large class of graphs.

The Random Overlapping Communities Model. We introduce a simple generalization

of the Erdős-Rényi model that can approximate the normalized cycle and walk counts of a

wide range of sparse graphs. The Random Overlapping Communities (ROC) model generates

graphs that are the union of many relatively dense random communities. A community is

an instance of an Erdős-Rényi graph Gs,q (or a bipartite Erdős-Rényi graph Gs/2,s/2,q) on a

set of s randomly chosen vertices. A ROC graph is the union of many randomly selected

communities that overlap, so every vertex is a member of multiple communities. The number,

size and density of communities are drawn from a distribution. Figure 4.1 illustrates this

construction.

An instantiation of the ROC model is given by a distribution D on triples (s, q, b) where

s is an integer, 0 ≤ q ≤ 1 and b < s is an integer indicating bipartiteness. A graph of a

desired size n and expected degree d is generated by repeatedly selecting a triple (s, q, b)

from the distribution D and picking each vertex with probability s/n and adding a random

graph of edge density q in the subgraph. We refer to each such structure as a community. If
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b > 0, then the subset of s vertices is partitioned into two subsets of expected size b, s− b

and edges are added only between these subsets. For this paper we will set b = 0 or b = s/2.

See Section 4.4.1 for a formal definition of the model. We note that the ROC model can be

viewed as a generalization of the Erdős-Rényi model (with s = n and q = d/n) and maintains

the property that it is easy to sample given its defining parameters.

Figure 4.1: Left: in each step of the construction of a ROC(n, d, s, q) graph, an instance of
Gs,q is added on a set of s randomly selected vertices. Right: three communities of a ROC
graph.

Organization. The paper has two main objectives: to show that ROC is an effective

approximation for individual sparse graphs (Section 4.2) and to develop a theory of sparse

graph limits in which the ROC model is a natural limit object (Sections 4.3 to 4.5). These

two parts are self-contained and may be read independently. We end with a discussion

of limitations of the model, possible extensions, and open questions (Section 4.6). In the

remainder of this section we summarize the results.
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4.1.1 ROC for approximating a single graph

In Section 4.2, we show that the ROC model can approximate the triangle-to-edge and

four-cycle-to-edge ratios of a graph, and can be tuned to exhibit high clustering coefficient

(the probability two randomly selected neighbor of a random vertex are adjacent). Since

these properties are of interest in practice, the model may be of use in real-world contexts.

In addition, we introduce a variant of the model that produces graphs with varied degree

distributions. For a comparison of the ROC model to existing models used in practice see

Section 4.2.4.

First, we show that for almost all triangle-to-edge and four-cycle-to-edge ratios arising

from some graph, there exists a single community size s density q such that the ROC model

produces graphs with these ratios, simultaneously. Moreover, the vanishing set of triangle

and four-cycle ratio pairs not achievable exactly can be approximated to within a small error.

Theorem 4.1.4.

1. Let H be a graph and let ci = Ck(H)/|E(H)| for i = 3, 4. Then c3(c3/2− 1) ≤ c4.

2. For any c3 and c4 such that c2
3 ≤ 2c4, and d = o(n1/3), the random graph

G ∼ ROC (n, d,D) where D is the distribution with support one on s =
2c24
c33

and q =
c23
2c4

has

lim
n→∞

2E(C3(G))

nd
= c3 and lim

n→∞

2E(C4(G))

nd
= c4.

Theorem 4.2.2 gives conditions for determining when it is possible to construct a ROC

family that matches a vector of k-cycle-to-edge ratios. These conditions are related to the

conditions for determining when the ROC model is the limit object for a sequence of graphs.

Modeling the clustering coefficient of real-world graphs. In Theorem 4.2.3, we

prove the average clustering coefficient of a ROC graph (with one community type) is
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approximately sq2/d, meaning that tuning the parameters s and q with d fixed yields wide

range of clustering coefficients for a fixed density. Furthermore, Theorem 4.2.4 describes the

inverse relationship between degree and clustering coefficient in ROC graphs, a phenomena

observed in protein-protein interaction graphs, the internet, and various social networks

[Ste+05, Mah+06, Mis+07, Ahn+07].

Diverse degree distributions and the DROC model. We also introduce an extension

of our model which produces graphs that match a target degree distribution in expectation.

The extension uses the Chung-Lu configuration model: given a degree sequence d1, . . . dn,

an edge is added between each pair of vertices vi and vj with probability
didj∑n
i=1 di

, yielding a

graph where the expected degree of vertex vi is di [CL02]. In the DROC model, a modified

Chung-Lu random graph is placed instead of an E-R random graph in each iteration. Instead

of normalizing the probability an edge is selected in a community by the sum of the degrees

in the community, the normalization constant is the expected sum of the degrees in the

community.

4.1.2 ROC as a limit object for sparse graph sequences

We show that the ROC model is a limit for several interesting sequences of graphs and a give

a characterization of sequences which are the limits of ROC. To state our results, we first

define the convergence of sparse graph sequences and their limits. We consider convergence

first for each k and then for all positive integers k, referring to the latter as full convergence.

In Section 4.3, we compute the limits for the hypercube sequence, the rook’s graph sequence

(a family of strongly regular graphs) as well as for Erdős-Rényi random graphs.

Definition 4.1.5 (k-convergent). Let (Gi) be a sequence of graphs with k-sparsity exponent

αk. The sequence (Gi) is k-convergent if limi→∞Wj(Gi, αk) exists for all j ≤ k. We let

wj = limi→∞Wj(Gi, αk) and say (w3, w4, . . . , wk) is the k-limit of the graph sequence (Gi).
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Definition 4.1.6 (fully convergent). Let (Gi) be a sequence of graphs with sparsity exponent

α. We say the sequence is fully convergent if limi→∞Wj(Gi, α) exists for all j. We let

wj = limi→∞Wj(Gi, α) and say (w3, w4, . . . ) is the limit of the graph sequence (Gi).

Informally, we say that a ROC family (a distribution on triples) achieves the limit of a

convergent sequence of graphs (Gi) if the normalized expected number of walks in a graph

drawn from the ROC family matches the limit of (Gi). We consider the ROC family that

achieves the limit to be a limit object of (Gi). Since a particular limit may be achieved by

many ROC families, the limit object for a sequence is not unique.

We now formalize the notion of a ROC family achieving a vector of normalized counts as

its limit. We use achievable to describe when a ROC family realizes a k-limit, fully achievable

to describe when a ROC family realizes a limit, and totally k-achievable to describe the

weaker notion that any subsequence of a limit is achievable by a ROC family.

Definition 4.1.7 (k-achievable, totally k-achievable, fully achievable).

1. The k-limit (w3, w4, . . . wk) of a sequence of graphs with sparsity exponent α is k-

achievable by ROC if there exists a ROC family D such that for all 3 ≤ j ≤ k, when

d→∞ and d = o
(
n1/((1−a)k+2a−1)

)
lim
n→∞

E(Wj (ROC(n, d,D))

nd1+α(j−2)
= wj.

2. The limit of a sequence of graphs totally k-achievable by ROC if every k-limit of the

sequence is achievable (possibly with a different choice for each k).

3. The limit (w3, w4, . . . ) of a sequence of graphs with sparsity exponent α is fully achievable

by ROC if there exists a ROC family D such that for all j ≥ 3, when d→∞ and o (nεi )
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for all ε if a < 1 and di = o(ni) for a = 1

lim
n→∞

E(Wj (ROC(n, d,D)))

nd1+α(j−2)
= wj.

Roughly speaking, the degree upper bounds ensure that the overwhelming majority of simple

cycles are contained entirely in single communities. In Theorem 4.4.13 we show that the

probability that the normalized closed walk counts of G ∼ ROC(n, d,D) deviate from the

family’s limit vanishes as d→∞. Moreover Corollary 4.4.14 gives conditions on ni and di

which guarantee that a sequence (Gi) with Gi ∼ ROC(ni, di,D) almost surely converges to

limit vector achieved by the family.

Results for convergent sequences. We begin with the limit of the sequence of hypercube

graphs, answering the question raised by [LV14].

Theorem 4.1.8. The limit of the sequence of hypercube graphs is totally k-achievable by

ROC.

This theorem generalizes to sequences of Hamming cubes and Cayley graphs of (Z

mod kZ)d (Corollary 4.5.7). These sequences have the same limit as the hypercube sequence

and therefore are achieved by the same ROC family.

The next theorem is about a sequence of strongly regular graphs called rook’s graphs (the

Cartesian product of two complete graphs, see Lemma 4.3.2).

Theorem 4.1.9. The limit of the sequence of rook’s graphs is fully achievable by ROC.

We also discuss the convergence of sequences of Erdős-Rényi random graphs (Lemma 4.3.6),

demonstrating the limits of some sequences cannot be achieved exactly by ROC familes, but

they can be approximated to arbitrarily small error.
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Achievability and the Stieltjes condition. A limit vector L is achieved by a ROC

family when the normalized expected walk counts of a graph sampled from the ROC family

match L up to terms that vanish as the size of the sampled graph grows. The number of

closed walks in a ROC graph is related to its simple cycles counts, and the expected simple

cycle counts are the moments of a distribution determined by the ROC parameters. Therefore,

determining which vectors can be achieved by a ROC family is closely related to the Stieltjes’

moment problem: given a sequence whether there exists a discrete distribution with positive

support with that moment sequence? This is the classical Stieltjes moment problem, whose

solution is characterized by the definition below (see Lemma 4.4.22).

Definition 4.1.10 (Stietljes conditions). The Hankel matrices of a sequence µ are

H
(0)
2s =



µ0 µ1 . . . µs

µ1

...
. . .

...

µs . . . µ2s


and H

(1)
2s+1 =



µ1 µ2 . . . µs+1

µ2

...
. . .

...

µs+1 . . . µ2s+1


.

1. The vector µ = (µ0, µ1, . . . µn) satisfies the Stieltjes condition if

det
(
H

(0)
2s

)
≥ 0 for all 0 ≤ 2s ≤ n and det

(
H

(1)
2s+1

)
≥ 0 for all 1 ≤ 2s+ 1 ≤ n,

and for k the smallest integer such that det
(
H

(0)
2k

)
= 0 or det

(
H

(1)
2k+1

)
= 0,

det
(
H

(1)
2i

)
= 0 and det

(
H

(1)
2i+1

)
= 0 for all k ≤ i ≤ n.

2. The infinite vector µ = (µ0, µ1, . . . ) satisfies the full Stieltjes condition if the above

statements hold for all n.
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In ROC families that produce sequences of graphs with sparsity exponent greater than

1/2, the counts of simple cycles dominate the total closed walk counts. Therefore, a limit is

achievable when it is possible to construct a ROC family with normalized simple cycle counts

that match the desired normalized closed walk counts. The cycle counts are dominated by

the cycles contained entirely in one community. Every community contributes even cycles,

but only the non-bipartite communities contribute to the odd cycle counts. In the following

theorems, the parameters si and ti count the number of simple i-cycles in non-bipartite and

bipartite communities respectively, and the parameter γ indicates the expected fraction of

communities that are non-bipartite.

Theorem 4.1.11 (achievability with sparsity exponent > 1/2). A limit vector (w3, w4, . . . wk)

is achievable by ROC with sparsity exponent greater than 1/2 if and only if there exists

γ ∈ [0, 1], s0, s1, . . . sk, t0, t2, . . . t2b k
2
c ∈ R+, s2, t2 ≤ 1 such that (s0, s1, s2, . . . sk) and

(t0, t2, . . . t2b k
2
c) satisfy the Stieltjes condition and for 3 ≤ j ≤ k

wj =


γsj j odd

γsj + (1− γ)tj j even.

Approximating sequences with sparsity exponent 1/2 is more complicated because the

number of simple cycles can be of the same order as the number of closed walks that are

not simple cycles in ROC families that produce graph sequences with sparsity exponent 1/2.

In Theorem 4.4.3 we prove that the polynomial T given in Definition 4.4.1 describes the

relationship between simple cycle counts and closed walks counts in ROC graphs. Moreover

we show that T describes the relationship between simple cycle counts and closed walk counts

in locally regular graphs in which each vertex is in the same number of cycles. A limit with

sparsity exponent 1/2 is achievable when it is possible to construct a ROC family with

normalized simple cycle counts that match the inverse of this polynomial T applied to the

68



desired normalized closed walk counts.

Theorem 4.1.12 (achievability with sparsity exponent 1/2). Let T ((c3, c4, . . . ck)) = (w3, w4, . . . wk)

be the transformation of a vector given in Definition 4.4.1. The limit vector (w3, w4, . . . wk)

is achievable by ROC with sparsity exponent 1/2 if and only if there exists γ ∈ [0, 1],

s0, s1, s2, . . . sk, t0, t2, . . . t2b k
2
c ∈ R+, s2, t2 ≤ 1 such that (s0, s1, s2, . . . sk) and (t0, t2, . . . t2b k

2
c)

satisfy the Stieltjes condition and for 3 ≤ j ≤ k

cj =


γsj j odd

γsj + (1− γ)tj j even.

The analogous theorems for the full achievability of limits by ROC require the full

Stieltjes condition. See Theorems 4.4.19 and 4.4.20 in Section 4.4.3. The Stieltjes condition

also determines when a vector of k-cycle-to-edge ratios can be matched by a ROC family,

demonstrating the relevance of our method for different normalizations (Theorem 4.2.2).

All 4-limits can be achieved by a ROC model; however not all k-limits can be achieved. In

Section 4.6.1 we give an example of a graph sequences with a 6-limit that cannot be achieved

by a ROC family.

Theorem 4.1.13. The limit (w3, w4) of any convergent sequence of graphs with increasing

degree is achieved by a ROC family.

We have already seen that any realizable triangle and four-cycle count normalized by the

number of edges can be approximated by a ROC model with one community type.

4.2 Approximating a graph with a ROC

In this section we consider the utility of the ROC model for approximating individual graphs.

First we show that almost all pairs of triangle-to-edge and four-cycle-to-edge ratio can be
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approximated with a ROC graph with one community type and give conditions for when

a vector of k-cycle-to-edge ratios can be achieved by ROC generally. (In Appendix B, we

analyze the connectivity of ROC graphs.) Then, we shift our focus to modeling real-world

graphs with ROC. In Section 4.2.2 we show that ROC graphs exhibit high clustering coefficient

and an inverse relationship between clustering coefficient and degree, a phenomena observed

in real world networks. In Section 4.2.3 we introduce an extension of the ROC model that

produces graphs with varied degree distributions. Finally we end the section by comparing

the ROC model to existing models used in practice (Section 4.2.4).

Often in this section, we focus on the special case of the ROC model when the distribution

of communities D is taken to be a single community s and density q. When this is clear from

context, we denote the model ROC(n, d, s, q). In terms of the formal parameterization of the

ROC model given in Section 4.4.1, a = 0 and µ is the the distribution with support one on

mi = s, qi = q and βi = 0.

4.2.1 The k-cycle-to-edge ratios of ROC graphs

In this section we prove Theorem 4.1.4, which states that most triangle-to-edge and four-cycle-

to-edge ratios can be approximated simultaneously by the ROC model on one community.

Then we prove Theorem 4.2.2, which describes more generally when it is possible to match

all j-cycle-to-edge ratios up to some k with the ROC model.

To begin we consider the ROC model with all communities of size s and density q. The

following lemma describes the k-cycle-to-edge ratios of ROC graphs in this setting. The

lemma is a special case of Corollary 4.4.12.

Lemma 4.2.1. Let G ∼ ROC(n, d, s, q). Then

Rk = lim
n→∞

2E(Ck(G))

nd
= 2sk−2qk−1 for d = o(n1/(k−1)).
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By varying s and q, we can construct a ROC graph that achieves any ratio of triangles to

edges or any ratio of four-cycles to edges. By setting s =
√

log(n)/4 and q = 1, we obtain a

family of graphs with the hypercube four-cycle-to-edge ratio log(n)/4, something not possible

with any existing random graph model.

Moreover, it is possible to achieve a given ratio by larger, sparser communities or by

smaller, denser communities. For example communities of size 50 with internal density 1

produce the same triangle ratio as communities of size 5000 with internal density 1/10. Figure

4.2 illustrates the range of s and q that achieve various triangle and four-cycle ratios. Note

that it is possible to achieve R3 = 3 and R4 ∈ {100, 50, 25} but not R3 = 3 and R4 ∈ {3, 10}.
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Figure 4.2: Left: A wide range of s and q yield the same R3 and R4 ratio (left and right
respectively).

We apply Lemma 4.2.1 to prove Theorem 4.1.4, which states that any non-zero triangle

and four-cycle ratios satisfying c2
3 ≤ 2c4 can be approximated with the ROC model. For every

graph with triangle and four-cycle ratios in the narrow range c3(c3/2− 1) ≤ c4 ≤ c2
3/2, there

exists a ROC construction that matches c3 and can approximate c4 by c2
3/4, i.e., up to an

additive error c3/8 (or multiplicative error of at most 1/(c3/2− 1) which goes to zero as c3

increases).

Proof. (of Theorem 4.1.4.) (1) For clarity of this proof we refer to the number triangle and

four-cycle structures (not counted as walks). Under this convention, the number of triangles
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is T3 = C3(H)/6 and the number of four-cycles is T4 = C4(H)/8. Note T3 = |E(H)|c3/6

and T4 = c4|E(H)|/8. For each edge in H, let te be the number of triangles containing

e, so
∑

e∈E(H) te = 3T3 = c3|E(H)|/2. If triangles abc and abd are present, then so is the

four-cycle acbd. This four-cycle may also be counted via triangles cad and cdb. Therefore

T4 ≥ 1
2

∑
e∈E(H)

(
te
2

)
. This expression is minimized when all te are equal. We therefore obtain

c4|E(H)|
8

= T4 ≥
|E(H)|

2

(
c3/2

2

)
=
c3(c3/2− 1)|E(H)|

8
.

It follows that c3(c3/2−1)
c4

≤ 1.

(2) Since the hypothesis guarantees q ≤ 1, applying Lemma 4.2.1 toG ∼ ROC
(
n, d,

2c24
c33
,
c23
2c4

)
implies the desired statements.

By increasing the support size of the distribution over communities, it is possible to achieve

a wider range of k-cycle-to-edge-ratios. The following theorem shows that the condition for

determining whether a vector of k-cycle-to-edge ratios of a graph can be matched by a ROC

family is closely related to determining if a limit of a sequence of graphs is achievable by a

ROC family.

Theorem 4.2.2. There exists a ROC family such that for G ∼ ROC(n, d,D) with d =

o
(
n1/(k−1)

)
lim
n→∞

2E(Cj(G))

nd
= cj for 3 ≤ j ≤ k

if and only if there exists γ ∈ [0, 1], s0, s1, s2, . . . sk, t0, t2, . . . t2b k
2
c ∈ R+, s2, t2 ≤ 1 such that

(s0, s1, s2, . . . sk) and (t0, t2, . . . t2b k
2
c) satisfy the Stieltjes condition and for 3 ≤ j ≤ k

cj/2 =


γsj j odd

γsj + (1− γ)tj j even.

The proof of the above theorem is a slight modification of the proofs of the main limit
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Figure 4.3: The clustering coefficient in real world graphs is much greater than that of an
E-R random graph of the same density. Data from Table 3.1 of [New03].

achievability theorems (Theorem 4.1.12, Theorem 4.1.11), and so we give the proof in

Section 4.4.3. Later we show that a ROC family that achieves a normalized closed walk

count limit is parameterized so that the community sizes grow with da for some constant

a ∈ [1/2, 1]. In the proof of the above theorem we show that ROC family that approximates

a vector of k-cycle-to-edge ratios will have constant community sizes.

4.2.2 Approximating clustering coefficient

Closely related to the density of triangles is the clustering coefficient at a vertex v, the

probability two randomly selected neighbors are adjacent:

C(v) =
|{{a, b} : a, b ∈ N(v), a ∼ b}|

deg(v)(deg(v)− 1)/2
.

Equivalently the clustering coefficient is twice the ratio of the number of triangles containing

v to the degree of v squared. Figure 4.3 illustrates the markedly high clustering coefficients of

real-world graphs as compared with Erdős-Rényi (E-R) graphs of the same density. We show

that the ROC model can be tuned to produce graphs with a variety of clustering coefficients

at any density. The proofs in this section are quite technical and left to Section 4.2.2.
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Theorem 4.2.3 gives an approximation of the expected clustering coefficient when the

degree and average number of communities per vertex grow with n. The exact statement is

given in Lemma 4.2.7 of Section 4.2.2, and bounds in a more general setting are given by

Equation (4.4).

Theorem 4.2.3. Let C(v) denote the clustering coefficient of a vertex v with degree at least

2 in a graph drawn from ROC(n, d, s, q) with d = o(
√
n), d < (s− 1)qesq, d = ω(sq log nd

s
),

s2q = ω(1), and sq = o(d). Then

E(C(v)) = (1 + o(1))
sq2

d
.

Unlike in E-R graphs in which local clustering coefficient is independent of degree, higher

degree vertices in ROC graphs have lower clustering coefficient. High degree vertices tend

to be in more communities, and thus the probability two randomly selected neighbors are

in the same community is lower. Figure 4.4 illustrates the relationship between degree and

clustering coefficient, the degree distribution, and the clustering coefficient for two ROC

graphs with different parameters and the E-R random graph of the same density.

Theorem 4.2.4. Let C(v) denote the clustering coefficient of a vertex v in a graph drawn

from ROC(n, d, s, q) with d = o(
√
n), s = ω(1) and deg(v) ≥ 2sq. Then

E(C(v) | deg(v) = r) =
sq2

r
(1 + or(1))

Clustering coefficient proofs

Remark 4.2.5. Theorem 4.2.3 gives bounds on the expected clustering coefficient up to

factors of (1 + o(1)). The clustering coefficient at a vertex is only well-defined if the vertex

has degree at least two. Given the assumption in Theorem 4.2.3 that d = ω(sq log nd
s

),
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Figure 4.4: A comparison of the degree distributions and clustering coefficients of 100
graphs with average degree 25 drawn from each G10000,0.0025, ROC(10000, 25, 30, 0.2), and
ROC(10000, 25, 30, 0.1). The mean clustering coefficients are 0.00270, 0.06266, and 0.01595
respectively.

d < (s − 1)qesq, and s = ω(1), Lemma 4.2.6 implies that the fraction of vertices of degree

strictly less than two is o(1). Therefore we ignore the contribution of these terms throughout

the computations for Theorem 4.2.3 and supporting Lemma 4.2.7. In addition we divide by

deg(v)2 rather than by deg(v)(deg(v) − 1) in the computation of the clustering coefficient

since this modification only affects the computations up to a factor of (1 + o(1)).

Lemma 4.2.6. If d = ω(sq log nd
s

), s = ω(1), s = o(n), and d < (s − 1)qesq, then a graph

from ROC(n, d, s, q) a.a.s. has no vertices of degree less than 2.

Proof. Theorem 4.7.2 implies there are no isolated vertices a.a.s. We begin by computing the

probability a vertex has degree one.

P(deg(v) = 1) =

nd
s2q∑
i=1

P(v is in i communities)q(1− q)si−1

=

nd
s2q∑
i=1

( nd
s(s−1)q

i

)( s
n

)i (
1− s

n

) nd
s(s−1)q

−i
q(1− q)si−1

≤ (1 + o(1))

nd
s2q∑
i=1

(
nd

s(s− 1)q

)i ( s
n

)i
e−

d
sq

+ si
n qe−qsi+q
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= (1 + o(1)) qe−
d
sq

nd
s2q∑
i=1

(
de−sq

(s− 1)q

)i
= O

(
de−sq−

d
sq

s

)

Let X be a random variable that represents the number of degree one vertices of a graph

drawn from ROC(n, d, s, q). When d = ω(sq log nd
s

), we obtain

P(X > 0) ≤ E(X) = O

(
nde−sq−

d
sq

s

)
= o(1).

Lemma 4.2.7. Let C(v) denote the clustering coefficient of a vertex v of degree at least 2 in

a graph drawn from ROC(n, d, s, q) with d = o(
√
n) and d = ω(sq log nd

s
). Then

E(C(v)) = (1 + o(1))


nd
s2q∑
i=1

( nd
s2q

i

)( s
n

)i (
1− s

n

) nd
s2q
−i s(s− 1)q3k

(sqk + 2− 2q)2

 .

Proof. For ease of notation, we ignore factors of (1 + o(1)) throughout as described in

Remark 4.2.5. First we compute the expected clustering coefficient of a vertex from an

ROC(n, d, s, q) graph given v is contained in precisely k communities. Let X1, . . . Xk be

random variables representing the degree of v in each of the communities, Xi ∼ Bin(s, q).

We have

E(C(v)| v in k communities ) = E

∑k
i=1Xi(Xi − 1)q(∑k

i=1Xi

)2

 (4.1)

= qk E
(

X1(X1 − 1)

(sq(k − 1) +X1)2

)
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= qk E
(

X2
1

(sq(k − 1) +X1)2

)
− qk E

(
X1

(sq(k − 1) +X1)2

)
.

Write X1 =
∑s

i=1 yi where yi ∼ Bernoulli(q). Using linearity of expectation and the

independence of the y′is we have

E
(

X1

(sq(k − 1) +X1)2

)
= sE

(
y1

(sq(k − 1) + (s− 1)q + y1)2

)
=

sq

(sq(k − 1) + (s− 1)q + 1)2 ,

and

E
(

X2
1

(sq(k − 1) +X1)2

)
= E

(
(
∑s

i=1 yi)
2

(sq(k − 1) +
∑s

i=1 yi)
2

)

= sE
(

y2
1

(sq(k − 1) + q(s− 1) + y1)2

)
+ s(s− 1)E

(
(y1y2)2

(sq(k − 1) + (s− 2)q + y1 + y2)2

)

=
sq

(sq(k − 1) + q(s− 1) + 1)2 +
s(s− 1)q2

(sq(k − 1) + (s− 2)q + 2)2 .

Substituting in these values into Equation (4.1), we obtain

E(C(v)|v ∈ k communities ) = qk

(
s(s− 1)q2

(sq(k − 1) + (s− 2)q + 2)2

)
=

s(s− 1)q3k

(sqk + 2− 2q)2 . (4.2)

Let M be the number of communities a vertex is in, so M ∼ Bin
(
nd
s2q
, s
n

)
. It follows

E(C(v)) =

nd
s2q∑
i=1

P( v in k communities )E(C(v)| v in k communities )

=

nd
s2q∑
i=1

( nd
s2q

i

)( s
n

)i (
1− s

n

) nd
s2q
−i s(s− 1)q3k

(sqk + 2− 2q)2 .
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The proof of Theorem 4.2.3, relies on the follow two lemmas regarding expectation of

binomial random variables.

Lemma 4.2.8. Let X ∼ Bin(n, p). Then

1. E
(

1
X+1
|X ≥ 1

)
= 1−(1−p)n+1−(n+1)p(1−p)n

p(n+1)
and

2. E
(

1
X+1

)
= 1−(1−p)n+1

p(n+1)
.

Proof. Observe

E
(

1

X + 1
|X ≥ 1

)
=

n∑
i=1

(
n

i

)
pi(1− p)n−i

i+ 1

=
1

p(n+ 1)

n∑
i=1

(
n+ 1

i+ 1

)
pi+1(1− p)n−i

=
1− (1− p)n+1 − (n+ 1)p(1− p)n

p(n+ 1)
.

Similarly

E
(

1

X + 1

)
=

n∑
i=0

(
n

i

)
pi(1− p)n−i

i+ 1
=

1

p(n+ 1)

n∑
i=0

(
n+ 1

i+ 1

)
pi+1(1− p)n−i =

1− (1− p)n+1

p(n+ 1)
.

Lemma 4.2.9. Let X ∼ Bin(n, p). Then

E
(

1

X
|X ≥ 1

)
≤ 1

p(n+ 1)

(
1 +

3

p(n+ 2)

)
.

78



Proof. Note that when X ≥ 1,

1

X
≤ 1

X + 1
+

3

(X + 1)(X + 2)
.

By Lemma 4.2.8,

E
(

1

X + 1
|X ≥ 1

)
≤ 1

p(n+ 1)
. (4.3)

We compute

E
(

1

(X + 1)(X + 2)
|X ≥ 1

)
=

n∑
i=1

(
n
i

)
pi(1− p)n−i

(i+ 1)(i+ 2)

=
1

p2(n+ 2)(n+ 1)

n∑
i=1

(
n+ 2

i+ 2

)
pi+2(1− p)n−i

≤ 1

p2(n+ 2)(n+ 1)
.

Taking expectation of Equation (4.3) gives

E
(

1

X
|X ≥ 1

)
≤ 1

p(n+ 1)

(
1 +

3

p(n+ 2)

)
.

Proof. (of Theorem 4.2.3.) For ease of notation, we ignore factors of (1 + o(1)), as described

in Remark 4.2.5. It follows from Equation (5.24) in the proof of Lemma 4.2.7 that

q

k + 1
≤ E(C(v)|v ∈ k communities ) ≤ q

k
,

where the left inequality holds when q(s− 1) ≥ 5.

We now compute upper and lower bounds on E(C(v)), assuming v is in some community.

Let M be the random variable indicating the number of communities containing v, M ∼
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Bin
(

nd
s(s−1)q

, s
n

)
. It follows

E(C(v)) =

nd
s2q∑
k=1

P(M = k)E(C(v)|M = k)

q E
(

1

M + 1
|M ≥ 1

)
≤ E(C(v)) ≤ q E

(
1

M
|M ≥ 1

)
.

Applying Lemmas 4.2.8 and 4.2.9 to the lower and upper bounds respectively, we obtain

q
(

1−
(
1− s

n

) nd
s(s−1)q

+1 −
(

nd
s(s−1)q

+ 1
) (

1− s
n

) nd
s(s−1)q

)
d

(s−1)q
+ s

n

≤ E(C(v)) ≤ q
d

(s−1)q
+ s

n

(
1 +

3
d

(s−1)q
+ 2s

n

)

which for s = o(n) simplifies to

(1 + o(1))
(s− 1)q2

d

(
1− nd

s(s− 1)q
e−d/((s−1)q)

)
≤ E(C(v)) ≤ (s− 1)q2

d

(
1 +

(s− 1)q

d

)
(1 + o(1)) .

(4.4)

Under the assumptions s2q = ω(1) and sq = o(d), we obtain our desired result

E(C(v)) = (1 + o(1))

(
sq2

d

)
.

The following lemma will be used in the proof of Theorem 4.2.4.

Lemma 4.2.10. The X be a nonnegative integer drawn from the discrete distribution with

density proportional to f(x) = xr−xe−ax. Let z = argmax f(x). Then

P
(
|x− z| ≥ 2t

√
z
)
≤ e−t+1.
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Proof. First we observe that f is logconcave:

d2

dx2
ln f(x) =

d

dx
(−a+

r

x
− 1− lnx) = − r

x2
− 1

x

which is nonpositive for all x ≥ 0. We will next bound the standard deviation of this density,

so that we can use an exponential tail bound for logconcave densities. To this end, we

estimate max f . Setting its derivative to zero, we see that at the maximum, we have

a+ 1 =
r

x
− lnx. (4.5)

The maximizer z is very close to

r

(a+ 1) + ln r
(a+1)+ln(r/(a+1))

, (4.6)

and the maximum value z satisfies zr−ze−az = zre−r+z. Now we consider the point z + δ

where f(z + δ) = f(z)/e, i.e.,

(z + δ)r−z−δe−az−aδ

zr−ze−az
≤ e−1.

The LHS is

(
1 +

δ

z

)r−z
z−δ

(
1 +

δ

z

)−δ
e−aδ ≤ eδ(

r
z
−1−a−ln z)e−

δ2

z

≤ e−
δ2

z

where in the second step we used the optimality condition (4.5). Thus for δ = (1 + o(1))
√
z,

f(x+ δ) ≤ f(x)/e. By logconcavity (which says that for any x, y and any λ ∈ [0, 1], we have
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f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ) we have

f(x+ δ) = f

((
1− 1

t

)
x+

1

t
(x+ tδ)

)
≥ f(x)1−1/tf(x+ tδ)1/t

for any t ≥ 1. It follows

f(x+ tδ) ≤ f(x)/et (4.7)

for all t (since we can apply the same argument for z − δ). Taking x = z in Equation (4.7)

and using the observation
∑

x∈Z+ f(x) ≥ f(z), it follows that

P
(
x = z + t

√
z
)
≤ e−t and P

(
x = z − t

√
z
)
≤ e−t

and so

P
(
|x− z| ≥ t

√
z
)
≤ 2e−t ≤ e−t+1.

Proof. (of Theorem 4.2.4). Let M denote the number of communities a vertex v is selected

to participate in. We can write

E(C(v)|deg(v) = r) =
r∑

k= r
s

E(C(v)|deg(v) = r,M = k)P(M = k|deg(v = r)

=
r∑

k= r
s

E(C(v)|deg(v) = r,M = k)P(deg(v) = r|M = k)
P(M = k)

P(deg(v) = r)
.

First we compute the expected clustering coefficient of a degree r vertex given that it is k

communities:

E(C(v)|deg(v) = r and M = k) =

∑
i 6=j,i,j∈N(v) q (P(i, j part of same community))

deg(v) (deg(v)− 1)
=
q

k
.
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Next we note that M is a drawn from a binomial distribution, and the degree of v is drawn

from a sum of k binomials, each being Bin(s, q). Therefore,

P(M = k)P(deg(v) = r|M = k) =

( nd
s(s−1)q

k

)( s
n

)k (
1− s

n

) nd
s(s−1)q

−k
(
sk

r

)
qr(1− q)sk−r.

Using this we obtain

E(C(v)|deg(v) = r) =

∑r
k= r

s

q
k
P(M = k)P(deg(v) = r|M = k)∑r

k= r
s
P(M = k)P(deg(v) = r|M = k)

= (1 + o(1)) q

∑r
k= r

s

1
k
·
(

d
(s−1)qk

)k
e−

d
(s−1)q

+ sk
n
(
skq
r

)r
e−qsk+qr

∑r
k= r

s

(
d

(s−1)qk

)k
e−

d
(s−1)q

+ sk
n
(
skq
r

)r
e−qsk+qr

= (1 + o(1)) q

∑r
k= r

s

1
k
·
(

d
(s−1)q

)k
kr−ke−qsk∑r

k= r
s

(
d

(s−1)q

)k
kr−ke−qsk

. (4.8)

Writing a = qs− ln(d/(s− 1)q), this is

q

∑r
k= r

s

1
k
· kr−ke−ak∑r

k= r
s
kr−ke−ak

.

Therefore Equation (4.8) is the same as q E(1/x) when x is a nonnegative integer drawn from

the discrete distribution with density proportional to f(x) = xr−xe−ax. We let z be as in

Equation (4.6) of Lemma 4.2.10, so z ≈ r
sq

. We use Lemma 4.2.10 to bound

E
(∣∣∣∣1x − 1

z

∣∣∣∣) ≤ ∞∑
t=1

(
1

z
− 1

z + t
√
z

)
e−t +

√
z−1∑
t=1

(
1

z − t
√
z
− 1

z

)
e−t

=
∞∑
t=1

t
√
ze−t

z(z + t
√
z)

+

√
z−1∑
t=1

t
√
ze−t

z(z − t
√
z)

≤ 1

z

∞∑
t=1

te−t√
z + 1

+

√
z

z

√z/3∑
t=1

3te−t

2z
+

√
z−1∑

t=
√
z/3

te−t


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=
O(1)

z
√
z

+
O(1)

z
√
z

+O

(√
z

3
e−
√
z
3

)
=
O(1)

z
√
z
.

Using this and approximating z by r
sq

, the expectation of x with respect to the density

proportional to f can be estimated:

q E
(

1

x

)
=
q

z

(
1 +O

(
1√
z

))
= (1 + o(1))

sq2

r

(
1 +O

(√
sq

r

))
= (1 + or(1))

sq2

r

as claimed.

4.2.3 Varied degree distributions: the DROC extension

In this section we introduce an extension of our model which produces graphs that match a

target degree distribution in expectation. In each iteration a modified Chung-Lu random

graph is placed instead of an E-R random graph.

DROC(n,D, s, q).

Input: number of vertices n, target degree sequence D = t(v1), . . . t(vn) with mean d.

Output: a graph on n vertices where vertex vi has expected degree t(vi).

Repeat n/((s− 1)q) times:

1. Pick a random subset S of vertices (from {1, 2, . . . , n}) by selecting each vertex

with probability s/n.

2. Add a modified C-L random graph on S, i.e., for each pair in S, add the edge

between them independently with probability
qt(vi)t(vj)

sd
; if the edge already exists,

do nothing.
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Theorem 4.2.11. Given a degree distribution D with mean d and maxi t(vi)
2 ≤ sd

q
, DROC(n,D, s, q)

yields a graph where vertex vi has expected degree t(vi).

We require maxi t(vi)
2 ≤ sd

q
to ensure that the probability each edge is chosen is at most

1. In the DROC model the number of communities a vertex belongs to is independent of

target degree t(v). When t(v) > sd
q

, if v participates in the average number of communities

and is connected to all vertices in each of its communities, it likely will not reach degree

t(v). Therefore when s is low and q is high, the DROC model is less able to capture degree

distributions with long upper tails. Moreover, when s is low and q is high, there will be more

isolated vertices in a DROC graph since the expected fraction of isolated vertices is at least

(1− s/n)n/(q(s−1)). In Theorem 4.2.13 we show that when s is low and q is high the clustering

coefficient is largest. In this regard the DROC model is somewhat limited; it may not be

possible to achieve some very high clustering coefficients while simultaneously capturing the

upper tail of the degree distribution and avoiding isolated vertices.

The following corollary shows that it is possible to achieve a power law degree distribution

with the DROC model for power law parameter γ > 2. We use ζ(γ) =
∑∞

n=1 n
−γ to denote

the Riemann zeta function.

Corollary 4.2.12. Let D ∼ Dγ be the power law degree distribution defined as follows:

P(t(vi) = k) =
k−γ

ζ(γ)
,

for all 1 ≤ i ≤ n. If γ > 2 and

s

q
= ω(1)

ζ(γ)

ζ(γ − 1)
n

1
γ−1 ,

then with high probability D satisfies the conditions of Theorem 4.2.11, and therefore can be

used to produce a DROC graph.
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Taking the distribution Dd with t(v) = d for all v in the DROC model does not yield

ROC(n, d, s, q). The model DROC(n,Dd, s, q) is equivalent to ROC(n, d, s, qd
s

).

By varying s and q we can control the clustering coefficient of a DROC graph.

Theorem 4.2.13. Let C(v) denote the clustering coefficient of a vertex v in graph drawn

from DROC(n,D, s, q) with max t(vi)
2 ≤ sd

q
, s = ω(1), s/n = o(q), and t = t(v). Then

E(C(v)) = (1 + o(1))

(∑
u∈V t(u)2

)2

d3n2s

(
(1− e−t)2q2 + ctq

3
)
,

where ct ∈ [0, 6.2) is a constant depending on t.

Equation Eq. (4.10) in the proof of the theorem gives a precise statement of the expected

clustering coefficient conditioned on community membership.

DROC proofs

Proof. (of Theorem 4.2.13.) Let v be a vertex with target degree t = t(v), and let k denote

the number communities containing v. First we claim deg(v) ∼ Bin
(
(s− 1)k, tq

s

)
. Let s be

an arbitrary vertex of a community S containing v.

P(s ∼ v in S) =
∑
u∈V

P(s = u)P(v ∼ u in S) =
∑
u∈V

1

n

t(u)tq

ds
=
tq

s
.

A vertex in k communities has the potential to be adjacent to (s− 1)k other vertices, and

each adjacency occurs with probability tq/s.

Next, let Nu be the event that a randomly selected neighbor of vertex v is vertex u. We

compute

P(Nu) =
∑
r

P(u ∼ v | deg(v) = r)P(deg(v) = r)

r

86



=
∑
r

P(u ∼ v)P(deg(v) = r | u ∼ v)

r

= P(u ∼ v)E
(

1

deg(v)
| u ∼ v

)
= (1 + o(1))

( s
n

)2 n

(s− 1)q

t(u)tq

sd

(
1− e−tqk

tkq

)
(4.9)

= (1 + o(1))
t(u)

(
1− e−tqk

)
qkdn

.

To see Equation (4.9), note that by the first claim E
(

1
deg(v)

| u ∼ v
)

= E
(

1
X+1

)
where

X ∼ Bin
(
(s− 1)k − 1, tq

s

)
. Applying Lemma 4.2.8 and assuming s = ω(1), we obtain

E
(

1

deg(v)
| u ∼ v

)
=

1− (1− tq
s

)(s−1)k

((s− 1)k) tq
s

= (1 + o(1))
1− e−tqk

tkq
.

Now we compute the expected clustering coefficient conditioned on the number of

communities the vertex is part of under the assumption that s/n = o(q). Observe

E(C(v) | v in k communities) =
∑
u,w

NuNw P(u ∼ w | u ∼ v and w ∼ v)

=
∑
u,w

t(u)t(w)
(
1− e−tqk

)2

(qkdn)2

(
1

k
+
( s
n

)2 n

(s− 1)q

)
t(u)t(w)q

sd

= (1 + o(1))

(
1− e−tqk

)2 (∑
u∈V t(u)2

)2

qd3k3n2s
. (4.10)

Next compute the expected clustering coefficient without conditioning on the number of

communities. To do so we need to compute the expected value of the function f(k) = (1−e−kqt)2
k3

.

We first use Taylor’s theorem to give bounds on f(k). For all k, there exists some z ∈ [1/q, k]

such that

f(k) = f

(
1

q

)
+ f ′

(
1

q

)(
k − 1

q

)
+
f ′′(z)

2

(
k − 1

q

)2

.
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Note that for z ∈ [1/q, k]

f ′′(z) =
12(1− e−kqt)2

k5
− 12e−kqt(1− e−kqt)qt

k4
+

2e−2kqtq2t2

k3
− 2e−kqt(1− e−kqt)q2t2

k3

≤ 12(1− e−kqt)2

k5
+

2e−2kqtq2t2

k3

≤ q5
(
12 + 2t2e−2t

)
,

and

f ′′(z) ≥ 0.

It follows that

f

(
1

q

)
+ f ′

(
1

q

)(
k − 1

q

)
≤ f(k) ≤ f

(
1

q

)
+ f ′

(
1

q

)(
k − 1

q

)
+ q5

(
6 + t2e−2t

)(
k − 1

q

)2

.

(4.11)

Let M ∼ Bin(n/(sq), s/n) be the random variable for the number of communities a vertex

v is part of. (Since s = ω(1) replacing the number of communities by n/(sq) changes the

result by a factor of (1 + o(1)).) We use Equation (4.11) to give bounds on the expectation

of f(M),

E(f(M)) ≤ E

(
f

(
1

q

)
+ f ′

(
1

q

)(
M − 1

q

)
+ q5

(
12 + 2t2e−2t

)(
M − 1

q

)2
)

= (1− e−t)2q3 +
1

q

(
1− s

n

)
q5
(
6 + t2e−2t

)
≤ (1− e−t)2q3 + q4

(
6 + t2e−2t

)
and

E(f(M)) ≥ E
(
f

(
1

q

)
+ f ′

(
1

q

)(
M − 1

q

))
= (1− e−t)2q3.
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Therefore E(f(M)) = (1− e−t)2q3 + ctq
4 for some constant ct ∈ [0, 6.2).

Finally, we compute

E(C(v)) =
∑
k

P(M = k)

(
1− e−tqk

)2 (∑
u∈V t(u)2

)2

qd3k3n2s

=

(∑
u∈V t(u)2

)2

qd3n2s
E(f(M))

= (1 + o(1))

(∑
u∈V t(u)2

)2

d3n2s

(
(1− e−t)2q2 + ctq

3
)
.

Proof. (of Corollary 4.2.12.) Let d = mean(D). We compute

E(d) =
∞∑
k=1

k−γ+1

ζ(γ)
=
ζ(γ − 1)

ζ(γ)
.

Next we claim that with high probability the maximum target degree of a vertex is at

most t0 = n2/(γ−1). Let X be the random variable for the number of indices i with t(vi) > k0.

P
(

max
i
t(vi) > t0

)
≤ E(X) = nP(t(v1) > t0) ≤ n

∞∑
i=t0+1

i−γ

ζ(γ)

≤ n

∫ ∞
i=t0

i−γ

ζ(γ)
=

(
1

ζ(γ)(γ − 1)

)
nt1−γ0 = o(1).

It follows that maxi t(vi)
2 ≤ n

1
γ−1 , and so maxi t(vi)

2 ≤ sd
q

.

4.2.4 Comparison to other random graph models.

The ROC model captures any pair of triangle-to-edge and four-cycle-to edge ratios simultaneously,

and the DROC model can exhibit a wide range of degree distributions with high clustering

coefficient. Previous work [HK02], [ORS13], and [Rav+02] provides models that produce

89



power law graphs with high clustering coefficients. Their results are limited in that the

resulting graphs are restricted to a limited range of power-law parameters, and are either

deterministic or only analyzable empirically. In contrast, the DROC model is a fully random

model designed for a variety of degree distributions (including power law with parameter

γ > 2) and can provably produce graphs with a range of clustering coefficient. The algorithm

presented in [Vol04] produces graphs with tunable degree distribution and clustering, but

unlike ROC graphs, there is no underlying community structure and the resultant graphs

do not exhibit the commonly observed inverse relationship between degree and clustering

coefficient.

The Block Two-Level Erdős and Rényi (BTER) model produces graphs with scale-free

degree distributions and random dense communities [SKP12]. However, the communities in

the BTER model do not overlap; all vertices are in precisely one E-R community and all other

edges are added during a subsequent configuration model phase of construction. Moreover,

in the BTER model community membership is determined by degree, which ensures that

all vertices in a BTER community have similar degree. In contrast, the degree distribution

within a DROC community is a random sample of the entire degree distribution.

Mixed membership stochastic block models have traditionally been applied in settings

with overlapping communities [Air+08], [KN11], [Air+06]. The ROC model differs in two

key ways. First, unlike low-rank mixed membership stochastic block models, the ROC

model can produce sparse graphs with high triangle and four-cycle ratios. As discussed

in the introduction, the over-representation of particular motifs in a graph is thought to

be fundamental for its function, and therefore modeling this aspect of local structure is

important. Second, in a stochastic block model the size and density of each community and

the density between communities are all specified by the model. As a result, the size of the

stochastic block model must grow with the number of communities, but the ROC model

maintains a succinct description. This observation suggests the ROC model may be better
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suited for graphs in which there are many communities that are similar in structure, whereas

the stochastic block model is better suited for graphs with a small number of communities

with fundamentally different structures.

4.3 Convergent sequences of sparse graphs

In this section, we discuss a few example sequences to illustrate the notions of convergence.

Section 4.3.2 focuses on the convergence of sequences of random graphs. Not all sequences

of graphs converge or contain a convergent subsequence according to our defintion; see

Section 4.6.1 for an example.

4.3.1 Hypercube and rook graphs

We begin with the hypercube sequence, which directly motivates this paper.

Lemma 4.3.1 (hypercube limit). The d-dimensional hypercube is a graph on 2d vertices,

each labeled with a string in {0, 1}d. Two vertices are adjacent if the Hamming distance of

their labels is 1. Let (Gd) be the sequence of d-dimensional hypercubes. The sparsity exponent

of the sequence (Gd) is 1/2 and the sequence is fully convergent with limit (w3, w4, . . . ) where

wk =


(k − 1)!! for k even

0 for k odd.

The k-limit of the sequence is (w3, w4, . . . wk).

Proof. We claim that for k even Wk(Gd) = (k − 1)!!ndk/2 + o
(
ndk/2

)
where n = 2d. Each

hypercube edge (u, v) corresponds to a one coordinate difference between the labels of u

and v. We think of k-walks on the hypercube as length k strings where the ith character

indicates which of the d coordinates is changed on the ith edge of the walk. In closed
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walks each coordinate that is changed is changed back, so every coordinate appearing in the

corresponding string appears an even number of times. Therefore at most k/2 coordinates

appear in the string. Let Yi be the number of length k strings with i distinct characters that

correspond to a closed k-walk. Since there are d possible coordinates, there are
(
d
i

)
ways to

select the i characters and so Yi = Θ(di). Therefore

Wk(Gd) = nYk/2 + o
(
ndk/2

)
.

There are
(
d
k/2

)
ways to select the coordinates to change and k!/2k/2 length k strings where

k/2 characters appear twice. Thus

Yk/2 = dk/2
k!

2k/2
(
k
2

)
!

+ o
(
dk/2

)
= (k − 1)!!dk/2 + o

(
dk/2

)
,

and the claim follows.

Note that there are no odd closed walks in the hypercube because it is bipartite. Therefore

Wk(G) = 0 for k odd. It follows that the sparsity exponent is 1/2 and the limit vector is as

stated.

Our second example is a strongly regular family with a different sparsity exponent.

Lemma 4.3.2 (rook’s graph limit). The rook graph Gk on k2 vertices is the Cartesian

product of two cliques of size k. (Viewing the vertices as the squares of a k × k chessboard,

the edges represent all legal moves of the rook.) Let (Gk) be the sequence on rook graphs. The

sparsity exponent of (Gk) is 1 and the sequence is fully convergent with limit (w3, w4, . . . )

where wj = 22−j.

Proof. The rook’s graph is the strongly regular graph on n = k2 vertices with degree d = 2k−2

such that each pair of adjacent vertices have λ = k − 2 common neighbors and each pair of

non-adjacent vertices have µ = 2 common neighbors. The classical result [BH12] states that
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the eigenspectrum of a strongly regular graph is

d with multiplicity 1,

1

2

(
(λ− µ) +

√
(λ− µ)2 + 4(d− µ)

)
with multiplicity

1

2

(
(n− 1)− 2d+ (v − 1)(λ− µ)√

(λ− µ)2 + 4(d− µ)

)
, and

1

2

(
(λ− µ)−

√
(λ− µ)2 + 4(d− µ)

)
with multiplicity

1

2

(
(n− 1) +

2d+ (v − 1)(λ− µ)√
(λ− µ)2 + 4(d− µ)

)
.

Therefore the eigenspectrum of the rook graph Gk is

2k − 2 with multiplicity 1, − 2 with multiplicity (k − 1)2, and k − 2 with multiplicity 2k − 2.

We compute

Wj(Gk) = (2k − 2)j + (k − 1)2(−2)j + (2k − 2)(k − 2)j = 2kj+1 +O
(
kj
)
.

Therefore

lim
k→∞

Wj(Gk, 1) = lim
k→∞

2kj+1 +O (kj)

k2(2k − 2)j−1
= 22−j.

4.3.2 Almost sure convergence for sequences of random graphs

By an abuse of notation, we say that a sequence of random graphs converges to a limit vector

L if a sequence of graphs drawn from the sequence of random graph models almost surely

converges L. Lemma 4.3.4 gives a method for showing that a sequence of random graphs

converges, which we apply to describe the limits of sequence of E-R graphs (Lemma 4.3.6).

We will again apply Lemma 4.3.4 when we discuss the convergence of sequences of ROC

graphs (Theorem 4.4.13 and Corollary 4.4.14).
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Definition 4.3.3 (convergence of random graph sequences). Let M = (Mi) be a sequence

of random graph models. Let S be a sequence of graphs (Si) where Si ∼ Mi. We say the

sequence of random graphs M converges to L if a sequence S drawn from M almost surely

converges to L.

Lemma 4.3.4. Let M = (Mi) be a sequence of random graph models, and let (Si) be a

sequence of graphs where Si ∼Mi. Let ε > 0 and Ai,ε,α(wj) be the event that |Wj(Si, α)−wj| ≥

ε.

1. If for all j and ε > 0
∞∑
i=1

P(Ai,ε,α(wj)) <∞,

then M converges to L = (w3, w4, . . . ) with sparsity exponent α.

2. If the above hypothesis holds for all j ≤ k, then M k-converges to L = (w3, w4, . . . wk)

with k-sparsity exponent α.

3. Let D(Si) be the random variable for the average degree of a vertex in Si, let di =

E(D(Si)), and let ni be the number of vertices of Si. If limi→∞
E(Wj(Si))

nid
1+α(j−2)
i

= wj then

there exists an index i0 and a constant C such that

∞∑
i=1

P(Ai,ε,α(wj)) ≤ C +
∞∑
i=i0

Var(D(Si))

d2
i

+
Var(Wj(Si))(
nid

1+α(j−2)
i

)2 .

Proof. We begin with (1) and (2). Fix j. To show that Wj(Sn, α) → wj almost surely, it

suffices to show that for all ε > 0, P(Ai,ε,α(wj) occurs infinitely often) = 0. By the Borel

Cantelli Lemma
∑∞

n=1 P(Ai,ε,α(wj)) < ∞ implies P(Ai,ε,α(wj) occurs infinitely often) = 0.

Statements (1) and (2) follow from the fact that a countable intersection of almost sure events

occurs almost surely.
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For (3), we apply Lemma 4.3.5 which bounds the probability Wj(Si, α) deviates from

expectation by separately bounding the probabilities that the number of edges and the number

of closed j-walks in Si deviate from expectation. Let gi = wj − E(Wj(Gi))

nid
1+α(j−2)
i

, and so gi = o(1).

Let i0 be such that for all i ≥ i0, |gi| < ε/4, and let c = min{δ, ε/4}. By Lemma 4.3.4(3) for

all i ≥ i0

P(Ai,ε,α(wj)) ≤
1

c2

Var(D(Gi))

d2
i

+
Var(Wj(Gi))(
nid

1+α(j−2)
i

)2

 .

The claim follows from the observation that

∞∑
i=1

P(Ai,ε,α(wj)) ≤ i0 +
1

c2

∞∑
i=i0

Var(D(Si))

d2
i

+
Var(Wj(Si))(
nid

1+α(j−2)
i

)2 .

Lemma 4.3.5. Let S be a random graph on n vertices. Let ε > 0 and Aε,α(wj) be the event

that |Wj(S, α)− wj| ≥ ε. Let D(S) be the random variable for the average degree of a vertex

in S, and let d = E(D(S)). Let g = wj− E(Wj(S))

nd1+α(j−2) . For |g| < ε/2, δ = min
{

ε
2j(wj+ε)

, 1
2(j−1)2

}
and λ = ε/2− |g|,

P(Aε,α(wj)) ≤
Var(D(S))

δ2d2
+

Var(Wj(S))

λ2 (nd1+α(j−2))
2 .

Proof. Observe that if Ai,ε,α(wj) holds, then for any δ > 0 at least one of the following events

hold:

(a) |D(S)− d| > δd

(b) Wj(S) ≥ (wj + ε)
(
n (d(1− δ))1+α(j−2)

)
(c) Wj(S) ≤ (wj − ε)

(
n (d(1 + δ))1+α(j−2)

)
.
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When (a) does not hold

Wj(S)

n (d(1 + δ))1+α(j−2)
≤ Wj(S, α) ≤ Wj(S)

n (d(1− δ))1+α(j−2)
.

Assume (a) does not hold and Aε,α(wj). If Wj(S, α) ≥ wj + ε then (b) holds. If Wj(S, α) ≤

wj − ε then (c) holds. The observation follows.

We now give a bound on the probability of (b) or (c). Let γ− = 1− (1− δ)1+α(j−2) and

γ+ = (1 + δ)1+α(j−2) − 1. We write wj =
E(Wj(S))

nd1+α(j−2) + g. Statement (b) becomes

Wj(S)− E(Wj(S)) ≥
(
ε+ g − γ− (wj + ε)

)
nd1+α(j−2),

and statement (c) becomes

Wj(S)− E(Wj(S)) ≤
(
γ+ (wj − ε)− ε+ g

)
nd1+α(j−2).

Under the assumptions that δ = min
{

ε
2j(wj+ε)

, 1
2(j−1)2

}
and α ≤ 1,

γ− = 1− (1− δ)1+α(j−2) ≤ δ(1 + α(j − 2)) < δj ≤ ε

2(wj + ε)

γ+ = (1+δ)1+α(j−2)−1 ≤ δ(j−1)+

j−1∑
i=2

δi
(
j − 1

i

)
≤ δ(j−1)+2δ2(j−1)2 < δj ≤ ε

2(wj − ε)
.

Let λ = ε/2− |g| and note

ε+ g − γ− (wj + ε) ≥ λ and ε− g − γ+ (wj − ε) ≥ λ.

It follows from Chebyshev’s inequality that

P((b) or (c)) ≤ P
(
|Wj(S)− E(Wj(S))| ≥ c(δ)nd1+α(j−2)

)
≤ Var(Wj(S))

(λnd1+α(j−2))
2 .
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Finally, we apply Chebyshev’s inequality to bound the probability of (a), apply a union

bound for the event Ai,ε,α(wj), and obtain

P(Aε,α(wj)) ≤ P((a)) + P((b) or (c)) ≤ Var(D(S))

δ2d2
+

Var(Wj(S))

λ2 (nd1+α(j−2))
2 .

Our final example is sequences of Erdős-Rényi random graphs. These demonstrate some

of the subtler issues with defining limits.

Lemma 4.3.6 (Erdős-Rényi sequence). Let (Gn) ∼ G
(
n2`, n2−2`

)
for ` > 1. We denote the

jth Catalan number Catj = 1
j+1

(
2j
j

)
.

1. For k < 2`, the k-sparsity exponent of (Gn) is 1/2 and the k-limit is (w3, w4, . . . wk)

where wj = 0 for i odd and wj = Cati/2 for i even.

2. For k = 2`, the k-sparsity exponent of (Gn) is 1/2 and the k-limit is (w3, w4, . . . , wk−1, wk)

where wj = 0 for odd j, wj = Catj/2 for even j, and wk = wk + 1.

3. For k > 2`, the sparsity exponent of (Gn) is k−`−1
k−2

and the k-limit is (w3, w4, . . . , wk)

where wj = 0 for j < k, wk = 1.

4. The sparsity exponent of (Gn) is 1 and the limit is (0, 0, . . . ).

First we compute the expectation and variance of the number of closed i-walks in a E-R

random graph.

Lemma 4.3.7. Let G ∼ G(n, d/n). Let Wj(G) be the random variable for the number of

closed j walks in G. Then

E(Wj(G)) = dj + Catj/2nd
bj/2c + Θ

(
dj−1 + ndbj/2c−1

)
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Var(Wj(G)) = Θ
(
d2j−1 + n2d2bj/2c−1 + ndbj/2c+j−1

)
.

Proof. Let W a,b
j (Gn) be the number of closed j walks involving a vertices and b edges, so

b ≤ j and either a ≤ b (the walk contains a cycle) or a = b + 1 and b ≤ j/2 (the walk

traces a tree). Let f(a, b, j) be the number of closed j-walks with b total edges on a labeled

vertices 1, 2, . . . a such that the order in which the vertices are first visited is 1, 2, . . . a. Note

f(j, j, j) = 1 and f(j/2 + 1, j/2, j) = Catj/2 for j even (because there are Catb ordered trees

on b edges, see [Sta97]). Let ζ(j) be one if j is even and zero otherwise. We split the sum

based on whether the walk contains a cycle or traces a tree and compute

E(Wj(G)) =

j∑
b=1

b+1∑
a=1

E
(
W a,b
j (G)

)
=

j∑
b=1

b+1∑
a=1

f(a, b, j)
n!

(n− a)!

(
d

n

)b

=

j∑
b=3

b∑
a=1

f(a, b, j)
n!

(n− a)!

(
d

n

)b
+

bj/2c∑
b=1

f(b+ 1, b, j)
n!

(n− (b+ 1))!

(
d

n

)b
= dj + ζ(j)Catj/2nd

j/2 + Θ
(
dj−1 + ndbj/2c−1

)
.

To find the variance of Wj(G) we compute the expectation squared. Let P a,b
j (G) be the

number of pairs of closed j walks involving a total of a vertices and b edges. Let g(a, b, j)

be the number of pairs of closed j-walks with b total edges on a labeled vertices 1, 2, . . . a

such that the order in which the vertices are first visited is 1, 2, . . . a when the first walk is

traversed then the second walk. Note g(2j, 2j, j) = 1 and g(j + 2, j, j) =
(
Catj/2

)2
(since

there are (Catb)
2 ways to pick two disjoint ordered trees on b edges).

We split the sum based on whether both walks contain a cycle, or both trace trees, or one

traces a tree and one traces a cycle and compute

E
(
Wj(G)2

)
=

2j∑
b=1

b+2∑
a=1

E
(
P a,b
j (G)

)
=

2j∑
b=1

b+2∑
a=1

g(a, b, j)
n!

(n− a)!

(
d

n

)b
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=

2j∑
b=1

b∑
a=1

g(a, b, j)
n!

(n− a)!

(
d

n

)b
+

2bj/2c∑
b=1

g(b+ 2, b, j)
n!

(n− (b+ 2))!

(
d

n

)b
+

2j∑
b=1

b+1∑
a=1

g(a, b, j)
n!

(n− a)!

(
d

n

)b
= d2j + ζ(j)

(
Catj/2

)2
n2dj + Θ

(
d2j−1 + n2d2bj/2c−1 + ndbj/2c+j−1

)
.

It follows

Var(Wj(G)) = E
(
Wj(G)2

)
− E(Wj(G))2 = Θ

(
d2j−1 + n2d2bj/2c−1 + ndbj/2c+j−1

)
.

Now we use these computations and apply Lemma 4.3.4 to prove Lemma 4.3.6.

Proof. (of Lemma 4.3.6). By Lemma 4.3.7

E(Wj(Gn)) =


n2j + Catj/2n

2`+j + o
(
n2j + n2`+2bj/2c) j is even

n2j + o
(
n2j + n2`+2bj/2c) j is odd.

We compute the k-sparsity exponent

αk = inf
a∈[1/2,1]

{
a | E(Wj(Gn)) = O

(
n2`+2+2α(j−2)

)
for all j ≤ k

}
= max

{
1

2
,
k − `− 1

k − 2

}
,

and the sparsity exponent

α = inf
a∈[1/2,1]

{
a | E(Wj(Gn)) = O

(
n2`+2+2α(j−2)

)
for all j

}
= 1.

Note for each of the cases outlined in the statement, wj = limi→∞
E(Wj(Gn))

n2`+2+2α(j−2) where

α is the corresponding sparsity exponent. To prove convergence for cases 1-3, we apply
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Lemma 4.3.4(2) and for case 4 we apply Lemma 4.3.4(1). By Lemma 4.3.4(3), it remains to

show that
∞∑

n=n0

(
Var(D(Gn))

d2
n

+
Var(Wj(Gn))

(n2`+2+2α(j−2))
2

)
<∞. (4.12)

Note D(Gn) ∼ Bin
((

n2`

2

)
, n2−2`

)
, and so Var(D(Gn)) =

(
n2`

2

)
n2−2`

(
1− n2−2`

)
and dn =(

n2`

2

)
n2−2`. It follows

∞∑
n=2

Var(D(Gn))

d2
n

=
∞∑
n=2

(
n2`

2

)
n2−2`

(
1− n2−2`

)((
n2`

2

)
n2−2`

)2 ≤
∞∑
n=2

2n−2`−2 <∞.

We show the sum of the variance term is finite by considering the cases separately. By

Lemma 4.3.7,

Var(Wj(Gn)) = Θ
(
n4j−2 + n4`+4bj/2c−2 + n2`+2bj/2c+2j−2

)
,

and so

X :=
Var(Wj(Gn))

(n2`+2+2α(j−2))
2 = Θ

(
n4j−6−4`−4α(j−2) + n−2+(j−2)(2−4α) + n−2`+(j−2)(3−4α)

)
.

For (1) and (2), α = 1/2, j ≤ k ≤ 2`, and so X = Θ
(
n2j−4`−2 + n−2 + n−2`+j−2

)
=

O (n−2) . For (3), α = k−`−1
k−2

, k > 2`, and j ≤ k. Since α ≥ j−`−1
j−2

, Θ
(
n4j−6−4`−4α(j−2)

)
=

O (n−2). Since α > 1/2, Θ
(
n−2+(j−2)(2−4α)

)
= O (n−2). Since α > 1/2 and k > 2`,

Θ
(
n−2`+(j−2)(3−4α)

)
= O

(
n−2`+k−2

)
= O (n−2). It follows that X = O (n−2) . For (4) α = 1

and j ≥ 3, and so X = Θ
(
n2−4` + n2−2j + n−2`−j+2

)
= O (n−2) . Therefore in all cases

∞∑
n=2

Var(Wj(Gn))

(n2`+2+2α(j−2))
2 =

∞∑
n=2

O
(
n−2
)
<∞,

and the statement follows from Equation (4.12).
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4.4 Approximating a convergent sequence by a ROC

4.4.1 A parameterization of the ROC model

In this section, we introduce a parametrization of the ROC model which will be particularly

convenient in proofs. The distribution D of a ROC family is specified by a number a ∈ [0, 1]

and a distribution µ on triples (mi, qi, βi) with probability µi for the ith triple. Communities

are generated by repeatedly picking a triple from the distribution µ. When βi = 0, the

community has expected size s = mid
a and density qi. If βi = 1, indicating balanced

bipartiteness, the community is defined on a bipartite graph with mid
a vertices expected in

each class.
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ROC(n, d, µ, a).

Input: number of vertices n, degree d, a ∈ [0, 1], and µ a distribution on a finite set of

triples (mi, qi, βi) where (mi, qi, βi) is selected with probability µi, mi > 0,
∑

i µi = 1,

βi ∈ {0, 1}, 0 ≤ qi ≤ 1, and maxmid
a ≤ n. Let B be the set of indices i such that βi = 1

and Bc be the set of indices i such that βi = 0. Let x = 1/
(∑

i∈Bc µim
2
i qi + 2

∑
i∈B µim

2
i qi
)
.

Output: a graph on n vertices with expected degree d.

Repeat xnd1−2a times:

1. Randomly select a pair (mi, qi, βi) from µ with probability µi.

2. If βi = 0

(a) Pick a random subset S of vertices (from {1, 2, . . . , n}) by selecting each vertex

independently with probability mid
a/n.

(b) Add the random graph G|S|,qi on S, i.e., for each pair in S, add the edge between

them independently with probability qi; if the edge already exists, do nothing.

If βi = 1

(a) Pick a random subset S of vertices (from {1, 2, . . . , n}) by selecting each vertex

independently with probability 2mid
a/n. For each vertex that is in S randomly

assign it to either S1 or S2.

(b) Add the bipartite random graph G|S1|,|S2|,qi on S, i.e., for each pair u ∈ S1 and

v ∈ S2, add the edge between them independently with probability qi; if the

edge already exists, do nothing.
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The parameters (n, d, µ, a) are valid ROC parameters if the conditions described under

input in the box hold. A ROC family D = (µ, a) refers to the set of ROC models with

parameters µ and a and any valid n and d.

The sparsity exponent of a sequence determines the parameter a of the ROC family that

achieves the limit vector. If a vector is achievable with sparsity exponent α then the ROC

family that achieves the vector will have parameter a = α unless α = 1/2 and vector is the

Catalan vector (wj = 0 for j odd and wj = Catj/2 for j even). In this case any ROC family

with a < 1/2 achieves the vector.

4.4.2 Cycles, walks, and limits of ROC’s

In this section we describe a combinatorial relationship between closed walk counts and

simple cycle counts that appears in graphs in which each vertex is in approximately the same

number of simple cycles (Definition 4.4.1). Throughout this paper, for convenience we refer

to a simple k-cycle as a k-cycle. For example, under this convention a k-cycle graph has 2k

k-cycles because there are 2k distinct closed walks that traverse a k-cycle.

Definition 4.4.1 (cycle-walk transform). Let

Sk =

{
{(a1, t1), (a2, t2), . . . , (aj, tj)} |

j∑
i=1

aiti = k, ai 6= aj for i 6= j, ai, ti ∈ Z+, ai > 1

}
.

Define T ((c3, c4, . . . cn)) = (w3, w4, . . . wn) as the invertible transform

wk =
∑
S∈Sk

k!

(
∏
ti!)(k + 1−

∑
ti)!

j∏
i=1

(cai)
ti .

The transform T is analogously defined for infinite count vectors.
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Remark 4.4.2. The first few terms of T are illustrated below:

w3 = c3

w4 = 2 + c4

w5 = c5 + 5c3

w6 = c6 + 6c4 + 3c2
3 + 5

w7 = 21c3 + 7c3c4 + c7 + 7c5

w8 = 8c3c5 + 28c2
3 + c8 + 8c6 + 28c4 + 4c2

4 + 14

w9 = 9c3c6 + 84c3 + 12c3
3 + 9c7 + 36c5 + 9c4c5 + c9 + 72c3c4

w10 = 42 + 5c2
5 + 180c2

3 + 45c2
3c4 + 10c4c6 + 90c3c5 + 10c8 + c10 + 45c6 + 10c3c7 + 120c4 + 45c2

4.

We see that T is invertible by using induction to show that each cj is completely determined

by the vector (w3, . . . wj). Note c3 = w3 is completely determined. Assume c3, . . . cj have

been completely determined. Note that wj+1 = cj+1 + f((c3, c4, . . . cj)) for some function f .

Since wj+1 is given and f is a function of values that are already determined, there is only

one choice for cj+1.

In Section 4.4.2 we derive the coefficient of
∏j

i=1(cai)
ti in T by counting the number

of walk structures that can be decomposed into t1, t2, . . . tj cycles of lengths a1, a2, . . . aj

respectively. In Section 4.4.2, we define class of locally regular graphs in which each vertex is

in the same number of cycles, and then show this class of graphs exhibits the relationship

between cycles and closed walks given in Definition 4.4.1.

In Section 4.4.2, we prove Theorem 4.4.3, which describes the limit achieved by a ROC

family (µ, a). The parameter a plays an important role. When a < 1/2, the closed walks

that trace trees dominate the closed walk count, so the limit is the Catalan sequence. When

a > 1/2 the closed walks that trace simple cycles dominate the closed walk count, so the

104



limit is the normalized number of expected simple cycles. However, when a = 1/2, cycles,

trees, and other walk structures are all of the same order, and so the relationship given in

Definition 4.4.1 appears in the limit.

Theorem 4.4.3. Let (µ, a) be a ROC family. Let B be the set of all i such that βi = 1,

let Bc be the set of all i such that βi = 0, and let x = 1/
(∑

i∈Bc µim
2
i qi + 2

∑
i∈B µim

2
i qi
)
.

Define

c(k) =


1 k = 2

x
∑

i∈Bc µi(miqi)
k k odd and k ≥ 3

x
∑

i∈Bc µi(miqi)
k + 2x

∑
i∈B µi(miqi)

k k even and k ≥ 4.

Let Catn = 1
n+1

(
2n
n

)
denote the nth Catalan number, and let T be as given in Definition 4.4.1.

1. If a < 1/2, the ROC family fully achieves the limit (0, Cat2, 0, Cat3, . . . ) with sparsity

exponent 1/2.

2. If a = 1/2, the ROC family fully achieves the limit T ((c(3), c(4), c(5), . . . )) with sparsity

exponent 1/2.

3. If a > 1/2, the ROC family fully achieves the limit (c(3), c(4), c(5), . . . ) with sparsity

exponent a.

The ROC family achieves the corresponding length k − 2 prefix as its k-limit with the same

k-sparsity exponent for k ≥ 4.

In Section 4.4.2, we show that the probability the normalized walk count Wj(G,α) of

a ROC graph G ∼ ROC(n, d, µ, a) deviates from wj in the limit achieved by the family

vanishes as d grows (Theorem 4.4.13). Corollary 4.4.14 gives conditions that guarantee that

a sequence of graphs drawn from a common ROC family converges almost surely to the limit

achieved by the family.

105



The cycle structure of closed walks

In order to count the number of closed walks in a graph, we divide the closed walks into

classes based on the structure of the cycles appearing in the closed walk and then count the

number of closed walks in each class. Each class is defined by a “cycle permutation” in which

each non-zero character represents the first step of a cycle within the walk and each zero

represents a step in a cycle that has already begun (Definition 4.4.4). In Lemma 4.4.5, we

show that the number of cycle permutations corresponding to a walk made of t1, t2, . . . tj

cycles of lengths a1, a2, . . . aj respectively is the coefficient of
∏j

i=1 (cai)
ti in the cycle-walk

transform.
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Figure 4.5: The above walks begin and end at the circled vertex and proceed left to right.
Each is labeled with its cycle permutation.

Definition 4.4.4 (cycle permutation). Follow the procedure below to label each step of a

closed k-walk W = (r1, r2, . . . rk) with a label and define the “cycle permutation” P of W as

the labels of the steps in order of traversal.

1. Repeat until all steps are labeled:

Traverse W skipping a step ri if it has already been labeled. Let u be the first repeated

vertex on this traversal. The modified walk must have traversed a cycle ri, ri+1, . . . ri+j−1

starting at u. Label the first step ri with the length of the cycle. Label all other steps

with zero.
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2. Traverse W and let P be the string of labels of the steps as they are traversed.

The following lemma enumerates the cycle permutations using bijection between cycle

permutations and generalized Dyck paths (Definition 4.4.6).

Lemma 4.4.5. Let Sk be as given in Definition 4.4.1. For each S ∈ Sk, let Ms be the

multiset where ai appears ti times and there are k −
∑

i ti zeros. Let PS be the set of all

permutations of Ms such that the following property holds for all 2 ≤ i ≤ k + 1:

∑
`∈N(s)

(`− 1) ≥ zi

where N(s) is the multiset of non-zero labels that appear before the ith label of the permutation

and zi is the number of times zero occurs before the ith label of the permutation. The set of

cycle permutations is
⋃
s∈S PS and

|PS| =
k!

(
∏
ti!)(k + 1−

∑
ti)!

.

To compute the size of PS in the above lemma we use a bijection between permutations

in PS and generalized sub-diagonal Dyck paths, whose cardinality is given in Lemma 4.4.7.

Definition 4.4.6 (generalized Dyck path, see [Ruk11]). A generalized Dyck path p is a

sequence of n vertical steps of height one and k ≤ n horizontal steps with positive integer

lengths `1, `2, . . . `k satisfying
∑k

i=1 `i = n on a n× n grid such that no vertical step is above

the diagonal.

Lemma 4.4.7 (from [Ruk11]). Let D the set of generalized Dyck paths on a (k −
∑
ti)×

(k −
∑
ti) grid that are made up of ti horizontal steps of length ai − 1 and k −

∑
ti vertical

steps of length 1. Then

|D| = k!

(
∏
ti!)(k + 1−

∑
ti)!

.
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Proof. (of Lemma 4.4.5) First we show the set of cycle permutations is
⋃
s∈S PS. Let P be a

cycle permutation of some closed walkW of length k. Let s = {(a1, t1), (a2, t2), . . . (aj, tj)} ∈ S

where {a1, a2, . . . aj} are the non-zero labels of P and each ai appears ti times in P (so∑
aiti = k). To see that P is in PS we show that for all 2 ≤ i ≤ k + 1:

∑
`∈N(s)

(`− 1) ≥ zi

where N(s) is the multiset of non-zero labels that appear before the ith label of P and zi

is the number of times zero occurs before the ith label of P. Before the ith step of the walk

suppose non-zero labels `1, . . . `k have been traversed. The only steps labeled with a zero that

have been traversed must be part of a cycle corresponding to one of the labels `1, . . . `k. Since

`i labels a cycle of length `i at most
∑

(`i − 1) zero steps have been traversed. Thus P ∈ PS.

Next we claim that any P ∈
⋃
PS corresponds to a closed walk W. Let T (s) =

∑
ti be

the number of non-zero values in each permutation in PS. We show that for any k =
∑
aiti

all permutations in PS correspond to closed walks by induction on T (s). Note for any k

and T (s) = t1 = 1, there is one permutation in PS, k = a1 followed by k − 1 zeros. This

permutation corresponds to a k-cycle. Assume that if T (s′) < T (s) then each string in Ps′

corresponds to a closed walk. We show each P ∈ PS corresponds to a closed walk. Consider

the last non-zero value of the permutation P . Without loss of generality, suppose this value

is aj and that it occurs at the ith coordinate of P . Since P ∈ PS, there must be at least

aj − 1 zeros to the right of aj. Removing aj and aj − 1 zeros to its right in P yields a valid

sequence P ′ ∈ Ps′ where s′ = (a1, . . . aj, t1, . . . tj−1, tj − 1) and k′ = k − aj. By the inductive

hypothesis, P ′ corresponds to a closed walk W ′ of length
∑
aiti − aj. Add a cycle of length

aj in between the (i− 1)st and ith steps ofW ′ to obtain a closed walkW of length k =
∑
aiti.

We have shown that
⋃
PS is the set of all cycle permutations for closed walks.

We compute the size of |PS| by constructing a bijection between permutations in PS
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and a set of subdiagonal generalized Dyck paths. Let s = {(a1, t1), (a2, t2), . . . (aj, tj)} ∈ S.

Let D the set of subdiagonal generalized Dyck paths on a (k −
∑
ti)× (k −

∑
ti) grid that

are made up of ti horizontal steps of length ai − 1 and k −
∑
ti vertical steps of length

1. Each non-zero label ai of PS corresponds to a horizontal step of length ai − 1 and each

zero label of PS corresponds to a vertical step of length one. Consider the map between

permutations and generalized Dyck paths based on this correspondence. The condition that

for all 2 ≤ i ≤ k + 1
∑

`∈N(s)(`− 1) ≥ zi translates to the generalized Dyck path not crossing

the diagonal. Thus, the correspondence is a bijection between PS and D. Lemma 4.4.7

implies that |PS| = |D| = k!
(
∏
ti!)(k+1−

∑
ti)!

.

Walk and cycle counts in locally regular graphs

We show that the polynomial relating cycles and closed walks given in Definition 4.4.1

governs the relationship between cycles and closed walks in graphs where each vertex is in

approximately the same number of cycles.

Definition 4.4.8 (k-locally regular, essentially k-locally regular). Let Ck(G, v) denote the

the number of k-cycles at vertex v in G.

1. A graph G is k-locally regular if it is regular and Cj(G, v) = Cj(G, u) for all u, v ∈ V (G)

and j ≤ k.

2. A sequence of graphs (Gi) with di →∞ and k-sparsity exponent a is essentially k-locally

regular if Cj(Gi, v)− Cj(Gi, u) = o
(
d
j/2
i

)
for all u, v ∈ V (G) and j ≤ k.

Theorem 4.4.9. Let G be a k-locally regular graph on n vertices with degree d. Let ck =

Ck(G)/(ndk/2) and wk = Wk(G)/(ndk/2) = Wk(G, 1/2) where Wk(G) and Ck(G) denote the

number of closed k-walks and simple k-cycles in G respectively. Then

wk = T ((c3, c4, . . . ck)).
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Proof. We count the number closed walks in G at a vertex v by partitioning the closed walks

into sets based on their cycle permutation and computing the size of each partition class. Let

S = {(a1, t1), (a2, t2), . . . , (aj, tj)} ∈ Sk and P ∈ PS as defined in Lemma 4.4.5. Define XP

as the number of walks with cycle permutation P at v in G. Let t =
∑
ti be the number

of non-zero values in P and let N(P, i) denote the ith non-zero value of the string P . Let

Ck(G, u) denote the number of k-cycles at u. Since G is locally regular Ck(G, u) = ckd
k/2 for

all k. It follows

XP =
t∏

`=1

CN(P,`)(G, u) =

j∏
i=1

(
caid

ai/2
)ti

= dk/2
j∏
i=1

(cai)
ti . (4.13)

Summing over all P ∈ PS and all vertices we obtain

Wk(G) = ndk/2
∑
S∈S

|PS|
j∏
i=1

(cai)
ti , equivalently wk =

∑
S∈S

|PS|
j∏
i=1

(cai)
ti .

The statement follows directly from Lemma 4.4.5.

Theorem 4.4.10. Let (Gr) be a sequence of essentially k-locally regular graphs with nr

vertices and degree dr →∞, sparsity exponent 1/2, and k-limit (w3, w4, . . . wk). Let Cj(Gr)

be the number of j-cycles in Gr. Then (w3, w4, . . . wk) = T ((c3, c4, . . . ck)) where

cj = lim
s→∞

Cj(Gr)

nrd
j/2
r

.

Proof. We follow the proof of Theorem 4.4.9 until line Equation (4.13). Since the Gs is

approximately locally regular rather than locally regular, we have the weaker guarantee that

Ck(Gi, u) = Ck(Gi)
ni

+ o
(
d
j/2
i

)
. It follows that for G = Gr, n = nr, and d = dr,

XP =
t∏

`=1

CN(P,`)(G, u) =

j∏
i=1

(
Cai(G)

n
+ o

(
dai/2

))ti
= dk/2

j∏
i=1

(
Cai(G)

ndai/2

)ti
+ o

(
dk/2

)
.
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Summing over all P ∈ PS and all vertices we obtain

Wk(Gr) = nrd
k/2
r

∑
S∈S

|PS|
j∏
i=1

(
Cai(Gr)

nrd
ai/2
r

)ti
+ o

(
nrd

k/2
r

)
.

Therefore

wk = lim
r→∞

Wk(Gr)

nrd
k/2
r

= lim
r→∞

∑
S∈S

|PS|
j∏
i=1

(
Cai(Gr)

nrd
ai/2
r

)ti
+ or (1) =

∑
S∈S

|PS|
j∏
i=1

(cai)
ti ,

and the statement follows directly from Lemma 4.4.5.

Limits achieved by ROC families

We prove Theorem 4.4.3, which describes the limits of ROC families. The following lemma

gives the expected number of closed walks by permutation type.

Lemma 4.4.11. Let S = {(a1, t1), (a2, t2), . . . , (aj, tj)} ∈ Sk as defined in Lemma 4.4.5, and

let t =
∑j

i=1 ti. Let XS(G) be the random variable for the number of walks with a permutation

type in PS in G ∼ ROC(n, d, µ, a) where d = o
(
n1/((1−a)k+2a−1)

)
. Then for the function c as

given in Theorem 4.4.3

1. For a < 1, E(XS(G)) = |PS|
(∏j

i=1 c(ai)
ti

)
nd(1−2a)t+ak + o

(
nd(1−2a)t+ak

)
.

2. For a = 1 and t = 1, E(XS(G)) = |PS|
(∏j

i=1 c(ai)
ti

)
nd(1−2a)t+ak + o

(
nd(1−2a)t+ak

)
.

3. For a = 1 and t > 1, E(XS(G)) = Θ
(
nd(1−2a)t+ak

)
.

Taking S = {(k, 1)} in the above lemma gives the number of simple k-cycles in a ROC

graph. The following corollary describes the cycle counts when the community size is a

constant independent of d.
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Corollary 4.4.12. Let G ∼ ROC(n, d, µ, 0) Then for d = o
(
n

1
k−1

)
,

E(Ck(G)) = c(k)nd+ o(nd).

Proof. Let P ∈ PS, and let XP (G) be the random variable for the number of walks in G with

permutation type P . We show that E(XP (G)) is the same for each P ∈ PS and so

E(XS(G)) =
∑
P∈PS

E(XP (G)) = |PS|E(XP (G)). (4.14)

To compute the expectation of XP (G), we apply linearity of expectation to indicator

random variables representing each possible walk. We define a possible walk as (i) an ordered

set of vertices (v1, . . . vk) such that the walk v1, v2, . . . vk is closed and has cycle permutation

P and (ii) an ordered set of communities (u1, . . . uk), ui ∈ [xnd1−2a]. The walk exists if for

each 1 ≤ i ≤ k − 1, the vertices vi and vi+1 are adjacent by an edge that was added in

the (ui)
th community in the construction of G. The probability a possible walk exists in G

depends on how often the community labels (u1, . . . uk) change between adjacent vertices.

Let A be the set of possible walks in which each cycle is assigned a distinct community,

each edge is labeled with the community assigned to its cycle, and there are k − t + 1

distinct vertices. We write XP (G) = AP (G) +BP (G) where AP (G) is the random variable

for the number of walks in A that appear in G and BP (G) is the random variable for the

number of walks that appear in G and are not in A. We compute E(AP (G)) and show that

E(BP (G)) = o (E(AP (G))) in cases (1) and (2) and E(BP (G)) = Θ (E(AP (G))) in case (3).

Claim 1: E(AP (G)) =
(∏j

i=1 c(ai)
ti

)
nd(1−2a)t+ak + o

(
nd(1−2a)t+ak

)
.

We write AP (G) as the sum of random variables AW (G) that indicate if a walk W ∈ A is

in G. We show that E(AW (G)) is the same for all W in A and so

E(AP (G)) = |A|E(AW (G)) = |A|P(AW (G)).
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We now compute P(AW (G)). Let z1, . . . zt be the non-zero characters of P ordered by

first appearance. Let A` be the event that all edges in the cycle corresponding z` were added

in the community assigned to z`, which we denote y`. The probability of A` depends on the

community type (mi, qi, βi) of y`. We compute

P(A`) =
∑
i

P( specified cycle appears in community y` | y` is type i)P( y` is type i).

It follows that

P(A`) =



∑
i∈B 2

(
mid

a

n

)z` qz`i µi +
∑

i∈Bc
(
mid

a

n

)z` qz`i µi z` ≥ 3

∑
i∈B 2

(
mid

a

n

)2
qiµi +

∑
i∈Bc

(
mid

a

n

)2
qiµi z` = 2.

Equivalently, P(A`) = daz`c(z`)/(xn
z`). The event that the walk W appears in G is the

intersection of the events A1, . . . , At. Note that these events are independent because the

communities y1, y2, . . . yt are distinct. It follows

P(AW (G)) =
t∏

`=1

P(A`) =
dak
∏j

i=1 c(ai)
ti

nkxt
.

Next we compute the size of A. There are (xnd1−2a)!
(xnd1−2a−t)! = (xnd1−2a)t + o ((xnd1−2a)t) ways

to select t distinct communities and n!
n−(k−t+1)!

= nk−t+1 + o
(
nk−t+1

)
ways to select the the

vertices for W ∈ A. The claim follows,

E(AP (G)) =
(
(xnd1−2a)t + o

(
(xnd1−2a)t

)) (
nk−t+1 + o

(
nk−t+1

))(dak∏j
i=1 c(ai)

ti

nkxt

)

= nd(1−2a)t+ak

(
j∏
i=1

c(ai)
ti

)
+ o

(
nd(1−2a)t+ak

)
. (4.15)

113



Claim 2: In cases (1) and (2), E(BP (G)) = o
(
nd(1−2a)t+ak

)
, and in case (3) E(BP (G)) =

Θ
(
nd(1−2a)t+ak

)
.

Before computing E(BP (G)), we introduce notation to describe the features of possible

walks that are not in A. Let z1, . . . , zt be the non-zero characters of P , so the walk is composed

of cycles of lengths z1, . . . zt. Let m` be the number of vertices in the cycle corresponding

z` that do not appear in the cycles corresponding to z1, . . . z`−1. Let λi be the number of

community edge labels in the cycle corresponding to z` that do not appear as community

edge labels in any cycle corresponding to z1, . . . z`−1. For each community assignment ui, vi

and vi+1 must both be in community ui if the possible walk exists in G. We say the ith edge

“assigns” the community ui to the vertices vi and vi+1; if two consecutive edges have the same

community label, then the common end is assigned to the same community twice. Let Γ` be

the number of vertex-community assignments from the cycle corresponding to z` that are not

assigned in cycles corresponding to z1, . . . z`−1. Let m =
∑

imi ≤ k − t+ 1, λ =
∑

i λ ≤ k,

Γ =
∑

Γi, and j be the number of indices i such that λi ≥ 2. Let P denote the parameters

{λi,mi,Γi}, and let BP(G) be the number of possible walks with the parameters P. There

are Θ
(

(nd1−2a)
λ
)

ways to select the communities, Θ (nm) ways to select the vertices. The

probability a vertex is an assigned community is Θ
(
da

n

)
. It follows that

E(WP(G)) = Θ

((
nd1−2a

)λ
nm
(
da

n

)Γ
)
. (4.16)

Next we show that for any set of parameters P, Γ ≥ m + λ + j − 1. First we describe

relationships between λ`, Γ`, z`, and m` in different settings.

1. If there are precisely λ` community labels in the cycle corresponding to z` then

Γ` ≥ z` + λ` λ` ≥ 2

Γ` = z` λ` = 1.
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If there are λ` ≥ 2 communities assigned to edges in the cycle, then there are at least

λ` vertices where the adjacent edges are assigned different communities. These vertices

contribute 2λ` vertex-community assignments and the remaining z`−λ` vertices are also

assigned a community. If λ` = 1, then each vertex is assigned to the one community.

2. If there are more than λ` community labels in the cycle corresponding to z` then

Γ` ≥ m` + λ` + 1 λ` ≥ 1

Γ` ≥ m` λ` = 0.

The mi new vertices must be assigned at least one community. When λ` 6= 0, there

must be at least λ` + 1 vertices in which (i) both adjacent edges are labeled with two

different first appearing communities or (ii) one adjacent edge is labeled with a first

appearing community and one adjacent edge is labeled with a community that has

already appeared. If such a vertex is a new vertex then this vertex has a total of

two community assignments. If such a vertex has appeared before, it has not been

previously assigned to a first appearing community, so this contributes one community

assignment.

Since the first vertex of a cycle corresponding to z` for ` ≥ 2 has already been visited,

z` ≥ m` + 1 for ` ≥ 2. Therefore when ` ≥ 2

Γ` ≥ m` + λ` + 1 λ` ≥ 2

Γ` = m` + λ` λ` ≤ 1,

and for ` = 1,

Γ1 ≥ m1 + λ1 λ1 ≥ 2
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Γ1 = m1 λ1 = 1.

Summing the above inequalities over ` yields the observation that Γ ≥ m+ λ+ j − 1. Note

also that m ≤ k − t+ 1. Equation Equation (4.16) becomes

E(WP(G)) = Θ

((
nd1−2a

)λ
nm
(
da

n

)m+λ+j−1
)

= Θ
(
n1−jd(1−a)λ+a(k−t+j)) . (4.17)

Next consider a walk that is not in A. There must either be (i) a cycle that has at least

two new community labels and so j ≥ 1 or (ii) fewer than t total community labels, so

λ ≤ t− 1. If t = 1 (the walk is a simple cycle), case (ii) does not occur because there must

be at least one community label. In case (i), j ≥ 1, λ ≤ k− t+ j and t ≥ 1, and so Equation

Equation (4.17) becomes

E(WP(G)) = Θ
(
n1−jdk−t+j

)
=


Θ
(
dk−t

)
j = 1

o
(
dk−t

)
j ≥ 2.

(4.18)

Equivalently if P is type (i), then

E(WP(G)) = nd(1−2a)t+akO
(
n−1d(1−a)k+2a−1

)
= o

(
nd(1−2a)t+ak

)
.

In case (ii), then λ ≤ t− 1 and j ≥ 0, and so Equation Equation (4.17) becomes

E(WP(G)) = Θ
(
n1−jd(1−a)λ+a(k−t+j)) =


Θ
(
nd(1−2a)t+ak+a−1

)
λ = t− 1 and j = 0

o
(
nd(1−2a)t+ak+a−1

)
λ ≤ t− 2 or j ≥ 1.

(4.19)
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Equivalently if P is type (ii), then

E(WP(G)) = O
(
n1−jd(1−a)(t−1)+a(k−t+j)) = nd(1−2a)t+akO

(
da−1

)
.

Therefore for any P that is not in A,

E(WP(G)) =


o
(
nd(1−2a)t+ak

)
a < 1 or a = 1 and t = 1

Θ
(
nd(1−2a)t+ak

)
a = 1 and t > 1.

Note E(BP (G)) =
∑
P E(WP(G)). Since the number of sets of valid parameters P is

constant, claim 2 follows.

The computation of E(XP (G)) = E(AP (G)) +E(BP (G)) did not rely on any information

about P besides that P ∈ PS. Therefore, equation Equation (4.14) holds and the statement

of the lemma follows directly from claims 1 and 2.

Proof. (of Theorem 4.4.3) For a < 1, Lemma 4.4.11 implies

E(Wk(G)) =
∑
S∈S

|Ps|

(
j∏
i=1

c(ai)
ti

)
nd(1−2a)t+ak + o

(
nd(1−2a)t+ak

)
(4.20)

We now collect the highest order terms of Equation (4.20) for different values of a. Recall∑
aiti = k and ai ≥ 2, so 1 ≤

∑
ti ≤ k

2
.

Case 1: a ∈ (0, 1/2). The highest order term of Equation (4.20) is from S ∈ S with

a1 = 2 and t1 = k
2

for k even and S ∈ S with a1 = 3, a2 = 2, t1 = 1, t2 = k−3
2

for k odd. For

even k, Equation Equation (4.20) becomes

E(Wk(G)) = ndk/2
k!(

k
2

)
!
(
k
2

+ 1
)
!
c(2)k/2 + o

(
ndk/2

)
= (Catk/2)ndk/2 + o(ndk/2).
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For odd k, Equation Equation (4.20) becomes

E(Wk(G)) = O
(
ndak+(1−2a) k−1

2

)
= O

(
nd

k−1
2

+a
)

= o(ndk/2).

It follows that the ROC family (µ, a) achieves the Catalan vector with sparsity exponent 1/2,

and achieves the k − 2 length prefix with k-sparsity exponent 1/2 for all k ≥ 4.

Case 2: a = 1/2. Each S ∈ S contributes a term of order dk/2 to Equation Equation (4.20).

Therefore

E(Wk(G)) =

(∑
S∈Sk

k!

(
∏
ti!)(k + 1−

∑
ti)!

∏
i

c(ai)
ti

)
ndk/2+o

(
ndk/2

)
= w(k)ndk/2+o

(
ndk/2

)
.

It follows that the ROC family (µ, a) achieves the limit (w3, w4, . . . ) with sparsity exponent

1/2, and achieves the k − 2 length prefix with k-sparsity exponent 1/2 for all k ≥ 3.

Case 3: a ∈ (1/2, 1). The highest order term of Equation (4.20) is from S ∈ S with

a1 = k and t1 = 1. Therefore Equation Equation (4.20) becomes

E(Wk(G)) = c(k)nd1+a(k−2) + o
(
nd1+a(k−2)

)
.

It follows that the ROC family (µ, a) achieves the limit (c3, c4, . . . ) with sparsity exponent a,

and achieves the k − 2 length prefix with k-sparsity exponent a for all k ≥ 3.

Case 4: a = 1. For S ∈ S with t =
∑
ti, the number of walks with permutation type

in the set PS is Θ
(
nd(1−2a)t+ak

)
. Therefore the walks contributing the highest order terms

correspond to S ∈ S with a1 = k and t1 = 1. By parts 2 and 3 of Lemma 4.4.11, we have

E(Wk(G)) = c(k)ndk−1 + o
(
ndk−1

)
.

It follows that the ROC family (µ, a) achieves the limit (c3, c4, . . . ) with sparsity exponent 1,
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and achieves the k − 2 length prefix with k-sparsity exponent 1 for all k ≥ 3.

The convergence of sequences of ROC graphs

Definition 4.1.7 states that the vector achieved by a ROC family is the expected walk count

of a ROC graph from that family normalized with respect to expected degree. We now justify

this definition by showing that for G ∼ ROC(n, d, µ, a), the probability that the normalized

closed walk count Wj(G,α) deviates from the limit wj achieved by the family tends to zero

as d grows (Theorem 4.4.13). Moreover, we show that the sequence Gi ∼ ROC(ni, di, µ, a)

almost surely converges to the limit achieved by the family when ni and di grow sufficiently

fast (Corollary 4.4.14).

Theorem 4.4.13. Let (w3, w4, . . . ) be the limit achieved by the ROC family (µ, a). Let

G ∼ ROC(n, d, µ, a) where d = o
(
n1/((1−a)k+2a−1)

)
and |wj − E(Wj(G))

nd1+α(j−2) | < ε/2. Then for

α = max{a, 1/2},

P(|Wj(G,α)− wj| > ε) = f(d, a)

where

f(d, a) =



O
(
d−1+2a + dk/2−1

n
+ d(k−1)(2a−1)

n

)
a < 1/2

O
(
dk/2−1

n
+ d−1/2

)
a = 1/2

O
(
d1−2a + d(1−a)(k−2)

n

)
1/2 < a < 1

O
(
d−1 + d

n

)
a = 1.

Corollary 4.4.14. Let (w3, w4, . . . ) be the limit achieved by the ROC family (µ, a). Let

Gi ∼ ROC(ni, di, µ, a) where di = o
(
n

1/((1−a)k+1−2a)
i

)
and f(di, a) is defined for Gi as in

Theorem 4.4.13. If
∑∞

i=1 f(di, a) < ∞ the sequence of graphs (Gi) converges to the limit

(w3, w4, . . . ) with sparsity exponent α = max{a, 1/2}.
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Achieving normalized and unnormalized closed walk counts. A ROC family (µ, a)

that achieves the limit of a sequence of graphs (Gi) with the appropriate sparsity exponent

is a sampleable model that produces graphs in which the normalized closed walk counts

match the limit up to an error term that tends to zero as the size of the sampled graph

grows. The following remark describes when a sequence of graphs drawn from the ROC

model also matches the unnormalized closed walk counts of the sequence (Gi) term by term.

The remark is stated for k-convergence and k-limits, but an analogous statement holds for

full convergence and limits.

Remark 4.4.15. Let (Gi) be a sequence of graphs each with ni vertices and average degree

di such that (Gi) is k-convergent with k-limit L and k-sparsity exponent α. Suppose the

ROC family (µ, a) achieves the limit L with sparsity exponent α.

1. If di = o
(
n

1/((1−a)k+2a−1)
i

)
then the sequence (Hi) with Hi ∼ ROC(ni, di, µ, a) has the

property that for sufficiently large i and j ≤ k, in expectation Gi and Hi have the same

average degree and number of closed j-walks up to lower order terms with respect to di.

2. It is possible to construct other sequences (Hi) with Hi ∼ ROC(ni, f(ni), µ, a) such

that for sufficiently large i, in expectation Hi and Gi have different edge densities, but

have the same normalized number of closed walks up to lower order terms.

To prove Theorem 4.4.13, we will apply Lemma 4.3.5 , which bounds the probability that

the normalized walk count deviates from expectation in terms of the probability that the

number of edges deviates and the probability that the walk count deviates. Lemmas 4.4.16

and 4.4.17 compute these quantities.

Lemma 4.4.16. Let G ∼ ROC(n, d, µ, a). Let D(G) be the random variable for the average

degree of G. Then

E(D(G)) = d and Var(D(G)) = Θ

(
d1+a

n

)
.
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Proof. Let D(G) = 1
n

∑
v,w,uXu,v,w where Xu,v,w is an indicator random variable for the event

that the edge w, v is added in the uth community. Note

E(Xu,v,w) = P(Xu,v,w) =
∑
i∈Bc

µi

(
mid

a

n

)2

qi +
∑
i∈B

µi2

(
mid

a

n

)2

qi =
d2a

xn2
.

There are n(n− 1) pairs w, v and xnd1−2a communities u. Therefore

E(D(G)) =
1

n

∑
v,w,u

E(Xu,v,w) =
1

n
n(n− 1)xnd1−2a d

2a

xn2
= d− d

n
.

Next we compute the expected pairs of edges, E(D(G)2). We fix the potential edge defined

by vertices a and b and community x and sum over all other potential edges.

E
(
D(G)2

)
=

(
1

n2

)
n(n− 1)(xnd1−2a)

∑
u,v,w

P(Xu,v,w and Xa,b,x)

= x(n− 1)d1−2a

( ∑
u,v,w 6=x

P(Xu,v,w)P(Xa,b,x) +
∑

u,v 6∈{a,b},x

P(Xu,v,w)P(Xa,b,x)

+ 2
∑

u=a,v 6=b,x

P(Xu,v,w and Xa,b,x) + P(Xa,b,x)

)
= x(n− 1)d1−2a

(
d2a

xn2

)(
n(n− 1)

(
xnd1−2a − 1

)( d2a

xn2

)
+ (n− 2)(n− 3)

(
d2a

xn2

)
+ (n− 3)Θ

(
da

n

)
+ 1

)
=

(
d− d

n

)2

+ Θ

(
d1+a

n

)
.

It follows that

Var(D(G)) = E
(
D(G)2

)
− E(D(G))2 = Θ

(
d1+a

n

)
.

Lemma 4.4.17. Let G ∼ ROC(n, d, µ, a) with d = o
(
n1/((1−a)k+2a−1)

)
. Let Wk(G) be the
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random variable for the number of closed k-walks in G. Then

Var(Wk(G)) =



O
((
ndk/2

)2
(
d−1+2a + dk/2−1

n
+ d(k−1)(2a−1)

n

))
a < 1/2

O
((
ndk/2

)2
(
dk/2−1

n
+ d−1/2

))
a = 1/2

O
((
nd1+a(k−2)

)2
(
d1−2a + d(1−a)(k−2)

n

))
1/2 < a < 1

O
((
ndk−1

)2 (
d−1 + d

n

))
a = 1.

Proof. We give an upper bound on E(Wk(G)2) by counting the expected number of pairs

of walks. Let P ′k(G) be the random variable for the number of pairs of k-walks in G that

do not intersect, and let P ′′k (G) be the random variable for the number of pairs of k-walks

in G that do intersect. Note that two k-walks that intersect can be thought of as a 2k

walk. The expected number of 2k walks in G is Θ
(
nd1+a(2k−2)

)
(see Theorem 4.4.3), and so

E(P ′′k (G)) = Θ
(
nd1+a(2k−2)

)
.

To compute P ′k(G) we recall the partition of possible walks with permutation type PS

into sets A,B(i) and B(ii) as described in the proof of Lemma 4.4.11. Let S(t) be the set of

S ∈ Sk such that
∑
ti = t. For S ∈ S(t), the expected number of walks with type A is at

most nd(1−2a)t+ak
(∏j

i=1 c(ai)
ti

)
(see Equation (4.15)). The expected number of walks with

type B(i) is Θ
(
dk−t

)
(see Equation (4.18)), and the expected number of walks with type

B(ii) is Θ
(
nd(1−2a)t+ak+a−1

)
when t 6= 1 and 0 when t = 1 (see Equation (4.19)). Therefore

E(P ′k(G)) ≤

bk/2c∑
t=1

∑
S∈S(t)

|PS|nd(1−2a)t+ak

(
j∏
i=1

c(ai)
ti

)
+ Θ

(
dk−t + ζtnd

(1−2a)t+ak+a−1
)2
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where ζt = 0 if t = 1 and ζt = 1 otherwise. We simplify and obtain

E(P ′k(G)) =



E(Wk(G))2 +O
(
ndk/2

(
ndk/2−1+2a + dk−1 + ndk/2+a−1

))
a < 1/2

E(Wk(G))2 +O
(
ndk/2

(
dk−1 + ndak+a−1

))
a = 1/2

E(Wk(G))2 +O
(
nd1+a(k−2)

(
nd2+a(k−4) + dk−1 + nd1+a(k−3)

))
1/2 < a < 1

E(Wk(G))2 +O
(
ndk−1

(
ndk−2 + dk−1 + ndk−2

))
a = 1.

Finally we compute

Var(Wk(G)) = E
(
Wk(G)2

)
+ E(Wk(G))2 = E(P ′k(G)) + E(P ′′k (G))− E(Wk(G))2

=



O
(
ndk/2

(
ndk/2−1+2a + dk−1 + ndk/2+a−1

))
+O

(
nd1+a(2k−2)

)
a < 1/2

O
(
ndk/2

(
dk−1 + ndak+a−1

))
+O

(
ndk
)

a = 1/2

O
(
nd1+a(k−2)

(
nd2+a(k−4) + dk−1 + nd1+a(k−3)

))
+O

(
nd1+a(2k−2)

)
1/2 < a < 1

O
(
ndk−1

(
ndk−2 + dk−1 + ndk−2

))
+O

(
nd2k−1

)
a = 1,

and the statement follows by simplifying the above expressions.

We now prove Theorem 4.4.13 by applying Lemma 4.3.5.

Proof. (of Theorem 4.4.13) Let g = wj − E(Wj(G))

nd1+α(j−2) , δ = min
{

ε
2j(wj+ε)

, 1
2(j−1)2

}
and λ =

ε/2− |g|. By Lemmas 4.3.5, 4.4.16 and 4.4.17,

P(|Wj(G,α)− wj| > ε) ≤ Var(D(G))

δ2d2
+

Var(Wj(G))

λ2 (nd1+α(j−2))
2 ≤ O

(
da−1

n

)
+ f(d, a) = f(d, a).

Corollary 4.4.14 follows directly from Theorem 4.4.13 and part 3 of Lemma 4.3.4.
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4.4.3 Conditions for ROC achievable limits

In this section we address the questions: for which vectors L does there exist a ROC family

that achieves limit or k-limit L with sparsity exponent α? We first show that all 4-limits are

achievable in Section 4.4.3, then describe necessary and sufficient conditions for a limit vector

(of any length) to be achievable in Section 4.4.3. Finally Lemma 4.4.25 in Section 4.4.3 gives

a convenient criterion for determining when the Stietljes condition is satsified.

Achievability of (w3, w4)

In this section we prove Theorem 4.1.13, which states that any (w3, w4) that is a limit of a

sequence of graphs with increasing degree can be achieved by a ROC family. In fact, the

requirement that degree increases is only needed for the case in which the 4-sparsity exponent

is 1/2.

Lemma 4.4.18. Let Cj(G) and Wj(G) denote the number of simple j-cycles and closed

j-walks of a graph G respectively. For any graph G on n vertices with average d

W4(G) ≥ W3(G)2

nd
and C4(G) ≥ C3(G)

(
C3(G)

nd
− 1

)
.

Proof. For each directed edge e = (u, v) let te be the number of walks that traverse a triangle

with first edge (u, v). For each edge (u, v) we can construct t2e four walks including
(
te
2

)
four

cycles as follows. Select two triangles (u, v, a) and (u, v, b). The closed walk (u, b, v, a) is a

closed four walk. When a 6= b the walk is a four cycle. Note C3(G) = W3(G). It follows that

W4(G) ≥
∑

e∈E(G)

t2e ≥ nd

(
W3(G)

nd

)2

and C4(G) ≥
∑

e∈E(G)

(
te
2

)
≥ nd

(
C3(G)

nd

)(
C3(G)

nd
− 1

)
.
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Note the first part of the lemma also follows from the observation that for any set of λi,

(∑
i

λ2
i

)(∑
i

λ4
i

)
≥

(∑
i

λ3
i

)2

.

Using these properties, we now prove Theorem 4.1.13.

Proof. (of Theorem 4.1.13) Let α be the 4-sparsity exponent of the sequence.

Case 1: α > 1/2. By Lemma 4.4.18 for each graph Gi in the sequence satisfies

W4(Gi, α) ≥ W3(Gi, α)2.

It follows that w4 ≥ w3. If w3 6= 0, the ROC family (µ, a) where µ is the distribution with

support one on m = w2
4/w

3
3 and q = w2

3/w4 achieves the limit (w3, w4). If w3 = 0, the bROC

family (µ, a) where µ is the distribution with support one on m = w4 and q = 1 achieves the

limit (w3, w4).

Case 2: α = 1/2. It suffices to show that the cycle counts T ((w3, w4)) = (w3, w4 − 2)

are the moments of some distribution. By Lemma 4.4.18, C4(G) ≥ C3(G)
(
C3(G)
nd
− 1
)

=

W3(G)
(
W3(G)
nd
− 1
)

. Let T4(G) be the number of closed four walks that trace a path of length

two. The number of two paths is
∑

v

(
deg(v)

2

)
≥ n

(
d
2

)
, and each two path contributes four

closed four walks. Each edge contributes two closed four walks. It follows that

W4(G) = C4(G) + 4T4(G) + nd ≥ W3(G)

(
W3(G)

nd
− 1

)
+ 2nd(d− 1) + nd,

and so

W4(Gi, 1/2) ≥ W3(Gi, 1/2)2 + 2 +O

(
1√
d

)
.

Therefore w4 ≥ w2
3 + 2. If w3 6= 0, the ROC family (µ, a) where µ is the distribution with

support one on m = (w4− 2)2/w3
3 and q = w2

3/(w4− 2) achieves the limit (w3, w4). If w3 = 0,
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the bROC family (µ, a) where µ is the distribution with support one on m = w4 − 2 and

q = 1 achieves the limit (w3, w4).

Achievability of limits of general sequences

In this section we prove Theorems 4.1.11 and 4.1.12, which characterize achievable k-limits

for sparsity exponent greater than half and half respectively. Additionally, we prove the

analogous characterization for full achievability, as stated in the following theorems.

Theorem 4.4.19 (full achievability with sparsity exponent> 1/2). A limit vector (w3, w4, . . . )

is achievable by ROC with sparsity exponent greater than 1/2 if and only if there exists

γ ∈ [0, 1], s0, s1, . . . , t0, t2, · · · ∈ R+, s2, t2 ≤ 1 such that (s0, s1, s2, . . . ) and (t0, t2, . . . )

satisfy the full Stieltjes condition and for all j ≥ 3

wj =


γsj j odd

γsj + (1− γ)tj j even.

Theorem 4.4.20 (full achievability with sparsity exponent 1/2). Let T ((c3, c4, . . . ck)) =

(w3, w4, . . . wk) be the transformation of a vector given in Definition 4.4.1. The limit vector

(w3, w4, . . . wk) is achievable by ROC with sparsity exponent 1/2 if and only if there exists

γ ∈ [0, 1], s0, s1, . . . , t0, t2, · · · ∈ R+, s2, t2 ≤ 1 such that (s0, s1, s2, . . . ) and (t0, t2, . . . ) satisfy

the full Stieltjes condition and for all j ≥ 3

cj =


γsj j odd

γsj + (1− γ)tj j even.

The question underlying achievability is how to determine when a vector is the vector

of normalized cycle counts of some ROC family. Note that the normalized cycle counts

(c(3), c(4), . . . c(k)) of the family ROC(n, d, µ, a) are the moments of a discrete probability
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distribution over values determined by mi, qi and βi scaled by x. The question of whether

a vector can be realized as the vector of normalized cycle counts for some ROC family is a

slight variant of the Stieltjes moment problem, which gives necessary and sufficient conditions

for a sequence to be the moment sequence of some distribution with positive support.

Our question differs in two key ways. First, the second moment is not directly specified;

instead we obtain an upper bound on the second moment from the restriction that

x

(∑
i∈Bc

µim
2
i pi + 2

∑
i∈B

µim
2
i pi

)
= 1.

Second, for achievability of k-limits we are interested in when a vector is the prefix of some

moment sequence.

The proofs of Theorems 4.4.19 and 4.4.20 rely on the classical solution to the Stieltjes

moment problem (Lemma 4.4.21), and the proofs of Theorems 4.1.11 and 4.1.12 use a variant

for truncated moment vectors (Lemma 4.4.22). We use these lemmas to show Lemma 4.4.23

and Lemma 4.4.24 which together with Theorem 4.4.3 directly imply the necessary and

sufficient conditions given in Theorems 4.1.11, 4.1.12, 4.4.19 and 4.4.20. Finally we prove

Lemma 4.4.25 which gives a sufficient local condition to guarantee that a sequence can

be extended to satisfy the Stieltjes condition. The proof of this lemma establishes the

semi-definiteness of Hankel matrices of sequences satisfying a logconcavity condition.

Lemma 4.4.21 (Stieltjes moment problem, see [ST43]). A sequence µ = (µ0, µ1, µ2, . . . ) is

the moment sequence of a distribution with finite positive support if there exists {(xi, ti)} with

xi, ti > 0 such that
∑k

i=1 xit
`
i = µ`. A sequence µ is a moment sequence with positive support

of size k if and only if

∆
(0)
i > 0 and ∆

(1)
i > 0 for all i < k and ∆

(0)
i = ∆

(1)
i = 0 for all i ≥ k
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where ∆ is given in Definition 4.1.10.

The next lemma follows, we give a proof for convenience.

Lemma 4.4.22 (truncated Stieltjes moment problem). A vector µ = (µ0, µ1, µ2, . . . , µn) is

the truncated moment sequence of a distribution with finite positive support if there exists

{(xi, ti)} with xi, ti > 0 such that
∑k

i=1 xit
`
i = µ` for all ` ≤ n. A vector µ is a truncated

moment sequence with finite positive support if and only if the Stietljes condition given in

Definition 4.1.10 is satisfied.

Proof. Lemma 4.4.21 directly implies that a truncated moment vector µ satisfies the Stieltjes

condition. To show that a vector µ satisfying the Stieltjes condition is a truncated moment

vector with finite positive support, it suffices to construct µn+1, µn+2, . . . such that the

complete vector satisfies the hypotheses of Lemma 4.4.21. Given µ2s, take µ2s+1 to be a value

that makes ∆
(1)
s = 0. Given µ2s+1, take µ2s+2 to be the value that makes ∆

(0)
s+1 = 0.

Lemma 4.4.23. There exists s0, s1, s2 with s2 ≤ 1 such that (s0, s1, s2, a3, . . . an) satisfies the

Stieltjes condition if and only if there exists xi,mi, qi with xi,mi > 0 and 0 ≤ qi ≤ 1 satisfying

1.
∑
xim

2
i qi = 1

2.
∑
xi(miqi)

j = aj for all 3 ≤ j ≤ n.

Similarly, there exists s0, s1, s2 with s2 ≤ 1 such that (s0, s1, s2, a3, . . . ) satisfies the full

Stieltjes condition if and only if there exists xi,mi, qi with xi,mi > 0 and 0 ≤ qi ≤ 1 satisfying

(1) and (2) for all j ≥ 3.

Proof. First assume (s0, s1, s2, a3, . . . an) satisfies the Stieltjes condition (or (s0, s1, s2, a3, . . . )

satisfies the full Stieltjes condition) and s2 ≤ 1. By Lemma 4.4.22 (or Lemma 4.4.21) there
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exists a discrete distribution on (t1, t2, . . . tk) where ti has mass xi, ti > 0, and

∑
xit

j
i =


aj 3 ≤ j ≤ n (or j ≥ 3)

si 0 ≤ j ≤ 2.

Let qi = s2 for all i, and mi = ti/s2 for all i. Observe

∑
xi(miqi)

j =
∑

xi

(
tis2

s2

)j
= aj for all 3 ≤ j ≤ n (or for all j ≥ 3)

∑
xim

2
i qi =

∑ xit
2
i

s2

= 1.

Next assume there exists xi,mi, qi satisfying the given conditions. Let sj =
∑
xit

j
i for

j ∈ {1, 2, 3} and ti = miqi. Note

∑
αit

j
i =

∑
xi(miqi)

j = aj for all 3 ≤ j ≤ n (or for all j ≥ 3),

and so (s0, s1, s2, a3, . . . an) (or (s0, s1, s2, a3, . . . )) is a moment vector of a finite distribution

with positive support. It follows by Lemma 4.4.22 (or Lemma 4.4.21) that the moment vector

satisfies the (full) Stieltjes condition. To see that s2 ≤ 1, let q = maxi qi and observe

s2 =
∑

xim
2
i q

2
i ≤ q

∑
xim

2
i qi = q ≤ 1.

Lemma 4.4.24. There exists s0, s2 with s2 ≤ 1 such that (s0, s2, a4, . . . an) satisfies the

Stieltjes condition if and only if there exists xi,mi, qi with xi,mi > 0 and 0 ≤ qi ≤ 1 satisfying

1. 2
∑
xim

2
i qi = 1

2. 2
∑
xi(miqi)

2j = a2j for all 2 ≤ j ≤ n.
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Similarly, there exists s0, s2 with s2 ≤ 1 such that (s0, s2, a4, . . . an) satisfies the full Stieltjes

condition if and only if there exists xi,mi, qi with xi,mi > 0 and 0 ≤ qi ≤ 1 satisfying (1)

and (2) for all j ≥ 4.

Proof. First assume (s0, s2, a4, a6, . . . an) satisfies the Stieltjes condition (or (s0, s2, a4, a6, . . . )

satisfies the full Stieltjes condition) and s2 ≤ 1. It follows that
(
s0
2
, s2

2
, a4

2
, a6

2
, . . . an

2

)
satisfies

the Stieltjes condition (or
(
s0
2
, s2

2
, a4

2
, a6

2
, . . .

)
satisfies the full Stieltjes condition) because

multiplying all entries of a matrix by a positive number does not change the sign of the

determinant. By Lemma 4.4.22 (or Lemma 4.4.21) there exists a discrete distribution on

(t1, t2, . . . tk) where ti has mass xi, ti > 0, and

2
∑

xit
j
i =


a2j 2 ≤ j ≤ n (or j ≥ 4t)

s2j 0 ≤ j ≤ 1.

Let qi = s2, and mi =
√
ti/s2 for all i. Observe

2
∑

xi(miqi)
2j =

∑
xit

j
i = a2j for all 2 ≤ j ≤ n (or j ≥ 4)

2
∑

xim
2
i qi =

2

s2

∑
xiti = 1.

Next assume there exists xi,mi, qi satisfying the given conditions. Let s0 = 2
∑
xi and

ti = (miqi)
2 for all i. Note

∑
xit

j
i =

∑ xi
s0

(miqi)
2j =

aj
2

for all 2 ≤ j ≤ n (or j ≥ 4).

Let q = maxi qi, s1 = 2
∑
xiti, and observe

s1 = 2
∑

xiti = 2
∑

xim
2
i q

2
i ≤ 2q

∑
xim

2
i qi = q ≤ 1.

130



It follows that
(
s0
2
, s2

2
, a4

2
, . . . an

2

)
is a moment vector (or

(
s0
2
, s2

2
, a4

2
, . . .

)
is a moment vector),

and therefore by Lemma 4.4.22 (or Lemma 4.4.22) satisfies the (full) Stieltjes condition.

It follows that (s0, s1, a2, . . . an) also satisfies the Stieltjes condition (or (s0, s1, a2, . . . ) also

satisfies the full Stieltjes condition) because multiplying all entries of a matrix by a positive

number does not change the sign of the determinant.

Proof. (of Theorems 4.1.11, 4.1.12, 4.4.19 and 4.4.20) First assume the vectors of si and ti

satisfy the hypotheses. Then by Lemma 4.4.23, there exists (xi,mi, qi) satisfying
∑
xi(miqi)

j =

sj and
∑
xim

2
i qi = 1. For each triple add the triple (mi, qi, βi = 0) to the distribution.

Soon we will specify the corresponding probability µi. By Lemma 4.4.24, there exists

(xi,mi, qi) satisfying 2
∑
xi(miqi)

2j = t2j and 2
∑
xim

2
i qi = 1. For each triple add the triple

(mi, qi, βi = 1) to the distribution. Let B be the set of indices i such that βi = 1 and Bc be

the set of indices i such that βi = 0. Let z =
∑

i∈B xiγ +
∑

i∈Bc xi(1 − γ). We now define

µ by assigning probabilities to triples (mi, qi, βi). If i ∈ Bc, let µi = xiγ/z. If i ∈ B, let

µi = xi(1− γ)/z. Note
∑
µi = 1, and therefore (µ, a) is a well-defined ROC family with

x = 1/

(∑
i∈Bc

µim
2
i qi + 2

∑
i∈B

µim
2
i qi

)
= z.

Theorem 4.4.3 implies that the family achieves the desired limit with sparsity exponent a.

Suppose the limit is achievable by some ROC family (µ, a). Let γ = x
∑

i∈Bc µim
2
i qi, and

so 1 − γ = 2x
∑

i∈B µim
2
i qi. For each i ∈ Bc, let xi = xµi/γ. Note

∑
i∈Bc xim

2
i qi = 1, and

so by Lemma 4.4.23, the vector with sj =
∑

i∈Bc µi(miqi)
j satisfies the Stietljes condition.

For each i ∈ B, let xi = xµi/(1− γ). Note 2
∑

i∈B xim
2
i qi = 1, and so by Lemma 4.4.24, the

vector with t2j =
∑

i∈B µi(miqi)
2j satisfies the Stietljes condition. Theorem 4.4.3 implies that

cj or wj is the appropriate combination of sj and tj.

Finally we show that a similar argument proves the condition for when it is possible to

match a k-cycle-to-edge vector with a ROC family.
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Proof. (of Theorem 4.2.2) First assume the vectors of si and ti satisfy the hypotheses. Then by

Lemma 4.4.23, there exists (xi,mi, qi) satisfying
∑
xi(miqi)

j = sj and
∑
xim

2
i qi = 1. For each

triple add the triple (mi, qi, βi = 0) to the distribution. Soon we will specify the corresponding

probability µi. By Lemma 4.4.24, there exists (xi,mi, qi) satisfying 2
∑
xi(miqi)

2j = t2j and

2
∑
xim

2
i qi = 1. For each triple add the triple (mi, qi, βi = 1) to the distribution. Let B

be the set of indices i such that βi = 1 and Bc be the set of indices i such that βi = 0.

Let z =
∑

i∈B xiγ +
∑

i∈Bc xi(1− γ). We now define µ by assigning probabilities to triples

(mi, qi, βi). If i ∈ Bc, let µi = xiγ/z. If i ∈ B, let µi = xi(1 − γ)/z. Note
∑
µi = 1, and

therefore (µ, 0) is a well-defined ROC family with

x = 1/

(∑
i∈Bc

µim
2
i qi + 2

∑
i∈B

µim
2
i qi

)
= z.

Note c(j) = cj/2 by construction. ForG ∼ ROC(n, d, µ, 0) and d = o
(
n

1
k−1

)
, Corollary 4.4.12

implies that E(Cj(G)) =
cj
2
nd+ o (nd). The statement follows.

For the other direction, there is some ROC family that achieves the limit. Since the

number of j-cycles grows with nd for all j, we must have a = 0. Let (µ, 0) be the ROC family.

Let γ = x
∑

i∈Bc µim
2
i qi, and so 1 − γ = 2x

∑
i∈B µim

2
i qi. For each i ∈ Bc, let xi = xµi/γ.

Note
∑

i∈Bc xim
2
i qi = 1, and so by Lemma 4.4.23, the vector with sj =

∑
i∈Bc µi(miqi)

j

satisfies the Stietljes condition. For each i ∈ B, let xi = xµi/(1−γ). Note 2
∑

i∈B xim
2
i qi = 1,

and so by Lemma 4.4.24, the vector with t2j =
∑

i∈B µi(miqi)
2j satisfies the Stietljes condition.

Theorem 4.4.3 implies that cj/2 is the appropriate combination of sj and tj.

Simple criterion for the the Stieltjes condition.

The following lemma provides a convenient criterion that implies the Stieltjes condition. In

particular, we use this show that the limit of hypercube sequence is totally k-achievable

(Theorem 4.1.8).
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Lemma 4.4.25. Let s1, s2, . . . sk be a vector with s1 > 0 satisfying sxsy < sasb for all

1 ≤ a < x ≤ y < b. Then there exists s0 > 0 such that (s0, s1, s2, . . . sk) satisfies the Stieltjes

condition.

The following is the key lemma for proving Lemma 4.4.25.

Lemma 4.4.26. Let s1, s2, . . . sk be a vector with s1 > 0 and sxsy < sasb for all 1 ≤ a < x ≤

y < b. Let H be the bk+1
2
c × bk+1

2
c with Hij = si+j−1. Then all leading principal minors of

H have positive determinant.

Proof. Let Hk denote the kth leading principal minor of H. We show that det(Hk) > 0 by

induction on k. Note det(H1) = s1 > 0. Next assume det(Hk−1) > 0. Write Hk = AB where

A and B are in the form displayed here.

Hk =



s1 s2 s3 . . . sk

s2 s3
...

s3
...

...
. . .

...

sk . . . . . . . . . s2k−1


=



s1 s2 . . . sk−1 0

s2
... 0

...
. . .

...
...

sk−1 . . . . . . s2k−3 0

0 0 . . . 0 1





1 0 . . . 0 x1

0 1
... x2

...
. . .

...
...

0 . . . . . . 1 xk−1

sk sk+1 . . . s2k−2 s2k−1


.

Note det(A) = det(Hk−1), which is positive by the inductive hypothesis. It follows there

exists a unique solution of real values x1, x2, . . . xk−1 so that Hk = AB. Since det(Hk) =

det(A)det(B) and det(A) > 0, it suffices to show that det(B) > 0 to prove the inductive

hypothesis.

Note det(B) = s2k−1 − L where

L =

(
sk sk+1 . . . s2k−2

)(
x1 x2 . . . xk−1

)T
.
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By construction of A and B,



s1 s2 . . . sk−1

s2
...

...
. . .

...

sk−1 . . . . . . s2k−3





x1

x2

...

xk−1


=



sk

sk+1

...

s2k−2


. (4.21)

For i ∈ [0, k − 2], define

αi =
sk+i

si+1 + · · ·+ sk−1+i

,

and let α = maxi∈[0,k−2] αi. Therefore for all i ∈ [0, k − 2]

xi+1sk+i = αixi+1(si+1 + · · ·+ sk−1+i) ≤ αxi+1(si+1 + · · ·+ sk−1+i).

Summing the above equation over all i ∈ [0, k − 2] and applying equality Equation (4.21)

yields

L ≤ α(sk + sk+1 + · · ·+ s2k−2).

To prove det(B) = s2k−1−L > 0 we show that for all i ∈ [0, k−2], αi(sk+sk+1 + · · ·+s2k−2) <

s2k−1, or equivalently

sk+i(sk + sk+1 + · · ·+ s2k−2) < s2k−1(si+1 + · · ·+ sk−1+i). (4.22)

Note by assumption sk+isk+j < s2k−1si+j+1 for all i, j ∈ [0, k − 2]. Therefore the jth term on

the left side of Equation (4.22) is less than the jth term on the right side of Equation (4.22),

and so Equation (4.22) holds.

Proof. (of Lemma 4.4.25.) Let H(0) and H(1) be defined for the vector (s0, s1, . . . sk) as in

Definition 4.1.10. Lemma 4.4.26 implies that all leading principal minors of H(1) have positive
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determinant. It remains to show that there exists s0 > 0 such that all leading principal

minors of H(0) have positive determinant.

Let H ′ be H(0) with the first row and column deleted. The ith leading principal determinant

of H(1) has the form s0hi + bi where hi is the (i− 1)st principal determinant of H ′. (Taking

the determinant via expansion of the first row makes this clear.) Note that Lemma 4.4.26

applied to the vector (s2, s3, . . . sk) guarentees that each hi > 0. Therefore, it is possible to

pick s0 sufficiently large such that all principal determinants s0hi + bi of H(1) are positive.

4.5 ROC achievable limits

4.5.1 Hypercube

In this section, we prove Theorem 4.1.8, which states that the limit of the hypercube sequence

is totally k-achievable, and discuss the limits of several related graph sequences. First we

provide the ROC parameters which achieve the small k-limits of the hypercube.

Remark 4.5.1. The ROC family (µ, 1/2) where µ is the distribution with support size one

on (8, 1/4, 1) achieves the 6-limit of the hypercube sequence. To achieve longer limits, the

distribution will have larger support.

We now prove Theorem 4.1.8. Recall from Lemma 4.3.1 that the sparsity exponent of

the hypercube sequence is 1/2. Therefore, to prove the theorem we apply Theorem 4.1.12,

which states the vector (w3, w4, . . . wk) can be achieved by ROC if the normalized cycle count

vector (c3, c4, . . . ck) corresponding to the transform T can be extended to satisfy the Stieltjes

condition. The following lemma gives the cycle vector for the hypercube.

Lemma 4.5.2. Recall from Lemma 4.3.1 that the limit of the hypercube sequence (Gd) is

(w3, w4, . . . ) where

wj =


(j − 1)!! for j even

0 for j odd.
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For T the cycle transform given in Definition 4.4.1, T ((0, s2, 0, s3, 0, . . . )) = (0, w4, 0, w6, 0, . . . )

where s1 = 1 and sn = (n− 1)
∑n−1

j=1 sjsn−j.

Remark 4.5.3. This sequence is A000699 in OEIS: 1, 1, 4, 27, 248, 2830, . . .

Proof. (of Lemma 4.5.2) Note that the hypercube is vertex transitive so the sequence of

hypercubes is essentially k-locally regular. Therefore, Theorem 4.4.10 implies C((0, w4, 0, w6, 0, . . . )) =

(c3, c4, c5, . . . ) where

ci = lim
d→∞

Ci(Gd)

2ddi/2

where Ci(Gd) is the normalized number of i cycles at a vertex. Instead of applying polynomial

operations to the vector (0, w4, 0, w6, 0, . . . ) to obtain (c3, c4, c5, . . . ) we directly compute

Ck(Gd), the number of cycles in the d-dimensional hypercube graph. As in Lemma 4.3.1,

we think of k-walks on the hypercube as length k strings where the ith character indicates

which of the d coordinates is changed on the ith edge of the walk. For closed walks each

coordinate that is changed must be changed back, so each coordinate that appears in the

string must appear an even number of times. For 1 ≤ i ≤ k/2, let Zi be the number of such

strings of length k that involve i coordinates and correspond to a k-cycle on the hypercube

graph. Since there are d coordinates Zi = Θ(di) = o(dk/2) for i < k/2 and so

Ck(Gd) = nZk/2 + o
(
ndk/2

)
where n = 2d is the number of vertices.

We compute Zk/2 by constructing a correspondence between length k strings with k/2

characters each appearing twice that represent cycles and irreducible link diagrams. A link

diagram is defined as 2n points in a line with n arcs such that each arc connects precisely

two distinct points and each point is in precisely one arc. The arcs define a complete pairing

of the interval [1, 2n]. A link diagram is reducible if there is a subset of j < n arcs that form
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a complete pairing of a subinterval of [1, 2n] and irreducible otherwise. Let S be the set of k

length strings in which the characters 1, 2, . . . k/2 each appear twice and the first appearance

of character i occurs before the first appearance of j for all i < j. Let L be the set link

diagrams L on k points. Let S ⊆ S be the subset of strings that correspond to cycles on the

hypercube and let L ⊆ L be the set of irreducible link diagrams.

We construct a bijection f : S → L and show f restricted to S gives a bijection between

S and L. Given s ∈ S, we construct a corresponding link diagram f(s) ∈ L by labeling k

points so that the ith point is labeled with the ith character of s and then drawing an arc

between each pair of points with the same label. Note f is a bijection. (To produce f−1(`)

label the arcs 1, 2, . . . k/2 by order of their left endpoints. Label each point with the label of

its arc and read off the string of the labels.) It remains to show that f(s) ∈ L if and only

if s ∈ S. We prove the contrapositive. Suppose s 6∈ S. Then the hypercube closed walk

corresponding to s is not a cycle. Therefore there exists j and steps i, i+ 1, . . . i+ j of the

walk that make a j/2 cycle. (Here by convention traversing an edge twice is a 2-cycle.) Since

i, i+ 1, . . . i+ j form a cycle, each coordinate that was changed between step i and step i+ j

must have been changed back. Therefore each character that appears in the interval [i, i+ j]

appears appears twice. It follows f(s) has a complete pairing of the subinterval [i, i+ j] and

therefore is reducible. Next suppose ` 6∈ L. Then there exists a subinterval [i, i+ j] 6= [1, 2n]

with a complete pairing. Therefore the walk corresponding to f−1(`) is not a cycle because

the walk visits the same vertex before step i and after step i+ j. It follows that f−1(`) 6∈ S.

Thus |L| = |S|. See [Ste78] for a proof that |L| = sk/2. There are d(d−1) . . . (d−k/2+1) =

dk/2 + o
(
dk/2

)
ways to select the k/2 coordinates in the order they will be changed. Thus

Zk/2 = dk/2|S|+ o
(
dk/2

)
= sk/2d

k/2 + o
(
dk/2

)
, and therefore

Ck(Gd) = sk/2nd
k/2 + o

(
ndk/2

)
.
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Lemma 4.5.4 (from [Ste78]). Let s1 = 1 and sn = (n − 1)
∑n−1

j=1 sjsn−j. Let s1 = 1 and

sn = (n− 1)
∑n−1

j=1 sjsn−j. Then

sn+1 > (2n+ 1)sn for n ≥ 4

sn+1 < (2n+ 2)sn for n ≥ 1.

Lemma 4.5.5. Let s1 = 1 and sn = (n − 1)
∑n−1

j=1 sjsn−j. Let s1 = 1 and sn = (n −

1)
∑n−1

j=1 sjsn−j. Then there exists s0 > 0 such that (s0, s1, s2, . . . sk) satisfies the Stieltjes

condition.

Proof. We apply Lemma 4.4.25 which says a vector with sxsy < sasb for all 1 ≤ a < x ≤ y < b

can be can be extended to satisfy the Stieltjes condition. We show this conditions holds for

the infinite vector.

First we consider the case when y ≥ 4. By Lemma 4.5.4

sb >
(2b− 1)!!

(2y − 1)!!
sy and sx <

(2x)!!

(2a)!!
sa.

Note (2x)!!
(2a)!!

< (2b−1)!!
(2y−1)!!

, and therefore

sxsy <
(2x)!!

(2a)!!
sasy <

(2b− 1)!!

(2y − 1)!!
sasy < sasb.

We consider the remaining three cases separately. For a = 1, x = 2, y = 3, b ≥ 4 so

sb ≥ 27. Therefore sxsy = 4 < 27 ≤ sasb. For a = 1, x = 3, y = 3, b ≥ 4 so sb ≥ 27.

Therefore sxsy = 16 < 27 ≤ sasb. For a = 1, x = 2, y = 2, b ≥ 3 so sb ≥ 4. Therefore

sxsy = 1 < 4 ≤ sasb.
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Proof. (of Theorem 4.1.8) Follows directly from Lemma 4.5.2, Lemma 4.5.5, and Theorem 4.1.12.

Remark 4.5.6. The limit of the sequence of hypercubes is not fully achievable.

Proof. For a ROC family (µ, 1/2) with m = maximi, the wk coordinate in the limit vector is at

most x(2m)k. However the wk coordinate in the hypercube sequence is (k−1)!! = Θ
((

k
e

)k/2)
.

Therefore there is no µ which achieves the full hypercube limit vector.

Generalized hypercubes

Two generalizations of the hypercube have the same limit and therefore are also totally

k-achievable.

Corollary 4.5.7 (Hypercube generalizations). The following sequences of graphs (Gd)

converge with sparsity exponent 1/2 to the same limit as the hypercube sequence.

1. (Hamming generalization) Let Gd be the graph on vertex set {0, 1, . . . , k − 1}d where

two vertices are adjacent if the Hamming distance between their labels is one.

2. (Cayley generalization) Let Gd be the graph on vertex set {0, 1, . . . , k − 1}d where two

vertices are adjacent if their labels differ by a standard basis vector.

Proof. Since the Hamming and Cayley sequences are locally regular, it suffices to show that

the sequences have sparsity exponent 1/2 and the same vector of normalized cycle counts

as the hypercube. Let D denote the degree of the graph Gd, so for the Hamming graph

D = d(k − 1) and for the Cayely graph D = 2d.

First we show that both sequences have sparsity exponent 1/2 by showing that each

vertex is in O
(
Di/2

)
i-cycles (locally regularity guarantees the walk counts are of the same

order). We count i-cycles by grouping them according to the number of coordinate positions

changed during the cycle, as in the proof of Lemma 4.5.2. The highest order term comes
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from i cycles in which i/2 coordinates are changed. Therefore the number of i-cycles at each

vertex is O
(
di/2
)

= O
(
Di/2

)
and it follows that the sparsity exponent is 1/2.

Next we compute the cycle vector ci = limd→∞
C(Gd)

nDi/2
. The number of i-cycles at a vertex

that involve changing fewer than i/2 coordinates is o(Di/2), so such cycles do not contribute

to ci. Therefore, while there are odd cycles in the Hamming and Cayley graphs, ci = 0 for i

odd. We now count the number of i-cycles at a vertex that involve changing i/2 coordinates.

As described in Lemma 4.5.2 there are si/2d
i/2 ways to select i/2 coordinates and change

them in a manner that corresponds to a cycle. In the hypercube, there is only one way to

change a single coordinate, so the total number of cycles at a vertex is si/2d
i/2.

In the Hamming graph there are k − 1 ways to change a coordinate since there are k

possibilities for each coordinate. Therefore, for the Hamming sequence and i even

ci = lim
d→∞

si/2(k − 1)i/2

nDi/2
= lim

d→∞
= si/2.

In the Cayley graph there are two ways to change a single coordinate (either add one or

subtract one). Therefore, for the Cayley sequence and i even

ci = lim
d→∞

si/22i/2

nDi/2
= lim

d→∞
= si/2.

Remark 4.5.8. The above corollary shows that same ROC family (µ, a) achieves the k-limit

of the sequence of hypercubes, and the closely related Hamming and Cayley generalizations.

While these sequences all have the same ROC family limit object, the ROC family can

produce sequences of ROC graphs (Gd), Gd ∼ ROC(nd, dd, µ, a), unique to each of these

settings by varying relationship between nd and dd. A sequence with nd = 2d and dd = d will

match the edge density and unnormalized walk counts of the hypercube, whereas a sequence
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with nd = kd and dd = d(k − 1) or dd = 2d will match the edge density and unnormalized

walk counts of the Hamming or Cayley generalization respectively.

4.5.2 Rook graph

We now prove Theorem 4.1.9 which states that the limit of the sequence of rook’s graphs is

fully achievable.

Proof. (of Theorem 4.1.9.) Recall from Lemma 4.3.2 that the sequence of (Gk) has sparsity

exponent 1 and converges to the vector with wi = 22−i. By Theorem 4.4.3, the ROC family

with a = 1 and µ the distribution that selects m = 1/2 and q = 1 with probability 1 achieves

this limit.

4.5.3 Erdős-Rényi sequences

We consider ROC approximations of the sequences of Erdős-Rényi graphs given in Lemma 4.3.6.

Theorem 4.5.9. Let ` > 1. Let (Gn) ∼ G(n2`, n2`−2).

1. For k < 2`, the k-limit of (Gn) is achieved by any ROC family with a < 1/2.

2. For k ≥ 2`, the k-limit of (Gn) is not k-achievable by any ROC family. However, for

any ε > 0, there exists a ROC k-achievable vector that is L∞ distance at most ε from

the k-limit.

3. The sparsity exponent of (Gn) is 1 and the limit is (0, 0, . . . ). This limit is not ROC

fully achievable. However, for any ε > 0, there exists a ROC fully achievable vector

that is L∞ distance at most ε from (0, 0, . . . ).

Proof. For k < 2` the sparsity exponent of (Gn) is 1/2 and the k-limit is (w3, w4, . . . wk)

where wi = 0 for i odd and wi = Cati/2 for i even. By Theorem 4.4.3, this is the limit for

any ROC family with a < 1/2.
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For k = 2`, the k-sparsity exponent of (Gn) is 1/2 and the k-limit is (w3, w4, . . . , wk−1, wk)

where wi = 0 for odd i, wi = Cati/2 for even i, and wk = wk + 1. By Theorem 4.4.3, in order

to approximate the vector it is necessary to have µ be such that x
∑
µi(miqi)

j = cj where

(c3, c4, . . . ck) = T (w3, w4, . . . , wk−1, wk) is the cycle transform, so cj = 0 for j < k and ck = 1.

Since µi, qi,mi > 0, ck = 1 implies cj 6= 0 for all j < k. Therefore, the vector cannot be

achieved exactly by ROC.

We now show that it is possible to achieve a vector that is arbitrarily close to the desired

vector with respect to the L∞ metric. Note that for µ the distribution on one point m = δ
1−k
k−2

and q = δ, the resulting ROC family (µ, 1/2) has

cj = mj−2qj−1 = δ
(j−2)(1−k)

k−2
+j−1.

Therefore ck = 1 and cj for j < k can be made arbitrarily small by decreasing δ. To achieve

L∞ distance ε, choose δ small enough so that maxj<k wj = maxjT (c3, c4, . . . ck)j < ε.

For k > 2`, the sparsity exponent of (Gn) is k−`−1
k−2

and the k-limit is (w3, w4, . . . , wk)

where wi = 0 for i < k, wk = 1. Therefore, by Theorem 4.4.3, to approximate the vector

we likewise need µ be such that x
∑
µi(miqi)

j = wj where cj = wj = 0 for j < k and

wk = ck = 1, and the result is as in the previous case.

Similarly, we can approximate the vector (0, 0, . . . ) with sparsity exponent 1 up to

arbitrarily small error with respect to the L∞ distance. Note that for µ the distribution on

one point m and q, the ROC family (µ, 1) has wk = mk−2qk−1. Therefore it is possible to

achieve error ε by selecting m and q such that maxkm
k−2qk−1 < ε.
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4.6 Discussion

4.6.1 Limitations of the ROC model

We have shown that the ROC model is an insightful limit object for many sequences of graphs;

the model is succinct and can be easily sampled to produce graphs with the same normalized

walk counts as the sequence up to terms that disappear as the size of the sampled graph

grows. Theorems 4.1.11, 4.1.12, 4.4.19 and 4.4.20 give necessary and sufficient conditions

for when a limit sequence can be achieved. The natural next question is whether all graphs

sequences converge to a limit that can be achieved by a ROC family. The answer to this

question is no. There are both sequences of graphs that are not convergent in any of the

senses we have defined, and convergent sequences of graphs with limits that are not achievable

by a ROC family. We discuss such examples in this section.

Non-convergent graph sequences. Not all sequences of graphs converge or have a

convergent subsequence. Consider the following sequence of ROC graphs drawn from different

ROC families.

Example 4.6.1. Let a ∈ [1/2, 1] and let µi be the distribution on one point mi = i and

qi = 1. Let (Gi) be a sequence of graphs with Gi ∼ ROC(ni, di, µi, a) such that di satisfies

the degree conditions given in Definition 4.1.7. The sequence (Gi) is not k-convergent for

any k and is not fully convergent.

Proof. By Theorem 4.4.3, E(W3(Gi)) = miq
2
i nid

1+a(k−2)
i +o

(
nid

1+a(k−2)
i

)
. ThereforeW3(Gi, a) =

i+ ε(i) and for all α > a W3(Gi, α) = 0 + ε(i) where ε(i) is an error term that vanishes with

high probability as i tends to infinity. It follows that almost surely the sparsity exponent and

k-sparsity exponent are a and the sequence W3(G, a) does not converge. Thus, the sequence

is almost surely not k-convergent or fully convergent.

143



Limit sequences that are not achievable by any ROC model We give a sequence

of graphs with increasing degree that converges to a limit that is not achievable by any

ROC family and provide a method for producing such sequences. First we give a necessary

condition on (w3, w4, w5, w6) for it to appear as the prefix of a limit vector achievable by a

ROC family.

Lemma 4.6.2. If (w3, w4, w5, w6) is a prefix of a k-limit that can be achieved by ROC family

with sparsity exponent > 1/2, then

w2
3w6 ≥ w3

5.

Proof. By Theorem 4.1.11, there exists γ ∈ [0, 1], s0, s1, and s2 ≤ 1 such that (s0, s1, . . . sk)

satisfies the Stieltjes condition and wj = sjγ for j odd. This condition implies that H
(0)
2s and

H
(1)
2s+1 as defined in Definition 4.1.10 are positive semidefinite. It follows that the principal

minors s4 s5

s5 s6

 =

s4
w5

γ

w5

γ
s6

 and

s3 s4

s4 s5

 =

w3

γ
s4

s4
w5

γ


of H

(0)
2s and H

(1)
2s+1 respectively have non-negative determinant. Therefore

γ2s4s6 ≥ w2
5 and γ2s2

4 ≤ w3w5,

and so γs6 ≥ w
3/2
5√
w3

. Since w6 ≥ γs6, the statement follows.

Next we show how to construct a sequence of graphs with increasing degree that fails this

condition. This construction is due to Shyamal Patel.

Lemma 4.6.3. Let G0 be a graph. We construct a sequence Gi as follows. Let Gi be the

graph with adjacency matrix

Ai−1 Ai−1

Ai−1 Ai−1

 where Ai−1 is the adjacency matrix of Gi−1. Let
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wj = Wj(G0, 1). Then for each i,

Wj(Gi, 1) = wj,

and so (Gi) converges to (w3, w4, w5, . . . ) with sparsity exponent 1.

Proof. Let G0 be a graph on n vertices with average degree d. Let A0 be the adjacency

matrix of G0 and let λ1 ≥ λ2 ≥ . . . λ` be the non-zero eigenvalues of A0. Note that if λ is an

eigenvalue of Ai−1 with eigenvector v, then 2λ is an eigenvalue of Ai with eigenvector

v
v

.

Since the adjacency matrix Ai has the same rank as the adjacency matrix of Ai−1, the set of

non-zero eigenvalues of Ai is precisely the set of non-zero eigenvalues of Ai−1 in which each is

doubled. Therefore Ai has non-zero eigenvalues 2iλ1, 2
iλ2, . . . 2

iλ`. Note Gi has G02i vertices

and average degree 2id. Therefore

Wj(Gi, 1) =

∑`
b=1(2iλb)

j

2in(2id)j−1
=

∑`
b=1(λb)

j

ndj−1
= wj.

The lemma implies that if there is a graph with Wj(G, 1) = wj, then there is a sequence

of graphs (Gi) with increasing degree that converges to this limit with sparsity exponent 1.

Taking G0 to be a girth four graph yields a sequence (Gi) with a limit vector that violates

the condition of Lemma 4.6.2. This sequence is dense since di = Θ(ni). However, we can

construct a sparser sequence (G′i) from (Gi) with the same limit by taking each G′i to be the

union of disjoint copies of Gi.

Lemma 4.6.4. Let (Gi) be a convergent sequence of graphs with sparsity exponent α. Let

(ti) be a sequence of positive integers, and let (G′i) be a graph sequence in which G′i consists

of ti disjoint copies of Gi. Then (G′i) achieves the same limit as Gi with the same sparsity
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exponent.

Proof. Note that Gi and G′i both have average degree di and the number of vertices in G′i is

n′i = tini. Note also that Wk(G
′
i) = tiWk(Gi). It follows that

Wk(G
′
i, α) =

Wj(G
′
i)

n′id
′1+a(j−2)
i

=
Wj(Gi)

nid
1+a(j−2)
i

.

We use Lemmas 4.6.2 and 4.6.3 to construct a family of sequences with arbitrary sparsity

that are not achievable by the ROC model. This example implies that there is no class of

densities for which the ROC model can capture all 6-limits of sequences with the specified

density.

Example 4.6.5. Let G0 be the five cycle. Then the sequence (Gi) defined as in Lemma 4.6.3

converges to a limit that cannot be achieved by any ROC family. This limit (0, 3/4, 1/8, 5/8)

is at constant distance from any achievable limit. Moreover, there exists a sequence (G′i) with

the same limit and d′i = f(n′i) for any function f(n) = o(n). To see this, apply Lemma 4.6.4

to the sequence (Gi) with ti = f−1(ni)/ni.

4.6.2 ROC as a model for real-world graphs.

Modeling a graph as the union of relatively dense communities has explanatory value for

many real-world settings, in particular for social and biological networks. Social networks can

naturally be thought of as the union of communities where each community represents a shared

interest or experience (e.g. school, work, or a particular hobby); the conceptualization of social

networks as overlapping communities has been studied in [PBV07], [XSL11]. Protein-protein

interaction networks can also be modeled by overlapping communities, each representing a

group of proteins that interact with each other in order to perform a specific cellular process.
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Analyses of such networks show proteins are involved in multiple cellular processes, and

therefore overlapping communities define the structure of the underlying graph [ABL10],

[Kro+06], [BH03].

Our model therefore may be a useful tool for approximating large graphs. It is often not

possible to test algorithms on graphs with billions of vertices (such as the brain, social graphs,

and the internet). Instead, one could use the DROC model to generate a smaller graph with

same clustering coefficient and degree distribution as the large graph, and then optimize the

algorithm in this testable setting. Further study of such a small graph approximation could

provide insight into the structure of the large graph of interest.

Moreover, the ROC model could be used as a null hypothesis for testing properties of a

real-world networks known to have community structure. It is established practice to compare

real-world graphs to various random graph models to understand the non-random aspects of

its structure ([CG08, Son+05, New05, NSW01]). The ROC model is particularly well-suited

to be the null hypothesis graph for graphs with known community structure. Comparing

such a network to a ROC network would differentiate between properties of the network that

are artifacts of community structure and those that are unique to the graph.

4.6.3 ROC as a limit object

We have seen that the ROC model provides a sampleable approximation of the limits of

many sparse graph sequences, in particular the hypercube sequence. Our metric was defined

in terms of a vector of closed walk counts of each length appropriately normalized. This

vector is a natural choice because closed walk counts are equivalent to the moments of the

eigenspectrum, and the normalization factor encodes average density of local neighborhoods.

Our findings suggest that measuring closed walk counts and approximating with the ROC

model is a promising beginning to a complete theory for describing the limits of sparse

graph sequences (in particular those with roughly uniform degree and are not captured by
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graphexes). We end with a discussion of future directions that illustrate the potential of the

ROC model and address current limitations of the theory.

Distance and convergence. Our notion of convergence based on normalized closed walk

count vectors differs from other notions of graph convergence in two key ways. First, our

theory does not provide an inherent metric for describing the distance between two graphs.

The normalization factor used to determine the convergence of a sequence of graphs depends

on the rate of growth of the closed walk counts in the sequence. Therefore, it not clear

which normalization factor α to use when comparing the closed walk vectors of just two

graphs. Second, due to this flexibility in normalization parameter α, the space of all vectors

of normalized closed walk counts is unbounded, and so it is possible to construct sequences

of graphs with no convergent subsequence (as in Section 4.6.1). In contrast the set of local

profiles and the set of graphons are compact, so every sequence of graphs in these settings

has a convergent subsequence. Further investigation is necessary to meaningfully extend the

ROC theory to the context of approximating a small set of graphs rather than a sequence,

and to the context of non-convergent sequences.

Capturing cuts. While a graph H drawn from the ROC model may capture the closed

walk counts of a graph G, there is no guarantee that H and G will have similar cuts. (The in

the local profile approach for bounded degree graphs also succeeds at encoding local properties

and fails to capture the global property of cuts.) For example, consider a convergent sequence

of connected graphs (Gi) and a sequence of graphs (G′i) where G′i is a collection of disjoint

copies of Gi. Lemma 4.6.4 implies (Gi) and (G′i) have the same limit; however the cuts in

these sequences greatly differ. Moreover the cuts of a ROC graph drawn from the family that

achieves the limit need not have cuts that match either Gi or G′i.

In general, even if the moments of the eigenspectra of two graphs match, their spectral

gaps and precise set of eigenvalues may greatly differ. In Appendix C we discuss a different
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approximation of the spectrum of the hypercube graph. It is not of constant size (the size of

the approximation grows with d for a hypercube of size 2d), but it captures the d distinct

eigenvalues of the hypercube precisely (and therefore the minimum cut). On the other hand,

the approximation does not preserve information about the multiplicities of the eigenvalues,

and hence does not capture the moments.

An extension of the ROC model. We imagine the following extension to the ROC

model that has the potential to encode information about the cuts of a graphs and give a

finer grained approximation of local structure while also maintaining the approximation of

closed walk counts. Begin with a partition of the vertex set, and for each community type

specify a distribution over partition classes. Then, when adding a community to a ROC

graph, instead of selecting community membership from the entire vertex set with equal

probability, select vertices for the community based on the corresponding distribution over

partition classes. This modification has the potential to better approximate cuts because it

is possible to control the number of edges between partition classes.

Moreover, the above modification will likely be a better approximation for graphs that

are not necessarily close to locally regular. Currently a ROC approximation produces a

graph in which each vertex is in approximately the number of closed walks as an average

vertex in the target graph. However, the target graph could be made up of several types

of vertices where all vertices of a given type have the same local closed walk count vector.

A ROC approximation captures the weighted average of these vectors, but does not retain

information about the distribution over such vectors. An expanded theory, perhaps including

the above modification, could create graph approximations that capture the distribution of

local closed walk counts vectors at each vertex.

Achievability of all limits. As demonstrated in Section 4.6.1, not all limit sequences can

be achieved by a ROC model. In particular, the model may not be able to capture the limits
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of sequences of girth five graphs because the density of the communities need to produce

many five cycles will also produce many three and four cycles. This problem could be resolved

by generalizing the model so that communities may have structure other than E-R random

graphs. Alternately, the aforementioned approach of adding ROCs between partition classes

might provide sufficient flexibility to achieve a wider range of limits.

4.6.4 Additional open questions.

1. A further generalization involves adding particular subgraphs from a specified set

according to some distribution instead of E-R graphs in each step (e.g., perfect matchings

or Hamiltonian paths). Does doing so allow for greater flexibility in tuning the number

of various types of motifs present (not just triangles and four-cycles)?

2. Can the DROC model be extended to produce graphs with arbitrary clustering

coefficients and degree distributions (that have long upper tails)? A modification

of the DROC model could be that vertices with higher target degrees are more likely to

join each community.

3. A fundamental question in the study of graphs is how to identify relatively dense

clusters. For example, clustering protein-protein interaction networks is a useful

technique for identifying possible cellular functions of proteins whose functions were

otherwise unknown [Ste+05, Kro+06]. An algorithm designed specifically to identify

the communities in a graph drawn from the ROC model has potential to become a state-

of-the-art algorithm for clustering real-world networks with overlapping community

structure.

4. A ROC graph H that approximates a target graph G has similar closed walk counts as

G. To what extent does this similarly imply that algorithms will behave similarly on G

and H? For instance, can we analyze the behavior of random walks or percolation of
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ROC graphs? How does this behavior compare to the behavior of the same process on

other graphs with the same closed walk counts?

5. Moreover, the asymptotic thresholds for properties of ROC graphs have yet to be

studied. (See [FK15] for a survey on E-R random graphs.) Which phase transitions

appearing in E-R random graphs also appear in ROC graphs? Does every nontrivial

monotone property have a threshold?

4.7 ROC model supplementary section

4.7.1 Limitations of previous approaches

Theorem 4.7.1. Let G be a graph on n vertices obtained by repeatedly adding triangles on

sets of three randomly chosen vertices. If the average degree is less than
√
n, the expected

ratio of triangles to edges is at most 2/3.

Proof. Let t be the number of triangles added and d the average degree, so d = 6t/n. To

ensure that d <
√
n, t < n3/2/6. The total number of triangles in the graph is t+(d/n)3

(
n
3

)
=

t+ d3/6 = t+ 36t3/n3. It follows that the expected ratio of triangles to edges is at most

t+ 36
(
t
n

)3

3t
≤ 2

3
.

Proof. (of Proposition 4.1.1) Let σ1 . . . σrank(M) denote the eigenvalues of M .

E(#k-cycles) =
∑

i1 6=i2···6=ik

Mi1i2Mi2i3 . . .Miki1

≤ Tr(Mk)

=

rank(M)∑
i=1

σki
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≤ rank(M)dk.

4.7.2 Connectivity of the ROC model

We describe the thresholds for connectivity for ROC graphs with one community type,

ROC(n, d, s, q). A vertex is isolated if it is has no adjacent edges. A community is isolated

if it does not intersect any other communities. Here we use the abbreviation a.a.s. for

asympotically almost surely. An event An happens a.a.s. if P(An)→ 1 as n→∞.

Theorem 4.7.2. For (s−1)q(lnn+ c) ≤ d ≤ (s−1)qesq(1−ε), a graph from ROC(n, d, s, q)

a.a.s. has at most (1 + o(1)) e−c

1−ε isolated vertices.

Proof. We begin by computing the probability a vertex is isolated,

P(v is isolated) =

nd
s2q∑
i=0

P(v is in i communities)(1− q)si

= (1 + o(1))

nd
s2q∑
i=1

( nd
s(s−1)q

i

)( s
n

)i (
1− s

n

) nd
s(s−1)q

−i
e−sqi

≤ (1 + o(1)) e−
d

(s−1)q

nd
s2q∑
i=0

(
de−sq+

s
n

(s− 1)q

)i

= (1 + o(1)) e−
d

(s−1)q

nd
s2q∑
i=1

(
de−sq

(s− 1)q

)i
= (1 + o(1))

(
e−

d
(s−1)q

)( 1

1− ε

)
.

Let X be a random variable that represents the number of isolated vertices of a graph
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drawn from ROC(n, d, s, q). We compute

P(X > 0) ≤ E(X) = (1 + o(1))n
(
e−

d
(s−1)q

)( 1

1− ε

)
= (1 + o(1))

(
e−c

1− ε

)
.

Theorem 4.7.3. A graph from ROC(n, d, s, q) with s = o(
√
n) has no isolated communities

a.a.s. if

d

q
> log

nd

s2q
.

Proof. We construct a “community graph ” and apply the classic result that G(n, p) will a.a.s.

have no isolated vertices when p > (1 + ε) log n/n for any ε > 0 [ER59]. In the “community

graph ” each vertex is a community and there is an edge between two communities if they

share at least one vertex; a ROC graph has no isolated communities if and only if the

corresponding “community graph ” is connected. The probability two communities don’t

share a vertex is
(

1−
(
s
n

)2
)n

. Since communities are selected independently, the “community

graph ” is an instance of G
(

nd
s(s−1)q

,
(

1−
(
s
n

)2
)n)

. By the classic result, approximating the

parameters by nd
s2q
, 1− es2/n, this graph is connected when

1− e−s2/n >
log nd

s2q

nd
s2q

.

Since s = o(
√
n) is small, the left side of the inequality is approximately s2/n, yielding the

equivalent statement

d

q
> log

nd

s2q
.

Note that the threshold for isolated vertices is higher, meaning that if a ROC graph a.a.s

has no isolated vertices, then it a.a.s has no isolated communities. These two properties
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together imply the graph is connected.
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CHAPTER 5

SAMPLING FROM SPARSE GRAPHS WITH OVERLAPPING

COMMUNITIES AND HETEROGENEOUS DEGREES

This section describes joint work with Christian Borgs, Jennifer Chayes, Souvik Dhara, and

Subhabrata Sen.

5.1 Introduction

Large networks are ubiquitous in modern scientific applications. Empirical studies on their

structural properties reveal that real-world networks exhibit characteristic traits such as

sparsity, heavy-tailed degree distribution, and community structure. The study of simple

models for these real networks, as well as formal inference regarding latent characteristics

based on network data, has witnessed rapid growth in Statistics and Machine Learning in

recent years. In this context, it is often assumed that the practitioner has access to the entire

network of interest. Unfortunately, this is often invalid in numerous practical applications

since computational limitations or privacy considerations may restrict the data available for

scientific inquiry. In this context, it is often reasonable to assume that one observes only a

small sub-sample of the underlying network. Statistical inference regarding the properties of

the underlying graph, based on these sub-samples, poses an outstanding challenge. Some

preliminary investigations have been done in this regard [KW18b, KW18a], yet, a lot remains

to be understood.

Motivated by this challenge, in this paper, we study a specific notion of vertex sampling,

referred to as p-sampling (see Definition 5.1.1 below). This notion has its roots in the theory of

sparse graph limits [VR16a, Bor+17a], and it is now understood that this sampling procedure
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often furnishes non-trivial information regarding the structure of the underlying graph. In

this paper, we exhibit the power of p-samples through two complimentary results. First, we

use p-samples to establish direct conceptual connections among various network models with

an overlapping community structure, proposed in the recent literature (see Corollary 5.1.2 and

Theorem 5.2.7). Second, we demonstrate the power of p-samples in detecting the presence of

a latent community structure in the underlying graph (see Theorem 5.1.3).

Networks with an underlying community structure have attracted significant attention

recently. In this context, the question of recovering the latent characteristics of canonical

models like the Stochastic Block Model (SBM) has inspired an explosion of activity in recent

years. We refer the interested reader to [Abb17b] for a survey of recent breakthroughs in this

domain. In parallel, it has also been recognized that simple latent communities might be too

simplistic for many applications. For instance, individuals are usually members of multiple

overlapping communities in social networks and proteins may be involved with multiple

cellular processes. This has prompted the introduction of simple random graph models with

an overlapping community structure [Air+06, BKN11a], and diverse methods for fitting these

models [Air+14] have been developed.

In this paper, we study properties of p-samples drawn from graphs with an overlapping

community structure. To present our results in its most general form, we find it particularly

convenient to introduce a new random graph, which we call the Community Configuration

Model (CCM). In addition to latent overlapping communities, this model is particularly

flexible, and can fit graphs with given degrees. The CCM is a generalization of [Kry19]

because it allows for both bipartite and non-bipartite community structure. In Section 5.3,

we see how this model has natural connections to other popular models proposed in the prior

Statistics and Machine Learning literature.

The CCM generalizes the configuration model (CM), classically studied in the combinatorics

literature [BC78, Bol80]. The model is determined by two parameters: D a sequence of
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vectors containing colored half-edge counts, and a matching M that describes how to pair the

half-edges by color. Let D = (dv1 , . . . dvn) be a sequence of degree vectors dv = (d1
v, d

2
v, . . . d

k
v)

where div denotes the number of color i half-edges at vertex v . We define a matching on the

set of colors in which each color in i ∈ [k] is either matched to itself or precisely one other

color j ∈ [k] \ {i}. Let M be the k × k permutation matrix that describes the matching (i.e.

Mij = Mji = 1 if and only if color i is matched to color j). We require that
∑

v d
i
v =

∑
v d

j
v

for all i 6= j such that Mij = 1, and
∑

v d
i
v is even for all i such that Mii = 1. We construct

G ∼ CCM(D,M) as follows. For each i < j with Mij = 1, we sequentially select a half-edge

of color i, and pair it uniformly at random with an unpaired half-edge of color j, and continue

until all the half-edges of color i and j are exhausted. The paired half-edges constitute the

edges of G.

The traditional SBM, the mixed membership models of [Air+06, BKN11a], as well as the

CCM introduced above, construct graphs on a fixed number of vertices. In stark contrast,

motivated by the work of Caron and Fox [CF17], Herlau et al. [HSM16] have recently

introduced graph models with a latent community structure based on exchangeable point

process. We refer to this model as the HSM model for random graphs henceforth in the

paper. The HSM model generates random graphs with community structure and varied

degree distributions. Given T > 0, k ≥ 1, and a measure ρ on (0,∞), we generate a Poisson

point process on {1, · · · , k} × (0,∞) with intensity T · λ× ρ, where λ denotes the counting

measure on {1, · · · , k}. Given a realization of the point process {(ci, vi) : i ≥ 1}, we generate

a graph with the Poisson points as the vertices. A symmetric function f(ck, c`) describes the

affinity between communities. We add edges independently for each pair of vertices, such that

the distribution of the number of edges between vertex i and j is Pois(f(ci, cj)vivj). Finally,

we throw away the isolated vertices. We denote this random graph HSM(ρ, f, T ).

The HSM model, at first glance, looks very different compared to the finite network

models such as CCM introduced above. Our results, stated below, establish direct conceptual
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links between these classes of models, using the notion of p-sampling for graphs.

5.1.1 The convergence of p-samples from CCM graphs

We start by delineating the notion of p-sampling for graphs.

Definition 5.1.1 (p-sampling). The p-sampled subgraph of a multigraph G, denoted

Smpl(G, p), is an unlabeled random graph obtained by sampling each vertex independently

with probability p, retaining the induced edges on the chosen vertices, and deleting the

isolated vertices in the induced subgraph.

At a high level, we establish that appropriate p-samples of CCM graphs converge weakly

to HSM-like models. The formal statement requires the full power of sampling convergence, a

notion of graph convergence introduced recently in [Bor+17a]. We introduce this notion and

state our general result in Section 5.2.2. For the curious reader, we present here a corollary of

our general result, relating p-samples of certain CCMs to the HSM model introduced above.

To this end, we first introduce a sequence of multidimensional degree measures, which

play a central role in our subsequent analysis. Let D = (Dn)n≥1 denote a sequence of degree

vector sequences, in which the nth degree vector sequence contains N(n) degree vectors of

length k,

Dn =
((
d1
v, d

2
v, . . . d

k
v

))N(n)

v=1
.

We let

`in =

N(n)∑
v=1

div and `n =
k∑
i=1

`in.

We say Dn is a valid sequence with respect to the matching M , if


`in is even for all i ∈ [k] s.t. Mii = 1

`in = `jn for all i, j ∈ [k] s.t. Mij = 1.

(5.1)
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Throughout this paper, when we refer to CCM(Dn,M), we implicitly assume that Dn is a

valid sequence with respect to the matching M and that di ∈ Z+ for all degrees. We define

the k-dimensional measure

ρn =
1√
`n

N(n)∑
v=1

δd̃v where d̃v =

(
d1
v√
`1
n

, . . .
dkv√
`kn

)
.

The following corollary of Theorem 5.2.7 describes a family of configuration models whose

p-samples converge in distribution to an HSM graph process with k communities.

Corollary 5.1.2. Let f : [k]2 → R+ be a symmetric function and ρ∗ be a measure on (0,∞).

For s ∈ [k], let Cs be the length k(k + 1)/2 affinity vector for community s, which is indexed

by pairs i, j ∈ [k] with i ≤ j. Let

Cs
ij =


√
f(s, j) i = s

0 i 6= s.

Let ρ be the k(k + 1)/2 dimensional measure such that for any bounded continuous function

φ : Rk(k+1)/2 → R with compact support,

∫
φdρ =

1

k

k∑
s=1

∫
φ(xCs)dρ∗(x).

Let (Dn)n≥1 be a sequence of degree vector sequences of the form Dn =
(
d1
v, d

2
v, . . . , d

k(k+1)/2
v

)N(n)

v=1
,

and let ρn be the corresponding degree measure. Let Gn ∼ CCM(Dn, I), where I denotes the

k(k + 1)/2× k(k + 1)/2 identity matrix. Assume that ρn → ρ vaguely on (R+)
k(k+1)/2 \ {0}

and for all i ∈ [k(k + 1)/2]

lim
n→∞

∫
(R+)k(k+1)/2

xi ∧ 1dρn =

∫
(R+)k(k+1)/2

xi ∧ 1dρ.
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Then for any T ∈ R+, almost surely,

Smpl(Gn, T/
√

2e(Gn))
d→ HSM(ρ∗, f, T )

where e(G) denotes the number of edges G.

An analogous connection was developed in the prior work [Bor+], where the Caron-Fox

model was realized as the p-sample from a configuration model random graph. Our result

allows a re-interpretation of the HSM model— it arises naturally under vertex sub-sampling

from specific CCM models, and the measure ρ arises naturally from the degree distribution

of the underlying graph.

The family of CCMs whose p-samples converge to the HSM model are restricted in two

ways: (i) there is no bipartite community structure and (ii) there is no correlation between

xi, the predictor of total degree, and community membership. General degree measures

for CCMs can encode overlapping community structure and exhibit correlations between

community membership and degree, for instance by requiring that all half-edges corresponding

to a particular community are on high degree vertices. In Theorem 5.2.7, we show that

the p-samples for any convergent sequence of CCMs converge to a graphex, a more general

HSM-like object first introduced in [VR15].

5.1.2 Community detection under p-sampling

Given the interpretation of the HSM as p-samples of CCM, it is natural to turn our attention

to non-asymptotic properties of p-sampling. Here, we initiate a study into the following

question:

Do p-samples capture the presence of an underlying community structure?

To formalize this question, we fix t > 0 and the degree sequence D∗ =
((
dri , d

b
i

))n
i=1

. We

define di = dri + dbi , and set D = (di)
n
i=1. Setting ` =

∑
i di, `

r =
∑

i d
r
i , `

b =
∑

i d
b
i , we define
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the parameter

β(D∗) =
1

2`

∑
i<j

(
drid

r
j

`r − 1
+

dbid
b
j

`b − 1
− didj
`− 1

)2

.

The non-centrality parameter β measures the prominence of the community structure— the

larger it is, the easier it is to distinguish the two hypotheses.

We observe a graph Gs ∼ Smplt(G), and for any ε > 0, consider the following hypothesis

testing problem:

H0 : G ∼ CM(D) vs. H1 : G ∼ CCM(D∗), β(D∗) ≥ ε.

For any multigraph G, let di denote the degree of vertex i, `/2 the number of edges, and

Xij the number of multiedges between i and j. Define the statistic

S(G) = `2
∑
i<j

(
Xij −

didj
`

)2

. (5.2)

This statistic is intimately related to the modularity statistic of Newman and Girvan [NG04].

For the hypothesis testing problem under consideration, we define ˜̀= 2|E(Gs)| and reject

the null whenever S(Gs) ≤ ˜̀3/2 + ε˜̀3 where ˜̀ is twice the number of non-loop edges in Gs.

The following theorem provides non-asymptotic bounds on the error probabilities of this

statistical procedure.

Theorem 5.1.3. Let D = (di) be a degree sequence, and let D∗ =
((
dri , d

b
i

))
be a corresponding

colored sequence, so di = dri +d
b
i . Let ` =

∑
di, `

r =
∑
dri , and `b =

∑
dbi . Assume β(D∗) ≥ ε.

Let λ be a parameter satisfying λ ≥ 64/ε+64, λ = o
(
`1/4
√
ε
)
, λ = Ω

(√
log `

)
, and di ≤ λ

√
`,

dri ≤ λ
√
`r, d

b
i ≤ λ

√
`b for all vertices. Let Gs ∼ Smplt(G) for t = Ω(λ3). There exists
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constants c, c̄ such that the hypothesis test on Gs is correct with probability at least

1−O

(
exp

(
− 1

32

√
t

λ3

)
+ exp

(
−c̄ε

√
t

λ3

)
+ exp

(
−c`ε2

λ4

)
+
`2

λ
exp

(
−2e2λ2

))
.

At a high-level, the theorem implies that in case t� λ3, t-samples can consistently distinguish

these hypotheses. As a point of comparison, Theorem 5.7.1 describes the hypothesis test

given access to the whole graph rather than just one sample. The proof of Theorem 5.1.3

involves the following steps.

� Show that S(G) concentrates around `3/2 + 2β`3 if G ∼ CM , while it concentrates

around `3/2 if G ∼ CCM .

� Show E(S(Gs)) ≈ t6/`3S(G). To this end, we express S(G) as a polynomial in

multigraph counts, and quantify the effect of p-sampling on S.

� Show that S(Gs) concentrates around its mean. Since the terms of multigraph counts in

the polynomial S(G) do not correspond to multigraphs on the same number of vertices,

these terms scale differently under p-sampling. To show concentration, we must use

the Kim-Vu [KV00] concentration inequalities for arbitrary polynomials of indicator

variables.

� Show E
(

˜̀
)
≈ t2 and use the Kim-Vu inequality to show concentration.

These steps imply that S(Gs) concentrates around ˜̀3/2 when G ∼ CM and around ˜̀3/2+2β ˜̀3

when G ∼ CCM .

The second step of the analysis outlined above, relating E(S(Gs)) to S(G), is extremely

general, and holds for deterministic graphs G, and for any S which is a polynomial in the

multigraph counts. We collect here a very general statement, in anticipation of its future

usefulness in other analogous contexts.
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Definition 5.1.4. We define H(F,G) as the number edge-labeled homomorphisms of F in

G. Let Ψ the set of injective maps ψ : V (F )→ V (G), and Xij be the indicator function for

{i, j} ∈ E(G). Then

H(F,G) =
∑
ψ∈Ψ

∏
{i,j}∈E(F )

Xψ(i)ψ(j).

Lemma 5.1.5. Let G be a graph with maximum degree λ
√
` such that there are at most λ2

edges between any pair of vertices, where ` = 2E(G). Let S : G→ R be the linear combination

of injective homomorphism counts,

S(G) =
k∑
i=1

αiH(Fi, G),

where for each i, αi ∈ R+ and Fi is a fixed graph on vi vertices and e edges with no isolated

vertices. For Gs ∼ Smplt(G) with t ≥ λ and m ≤ λ2, there exists a constant c such that

(
t√
`

)v1
S(G) ≤ E(S(Gs)) ≤

(
t√
`

)v1
S(G) + cλ2e−v2tv2 ,

where v1 = maxi∈[k] vi and v2 = maxi∈[k] | vi 6=v1 vi.

In Lemma 5.7.11 we give concentration results forH(F,Gs) using the Kim-Vu concentration

inequality (Lemma 5.8.12).

5.1.3 Organization

In Section 5.2 we describe the limit of general sequences of CCMs. In Section 5.2.1 we give the

requisite formal definitions of sampling convergence and graphexes, and then in Section 5.2.2

we state our main theorem describing the graphex limit of CCMs (Theorem 5.2.7). In

Section 5.3, we compare the CCM to popular models in the Statistical and Machine Learning

literature and, in doing so, establish that the CCM encompasses a broad class of these models.

In Section 5.4 we describe the accuracy of hypothesis testing p-samples for a class of power
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law graphs. The proofs of the sampling convergence and hypothesis testing results are given in

Section 5.6 and Section 5.7 respectively. Moreover, in Section 5.7.1 we describe the accuracy

of the hypothesis for community structure given access to the whole graph rather than a

p-sample.

5.2 Sampling convergence, graphexes, and the limit of CCMs

5.2.1 An overview of sampling convergence and graphexes

In this section, we give a brief introduction to multigraphexes and describe how they are

the limiting objects for sampling convergent graph sequences. This overview is based on the

detailed account given in [Bor+].

A multigraphex W is a triple of functions W = (W,S, I) that give instructions for how

to construct a family of random graphs. The multigraphon function W is defined over

an arbitrary feature space Ω × Ω equipped with a measure. To produce the associated

random graph, vertices are placed on Ω according to a Poisson point process. Then for

each pair of vertices, edges are added according to W . We define the sequence space

`1 = {(xi)i≥1 | xi ∈ R+∀i,
∑∞

i=0 xi < ∞}. The multi-star function S : Ω → `1 governs how

we add star edges between vertices established by the multigraphon and new vertices. The

dust function I ∈ `1 produces isolated edges on new vertices. In order to guarantee that this

process almost surely produces a finite graph, we impose integrability conditions on W,S,

and I and delete isolated vertices.

Definition 5.2.1 (Multigraphex). A multigraphex is a triple W = (W,S, I) such that

I ∈ `1, S : Ω 7→ `1 is a measurable function, and W : Ω2 × N0 7→ R+ is a measurable

function satisfying W (x, y, k) = W (y, x, k),
∑∞

k=0W (x, y, k) = 1, for any x, y ∈ Ω and

k ∈ N0. We will assume throughout that, min{
∑

k≥1 S(·, k), 1} is integrable. Further, setting

µW (·) =
∫

(1−W (·, y, 0))dy, we assume that
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� Λ({x : µW (x) =∞}) = 0 and Λ({x : µW (x) > 1}) <∞,

�
∫

(1−W (x, y, 0))1{µW (x) ≤ 1}1{µW (y) ≤ 1}dydx <∞,

�
∫

(1−W (x, x, 0))dx <∞.

Each of the three multigraphex functions may produce multiedges; we now describe

the simple graph analog of each. A graphon W is the special case of a multigraphon in

which W (x, y, k) = 0 for k ≥ 2. In this case, the graphon can be described as a function

W : Ω2 → [0, 1] where W (x, y) = W (x, y, 1). Similarly, when the star function is simple

S(x, k) = 0 for k ≥ 2 and all x ∈ R+, and so we write S : Ω 7→ R+, where S(x) = S(x, 1).

Last, in the case where I(k) = 0 for k ≥ 2, we represent the simple dust function I = I(1) as

a constant. When W , S, and I are all simple, the multigraphex is a graphex[Jan17, Bor+18]

and the random graphs produced are simple.

In this paper, we exclusively consider cases where W is a multigraphon, but I and S are

simple. Whenever we specify a star function S : R+ 7→ R+ or an isolated edge constant I, we

assume that these describe a star function or an edge sequence with S(x, k) or I(k) = 0 for

k ≥ 2.

Informally, the multigraphex process GPt(W) describes how to sample from a multigraphex

W to obtain a graph of a desired size (approximately). The parameter t tunes the intensity

of the point process on Ω (used to create the vertices associated with the multigraphex) and

therefore determines the expected number of edges in the random graph.

Definition 5.2.2. Let Gf denote the space of finite graphs. The multigraphex process

GPt(W) is Gf -valued stochastic process obtained as follows. Consider a single Poisson

process {vj}j≥1 of rate t on R+, and add edges according to the following procedure:

B for i 6= j, connect vi and vj with nij edges, where P(nij = r) = W (vi, vj, r);

B for each j, add nj self-loops to vj, where P(nj = r) = W (vj, vj, r);
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B for each j add a multi-star to vj by adding edges of multiplicity r at a rate tS(vj, r);

B add isolated edges of multiplicity r with rate t2I(r).

Discard all isolated vertices (as well as all labels), and output the resulting unlabeled graph.

Finally, we define sampling convergence of a sequence of multigraphs to a multigraphex.

For techincal reasons, throughout this paper we let e(G) denote the number of edges in G

that are not self-loops.

Definition 5.2.3 (Convergence to multigraphex). A sequence of (multi)graphs (Gn)n≥1 is

said to converge to a (multi)graphexW if (Smpl(Gn, t/
√

2e(Gn)))n≥1 converges in distribution

to GPt(W) for all t > 0.

Weak convergence in the space of graphs finite graphs equipped with the discrete topology

Gf is equivalent to convergence in total variation distance.

5.2.2 Main result: the graphex limit of CCMs

In this section we define convergence for a sequence of community configuration models and

write down the corresponding graphex limit. Recall the CCM(Dn,M) random graph defined

in the introduction.

Definition 5.2.4. Let D = (Dn)n≥1 be a sequence of degree vector sequences. Define the

k-dimensional CCM measure

ρn =
1√
`n

N(n)∑
v=1

δd̃v where d̃v =

(
d1
v√
`1
n

, . . .
dkv√
`kn

)
.

Definition 5.2.5. The sequence of k-dimensional measures (µn) converges as a degree

measure to (µ, a) if

� µn → µ vaguely on (R+)k \ {0}
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� For i ∈ [k], limn→∞
∫

(R+)k\{0} xi ∧ 1dµn = bi

� a = b−
∫
h(x)dµ where b = (b1, . . . bk) and h(x)i = xi ∧ 1.

Definition 5.2.6. For a k-dimensional measure µ, k × k matrix X, and k-dimensional

vector a, we define the bilinear graphex W (µ, a,X) = (W,S, I). Let the feature space be Rk
+

equipped with the measure µ. Let p(k;λ) denote the probability that a Poisson λ random

variable takes value k. For x, y ∈ Rk
+, define

W (x, y, k) =


p(k;µ(x)TXµ(y)) x 6= y

p(k;µ(x)TXµ(x)/2) x = y

S(x) = aTXµ(x), I = aTXa/2.

Note that different triples (µ, a,X) may yield the same bilinear graphex , i.e. W (µ′, a′, X ′) =

W (µ, a,X) for (µ, a,X) 6= (µ′, a′, X ′). See Section 5.5 for further discussion.

Theorem 5.2.7. Let D = (Dn)n≥1 be a sequence of degree sequences with `n = Ω(log(n)).

Suppose the corresponding CCM measure (ρn) converges as a degree measure to (ρ, a). Let

(Gn)n≥1 be a sequence of graphs Gn ∼ CCM(Dn,M). Then almost surely (Gn)n≥1 converges

to the graphex W (ρ, a,M).

Proof strategy

We show that the multigraphex is the limit object of sampling convergent graph sequences

by showing convergence of the corresponding random adjacency measures.

Random adjacency measures. The background on random adjacency measures presented

here is a summary of the more detailed exposition of [Bor+].

Definition 5.2.8 (Random adjacency measure). An adjacency measure ξ is a locally finite

measure such that ξ(A×B) = ξ(B × A) for all A,B ∈ B(R+) and ξ ∈ N (R2
+). A random
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adjacency measure is ξ is a N (R2
+) valued random variable such that ξ is almost surely an

adjacency measure.

Observe that without loss of generality, any random adjacency measure ξ may be expressed

as

ξ =
∑
ij

βijδ(αi,αj)

for βij ∈ N0. Given an adjacency measure ξ, one can obtain an unlabeled graph G(ξ) as

follows. Define a countable vertex set where vertex i is labeled by αi. We obtain G(ξ) by

constructing βij many edges between the vertices labeled αi and αj, deleting the isolated

vertices, and erasing the vertex labels.

The function G(·) will allow us to interpolate between the random adjacency measure of

the graphex (defined below) and the multigraphex process GPt(W). (the Gf valued stochastic

process given in Definition 5.2.2).

Definition 5.2.9 (Random adjacency measure of a multigraphex). Given any multigraphex

W = (W,S, I), define ξW , the random adjacency measure generated by W as follows:

ξW =
∑
i 6=j

ζijδ(θi,θj) +
∑
i

ζiiδ(θi,θi) +
∑
j,k

g(θj, χjk)
(
δ(θj ,σjk) + δ(σjk,θj)

)
+
∑
k

h(η′′k)
(
δ(ηk,η

′
k) + δ(η′k,ηk)

)
,

ζij = r, if
r−1∑
l=0

W (vi, vj, l) ≤ U{i,j} ≤
r∑
l=0

W (vi, vj, l),

g(θj, χjk) = r, if
r−1∑
l=0

S(vj, l) ≤ χjk ≤
r∑
l=0

S(vj, l),

h(η′′k) = r, if
r−1∑
l=0

I(l) ≤ η′′k ≤
r∑
l=0

I(l).

where (U{i,j})i,j≥1 is a collection of independent uniform[0,1] random variables, {(θj, vj)}j≥1,

{(χjk, σjk)}k≥1 for all j ≥ 1 are unit rate Poisson point processes on R2
+, and (ηk, η

′
k, η
′′
k)k≥1
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is a unit rate Poisson point processes on R3
+, where all the above Poisson point processes are

independent of each other and (U{i,j})i,j≥1.

The adjacency measure ξW associated with the multigraphex W = (W,S, I) naturally

defines a Gf valued stochastic process by considering the corresponding unlabeled graphs;

this is precisely the multigraphex process GPt(W) defined in Definition 5.2.2. For a point

process ξ, let us denote by ξ|A the measure ξ restricted to A.

Definition 5.2.10 (Multigraphex process, equivalent definition). For any given multigraphex

W we define the multigraphex process generated by W as the Gf -valued stochastic process

(GPt(W))t≥0 where GPt(W) = G(ξW |[0,t]2).

Next we define the random adjacency measure of a multigraph (Definition 5.2.11), and

then we show that sampling convergence of a graph sequence is equivalent to convergence of

these random adjacency measures.

Definition 5.2.11 (Random labeling adjacency measure for multigraphs). Let M be a

distribution over finite graphs. The random s-labeling adjacency measure Lbls(M), is

generated as follows. Draw a graph G from M . For each vertex v, independently choose a

value Uv uniformly from [0, s] and associate the label Uv to the vertex. Then Lbls(M) :=∑
v,w∈V(G) nvwδ(Uv ,Uw), where nvw denotes the number of edges between vertices v and w in

G. The canonical labeling of M , denoted by Lbl(M), refers to the case s =
√

2E(G).

We also define the random labeling adjacency measure for random multigraphs, which

we will need for the proof of Theorem 5.2.7. Note that Lbl(M) is not equal to the random

adjacency measure formed by selecting G ∼ M and then choosing an adjacency measure

from Lbl(G) unless all graphs drawn from M have the same number of edges.

Definition 5.2.12 (Random labeling adjacency measure for random multigraphs). Let M

be a distribution over finite multigraphs. The random s-labeling adjacency measure Lbls(M),
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is generated as follows. Draw a graph G from M . For each vertex v, independently choose a

value Uv uniformly from [0, s] and associate the label Uv to the vertex. Then Lbls(M) :=∑
v,w∈V(G) nvwδ(Uv ,Uw), where nvw denotes the number of edges between vertices v and w in

G. The canonical labeling of M , denoted by Lbl(M), refers to the case s =
√

2E(E(G)).

Finally Proposition 5.2.13 establishes that the distributional limit of the random adjacency

measures of a sequence of graphs is the random adjacency measure of the multigraphex limit.

Proposition 5.2.13. Consider a sequence of multigraphs (Gn)n≥1 with e(Gn) <∞ for all

n ≥ 1 and limn→∞ e(Gn) =∞. Then the following are equivalent:

� (Gn)n≥1 is sampling convergent.

� (Lbl(Gn))n≥1 converges in distribution as random variables in N (R2
+).

Moreover, if the distributional limits of (Smpl(Gn, r/
√

2e(Gn)))n≥1 and (Lbl(Gn))n≥1 are

given by Hr and ξ, then Lblr(Hr)
d
= ξ|[0,r)2. Further, ξ is extremal. Therefore, there exists a

multigraphex W (non-random) such that ξ
d
= ξW , and (Gn)n≥1 is sampling convergent to W.

Proof outline for Theorem 5.2.7. By Proposition 5.2.13, it suffices to show that with

high probability Lbl (Gn) → ξW where Gn ∼ CCM(Dn,M) and ξW is random adjacency

measure given by the graphex W = W (ρ, a,M), as in Definition 5.2.9. We show this via the

following:

Lbl (Gn)
Close whp by
Lemma 5.6.7←−−−−−−→ Lbl (CCMn)

Close by
Lemma 5.6.8←−−−−−−→ ξPρn,M

Converges by
Lemma 5.6.4
Fact 5.8.7−−−−−−−→ ξPρ,M

Equal by
Lemma 5.6.5←−−−−−−→ ξW ,

where we denote CCMn = CCM(Dn,M).

The random adjacency measure ξPρn,M is a variant of the random labeling adjacency

measure Lbl (CCM(Dn,M)) in which the number of edges between each pair of vertices is

determined independently by a Poisson rather than by a matching. To formalize this, we
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define the k-dimensional random measure Sn that describes the degree distribution of the

vertices of CCM(Dn,M) with respect to the following random vertex labeling. Label each

vertex with an independent uniform value from [0,
√
`n]. For A ⊂ R+, let

Sn(A) =
∑
v

d̃v1{v ∈ A}. (5.3)

We define

ξPρn,M(A×B) ∼


Pois(Sn(A)TMSn(B)) A 6= B

Pois(Sn(A)TMSn(A)/2) A = B

. (5.4)

Next we define the completely random measure ω that will describe the degree measure

arising from the limiting graphex. Let {(σi, xi)} be drawn from a Poisson point process with

mean intensity dλ× dρ. Let

ω(A) = aλ(A) +
∑

xi1{σi ∈ A}. (5.5)

Finally, we define

ξPρ,M(A×B) ∼


Pois(ω(A)TMω(B)) A 6= B

Pois(ω(A)TMω(A)/2) A = B

, (5.6)

analogous to ξPρn,M introduced above.

5.3 Connections to established models with overlapping community structure

Random graph models with an overlapping community structure have been studied extensively

in Statistics and Machine Learning in recent years. In this Section, we look at some natural

alternative graph models with heterogeneous degrees and overlapping community structure,
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proposed in prior literature. Upon viewing them through the lens of sampling convergence,

we discover some connections among these models.

5.3.1 The mixed membership configuration model MMCM

In a seminal paper, [Air+06] introduced the Mixed Membership Stochastic Block Model

(MMSBM), now a canonical model for networks with overlapping communities. In this model,

each vertex is labeled with probability distribution over features (or communities), and each

pair of features is assigned an affinity (a value in (0, 1)) that describes how likely it is for

vertices with those two features to be connected. A MMSBM graph is created by starting

with the complete graph and deleting edges as follows. For each edge (u, v), u and v draw a

feature according to their respective probability distributions. Then the edge (u, v) remains

with probability equal to the affinity between these two selected features and is discarded

otherwise. Traditionally, the probability distributions and affinities are constants independent

of the number of vertices. Therefore, since the algorithm begins with a complete graph and

the probability of deleting edges is constant, the resultant MMSBM graph is dense (Θ(n2)

edges). The model may be extended to produce sparse graphs by choosing affinities that

decay to zero as the number of vertices n diverges. We note that while this model naturally

produces graphs with overlapping community structure, the practitioner does not have a

precise control on the degree sequence of the graph produced.

To address this issue, we introduce the mixed membership configuration model (MMCM),

which combines the properties of MMSBM with those of the Configuration Model (CM).

In particular, the MMSBM allows for more freedom to model a variety of sparse degree

distributions. The MMCM pairs colored half-edges according to a CM (without regard to

the colors of the half edges at this step), and then retains each edge independently according

to the the affinity of the colored half-edges forming this edge. Formally, fix k ≥ 1, and let

D = (dv1 , . . . dvn) be a sequence of degree vectors dv = (d1
v, d

2
v, . . . d

k
v) where div denotes the
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number of color i half-edges at vertex v. Let B be a symmetric k × k matrix with entries

in [0, 1] describing the affinities between communities. Construct a graph by pairing up

the half-edges as in a usual configuration model (ignoring the colors). Then for each edge,

keep the edge with probability Bij where i and j are the colors of the half-edges and delete

the edge otherwise. Let MMCM(D,B) denote the probability distribution over all graphs

constructed by this process.

We note that both the CCM and the MMCM produce sparse graphs with given degrees

and overlapping communities, albeit using slightly different procedures. It is thus natural

to expect that if the parameters in these models are matched appropriately, sub-samples of

these random graphs should approximately “look the same,” and so the limits of convergent

sequences of MMCM graphs are also bilinear graphexes. Our next result formalizes this

heuristic; we describe the bilinear graphex limit of convergent sequences of MMCM graphs.

Then we show how to appropriately match MMCM and CCM parameters so that the

corresponding graphex limits are the same.

In order to describe the bilinear graphex limit of MMCM sequences, we must define a

MMCM degree measure, analogous to Definition 5.2.4.

Definition 5.3.1. Let D = (Dn)n≥1 be a sequence of length k degree vector sequences for

the MMCM with k × k matrix B. Let `n be the number of half-edges (before deletion). Let

en = E(|E(Gn)|) for Gn ∼MMCM(Dn, B). Define the k-dimensional MMCM measure

γn =
1

en

N(n)∑
v=1

δd̂v where d̂v =

(
d1
v√
`n
, . . .

dkv√
`n

)
.

Theorem 5.3.2. Let (Dn, B) be MMCM parameters with `n = Ω(log(n)). Suppose the

corresponding MMCM measure γn converges as a degree measure to (γ, a). Let (Hn)n≥1 be

a sequence of graphs Hn ∼ MMCM(Dn, B). Then almost surely (Hn)n≥1 converges to the

bilinear graphex W (γ, a, B).
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Next we show that given a CCM or MMCM, it is easy to construct a corresponding

MMCM or CCM respectively that yields a graphs with similar p-samples.

Definition 5.3.3. Let D be a k-dimensional degree sequence on n vertices for an CCM with

matching matrix M . Let ΓC→M(D,M) = (D̃, B) be the corresponding MMCM parameters

obtained as following. With respect to D, define `i =
∑n

v=1 d
i
v and ` =

∑k
i=1 `

i. Let the

affinity matrix B = M and D̃ be the k-dimensional degree sequence on n vertices with

d̄iv =
div

(∑k
i=1

√
`i
)

√
`i

.

Definition 5.3.4. Let D be a k-dimensional degree sequence on n vertices for an MMCM

with affinity matrix B. Let ΓM→C(D,M) = (D̃,M) be the corresponding CCM parameters

with k2 colors obtained as following. Index the colors by pairs ij, for i, j ∈ [k]. Let M be the

matching such that color ij matches to color ji. With respect to D, let `i =
∑n

v=1 d
i
v and

` =
∑k

i=1 d
i
v. Let D̃ be the k-dimensional degree sequence on n vertices with

d̄ijv =
Bij`

idiv
`

.

Note that it is possible that these definitions yield a corresponding model in which the

degree vectors contain fractional half-edge counts. While it does not make sense to construct

a configuration model in this context, it is possible to define CCM and MMCM measures

ρ and γ for degree distributions with fractional half-edge counts. We show that under the

correspondences ΓC→M and ΓM→C , the random adjacency measures ξPρ,M and ξPγ,B are the

same (Lemmas 5.8.16 and 5.8.17). These are the random adjacency measures arising from the

variants of the models in which edges are constructed via independent Poissons rather through

a configuration model pairing procedure, see Equations (5.4) and (5.15). Lemmas 5.8.16

and 5.8.17 and Theorems 5.2.7 and 5.3.2, directly imply the following corollaries.
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Corollary 5.3.5. Let (Dn,M) be CCM parameters, and let (D̃, B) = ΓC→M(Dn,M) be

corresponding MMCM parameters. Let Gn ∼ CCM(Dn,M) and Hn ∼ MMCM(D̃, B).

Then (Gn) converges almost surely if and only if and (Hn) converges almost surely. Moreover,

when the sequences converge they have the same bilinear graphex limit.

Corollary 5.3.6. Let (Dn, B) be MMCM parameters and let (D̃,M) = ΓM→C(Dn, B) be

corresponding CCM parameters. Let Gn ∼ CCM(Dn,M) and Hn ∼MMCM(D̃, B). Then

(Gn) converges almost surely if and only if and (Hn) converges almost surely. Moreover, when

the sequences converge they have the same bilinear graphex limit.

We imagine that there exists a bijection between families of CCM and MMCM degree

measures such that each pair has a unique bilinear graphex limit. However, even understanding

the class of CCM measures that yield the same bilinear graphex is beyond the scope of this

paper, see Section 5.5 for further discussion.

5.3.2 The Ball-Karrer-Newman (BKN) model

The BKN model, introduced in [BKN11b], is specified by a set of vertices, each with a vector

of features (θu1, θu2, . . . θuk) where θuj measures the affiliation of vertex u with community

j. The number of edges of color ` between vertex u and w is given by Pois(θu`θw`) if u 6= w

and Pois(θu`θu`/2) if u = w. Several variants of the BKN model have been studied in the

literature; [KN11] discusses a similar model without mixed membership, and [COL09] is the

simple graph version of this model.

Intuitively, the BKN model is a variant of the CCM in which the number of edges between

each pair of vertices is given by an independent Poisson, instead of being paired according to

a configuration model. Given a BKN model on k colors, we can describe the corresponding
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CCM on k colors with the identity matching and

dju = θuj
∑
v

θvj.

Lemma 5.6.1 implies that in this CCM, for any two fixed vertices u,w, the number of color j

edges joining them is approximately

Pois

(
djud

j
w∑

v d
j
v

)
= Pois (θujθwj) .

This clarifies the correspondence between these models. The proof ideas of Theorem 5.2.7

can be adapted easily to be applicable in this context. Indeed, if we have {(θu1, · · · , θuk) :

1 ≤ u ≤ n} such that the corresponding CCM degrees {dju : 1 ≤ j ≤ k, 1 ≤ u ≤ n} satisfy

the hypotheses of Theorem 5.2.7, this sequence of BKN random graphs will also converge to

the same graphex limit almost surely.

5.3.3 Todeschini-Miscouridou-Caron (TMC) model

The TMC model [TMC16b] uses the framework of exchangeable point processes, analogous

to the HSM model [HSM16], and produces simple graphs with an overlapping community

structure. The model is specified by two parameters: a constant T > 0 and a measure ρ on

Rk
+ where k denotes the number of communities. Given T and ρ, we sample a Poisson process

{(wi1, · · · , wik) : i ≥ 1} on Rk with intensity Tdρ. Each i ≥ 1 now corresponds to a node in

a graph, where wij measures the affiliation of vertex i with community j. For each pair of

distinct vertices i, j, an edge is added independently with probability 1−exp (−2
∑p

k=1 wikwjk).

Finally, the isolated vertices are discarded. The TMC model extends the HSM model [HSM16]

by allowing the vertices to have overlapping community assignments.

An equivalent description of the TMC model is as follows. Sample {(wi1, · · · , wik) : i ≥ 1}

as a Poisson process on Rk with intensity Tdρ. Next, for each pair of distinct vertices i, j, add
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Pois(
∑

k wikwjk) multi-edges independently. We call this graph the Multi-TMC model. The

usual TMC model is obtained by collapsing the multigraph— one replaces every multi-edge

by a simple edge. Note that the Multi-TMC model is very similar to the BKN model, albeit

constructed using point processes.

Analogous to Corollary 5.1.2, Theorem 5.2.7 allows us to relate the Multi-TMC model to

p-samples from an appropriate CCM. In particular, consider a CCM (Dn,M) with M = I,

and Dn converging to (ρ, 0). Theorem 5.2.7 immediately implies that

Smpl(CCM(Dn, I), T/
√

2E(CCM(Dn, I)))

converges weakly a.s. to the Multi-TMC model. Finally, this establishes that the TMC model

can arise as a result of two sequential operations— draw a p-sample from an appropriate

CCM, and then replace every multi-edge in the graph with a simple graph.

5.4 Hypothesis testing on power law CCMs

We now illustrate the behavior of testing for the presence of communities based on samples

when the degree distribution follows the quantiles of a truncated power-law with parameter

between one and two. To choose the value of the parameter ε in Theorem 5.1.3, we need to

compute the value of the parameter β.

Let F be the cumulative distribution function on N such that (1−F )(x) = cFx
−(τ−1), where

τ ∈ (1, 2). Let F−1(y) = inf{x : F (x) ≤ y}. We consider the case when di = (1− F )−1(i/n),

i.e., choose according to the quantiles of the distribution. Next we truncate the distribution

by dropping vertices with degrees more than M , and let V = {i : di > M}. If
∑

i∈V di is odd,

we add a dummy vertex of degree to make the sum of degrees even. We define D∗ the degree

distribution with community structure as follows. If i is odd, α fraction of the di half-edges

are red and (1 − α) fraction of the di half-edges are blue. If i is even, α fraction of the di
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half-edges are blue and (1− α) fraction of the di half-edges are red. In the case where αdi is

not integer, we randomly select the color of the final half-edge with probability αdi − bαdic.

Throughout, we write an ∼ bn to denote that limn→∞ an/bn = 1, and write c as a generic

notation for a constant whose value can be different between expressions. Assuming α 6= 1/2,

we compute the bias parameter

β(D∗) =
1

2`

∑
i<j

(
drid

r
j

`r − 1
+

dbid
b
i

`b − 1
− didj

`

)2

∼ c

2`

 ∑
i<j

i=j mod 2

(
2
(
α2 + (1− α)2)− 1

)2
d2
i d

2
j

`2
+

∑
i<j

i 6=j mod 2

(4α(1− α)− 1)2 d2
i d

2
j

`2


∼ c (4α2 − 4α + 1)

2

`3

∑
i<j

d2
i d

2
j . (5.7)

Next we approximate
∑

i<j d
2
i d

2
j/`

3. Note that smaller i corresponds to larger degrees; for

any εn → 0, di ∼ (cFn/i)
1/(τ−1) uniformly over i ≤ εnn. Note also that di ≤M implies that

i ≥ cnM−(τ−1). Therefore

` =
∑
i∈V

di =
∑

εnn≤i≤n

di +
∑

cnM−(τ−1)≤i<εn

di ∼ cn+ cn1/(τ−1)
∑

i≥cnM−(τ−1)

i−1/(τ−1) = cnM2−τ

∑
i∈V

d2
i ∼ cn+ cn2/(τ−1)

∑
i≥cnM−(τ−1)

i−2/(τ−1) = nM3−τ .

We take M = n1/τ and apply Theorem 5.1.3 with λ = n1/τ−1/2. Since τ ∈ (1, 2), we have

λ→∞. We compute,

(∑
i∈V d

2
i

)2

`3
=
M τ

n
= Θ(1).
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Therefore by 5.7,

β(D∗) =
(
4α2 − 4α + 1

)2
Θ(1). (5.8)

Thus, the bound in Theorem 5.1.3 reduces to

1−O
(
exp

(
− 1

32

√
t

λ3

)
+ exp

(
−cn2(τ−1)/τ

)
+
`2

λ
exp

(
−2e2n−1+2/τ

))
.

5.5 Discussion

To summarize, our work investigates p-sampling in the context of graphs with arbitrary

degree distributions and overlapping communities. To this end, we introduced the community

configuration model, a canonical random graph exhibiting the desired characteristics, and

derived our results in this setting. Our results are two-fold:

(1) We derive sufficient conditions for p-samples of a sequence of CCM graphs to converge

in distribution almost surely and describe the corresponding graphex limit object. This

result establishes a new connection between finite network models (such as the CCM,

SBM, BKN models) and random graphs generated by exchangeable point processes

(graphex, Caron-Fox, HSM); the latter arise as the p-samples from finite network models.

(2) We formulate a hypothesis test for CCM graphs and establish that one p-sample from a

graph is sufficient to detect whether the graph exhibits overlapping community structure.

This results indicates that (sufficiently large) p-samples of a graph indeed retain non-trivial

structural information about the graph.

We conclude by collecting here some natural follow up questions arising from our investigations,

and a few broad interesting directions for future research enquiry.
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Necessary conditions for convergence and identifiability. Theorem 5.2.7 gives sufficient

conditions on a sequence of degree measures that guarantee the almost sure convergence of

the corresponding CCM graph sequences. It is natural to wonder whether these conditions

are also necessary. Indeed, in the special case of the configuration model (k = 1), [Bor+,

Theorem 1.1] establishes that the sufficient conditions of Theorem 5.2.7 are, in fact, necessary

for sampling convergence. However, a close scrutiny of the proof of Theorem 5.2.7 suggests

that our conditions are potentially sub-optimal for k > 1. To see this, recall the proof strategy

for Theorem 5.2.7 described earlier. The most critical step in our proof establishes that

ξPρn,M → ξPρ,M in distribution. Our assumptions facilitate this step of the argument; however,

it is possible to establish this under weaker assumptions.

A major conceptual hurdle in making progress in this direction arises from our lack of

understanding of identifiability for CCM graphex processes. Note that for k > 1 there might

exist ρ 6= ρ′ such that ξPρ,M
d
= ξρ′,M . Even in the special case of identity matching, the question

is currently intractable. In fact, for a CCM with two colors and the identity matching,

there are many different degree measures that yield the same graphex limit. Trivially, the

graphex corresponding to the limit of the CCM in which all edges are red is the same as if

the CCM had all edges blue. More generally, given a one-dimensional degree measure (one

color), let ρα be the degree measure corresponding to coloring α fraction of the half-edges

red and (1 − α) fraction of the half-edges blue at each vertex. For any α, α′ ∈ [0, 1], the

corresponding graphexes are the same, i.e. W (ρα, a, I) = W (ρα′ , a, I). In this case, there is

measure preserving bijection between ρα and ρα′ that is a rotation about the origin in R2.

We conjecture that when the degree measure is two dimensional, W (ρα, a, I) = W (ρα′ , a, I)

if and only if ρα and ρα′ can be obtained from one another by a rotation. Resolving the

question of identifiability in this setting might provide valuable clues regarding the optimal

convergence criteria alluded to above. We believe that characterizing these conditions for

sampling convergence in Theorem 5.2.7 would be extremely interesting, and leave this for
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future research.

General hypothesis testing and information theoretic limits. The hypothesis test

based on S(·) considered in Theorem 5.1.3 requires that the size of the sample grow with

`; the sampling parameter t = Ω((log `)3/2 + ∆3) where ∆
√
`i is an upper bound on the

color i degree of a vertex. It would be intriguing to have information theoretic lower bounds

for this problem, i.e., how large must t be to achieve accuracy 1− o`(1) for CCMs on two

colors with the identity matching? What are the corresponding information theoretic limits

if the desired accuracy is at least 1/2 + ε for some fixed ε > 0? We conjecture that there

exists an algorithm that determines whether G ∼ CM or G ∼ CCM given only access to

Gs ∼ Smpl(G, t) such that limt→∞ lim`→∞ P( error ) = 0.

In a different direction, our test statistic S(·) is designed for CCMs with two colors and

the identity matching. A natural extension would be to look at the case of CCMs on k colors

and arbitrary matching matrices. More generally, given a p-sample from W0 or W1, when is it

possible to consistently distinguish between these two alternatives? We leave these questions

for future research.

Property testing via p-samples Our hypothesis testing result demonstrates that the

community structure of CCM graphs is maintained under p-sampling. What other properties

can be inferred by studying one p-sample?

More generally, property testing on graphs has been studied extensively (see [Lov12]).

In the context of dense graphs, the goal is to determine with high probability whether a

graph G satisfies property P or is ε-far from satisfying property P , meaning it is not possible

to obtain a graph satisfying property P by adding or deleting at εn2 edges. A property

is said to be testible if there exists an algorithm whose run time depends only on ε that

determines with accuracy at least 2/3 whether G satisfies P or is ε-far from satisfying P . A

graph property P testible if and only if knowing a regularity partition of the graph suffices
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to determine whether G is close to satisfying P (Theorem 2 of [Alo+09]). An outstanding

direction for future research concerns the generalization of these ideas to the sparse graph

setting. Specifically, can we characterize the testible properties given access to one p-sample?

The Szemerédi Regularity lemma forms the cornerstone of property testing on dense graphs—

it would indeed be fascinating if extensions are possible in the sparse setting, based on the

graphex regularity lemma recently established in [Bor+18].

5.5.1 A CCM “regularity” lemma

We imagine that community configuration models can approximate sparse graphs, analogous

to how stochastic block models approximate dense graphs. Instead of using the cut metric or

homomorphism densities as a metric, we consider sampling distributions, a generalization

of homomorphism densities introduced in [Bor17]. Let Smplt(G) be the random graph

as defined above. For a random graph model M , let Smplt(M) be the graph obtained by

selecting G from M , then returning Smplt(G). In order to model simple graphs, we define

the erased community configuration model (ECCM) as a CCM in which all self-loops are

deleted and multi-edges are condensed into an edge.

Conjecture 5.5.1. Let t > 0 and ε > 0. For any graph G, there exists an erased community

configuration model ECCM on k = f(t, ε) colors such that

dTV (L (Smplt(G)) ,L (Smplt(ECCM))) ≤ ε.

If true, the above conjecture would be a configuration model “regularity” lemma. Like

the traditional regularity lemma, the number of groups needed is a constant depending

only on the error parameter (and not the size of the graph). However, the total size of the

description for the approximating ECCM would grow linearly with the size of the graph since

it is necessary to store the degree distribution. Such a lemma could give fast approximation
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algorithms and improve our understanding of property testing in sparse graphs.

5.6 Sampling convergence: proofs

In this section we prove Theorem 5.2.7 and lay the foundation for the proof of Theorem 5.3.2,

which describe the bilinear graphex limits of CCM and MMCM sequences respectively. We

begin by introducing lemmas that describe how edges pair and functions concentrate in the

configuration model and its variants (Section 5.6.1). Next we develop a general framework

that allows us to prove that the random adjacency measures based on the CCM and MMCM

degree measures converge to the appropriate bilinear graphexes (Section 5.6.2). The proofs

of Theorems 5.2.7 and 5.3.2 are similar; the former is given in Section 5.6.3 and latter in

Section 5.8.1.

5.6.1 Pairing and switching lemmas

The Poisson Pairing Lemma essentially says that distribution of the number of edges between

formed between sets of half-edges under a configuration model is similar in total variation

distance to the corresponding distribution when the number of edges between each pair of

vertices i, j is determined by an independent Poisson with intensity didj/`.

Lemma 5.6.1 (Poisson Pairing). Let S1, . . . Sk be disjoint sets of half edges of some configuration

model CM(d) where ` =
∑

i di. Let si = |Si| and s =
∑k

i=1 si. Let E, Ē be random variables

whose values are vectors of length (k2 + k)/2 indexed by pairs ij where i ≤ j, i, j ∈ [k]. For

G ∼ CM(d), define Ē(G) as follows

Ē(G)ij = #edges between Si and Sj in G.

Let L(Ē) be the distribution of Ē(G) when G ∼ CM(d). Let L(E) be the distribution over
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vectors E where each entry takes values independently as follows

Eij ∼


Pois

( sisj
`

)
i 6= j

Pois
(
si(si−1)

2`

)
i = j.

Then

dTV
(
L
(
Ē
)
,L (E)

)
≤ 5s3

(`− 2s)2
+

2`s

(`− s)2

(
1

2
+ log

(
3s2

`− s

))
.

Proof. Consider a labeling of the half-edges in S1, S2 . . . Sk from 1 to s in which the half-edges

in Si appear before the half-edges in Sj for i < j. Let βj be the number of half-edges that

appear before the half-edges in Sj, so

βj =

j−1∑
i=1

si.

Consider a sequential pairing of the half-edges where at step t if half-edge t is not yet paired,

we pair it with another unpaired half-edge chosen uniformly at random. We define a sequence

of ((k2 + k)/2)-dimensional unit vectors (It), in which It describes how the tth half-edge is

paired. For ease of notation we describe the coordinates of the vectors as pairs ij where i ≤ j,

i, j ∈ [k]. Let It = eij represent the event that the half-edge t was not paired previously, is in

Si, and pairs to a half-edge in Sj in step t. Let It = 0 represent the event the half-edge t

was previously paired or paired to a half-edge in
⋂k
i=1 S

c
i in step t. Note Ē(G) =

∑s
t=1 It, so

L (
∑
It)

d
= L

(
Ē
)
.

To approximate
∑
It, we construct a sequence of independent Poisson random variables

(Ît), define a coupling with (It), and apply Stein’s method.

Coupling. To construct the sequence Ît, we use the following algorithm that sequentially

pairs half-edges with some replacement. We maintain sets of half-edges S1, S2, . . . Sk and
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⋂k
i=1 S

c
i . At step t, we pair the half-edge t (call it et) with a uniformly chosen half-edge ft

from these sets, and then replace ft in the corresponding set S1, S2, . . . Sk and
⋂k
i=1 S

c
i . We

do not replace et. Set Ît = eij if the half-edge t is in Si and is paired with a half-edge in

Sj, and zero otherwise. We say the original copy of each half-edge is “non-bad.” A copy of

half-edge is declared “bad” if any previous copy of the edge was paired to a non-bad edge or

if the edge was selected as rt as described in the third case below. We couple (It) and (Ît) as

follows:

� If both et and ft are non-bad, set It = Ît

� If et = t is bad, set It = 0

� If et is non-bad and ft is bad, choose a non-bad half-edge uniformly at random (leaving

out e1, . . . , et) and call it rt. Set It = eij if et ∈ Si and rt ∈ Sj , and set It = 0 otherwise.

This is independent of Ît. Declare rt bad.

First we show dTV

(
L (
∑

t It) ,L
(∑

t Ît

))
is small by computing a bound on the probability

that
∑

t It and
∑

t Ît differ. If It 6= Ît, then ft is bad or et is bad.

If et is bad at step t, then et = ft′ or et = rt′ for some t′ ≤ t. The probability et = ft′ is at

most 1/(`− t). If et = rt′ then ft′ is bad, which happens with probability at most t/(`− t),

and et was picked as the replacement, which happens with probability at most 1/(` − 2t).

Using the facts that there are at most s previous steps t′ and t ≤ s, we compute

P(et is bad) ≤ s

(
1

`− s
+

s

`− s
1

`− 2s

)
=

s

`− 2s
.

Given that et is bad, It 6= Ît only if Ît 6= 0. Independent of whether et is bad, P
(
Ît 6= 0

)
≤

s/(`− t). It follows that

P
(
et bad and It 6= Ît

)
≤
(

s

`− 2s

)2

. (5.9)
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Since at most one new edge is deemed bad at each step, the probability that ft is bad is

at most s
`n−2s

. We use the fact that Ît and It are independent when ft is bad to compute

P
(
ft is bad and Ît 6= It

)
≤ P

(
ft is bad and (Ît 6= 0 or It 6= 0)

)
= P(ft bad )

(
1− P

(
Ît = 0 and It = 0 | ft is bad

))
= P(ft bad )

(
1− P

(
Ît = 0 | ft is bad

)
P

(
rt ∈

k⋂
i=1

Sci

))

≤ s

`− 2s

(
1−

(
1− s

`− s

)(
1− s

`− 2s

))
≤ 2

(
s

`− 2s

)2

(5.10)

Combining Equation (5.9) and Equation (5.10), we obtain

dTV

(
L

(
s∑
t=1

Ît

)
,L

(
s∑
t=1

It

))
≤ P

(
s∑
t=1

Ît 6=
s∑
t=1

It

)
≤ P

(
∃t : Ît 6= It

)
≤

s∑
t=1

P
(
Ît 6= It

)
≤ 3s3

(`− 2s)2
. (5.11)

Next we apply Stein’s method (Lemma 5.8.6) to approximate L
(∑

t Ît

)
. Let p(i, j, t) =

P
(
Ît = eij

)
. We compute

p(i, j, t) =


sj
`−t j > i

si−(t−βi)
`−t i = j

Observe

λij =
s∑
t=1

p(i, j, t) =


∑βi+si

t=βi+1
sj
`−t ∈

[
sisj
`
,
sisj
`−s

]
i 6= j

∑βi+si
t=βi+1

si−(t−βi)
`−t ∈

[
si(si−1)

2`
, si(si−1)

2(`−s)

]
i = j.
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We compute

∑
i≤j

λij ≤
∑
i<j

sisj
`− s

+
∑
i

s2
i

2(`− s)
≤ 3smaxi{si}

2(`− s)
≤ 3s2

2(`− s)
,

and so

cλ =
1

2
+ log

(
2
∑
i≤j

λij

)
≤ 1

2
+ log

(
3s2

`− s

)
.

Lemma 5.8.6 implies that

dTV

(
L

(∑
t

Ît

)
,
⊗
i≤j

Pois (λij)

)
≤

s∑
t=1

cλ
∑
i≥j

p(i, j, t)2

λij

= cλ

(∑
i<j

βi+si∑
t=βi+1

p(i, j, t)2

λij
+
∑
i

βi+si∑
t=βi+1

p(i, i, t)2

λii

)

≤ cλ
`

(`− s)2

(∑
i<j

sj +
∑
i

2si − 1

12

)

≤
(

1

2
+ log

(
3s2

`− s

))
2`s

(`− s)2
. (5.12)

Recall that for λ < λ′, X ∼ Pois(λ), and Y ∼ Pois(λ′), dTV (L(X),Y) ≤ λ′ − λ. It follows by

Claim 5.8.3 that

dTV

(⊗
i≤j

Pois (λij) ,L (E)

)
≤

(∑
i<j

sisj +
∑
i

si(si − 1)

2

)(
1

`− s
− 1

`

)
≤ 3s2

2

(
s

`(`− s)

)
≤ 2s3

(`− 2s)2
(5.13)

The statement follows from the triangle inequality applied to Equations (5.11) to (5.13).

Next we prove the Switching Lemma, which establishes concentration under the configuration

model for functions on graphs that do not vary much when two edges are switched. Wormwald
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proved this lemma in the special case of a d-regular configuration model (see Theorem 2.19

of [Wor+99]); we modify this proof for the more general setting. Let G ∼ G′ denote that

G and G′ are graphs that differ only in one “switch” {(i, j), (k, `)} = E(G) \ E(G′) and

{(i, k), (j, `)} = E(G′) \ E(G).

Lemma 5.6.2 (Switching Lemma). Let G ∼ CCM(D,M) where ` is the sum of the degrees.

Let f be a function on the support of CCM(D,M) such that |f(G)−f(G′)| < b when G ∼ G′.

Then

P
(∣∣f(G)− E(f(G))

∣∣ > δ
)
≤ 2 exp

(
−δ2

`b2

)
.

Proof. Let G be a pairing of the half-edges of CCM(D,M) according to the matching rules.

Establish a pairing convention where the half-edges are labeled with natural numbers, and in

each step the unpaired half-edge with the lowest label is paired to a uniformly random eligible

half-edge (according to the matching rule). Let P0 denote a pairing obtained by following this

convention, and let P0(m) denote the first m edges paired in P0. Define the Doob martingale

Ym(P0) = E(f(G) | P0(m) ⊆ G),

so that

Y0(P0) = E(f(G)) and Y`/2(P0) = f(G)

when P0 are the pairings that form Gn. To apply the Azuma-Hoeffding inequality and

conclude the lemma, we show that the martingale has differences bounded by b.

For a given P0 let i be the next half-edge paired after the first m edges are constructed.

Let Sj be the set of all pairings that contain P0(M) ∪ (i, j). For any j, k that do not appear

in P0(m) and are the color that half-edge i matches to, there is a one-to-one correspondence

between pairings in Sj and pairings in Sk. For P ∈ Sj there is a P ′ ∈ Sk defined by switching

{(i, j), (k, `)} ↔ {(i, k), (j, `)} where ` is the partner of k in P . Let G and G′ be the graphs
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associated with P and P ′. Since it is equally likely for the pairing to be in any Sk (with k a

half-edge that does not appear in P0(m) and is the color that the half-edge i matches to)

and each P and P ′ is equally likely,

|Ym(P0)− Ym+1(P0)| ≤ |f(G)− f(G′)| ≤ b.

We now provide the analogous lemma for MMCM , but leave the proof to Section 5.8.1.

Let G
s∼ G′ denote that G and G′ are graphs that differ only in a subset of a “switch”

E(G) \ E(G′) ⊆ {(i, j), (k, `)} and E(G′) \ E(G) ⊆ {(i, k), (j, `)}.

Lemma 5.6.3 (Subset Switching Lemma). Let G ∼ MMCM(D,B) where ` is the total

degree of D before deletion. Let f be a function on the support of CCM(D,M) such that

|f(G)− f(G′)| < b when G
s∼ G′.

P
(∣∣f(G)− E(f(G))

∣∣ > δ
)
≤ 2 exp

(
−δ2

`b2

)
.

5.6.2 Random adjacency measures based on degree measures

Recall the definitions of Sn, ξPρn,M , ω, and ξPρ,M given in Equations (5.3) to (5.6). These

definitions were built for the CCM framework. Here we define the more general forms of Sn,

ξPµn,X , ω, and ξPµ,X so that we may apply this notation and the corresponding lemmas to the

proofs of both Theorems 5.2.7 and 5.3.2.

Let Mn be a random graph on N(n) vertices that involves Dn, a set of N(n) degree

vectors of length k. Let en = E(|E(Gn)|) for Gn ∼Mn. Let µn be a measure of the form

µn =
1√
2en

N(n)∑
v=1

δd(v),
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where d(v) is some function of the corresponding degree sequence Dn.

Next we define a generalized version of Sn for degree measures µn of the above form.

Label each vertex with an independent uniform value from [0,
√

2en]. For A ⊂ R+, let

Sn(A) =
∑
v

d(v)1{v ∈ A}. (5.14)

We define

ξPµn,X(A×B) ∼


Pois(Sn(A)TXSn(B)) A 6= B

Pois(Sn(A)TXSn(A)/2) A = B

. (5.15)

Assume µn converges as a degree measure to µ. Next we define the completely random

measure ω that will describe the degree measure in the limiting graphex. Let {(σi, xi)} be

drawn from a Poisson point process with mean intensity dλ× dρ. Let

ω(A) = aλ(A) +
∑

xi1{σi ∈ A}. (5.16)

Finally, we define

ξPµ,X(A×B) ∼


Pois(ω(A)TXω(B)) A 6= B

Pois(ω(A)TXω(A)/2) A = B

. (5.17)

Note that en = `n/2 for the CCM. Letting d(v) = d̃v implies that ρn = µn, and so the

definitions given in Equations (5.3) to (5.6) exactly match the corresponding definitions given

in Equations (5.14) to (5.17).

Lemma 5.6.4. Let Sn and ω be as given in Equations (5.14) and (5.16). Let Y = A1 t

A2 · · · tAj ⊆ R+. Let SYn be the probability distribution over vectors of length jk of the form

(Sn(A1) . . . Sn(Aj)), and ωY be the probability distribution over vector of length jk of the form
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(ω(A1) . . . ω(Ak)). Then

SYn
d−→ ωY .

Proof. We show convergence of the characteristic functions; for any vector t ∈ Rjk,

lim
n→∞

E
(
exp

(
i〈t, SYn 〉

))
= E

(
exp

(
i〈t, ωY 〉

))
.

First we claim

E
(
exp

(
i〈t, ωY 〉

))
= exp

(
j∑
`=1

iλ(A`)〈t`, a〉+ λ(A`)

∫
exp (i〈t`, x〉)− 1dµ

)
,

where t = (t1 . . . tj) and t` ∈ Rk. Let X(s) = ω([0, s)). Note X is a Lévy process since

X(0) = 0 almost surely, and X has independent and stationary increments. We compute η(t)

the Lévy symbol of X(1).

E(exp (i〈t,X(1)〉)) =
∞∑
k=0

exp (i〈t, kx+ a〉) (dµ(x))k

k!
exp (−dµ(x))

= exp (i〈t, a〉)
∞∑
k=0

(∫
exp (i〈t, x〉) dµ(x)

)k
k!

exp (−dµ(x))

= exp

(
i〈t, a〉+

∫
exp (i〈t, x〉)− 1dµ(x)

)
,

so η(t) = i〈t, a〉 +
∫
exp (i〈t, x〉) − 1dµ(x). For any Lévy process X, E(exp (i〈t,X(s)〉)) =

exp (sη(t)) (see [App09]). The claim follows.

Next we compute the characteristic function of SYn

E
(
exp

(
i〈t, SYn 〉

))
= E

(
exp

(
i

j∑
`=1

〈t`, SYn (A`)〉

))

= E

(
exp

(
i
∑
v

j∑
`=1

〈t`, d̃v〉1{v ∈ A`}

))
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=
∏
v

(
1−

∑j
`=1 λ(A`)√

2en
+

j∑
`=1

λ(A`)√
2en

exp
(

i〈t`, d̃v〉
))

= exp

(
(1 + o(1))

j∑
`=1

λ(A`)

∫
exp (i〈t`, x〉)− 1dµn

)
.

Note

lim
n→∞

∫
exp (i〈t, x〉)− 1dµn(x) = lim

n→∞

∫
exp (i〈t, x〉)− i〈t, h(x)〉 − 1dµn + i

∫
〈t, h(x)〉dµn

=

∫
exp (i〈t, x〉)− i〈t, h(x)〉 − 1dµ+ i〈t, b〉

=

∫
exp (i〈t, x〉)− 1dµ+ i〈t, a〉

The convergence of the left integral follows from Claim 5.8.1 and the convergence of the right

integral follows from assumption (2). It follows that

lim
n→∞

E
(
exp

(
i〈t, SYn 〉

))
= exp

(
j∑
`=1

iλ(A`)〈t`, a〉+ λ(A`)

∫
exp (i〈t`, x〉)− 1dµ

)
,

as desired.

Lemma 5.6.5. Let ξW denote the random adjacency measure associated to the multigraphex

W = W (µ, a,X), and ξ∗W = ξW | (x,y):y≤x. Let ω be as defined in Equation (5.16). For any

A,B ∈ B(R+) with A ∩B = ∅, conditional on {(θi, vi)}i≥1

ξ∗W(A× A) ∼ Pois(ω(A)TXω(A)/2)

ξW(A×B) ∼ Pois(ω(A)TXω(B)).

Proof. Let {(θi, vi)}i≥1 be a unit rate Poisson process on R2
+ and set wi = µ(vi), a random

point in (R+)
k

with respect to ρ. Conditionally on {(θi, vi)}i≥1, Now (5.3) implies that
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conditionally on {(θi, vi)}i≥1,

ξ∗W(A× A) =
∑
i>j

Pois(wTi Xwj)1{θi ∈ A, θj ∈ A}+
∑
i

Pois(wTi Xwi/2)1{θi ∈ A}

+
∑
j,k

1{χjk ≤ aTXwj}1{θj ∈ A, σjk ∈ A}+
∑
k

1{η′′k ≤ a2/2}1{ηk ∈ A, η′k ∈ A}

=
∑
i>j

Pois(wTi Xwj)1{θi ∈ A, θj ∈ A}+
∑
i

Pois(wTi Xwi/2)1{θi ∈ A}

+
∑
j

Pois(Λ(A)aTXwj)1{θj ∈ A}+ Pois(Λ(A)2aTXa/2),

(5.18)

where, by construction, all the Pois(·) random variables above are mutually independent.

Therefore,

ξ∗W(A× A) = Pois

(
Λ(A)2aTXa

2
+ Λ(A)

∑
i≥1

aTXwi1{θi ∈ A}+
1

2

(∑
i≥1

wTi Xwi1{θi ∈ A}
))

= Pois(ω(A)TXω(A)/2).

(5.19)
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Similarly, conditionally on (wi, θi)i≥1,

ξW(A×B) =
∑
i 6=j

Pois(wTi Xwj)1{θi ∈ A, θj ∈ B}

+
∑
j,k

1{χjk ≤ aTXwj}1{θj ∈ A, σjk ∈ B}+
∑
j,k

1{χjk ≤ aTXwj}1{θj ∈ B, σjk ∈ A}

+
∑
k

1{η′′k ≤ aTXa/2}1{ηk ∈ A, η′k ∈ B}+
∑
k

1{η′′k ≤ aTXa/2}1{ηk ∈ B, η′k ∈ A}

=
∑
i 6=j

Pois(wTi Xwj)1{θi ∈ A, θj ∈ B}+
∑
j

Pois(Λ(A)aTXwj)1{θj ∈ B}

+
∑
j

Pois(Λ(B)aTXwj)1{θj ∈ A}+ Pois(Λ(A)Λ(B)aTXa),

= Pois(ω(A)TXω(B)).

(5.20)

The stated conditional independence follows by construction.

The following lemma characterizes weak convergence of random measures in our context.

The lemma follows directly from Theorem 11.1.VIII of [DVJ07] after noting that A is a

covering semiring of continuity sets for random adjacency measures arising from graphexes.

Lemma 5.6.6. Let ξn be a sequence of random adjacency measures, and let ξW be the random

adjacency measure of some graphex W. Let A be the set of open rectangles in R2
+ with rational

endpoints, A = {(a1, a2)× (a3, a4) | a1, a2, a3, a4 ∈ Q}. Then ξn converges weakly to ξW if and

only if for any finite family A1, . . . Ak ∈ A, the joint distribution (LGn (A1) , . . . , LGn (Ak))

converges weakly to (ξW (A1) , . . . , ξW (Ak)).

5.6.3 Proof of Theorem 5.2.7

Lemma 5.6.7. Let Gn ∼ CCM(Dn,M) where `n is the total degree of Dn. For ease of

notation let Lbl(Gn) = LGn and Lbl(CCM(Dn,M)) = LCCM . Let A1, . . . Ak, B1, . . . Bk ∈
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B(R+), A =
⋃k
i=1Ai, B =

⋃k
i=1Bi, j ∈ N+, and δ > 0. Let

Pn(j1, j2, . . . jk) = P(LGn (A1 ×B1) = j1 ∩ · · · ∩ LGn (Ak ×Bk) = jk)

PCCM(j1, j2, . . . jk) = P(LCCM (A1 ×B1) = j1 ∩ · · · ∩ LCCM (Ak ×Bk) = jk).

P
(∣∣Pn(j1, j2, . . . jk)− PCCM(j1, j2, . . . jk)

∣∣ > δ
)
≤ 2 exp

(
−δ2`n

16Λ(A)2Λ(B)2

)
.

Proof. We apply Lemma 5.6.2 with f(G) = Pn(j1, j2, . . . jk). It suffices to show that |f(G)−

f(G′)| ≤ 4
(

Λ(A)Λ(B)
`n

)
when G and G′ differ by a switch {(i, j), (k, `)} ↔ {(i, k), (j, `)}. Note

that if LG(Ar ×Br) and LG′(Ar ×Br) differ for any r ∈ [k], then (vi, vj) ∈ A×B, (vk, v`) ∈

A × B, (vi, vk) ∈ A × B, or (vj, v`) ∈ A × B (where vi represents the label of the vertex

attached to the half-edge i). This happens with probability at most 4
(

Λ(A)Λ(B)
`n

)
.

Lemma 5.6.8. Let D = (Dn)n≥1 be a sequence of degree sequences in which the sum of the

degrees `n tends to infinity with n. Let En(S, S ′) denote the number of edges created between

the set of half-edges S and S ′ in the construction of CCM(Dn,M). Consider m disjoint

subsets of half-edges (Sj)j∈[m]. Let sj = (s1
j , . . . s

k
j ) the vector where sij denotes the number

of half-edges in Sj with color i, let s̄j = |Sj|, and assume s̄j = O(
√
`n) for j ∈ [m]. Define

(Eij)1≤i≤j≤m an independent collection such that

Eij ∼


Pois

(
sTi Msj
`n

)
for i 6= j

Pois
(
sTi Msi

2`n

)
Let Rn = L ((En(Si, Sj))1≤i≤j≤m) and R = L ((Eij)1≤i≤j≤m) Then as n → ∞, the total

variation distance

dTV (Rn, R)→ 0. (5.21)

Moreover, if the Sj are random disjoint subsets satisfying E(s̄j) = O
(√

`n
)

for all i ∈ [k],

195



then the error in 5.29 converges to zero in expectation.

Proof. Let Sai denote the half-edges in Si with color a. By an abuse of notation, let M be

the set of all pairs (a, b) such that Ma,b = 1. Note

En(Si, Sj) =
∑

(a,b)∈M

En
(
Sai , S

b
j

)

and

Eij =
∑

(a,b)∈M

Eabij where Eabij =


Pois

(
sai s

a
i

2`n

)
i = j, a = b.

Pois
(
sai s

b
j

`n

)
otherwise.

By Claim 5.8.3,

dTV (Rn, R) ≤
∑

(a,b)∈M

dTV
(
L
(
(En(Sai , S

b
j ))1≤i≤j≤m

)
,L
(
(Eabij )1≤i≤j≤m

))
.

Since the pairing of edges of each color pair in M happens independently, we apply

Lemma 5.6.1 to each term in the summand and obtain

dTV (Rn, R) = O

(
1√
`n

)
when s̄j = O

(√
`n
)

for all j.

Finally we consider the case when Sj are random disjoint subsets satisfying E(s̄j) =

O
(√

`n
)
. By Markov’s inequality, P

(
s̄j ≥ `

5/8
n

)
≤ `

−1/8
n . It follows that

dTV (Rn, R) ≤ P
(
∃s̄j = Ω

(
`5/8
n

))
+ Õ

(
`−1/8
n

)
= Õ

(
`−1/8
n

)
.

Finally we prove Theorem 5.2.7.
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Proof. (of Theorem 5.2.7). Let W = W (ρ, a,M). We show that almost surely Lbl (Gn)

converges weakly to ξW and apply Proposition 5.2.13 to conclude the theorem. For ease of

notation we denote Lbl (Gn) = LGn and Lbl(CCM(Dn,M)) = LCCMn . By Lemma 5.6.6,

it suffices to show that almost surely the joint distribution L ((LGn (A1) , . . . , LGn (Ak)))

converges weakly to L ((ξW (A1) , . . . , ξW (Ak))) for every finite family A1, . . . Ak ∈ A. Since

the set of all such finite families is countable and the countable union of almost sure events is

almost sure, it remains to show that the joint distribution converges weakly almost surely for

an arbitrary finite family A1, . . . Ak. We do so via the following claims.

Claim 1: The joint distribution L ((LCCMn (A1) , . . . , LCCMn (Ak))) converges weakly to the

distribution L ((ξW (A1) , . . . , ξW (Ak))).

Note Lemmas 5.6.4 and 5.6.5 (with µn = ρn, µ = ρ, X = M), and Fact 5.8.7, imply

that ξPρn,M converges weakly to ξW , and so by Lemma 5.6.6, L
((
ξPρn,M (A1) , . . . , ξPρn,M (Ak)

))
converges weakly to L ((ξW (A1) , . . . , ξW (Ak))) . Lemma 5.6.8 implies that

dTV
(
L (LCCMn (A1) , . . . , LCCMn (Ak)) ,L

(
ξPρn,M (A1) , . . . , ξPρn,M (Ak)

))
→ 0.

the claim follows from Fact 5.8.11.

Claim 2: Almost surely

dTV (L ((LCCMn (A1) , . . . , LCCMn (Ak))) ,L ((LGn (A1) , . . . , LGn (Ak))))→ 0.

For ease of notation, let Pn and PCCMn be as defined in Lemma 5.6.7 for the rectangles

A1, . . . Ak. Lemma 5.6.7 gives

P(|Pn(j1, . . . jk)− PCCMn(j1, . . . jk)| > δ) < exp
(
−cδ2`n

)
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where c is a constant depending only on A1, . . . Ak. Under the assumption that `n = ω(log(n)),

∞∑
n=1

exp
(
−cδ2`n

)
<∞,

and so the Borel-Cantelli Lemma implies that almost surely there exists n0 such that for

all n ≥ n0, |Pn(j1, . . . jk)− PCCMn(j1, . . . jk)| < δ. There are finitely many combinations of

positive integers (j1, j2, . . . jk) such that 0 ≤ ji ≤ `n, and so almost surely there exists n′

such that for all n ≥ n′, |Pn(j1, . . . jk) − PCCMn(j1, . . . jk)| < δ for all j1, . . . jn. Consider a

(countable) sequence δi → 0. For each δi, the above holds almost surely. Since the countable

union of almost sure events is almost sure, |Pn(j1, . . . jk) − PCCMn(j1, . . . jk)| → 0 almost

surely.

Finally, Fact 5.8.11 applied to Claims 1 and 2 implies that L ((LGn (A1) , . . . , LGn (Ak)))

converges weakly to L ((ξW (A1) , . . . , ξW (Ak))) almost surely, as desired.

5.7 Hypothesis testing: proofs

Theorem 5.1.3 establishes the usefulness of p-samples in detecting community structure in

the underlying graph. To this end, we use a test based on the statistic S(·) defined in (5.2).

Our first result Theorem 5.7.1 establishes that the modularity based statistic S is naturally

adapted to detect the presence of an underlying community structure, given access to the full

graph. This result also enables us to compare the performance of the statistic S for the testing

problem based on p-samples, as compared to the whole graph. In Section 5.7.1, we state and

prove Theorem 5.7.1. The intermediate results in Theorem 5.7.1, such as the separation of

the expected value of S-statistic under CM and CCM, also form the key ingredients in the

proof of Theorem 5.1.3. In Section 5.7.2, we study the behavior of the S-statistic for the

p-sampled graphs using a general theorem stated in Lemma 5.1.5, and hence complete the
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proof of Theorem 5.1.3.

5.7.1 Hypothesis testing given access to the whole graph

Recall the setting of the detection problem in Section 5.1. Now we instead observe the whole

graph G, and seek to test

H0 : G ∼ CM(D) vs. H1 : G ∼ CCM(D∗), β(D∗) ≥ ε.

To do so, we compute S(G,m), a truncated variant of the statistic S(G), for the observed

graph G, and then use this value to guess which model the graph came from. Let

S(G,m) =
∑
i<j

`2

(
X̃ij −

didj
`

)2

where X̃ij = min{Xij,m}.

Detecting communities based on truncated modularity:

Let m = max{4e2λ2, 11 log `}. Compute S(G,m).

Reject H0 if S(G,m) ≥ `3/2 + ε`3, and accept H0 otherwise. (5.22)

The following theorem provides non-asymptotic bounds on the Type-1 and Type-II errors

of this hypothesis test.

Theorem 5.7.1. Let D = (di)
n
i=1 be a degree sequence, and let D∗ =

((
dri , d

b
i

))n
i=1

be a

corresponding colored sequence, so that di = dri + dbi . Let ` =
∑
di, `

r =
∑
dri , and `b =

∑
dbi .

Assume β(D∗) ≥ ε. Let λ be a parameter satisfying λ = o
(
ε`1/2

)
, di ≤ λ

√
`, dri ≤ λ

√
`r, and

dbi ≤ λ
√
`b. Let m = max{4e2λ2, 11 log `}. There exists a constant c > 0 such that the test in
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(5.22) is correct with probability at least

1− 2 exp

(
−cε2`

max{λ4, (log `)2}

)
.

To prove Theorem 5.7.1, we first show that the mean of S(G,m) is approximately `3/2

under the CM and approximately `3/2 + 2β`3 under the CCM, and then use the Switching

Lemmas (Lemmas 5.6.2 and 5.6.3) to show that S(G,m) concentrates around its mean in

both cases.

The statistic S(G) plays an important role in the analysis. We compute the expectation

of S(G) for the CM and CCM (Lemma 5.7.3) and show that the expectation of S(G) is close

to the expectation of S(G,m) (Lemma 5.7.4). We use S(G,m) rather than S(G) as the test

statistic because it is easier to show concentration of S(G,m). We may apply the Switching

Lemmas to S(G,m) because swapping two edges can change the statistic by at most Θ (m).

However, the Switching Lemmas are not useful for showing concentration of S(G). In the

worst case, when there are Θ (max{di}) edges between a pair of vertices, swapping two edges

may cause the statistic to differ by Θ (max{di}).

Remark 5.7.2. In Lemmas 5.7.5 and 5.7.6 below, we give upper bounds on the probability

that S(G,m) and S(G) differ for the CM and the CCM respectively. Thus, if we use S(·)

instead of S(·,m) in the test (5.22), it would introduce an additional additive error term

O
(
`2√
m
exp (−m/2)

)
.

Proof of Theorem 5.7.1

In this section we prove Theorem 5.7.1, hypothesis testing given access to the whole graph.

Lemma 5.7.3. Let D = (di)
n
i=1 be a degree sequence, and let D∗ =

((
dri , d

b
i

))n
i=1

be a

corresponding colored sequence, so di = dri + dbi . Let ` =
∑
di, `

r =
∑
dri , and `b =

∑
dbi .
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Assume di ≤ λ
√
`, dri ≤ λ

√
`r, and dbi ≤ λ

√
`b. Let β = β(D∗). Then there exist small

constants c0 and c1 such that

(i) Let G ∼ CM(D). Then
∣∣ECM(S(G))− `3

2

∣∣ ≤ c0λ`
5/2.

(ii) Let G ∼ CCM(D∗, I). Then
∣∣ECCM(S(G))−

(
`3

2
+ 2β`3

) ∣∣ ≤ c1λ`
5/2.

Proof. (i) We begin by computing the expectation and variance of Xij under the CM. We

write Xij =
∑di

t=1 Yt where Yt is the indicator random variable for the event that the tth

half-edge of vertex i is paired to a half-edge of vertex j. Note E(Yt) = dj/(` − 1), and

E(YtYs) = dj(dj − 1)/((`− 1)(`− 3)) for s 6= t. Observe

E(Xij) =

di∑
t=1

E(Yt) =
didj
`− 1

E
(
X2
ij

)
=

di∑
t=1

E(Yt) +
∑
s6=t

E(YtYs) =
didj
`− 1

+
di(di − 1)dj(dj − 1)

(`− 1)(`− 3)

Var(Xij) =
didj
`− 1

+
di(di − 1)dj(dj − 1)

(`− 1)(`− 3)
−
(
didj
`− 1

)2

.

Therefore there exists a constant c > 0 such that for all sufficiently large n |Var(Xij)− didj
`
| ≤

cλdidj`
−3/2. Observe that

ECM(S(G)) = `2
∑
i<j

(
Xij −

didj
`− 1

)2

= `2
∑
i<j

Var(Xij).

Thus, ∣∣∣∣ECM(S(G))− `3

2

∣∣∣∣ ≤ `2cλ`−3/2
∑
i<j

didj ≤ cλ`5/2.

(ii) We begin by computing the expectation and variance of Xij under the CCM. We

write Xij = Rij + Bij where Rij and Bij are the number of red and blue edges between i
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and j respectively. Note that Rij and Bij are independent random variables describing edge

counts under a CM. By the above computations,

E(Xij) =
drid

r
j

`r − 1
+

dbid
b
j

`b − 1

Var(Xij) = Var(Bij) + Var(Rij) =
drid

r
j

`r
+
dbid

b
j

`b
+O

(
λ

(`r)3/2
+

λ

(`b)3/2

)
,

∣∣∣∣∑
i<j

Var(Xij)−
`

2

∣∣∣∣ ≤ c

(
λ`2

(`r)3/2
+

λ`2

(`b)3/2

)
≤ c′
√
`λ

for some constants c, c′. We now use the variance-bias decomposition to compute

ECCM(S(G)) = `2
∑
i<j

E

((
Xij −

didj
`− 1

)2
)

= `2
∑
i<j

(
Var(Xij) +

(
E(Xij)−

didj
`− 1

)2
)

= `2
∑
i<j

Var(Xij) + 2β`3

Thus for some constant c1,

∣∣∣∣ECCM(S(G))−
(
`3

2
+ 2β`3

) ∣∣∣∣ ≤ c1λ`
5/2.

Lemma 5.7.4. Let G be a multigraph drawn from a distribution over graphs with `/2 edges

and maximum degree at most λ
√
`. We say G is “bad” if there exists a pair of vertices with

at least m edges between them. Let α be probability that G is bad. Then

E(S(G))− 2αλ`7/2 ≤ E(S(G,m)) ≤ E(S(G)) + α`3m2.
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Proof. First we note that if G has maximum degree at most λ
√
`, then

S(G) ≤ `2
∑
i<j

X2
ij +

∑
i<j

d2
i d

2
j ≤ λ`7/2 + λ2`3 ≤ 2λ`7/2,

where we have used that λ ≤
√
` as the max degree cannot exceed the sum of degrees. Since

E(S(G)) = E(S(G) |G good) (1− α) + E(S(G) |G bad)α,

and S is a non-negative random variable, it follows that

E(S(G))− 2αλ`7/2 ≤ E(S(G) |G good) (1− α) ≤ E(S(G)). (5.23)

Note that if G is good, then S(G) = S(G,m). Therefore

E(S(G,m)) = E(S(G,m) |G good) (1− α) + E(S(G,m) |G bad)α

= E(S(G) |G good) (1− α) + E(S(G,m) |G bad)α (5.24)

Combining Equations (5.23) and (5.24) and the observation that S(G,m) ≤ `3m2 yields the

desired statement.

Lemmas 5.7.5 and 5.7.6 give the values of α (an upper bound on the probability that

S(G,m) and S(G) differ) for the CM and the CCM.

Lemma 5.7.5. Let G ∼ CM(D) where
∑

i di = ` and maxi di ≤ λ
√
`. Then for m ≥ 2e2λ2,

the probability that there exists a pair of vertices in G with at least m edges between them is

at most

`2

√
2πm

exp (−m) .

Proof. Let Amij be the event that there are at least m edges between vertices i and j. Consider
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an ordering of the half edges in which all the half edges of i appear first. Generate a G by

pairing the lowest unpaired half edge to a random unpaired half edge in each iteration. We

use Stirling’s approximation to compute

P
(
Amij
)
≤
(
di
m

)
(dj)

m

(`− dj)m
≤
(
didj
`− dj

)m
em

mm
√

2πm
≤ 1√

2πm

(
2eλ2

m

)m
(5.25)

Noting m ≥ 2e2λ2 and taking a union bound over all pairs i, j (of which there are at most

n2 ≤ `2), we obtain the desired upper bound.

Lemma 5.7.6. Let G ∼ CCM(D∗) where
∑

i d
r
i = `r,

∑
i d

b
i = `b and dki ≤ λ

√
`k for all i

and k ∈ {r, b}. For m ≥ 4e2λ2, the probability that there exists a pair of vertices in G with at

least m edges between them is at most

2`2

√
πm

exp (−m/2) .

Proof. Note that G is the union of two configuration models, one composed of red edges and

one composed of blue edges. If there is pair of vertices with at least m edges between them,

then there is a pair of vertices in the red or blue configuration model with at least m/2 edges

between them. Thus applying a union bound to Lemma 5.7.5 with m/2 yields the desired

result.

Finally we show concentration of S(G,m) under the CM and CCM (Lemmas 5.7.7

and 5.7.8 respectively).

Lemma 5.7.7. Let G ∼ CM(D) where
∑

i di = `, maxi di ≤ λ
√
`, and m ≥ 2e2λ2. Let c0

be the constant given in Lemma 5.7.3. For Z ≥ c0λ`
5/2 + `5m3/2 exp (−m), there exists a
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constant c > 0 such that

P
(
S(G,m) ≥ `3

2
+ Z

)
≤ 2 exp

(
−
(

Z

4`5/2m
− cλ

m
− `5/2

√
m exp (−m)

4

)2
)
.

Proof. By Lemmas 5.7.3 to 5.7.5,

E(S(G,m)) ≤ `3

2
+ c0λ`

5/2 +
`5m3/2

exp (m)
.

Now, when G ∼ G′, i.e., G and G′ differs by at most one switch, then the degrees remain the

degrees and ` remains the same. Moreover, one switch can change at most two Xij’s, and

thus

|S(G,m)− S(G′,m)| ≤ 2`2 max
i,j

{
2X̃ij + 1− 2didj

`

}
∨ 0 ≤ 4`2m,

when G ∼ G′, and so we may apply the Switching Lemma Lemma 5.6.2. We compute

P
(
S(G,m) ≥ `3

2
+ Z

)
≤ P

(
|S(G,m)− E(S(G,m))| ≥ Z − c0λ`

5/2 − `5m3/2

exp (m)

)
≤ 2 exp

(
−
(
Z − c0λ`

5/2 − `5m3/2 exp (−m)
)2

16`5m2

)

= 2 exp

(
−
(

Z

4`5/2m
− c0λ

4m
− `5/2

√
m exp (−m)

4

)2
)
.

Lemma 5.7.8. Let G ∼ CCM(D∗, I) where
∑

i di = `, maxi di ≤ λ
√
`, and m ≥ 4e2λ2. For

Z ≥ c0λ`
5/2 + `5m3/2 exp (−m/2), there exist a constant c > 0 such that

P
(
S(G,m) ≤ `3

2
+ 2β`3 − Z

)
≤ 2 exp

(
−
(

Z

4`5/2m
− cλ

m
− `3 exp (−m/2)

4m

)2
)
.
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Proof. By Lemmas 5.7.3, 5.7.4 and 5.7.6,

E(S(G,m)) ≥ `3

2
+ 2β`3 − c1λ`

5/2 − 2`11/2 exp (−m/2) .

Using identical reasoning as in the proof of Lemma 5.7.7, |S(G,m)− S(G′,m)| ≤ 4`2m when

G ∼ G′, and so we may apply the Subset Switching Lemma Lemma 5.6.3. We compute

P
(
S(G,m) ≤ `3

2
+ 2β`3 − Z

)
≤ P

(
|S(G,m)− E(S(G,m))| ≥ Z − c1λ`

5/2 − 2`11/2 exp (−m/2)
)

≤ 2 exp

(
−
(
Z − c1λ`

5/2 − 2`11/2 exp (−m/2)
)2

16`5m2

)

= 2 exp

(
−
(

Z

4`5/2m
− c1λ

4m
− 2`3 exp (−m/2)

4m

)2
)
.

We now prove Theorem 5.7.1.

Proof of Theorem 5.7.1. We give an upper bound on the probability the hypothesis test

fails. In the case when G ∼ CM(D), the test is incorrect only if S(G,m) ≥ `3/2 + β`3.

In the case when G ∼ CCM(D), the test is incorrect only if S(G,m) ≤ `3/2 + β`3. We

now apply Lemmas 5.7.7 and 5.7.8 with Z = β`3. Note that, since m ≥ 11 log `, c0λ`
5/2 +

`5m3/2 exp (−m/2) ≤ `5/2(c0λ+m3/2). Under the assumption that λ = o(`1/2ε), the conditions

of Lemmas 5.7.7 and 5.7.8 are satisfied. The proof now follows.

5.7.2 Hypothesis testing given access to a sample

In this section, we consider the accuracy of the hypothesis test given access to only one sample

Gs ∼ Smpl(G, t/
√

2e(G)), where e(G) is the number of non-loop edges in the multigraph G.
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To begin with, we first prove that the number of self-loops is of the order
√
` = o(`), and

thus, it is enough to consider Gs ∼ Smpl(G, t/
√
`).

Lemma 5.7.9. Let D = (di) be a degree sequence, and let D∗ =
((
dri , d

b
i

))
be a corresponding

colored sequence, so di = dri +dbi . Let ` =
∑
di, `

r =
∑
dri , and `b =

∑
dbi . Assume di ≤ λ

√
`,

dri ≤ λ
√
`r, and dbi ≤ λ

√
`b. Let L(G) be the number of self-loops in G. Then

PCM
[
L(G) ≥ λ

√
`+

t
√
`

4λ

]
≤ 2 exp

(
−t2

64λ2

)
, PCCM

[
L(G) ≥ 2λ

√
`+

t
√
`

4λ

]
≤ 2 exp

(
−t2

64λ2

)
.

Proof. First, let us consider the case for CM . Let Xii be the random variable for the number

of self-loops at vertex i, so L(G) =
∑

iXii. It follows that

ECM [L(G)] =
∑
i

ECM [Xii] =
∑
i

di(di − 1)

`− 1
≤ λ
√
`.

To show concentration of L(G), we apply the Switching Lemma (Lemma 5.6.2). If G ∼ G′,

then |L(G)− L(G′)| ≤ 2. It follows that

PCM [|L(G)− ECM [L(G)]| ≥ δ] ≤ 2 exp

(
−δ2

4`

)
.

It follows that

PCM
[
L(G) ≥ λ

√
`+

t
√
`

4λ

]
≤ PCM

[
|L(G)− E(L(G))| ≥ t

√
`

4λ

]
≤ 2 exp

(
−t2

64λ2

)
.

The proof for CCM is identical by observing that

ECCM [L(G)] =
∑
i

ECCM [Xii] =
∑
i

dri (d
r
i − 1)

`r − 1
+
dbi(d

b
i − 1)

`b − 1
≤ 2λ

√
`.
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Henceforth, we only consider Gs ∼ Smpl(G, t/
√
`). To prove Theorem 5.7.1, we condition

on the event A that there is no pair of vertices with more than m = 4e2λ2 edges between

them in G (Lemmas 5.7.5 and 5.7.6), and follow these steps:

1. Show that E(S(Gs)) ≈ t6/`3S(G). For this, we write S(G) as a polynomial of multigraph

counts. The terms corresponding to multigraphs on q vertices are scaled by (t/
√
`)q when

they appear in the polynomial E(S(Gs)). The highest order terms of S(G) correspond

to multigraphs on six vertices, so E(S(Gs)) ≈ t6/`3S(G). See Lemma 5.7.10.

2. Show that S(Gs) concentrates around its mean. Indeed, under the assumption A, we

may apply Kim-Vu Lemma 5.8.12 to obtain concentration results, Lemma 5.7.12.

3. Let ˜̀denote the sum of degrees in Gs. Show that ˜̀concentrates around t2, Lemma 5.7.13.

These steps imply that S(Gs) concentrates around ˜̀3/2 when G ∼ CM and around ˜̀3/2+2β ˜̀3

when G ∼ CCM .

Proof of Theorem 5.1.3

In this section, we prove Theorem 5.1.3, hypothesis testing given only access to one sample

from Smplt(G). First we use Lemma 5.1.5 to show that the modularity statistic S(G) scales

approximately as S(Gs) ≈ t6/`3S(G).

Lemma 5.7.10. Let G be a multigraph with maximum degree λ
√
` such that there are at

most 4e2λ2 edges between any pair of vertices, where ` = 2E(G). Let Gs ∼ Smplt(G) for

t ≥ λ. There exists a constant c > 0 such that

∣∣E(S(Gs,m))− t6

`3
S(G,m)

∣∣ ≤ c0λ
3t5.

Proof. Let X̃ij = max{Xij,m} where Xij is the number of edges between vertices i and j in
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G. Note that

S(G,m) =
∑
i<j

(
˜̀X̃ij − d̃id̃j

)2

= (5.26)

∑
i<j

X̃2
ij

(∑
m,n

X̃mn

)2

− 2X̃ij

(∑
m,n

X̃mn

)(∑
k

X̃ik

)(∑
k

X̃jk

)
+

(∑
k

X̃ik

)2(∑
k

X̃jk

)2

.

Therefore S(G,m) is the sum of terms of the form X̃ijX̃klX̃mnX̃op where |{i, j, k, l,m, n, o, p}| ≤

6. In other words, S(G,m) is the sum of homomorphism counts of graphs with four edges

and at most 6 vertices in G̃, the graph obtained from G by deleting edges so that there are

at most m edges between any pair of vertices. Let S(G,m) = S+(G̃)− S−(G̃) where S+(G̃)

contains the terms of Equation (5.26) with positive coefficients, and S−(G̃) contains the

opposite of the terms with negative coefficients.

We apply Lemma 5.1.5 with e = 4, v1 = 6 and v2 = 5 to each S+ and S− and obtain

∣∣∣E [S+(G̃)
]
− S+(G̃)

∣∣∣ ≤ c1λ
3t5 and

∣∣∣E [S−(G̃)
]
− S−(G̃)

∣∣∣ ≤ c2λ
3t5.

Since S(G,m) = S+(G̃)− S−(G̃), the result follows.

Proof of Lemma 5.1.5. First we consider how sampling affects the homomorphism counts. A

fixed injective homomorphism from F to G is a homomorphism from F to Gs if and only if

the vertices of the image of V (F ) survive the sampling process. It follows that

E(H(Fi, G
s)) = H(Fi, G)

(
t√
`

)vi
,

where vi = |V (Fi)|.

Next we give an upper bound on H(Fi, G) under the maximum degree and maximum

number of edges conditions. Let ci (and vi) be the number of connected components (and
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vertices) of Fi. Consider a fixed spanning forest of Fi in which each component has a labeled

“first” edge. There are at most
(
`
2

)ci ways to pick the first edges of each component. There

are at most (λ
√
`)vi−2ci ways to pick the remaining edges in the spanning forest since the

maximum degree is λ
√
`. Since there are at most m edges between any pair of vertices, there

are at most me−vi+ci ways to choose the other edges. Under the assumption that m ≤ λ2,

H(Fi, G) ≤ ai`
ci(λ
√
`)vi−2cime−vi+ci = ai`

vi/2λ2e−vi ,

for some constant ai depending only on Fi. Finally, we compute

E(S(Gs)) =
k∑
i=1

αi E(H(Fi, G
s)) =

k∑
i=1

αiH(Fi, G)

(
t√
`

)vi
.

Since t ≤
√
`,

E(S(Gs)) ≥ S(G)

(
t√
`

)v1
.

Under the assumption that t ≥ λ,

E(S(Gs)) =

(
t√
`

)v1
S(G) +

k∑
i=1

αiH(Fi, G)

((
t√
`

)vi
−
(

t√
`

)v1)

≤
(

t√
`

)v1
S(G) +

k∑
i=1

αiai`
vi/2λ2e−vi

(
t√
`

)vi
=

(
t√
`

)v1
S(G) + c0λ

2e−v2tv2

where c0 is a constant independent of G.

The Kim-Vu concentration inequality (Lemma 5.8.12) is the key tool that we use for

showing the concentration of S(Gs,m) and ˜̀ once the graph G is fixed (Lemmas 5.7.12

and 5.7.13 respectively). First, we prove Lemma 5.7.11, which uses the Kim-Vu concentration
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inequality to establish concentration for homomorphism counts under sampling. Lemma 5.7.12

will follow by applying Lemma 5.7.11.

Lemma 5.7.11. Let G be a graph with maximum degree λ
√
` such that there are at most

4e2λ2 edges between any pair of vertices, where ` = 2E(G). Let H(F,G) be the number of

labeled homomorphisms of F in G, and v = |V (F )| and e = |E(F )|. Assume H(F,G) =

Ω (tv−1λ2e−v+1). Let Gs ∼ Smplt(G) for t ≥ λ. There exists a constant c > 0 such that

P(|H(F,Gs)− E(H(F,Gs))| ≥ αE(H(F,Gs))) ≤ O

(
exp

(
−cα

√
E(H(F,Gs))

tv−1λ2e−v+1

))
.

Proof. We can write the random variable H(F,Gs) as a polynomial in the framework of

[KV00]

YH = H(F,Gs) =
∑

e∈E(H)

w(e)
∏
s∈e

ts,

where V (H) = V (G), E(H) = {S ⊂ V (G) | |S| = v}, and

w(e) =
∑
ψ∈Ψ

∏
{i,j}∈E(F )

Xψ(i)ψ(j)1{Im(ψ) = e},

with Ψ given by Definition 5.1.4. We now compute E(H) and Ez(H) and apply Kim Vu to

the above polynomial YH .

Consider a set A. We compute E(YHA). The polynomial YHA is the sum of terms of the

form w(e)
∏

s∈e\A ts where A ⊆ e. Let

Er = {e ∈ E(H) | A ⊆ e, |e \ A| = r} and Tr =
∑
e∈Er

w(e).

It follows that

E(YHA) ≤
|A|∑
r=0

Tr

(
t√
`

)r
.
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We now bound Tr. Note that Tr is the number of copies of F in G in which all but r

vertices are in A. We claim that Tr ≤ cλ2e−rtr for some constant c. Consider a partially

labeled copy of F in which each vertex of A is the label of a unique vertex of F . There is a

constant (independent of G) number of such labelings. We count the number of copies of F

in G in which each labeled vertex of F maps to the corresponding vertex in A. To do so, we

count the ways to choose the edges and r remaining vertices to obtain a copy of F in G. Let

c′ be the number of connected components of F that do not contain a labeled vertex. For

each such connected component arbitrarily choose a “first edge.” There are `c
′

ways to place

the first edge in each of these components in G, establishing the placement of 2c′ vertices in

G. Now at least one vertex in each connected component has an established place in G, and

we must select r − 2c′ additional vertices. Fix a set of r − 2c′ edges of F so that each of the

r − 2c′ vertices that are not yet established (i.e. not in A or adjacent to one of the 2c′ edges

placed) is adjacent to one edge in the set. Since each vertex has maximum degree λ
√
`, there

are at most (λ
√
`)r−2c′ ways to select the placement of this set of edges in G. The remaining

e− r + c′ edges we need to select to form a copy of Fi in G occur between pairs of vertices

that have already been established. Since each pair of vertices has at most λ2 edges, there

are at most λ2(e−r+c′) ways to select these edges. It follows that for some constant c

Tr

(
t√
`

)r
≤ c`c

′
(
λ
√
`
)r−2c′

λ2(e−r+c′) = ctrλ2e−r.

Under the assumption that λ ≤ t, this quantity is maximized when r is largest. Note

r ≤ v − |A|. It follows that

Ez(H) ≤ ctv−1λ2e−v+1.

Under the assumption that E(H) = max{ctv−1λ2e−v+1,E0(H)} = E(H(F,G′)), we apply
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Lemma 5.8.12 and obtain for some constant c

P(|H(F,G′)− E(H(F,G′))| ≥ αE(H(F,G′)))

≤ P

(
|H(F,G′)− E(H(F,G′))| ≥ 8

(
αc

√
E(H(F,G′))

tv−1λ2e−v+1

)√
Ez(H)E(H)

)

≤ O

(
exp

(
−cα

√
E(H(F,G′))

tv−1λ2e−v+1

))

Lemma 5.7.12. Let G be a multigraph with maximum degree λ
√
` such that there are at

most 4e2λ2 edges between any pair of vertices, where ` = 2E(G) . Let Gs ∼ Smplt(G) for

t ≥ λ. Moreover, let H(F,G) ≤ C`3 for any F with six vertices. Then, there exists a constant

c > 0 such that

P
(
|S(Gs,m)− E(S(Gs,m))| ≥ αt6

)
≤ O

(
exp

(
−cα

√
t

λ3

))
.

Proof. Let G̃s denote the graph obtained from Gs by deleting edges so that there are at

most m edges between any pair of vertices. As established in the proof of Lemma 5.7.10,

S(Gs,m) =
∑k

i=1 α
+
i H(Fi, G̃

s)−
∑k

i=1 α
−
i H(Fi, G̃

s) where each Fi is a graph with four edges

and at most six vertices. It is now enough to show concentration of H(Fi, G̃
s). We compute

P
(
|H(Fi, G

s)− E(H(Fi, G
s))| ≥ E(H(Fi, G

s))

(
αt6

k E(H(Fi, Gs))

))
= O

(
exp

(
−cαt6√

tv−1λ2e−v+1 E(H(Fi, Gs))

))

= O

(
exp

(
−c̄α

√
t

λ3

))
.

The first equality follows from Lemma 5.7.11 and the last line follows from the observation
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that

E(H(Fi, G
s)) =

t6

`3
H(Fi, G) ≤ Ct6.

Lemma 5.7.13. Let G be a multigraph with maximum degree at most λ
√
` such that there

are at most 4e2λ2 edges between any pair of vertices, where ` = 2E(G) and λ ≥ 1/2. Assume

G has at most 2λ
√
` + t

√
`

4λ
self-loops. Let Gs ∼ Smplt(G) for t ≥ 4e2λ2. Let ˜̀ = 2E(Gs).

Then

P
(
|˜̀− t2| ≥ t2

λ

)
≤ O

(
exp

(
− 1

32

√
t

λ3

))
.

Proof. We write ˜̀ as a polynomial and apply Kim-Vu. Note

YH = ˜̀=
∑
i 6=j

2Xijtitj +
∑
i

2Xiiti.

Therefore

E[˜̀] = t2 +
∑
i

Xii

(
t√
`
− t2

`

)
.

By the assumption of this lemma,
∑

iXii ≤ λ
√
`+ t

√
`

4λ
, and thus it follows that

t2 ≤ E[˜̀] ≤ t2 + tλ+
t2

4λ
.

Note E1(H) ≤ 2λ
√
` t√

`
= 2λt and E2(H) ≤ 8e2λ2 since the maximum degree is λ

√
` and

each Xij ≤ 4e2λ2. Therefore Ez(H) ≤ 2λ
√
` and E0(H) ≤ 2t2. By Lemma 5.8.12,

P
(∣∣˜̀− E[˜̀]

∣∣ ≥ 16γ
√
λt3/2

)
≤ O (exp (−γ)) .
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It follows that

P
(
|˜̀− t2| ≥ t2

λ

)
≤ P

(∣∣˜̀− E[˜̀]
∣∣ ≥ t2

λ
− tλ− t2

4λ

)
≤ P

(∣∣˜̀− E[˜̀]
∣∣ ≥ t2

2λ

)
= P

(∣∣˜̀− E[˜̀]
∣∣ ≥ 16

(
1

32

√
t

λ3

)
√
λt3/2

)

≤ O

(
exp

(
− 1

32

√
t

λ3

))
.

Finally, we prove Theorem 5.1.3.

Proof of Theorem 5.1.3. Let G ∼ CM(D) and Gs ∼ Smpl(G, t/
√
`). First we claim that if

the following four events hold, then the hypothesis test based on samples is accurate. Let

m = 4e2λ2, ˜̀= 2E(Gs), and c0 be the constant given in Lemma 5.7.10.

(1) G has no more m edges between any pair of vertices.

(2) S(G,m) ≤ `3

2
+ z.

(3) S(Gs,m) ≤ E(S(Gs,m)) + t6
(
β − 16+32β

λ
− c0λ3

t
− z

`3

)
.

(4) |˜̀− t2| ≤ t2

λ
.

Under assumption (1), we may apply Lemma 5.7.10, which given (2) implies that

E(S(Gs,m)) ≤ t6

`3

(
`3

2
+ z
)

+ c0λ
3t5 = t6

2
+ t6z

`3
+ c0λ

3t5. Therefore under assumption (3),

S(Gs,m) ≤ t6

2
+ t6β − t6(16 + 32β)

λ
.

Note that under assumption (1), S(Gs,m) = S(Gs). Assumption (4) implies that t2 ≤

˜̀λ/(1 + λ) ≤ ˜̀, and therefore |t6 − ˜̀3| ≤ 8˜̀2t2/λ. Under the hypotheses on t and λ, it now
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follows that

S(Gs) = S(Gs,m) ≤
(

˜̀3 +
8˜̀2

λ

)(
1

2
+ β

)
− t6 (16 + 32β)

λ
≤

˜̀3

2
+ β ˜̀3,

and so the hypothesis test is accurate.

Next, let G ∼ CCM(D∗, I) and Gs ∼ Smplt(G). We claim that if the following four

events hold, then the hypothesis test is accurate on Gs. Again, let m = 4e2λ2, ˜̀= 2E(Gs),

and c0 be the constant given in Lemma 5.7.10.

(5) G has no more m edges between any pair of vertices.

(6) S(G,m) ≥ `3

2
+ 2β`3 − z

(7) S(Gs,m) ≥ E(S(Gs,m))− t6
(
β − 16+32β

λ
− c0λ3

t
− z

`3

)
(8) |˜̀− t2| ≤ t2

λ
.

Under assumption (5), we may apply Lemma 5.7.10, which given (6) implies that E(S(Gs,m)) ≥
t6

`3

(
`3

2
+ 2β`3 − z

)
− c0λ

3t5 = t6

2
+ 2βt6 − t6z

`3
− c0λ

3t5. Therefore under assumption (7),

S(Gs,m) ≥ t6

2
+ t6β +

t6(16 + 32β)

λ
.

Note that under assumption (1), S(Gs,m) = S(Gs). Assumption (4) implies |t6− ˜̀3| ≤ 8˜̀2/λ.

Under the hypotheses on t and λ, it follows that

S(Gs) = S(Gs,m) ≥
(

˜̀3 − 8˜̀2

λ

)(
1

2
+ β

)
+
t6 (16 + 32β)

λ
≥

˜̀3

2
+ β ˜̀3,

and so the hypothesis test is accurate.

Under H0 (or H1), let Ai be the event that condition (i) does not hold for i ∈ [1, 4] (or
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i ∈ [5, 8]). It follows that

P(ERROR) = PH0(rejecting H0) + PH1(rejecting H1)

≤ PH0

[ 4⋃
i=1

Ai

]
+ PH1

[ 8⋃
i=5

Ai

]
(5.27)

We now use a union bound. By Lemmas 5.7.5 and 5.7.6,

PH0 [A1] + PH1 [A5] ≤ 2`2

√
m

exp (−m/2) = O

(
`2

λ
exp

(
−2e2λ2

))
.

Let z = `3β/4. Applying Lemma 5.7.7 and Lemma 5.7.8 with Z = z (under the assumptions

that λ = o
(√

`β
)

and λ = Ω(
√

log `) yields

PH0 [A2] ≤ 2 exp

(
−
(

Z

4`5/2m
− c0λ

m
− `5/2

√
m exp (−m)

4

)2
)

= O

(
exp

(
−c`β2

λ4

))
.

PH1 [A6] ≤ 2 exp

(
−
(

Z

4`5/2m
− c0λ

m
− `3 exp (−m/2)

4m

)2
)

= O

(
exp

(
−c`β2

λ4

))
.

for some constant c > 0. Under the assumptions that λ ≥ 64/β + 64, t ≥ 4cλ3/β, m ≥

2 log 16`3/2

β
, Lemma 5.7.12 implies that

P[A3 | Ac1],P[A7 | Ac5] = O

(
exp

(
−c1

√
t

λ3

(
β − 16 + 32β

λ
− c0λ

3

t
− z

`3

)))

= O

(
exp

(
−c̄β

√
t

λ3

))

where c1 > 0 is the constant given in Lemma 5.7.12 and c̄ > 0 is a constant. Finally we apply

?? and Lemmas 5.7.9 and 5.7.13 (with the assumption that t3 ≥ 4λ) and obtain

P(A4 | Ac1),P(A8 | Ac4) ≤ 2 exp

(
−t2

64λ2

)
+O

(
exp

(
− 1

32

√
t

λ3

))
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= O

(
exp

(
− 1

32

√
t

λ3

))
.

The result follows by using the above computations to bound Equation (5.27).

5.8 Appendix

Claim 5.8.1. Let ρ and ρn be such that ρn → ρ vaguely on (R+)k,

lim sup

∫
(R+)k
〈1, x〉dρn ≤ c1, and

∫
(R+)k
〈1, x〉dρ ≤ c2.

For a bounded function f with f(x) = o(〈x, 1〉) as x→ 0,
∫
fdρn →

∫
fdρ.

Proof. Let Bε denote the L1 ball of radius ε. We show
∫
Bε
fdρn →

∫
Bε
fdρ as ε → 0 and∫

Bcε
fdρn →

∫
Bcε
fdρ. First note that for any M ∈ R+, Mρn(Bc

M) ≤
∫
BcM
〈x, 1〉dρn ≤ c1, and

so ρn(Bc
M) ≤ c1/M . It follows that ρ(Bc

M) ≤ c1/M .

We begin by computing the integral away from zero. We approximate f by a sequence

of bounded functions (fM) with bounded support. Let δ be a small constant and fmax =

supx|f(x)|. Define fM(x) to be some sequence of continuous function with the properties

fM(x) =


f(x) x ∈ BM

0 x ∈ Bc
M+δ

≤ fmax x ∈ Bc
M \Bc

M+δ.

Observe

∣∣∣∣ ∫
Bcε

fdρn −
∫
Bcε

fdρ

∣∣∣∣ ≤ ∣∣∣∣ ∫
Bcε

fdρn −
∫
Bcε

fMdρn

∣∣∣∣+

∣∣∣∣ ∫
Bcε

fMdρn −
∫
Bcε

fMdρ

∣∣∣∣
+

∣∣∣∣ ∫
Bcε

fMdρ−
∫
Bcε

fdρ

∣∣∣∣
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≤ 2fmaxρn(Bc
M) + +

∣∣∣∣ ∫
Bcε

fMdρn −
∫
Bcε

fMdρ

∣∣∣∣+ 2fmaxρ(Bc
M)

≤ 4c1fmax
M

+

∣∣∣∣ ∫
Bcε

fMdρn −
∫
Bcε

fMdρ

∣∣∣∣.
The vague convergence of ρn → ρ and the fact that the above holds for all M together

imply
∫
Bcε
fdρn →

∫
Bcε
fdρ.

Finally observe

∫
Bε

fdρn = o

(∫
〈x, 1〉dρn

)
= o(c1)

∫
Bε

fdρn = o

(∫
〈x, 1〉dρ

)
= o(c2).

Thus, as ε→ 0,
∫
Bε
fdρn →

∫
Bε
fdρ = 0.

Fact 5.8.2. Let x1, . . . , xn, y1, . . . yn ∈ [0, 1]. Then

n∏
i=1

xi −
n∏
i=1

yi ≤
∑
i

|xi − yi|.

Claim 5.8.3. Let X1, . . . Xn and Y1, . . . Yn be independent random variables taking values in

R. Let Xj =
(∑j

i=1Xj

)
⊗Xj+1⊗ · · · ⊗Xn and Yj =

(∑j
i=1 Yi

)
⊗ Yj+1⊗ · · · ⊗ Yn. Then for

any j ∈ [n],

dTV (L (Xj) ,L (Yj)) ≤
n∑
i=1

dTV (L (Xi) ,L (Yi)) .

Proof. First we show the statement for j = 1. Using Fact 5.8.2, we compute

dTV

(
L

(
n⊗
i=1

Xi

)
,L

(
n⊗
i=1

Yi

))
=

∫
Rn

∣∣∣∣ n∏
i=1

P(Xi = zi)−
n∏
i=1

P(Yi = zi)

∣∣∣∣dz
≤
∫
Rn

n∑
i=1

∣∣P(Xi = zi)− P(Yi = zi)
∣∣dz

=
n∑
i=1

∫
R

∣∣P(Xi = zi)− P(Yi = zi)
∣∣
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=
n∑
i=1

dTV (L (Xi) ,L (Yi)).

Next we show the claim for arbitrary j. Let A be a set in Rn−j , and let B = {(z1, . . . zn) | (z1 +

· · ·+ zj, zj+1, . . . , zn) ∈ A}. Observe

∣∣P(Xj ∈ A)− P(Yj ∈ A)| =
∣∣∣∣P
(

n⊗
i=1

Xi ∈ B

)
− P

(
n⊗
i=1

Yi ∈ B

)∣∣∣∣
≤

n∑
i=1

dTV (L (Xi) ,L (Yi)).

Therefore

dTV (Xj,Yj) = sup
A

∣∣P(Xj ∈ A)− P(Yj ∈ A)| ≤
n∑
i=1

dTV (L (Xi) ,L (Yi)).

Claim 5.8.4. Let X and Y be random variables, and p ∈ [0, 1]. Then

dTV (L (Bin(X, p)) ,L (Bin(Y, p))) ≤ dTV (L (X) ,L (Y )) .

Proof. Recall

dTV (Bin(X, p), Bin(Y, p)) = sup
A

∣∣P(Bin(X, p) ∈ A)− P(Bin(Y, p) ∈ A)|.

Let A be a set. Observe

∣∣P(Bin(X, p) ∈ A)− P((Y, p) ∈ A)
∣∣

=

∣∣∣∣ ∫ P(X = s)P(Bin(s, p) ∈ A)− P(X = s)P(Bin(s, p) ∈ A)ds

∣∣∣∣
≤
∫ ∣∣P(X = s)− P(Y = s)

∣∣ds ≤ dTV (L (X) ,L (Y )).
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Fact 5.8.5. Let X ∼ Pois(a) and Z ∼ Bin(X, p). Then Z ∼ Pois(ap).

Lemma 5.8.6. [Bar88] Let (Xi)
n
i=1 be independent elements of (Z+)d with distributions

P(Xi = ej) = pji, pi =
d∑
j=1

pji,≤ 1 P(Xi = 0) = 1− pi.

Let

λj =
n∑
i=1

pji, cλ =
1

2
+ log 2

d∑
j=1

λj, and S =
n∑
i=1

Xi

Then

dTV

(
L(S),

d⊗
j=1

Pois(λj)

)
≤

n∑
i=1

min{cλ
d∑
j=1

p2
ji/λj, p

2
i }.

Fact 5.8.7. Let Yn be a sequence of random variables. If Yn → Y in distribution, then

Pois(Yn)→ Pois(Y ) in distribution.

Lemma 5.8.8. [CL06] Let Xi be independent random variables satisfying Xi ≤M for i ∈ [n].

Let X =
∑n

i=1Xi and Z =
∑n

i=1 E(X2
i ). Then

P(X ≥ E(X) + λ) ≤ exp

(
−λ2

2(Z +Mλ/3)

)
.

Lemma 5.8.9. (Chernoff) Let X ∼ Bin(n, p). Then for all δ > 0,

P(X ≥ (1 + δ)E(X)) ≤ exp

(
−δ2 E(X)

2 + δ

)
.

Lemma 5.8.10 (Rescaling lemma, [Bor+]). Given a sequence of multigraphs (Gn)n≥1 and

real numbers (`n)n≥1, suppose that limn→∞
2e(Gn)
`n

= c. Further, let Lbl√`n(Gn)
d−→ ξW for

some multigraphex W = (W,S, I). Then Lbl(Gn)
d−→ ξ′, where ξ′ = ξW ′, W ′ = (W ′, S ′, I ′)
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with

W ′(x, y, ·) = W (
√
cx,
√
cy, ·), S ′(x, ·) =

1√
c
S(
√
cx, ·), and I ′(·) =

I(·)
c
.

Fact 5.8.11. Let Xn be a sequence of random variables that converges weakly to X. Let Yn

be a sequence of random variables such that dTV (L (Xn) ,L (Yn))→ 0. Then Yn converges to

X weakly.

Lemma 5.8.12. [KV00] Let H be a weighted hypergraph with V (H) = {1, 2, . . . n}. Each

edge e ∈ E(H) of H has a weight w(e). For i = 1, . . . n, let ti be an independent {0, 1}

random variable with expected value pi. Consider a polynomial

YH =
∑

e∈E(H)

w(e)
∏
s∈e

ts.

For each vertex subset A ⊂ V (H), define

YHA =
∑
e,A⊂e

w(e)
∏
i∈e\A

ti.

Let Ei(H) = maxA⊂V (H),|A|=i E(YHA), E(H) = maxi≥0 Ei(H), and Ez(H) = maxi≥1 Ei(H).

Then

P
(
|YH − E(YH)| ≥ 8γ

√
Ez(H)E(H)

)
= O (exp (−γ)) .

5.8.1 Proof of Theorem 5.3.2

We begin by proving the Subset Switching Lemma.

Proof. (of Lemma 5.6.3) Let G be a obtained from MMCM(D,B). Establish a pairing

convention where the half-edges are labeled with natural numbers, and in each step the

unpaired half-edge with the lowest label is paired to a uniformly random eligible half-edge.
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Then deletion happens according to the outcome of the Bernoulli trial determined by the

colors of the paired half-edges. Let P0 denote a pairing obtained by following this convention

and G0 the corresponding graph after the deletion step. Let P0(m) denote the first m pairs

in P0, and let G0(m) denote the edges in P0(m) that survived the deletion step. Define the

Doob martingale

Ym(G0) = E(f(G) |G0(m) ⊆ G),

so that

Y0(G0) = E(f(G)) and Y`n/2(G0) = f(G)

when G0 are the edges that form G. To apply the Azuma-Hoeffding inequality (??) and

conclude the lemma, we show that the martingale has differences bounded by b.

For a given P0 let i be the next half-edge paired after the first m pairings occur. For any

j that does not appear in P0(m), let Sj be the set of all pairings that contain P0(M) ∪ (i, j).

For any j, k, we define a one-to-one correspondence between pairings in Sj and pairings

in Sk. For P ∈ Sj there is a P ′ ∈ Sk defined by switching {(i, j), (k, `)} ↔ {(i, k), (j, `)}

where ` is the partner of k in P . Next for each P and corresponding P ′ we construct

a one-to-one correspondence between sets of four graphs G = {G00, G10, G01, G11} and

G ′ = {G′00, G
′
10, G

′
01, G

′
11}. The graphs in G ∪ G ′ contain the edges of G0(m), and for each

edge in both P and P ′ the outcome of the deletion step is the same for all the graphs in

G ∪ G ′. The graph Gab has the edge (i, j) if and only if a = 1, and has the edge (k, `) if and

only if b = 1. Similarly graph G′ab has the edge (i, k) if and only if a = 1, and has the edge

(j, `) if and only if b = 1. Since it is equally likely for the pairing to be in any Sk and it is

equally likely that the graph is in G and G ′,

|Ym(G0)− Ym+1(G0)| ≤ maxG∈G,G′∈G′
∣∣f(G)− f(G′)

∣∣ ≤ b.
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The final inequality follows from noting that for all G ∈ G and G′ ∈ G ′, G s∼ G′.

Lemma 5.8.13. Let Hn ∼MMCM(Dn, B) where `n is the sum of half-edges before deletion

and `an is sum of half-edges of color a before deletion. Let E(Hn) denote the number of edges

in Hn. Assume `n = Ω (n) and `an = Θ (`n). Almost surely

lim
n→∞

2E(Hn)

E(E(Hn))
= 1.

Proof. We prove the statement by showing that for any ε > 0

∞∑
n=1

P(|E(Hn)− E(E(Hn))| ≥ εE(E(Hn))) ≤ ∞,

and applying the Borel-Cantelli lemma.

To give an upper bound for P(|E(Hn)− E(E(Hn))| ≥ εE(E(Hn))) we (i) use a martingale

argument to show concentration of the number of edges with each combination of colors, then

(ii) show concentration of the number of edges that remain after the deletion step given the

number of edges with each color pair is close to its expectation.

We begin with (i). Let H ′n be a graph drawn from MMCM(Dn, B) before the deletion

step. Let a, b ∈ [k] be a pair of colors. We call an edge before deletion an (a, b) edge if consists

of a half-edge of color a and a half-edge of color b. Let fab(H
′
n) be the random variable for

the number of (a,b) edges in H ′n, and so

E(fab(H
′
n)) =


`an`

b
n

`n−1
a 6= b

(`an)2

2(`n−1)
a = b.

(5.28)
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Note that if G ∼ G′, then |f(G)− f(G′)| ≤ 2. It follows by Lemma 5.6.2 that

P(|fij(H ′n)− E(fab(H
′
n))| ≥ δ E(fab(H

′
n))) ≤ 2 exp

(
−δ2 E(fab(H

′
n))2

4`n

)
.

We say an initial pairing is “bad” if |fij(H ′n) − E(fab(H
′
n))| ≥ δ E(fab(H

′
n)) for some

a, b ∈ [k] and “good” otherwise. Let mn = mina `
a
n/`n. We compute

P( bad pairing ) ≤
∑
a,b∈[k]

2 exp

(
−δ2 E(fab(H

′
n))2

4`n

)
≤ 2k2 exp

(
−δm2

n`n
8

)
.

Next we show concentration of the number of edges conditioned on a good pairing. First

we compute the expected number of edges by summing Equation (5.28),

T := E(E(Hn)) =
∑

a<b,a,b∈[k]

`an`
b
nBab

`n − 1
+
∑
a∈[k]

`an`
b
nBaa

2(`n − 1)
.

We write the number of edges in Hn after deletion as a random variable

Y =
∑
a≤b

fab(H
′
n)∑

t=1

Y ab
t

where Y ab
t is the indicator random variable for the event that the tth (a, b) edge is not deleted.

Therefore Y ab
t ∼ Bern(Bab). If the pairing H ′n is good, then Y is strictly dominated by the

random variable

Z =
∑
a≤b

E(fab(H
′
n))(1+δ)∑

t=1

Zab
t where Zab

t ∼ Bern(Bab).

Note E(Z) = T (1 + δ), and so (1 + ε)T = 1+ε
1+δ

E(Z) ≥ (1 + ε − δ)E(Z). We compute via
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Lemma 5.8.8

P(Y ≥ (1 + ε)T |H ′n good) ≤ P(Z ≥ (1 + ε)T ) ≤ P(Z ≥ (1 + ε− δ)E(Z))

≤ exp

(
(ε− δ)2 E(Z)

2
(
1 + ε−δ

3

) ) ≤ exp

(
− (ε− δ)2 T

4

)
.

A similar argument shows that

P(Y ≤ (1− ε)T |H ′n good) ≤ exp

(
−(ε− δ)2 T

4

)
.

Finally we compute

P(|E(Hn)− T | ≥ εT ) ≤ P(|E(Hn)− T | ≥ εT | H ′n good ) + P(H ′n bad )

≤ 2 exp

(
−(ε− δ)2 T

4

)
+ 2k2 exp

(
−δm2

n`n
8

)

Letting δ = ε/2, it follows that

∞∑
n=1

P(|E(Hn)− T | ≥ εT ) ≤
∞∑
n=1

exp (−Θ (`n)) <∞.

Lemma 5.8.14. Let Hn ∼MMCM(Dn, B) where `n is the sum of degrees before deletion

and en =
√

2E(E(Hn)). For ease of notation, denote L̄Hn = Lbl
(
Hn,
√

2en
)

and LMMCMn =

Lbl (MMCM(Dn, B)) Let A1, . . . Ak, B1, . . . Bk ∈ B(R+), A =
⋃k
i=1 Ai, B =

⋃k
i=1Bi, j ∈

N+, and δ > 0. Let

Pn(j1, j2, . . . jk) = P
(
L̄Hn (A1 ×B1) = j1 ∩ · · · ∩ L̄Hn (Ak ×Bk) = jk

)
PMMCM(j1, j2, . . . jk) = P(LMMCMn (A1 ×B1) = j1 ∩ · · · ∩ LMMCMn (Ak ×Bk) = jk).
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Then

P
(∣∣Pn(j1, j2, . . . jk)− PCCM(j1, j2, . . . jk)

∣∣ > δ
)
≤ 2 exp

(
−δ2e2

n

16`nΛ(A)2Λ(B)2

)
.

Proof. We apply Lemma 5.6.3 with f(G) = Pn(j1, j2, . . . jk). Let G and G′ be such that

E(G) \ E(G′) ⊆ {(i, j), (k, `)} and E(G′) \ E(G) ⊆ {(i, k), (j, `)}. Note that if L̄G(Ar ×Br)

and L̄G′(Ar×Br) differ for any r ∈ [k], then (vi, vj) ∈ A×B, (vk, v`) ∈ A×B, (vi, vk) ∈ A×B,

or (vj, v`) ∈ A×B (where vi represents the label of the vertex attached to the half-edge i).

This happens with probability at most 4
(

Λ(A)Λ(B)
en

)
.

Lemma 5.8.15. Let D = (Dn)n≥1 be a sequence of degree sequences in which the sum of

the degrees (before deletion) `n tends to infinity with n. Let En(S, S ′) denote the number of

edges created between the set of half-edges S and S ′ in the construction of MMCM(Dn, B).

Consider m disjoint subsets of half-edges (Sj)j∈[m]. Let sj = (s1
j , . . . s

k
j ) the vector where sij

denotes the number of half-edges in Sj with color i, let s̄j = |Sj|, and assume s̄j = O(
√
`n)

for j ∈ [m]. (Note that not all the half-edges in Sj will be part of an edge in the graph.)

Define (Eij)1≤i≤j≤m an independent collection such that

Eij ∼


Pois

(
sTi Bsj
`n

)
for i 6= j

Pois
(
sTi Bsi

2`n

)
Let Rn = L ((En(Si, Sj))1≤i≤j≤m) and R = L ((Eij)1≤i≤j≤m) Then as n → ∞, the total

variation distance

dTV (Rn, R)→ 0. (5.29)

Moreover, if the Sj are random disjoint subsets satisfying E(s̄j) = O
(√

`n
)

for all i ∈ [k],

then the error in 5.29 converges to zero in expectation.

Proof. Let Sai denote the half-edges in Si with color a. Let E ′(S, S ′) be the number of edges
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between S and S ′ before the deletion step. Note

En(Si, Sj) ∼
∑

(a,b)∈[k]×[k]

Bin
(
E ′n
(
Sai , S

b
j

)
, Bab

)
.

Let

Pabij ∼


Pois

(
sai s

a
i

2`n

)
, i = j, a = b

Pois
(
sai s

b
j

`n

)
otherwise.

By Fact 5.8.5

Eij =
∑

(a,b)∈M

Eabij where Eabij ∼ Bin
(
Pabij , Bab

)
.

Claim 5.8.3 and Claim 5.8.4 imply

dTV (Rn, R) ≤ dTV

(
L
((
E ′n
(
Sai , S

b
j

))
(a,b)∈[k]×[k],1≤i≤j≤m

)
,L
((
Pabij
)

(a,b)∈[k]×[k],1≤i≤j≤m

))
.

Since the initially pairing of the edges (before deletion) occurs according to a configuration

model, we can use Lemma 5.6.1 to bound the right hand side. Therefore when s̄j = O
(√

`n
)

for all j,

dTV (Rn, R) = O

(
1√
`n

)
.

Finally we consider the case when Sj are random disjoint subsets satisfying E(s̄j) =

O
(√

`n
)
. By Markov’s inequality, P

(
s̄j ≥ `

5/8
n

)
≤ `

−1/8
n . It follows that

dTV (Rn, R) ≤ P
(
∃s̄j = Ω

(
`5/8
n

))
+ Õ

(
`−1/8
n

)
= Õ

(
`−1/8
n

)
.

Finally we prove Theorem 5.3.2.

Proof. (of Theorem 5.3.2).
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Let W = W (γ, a, B). We show that almost surely Lbl (Hn) converges weakly to ξW and

apply Proposition 5.2.13 to conclude the theorem. By Lemma 5.8.13 and Lemma 5.8.10, to

show that Lbl (Hn)→ ξW , it suffices to show that Lbl(Hn,
√

2en)→ ξW where en = E(E(Hn)).

For ease of notation we denote Lbl(Hn,
√

2en) = L̄Hn and Lbl(MMCM(Dn, B)) =

LMMCMn . As described in the proof of Theorem 5.2.7, it suffices to show that almost surely the

joint distribution L
(
(L̄Hn (A1) , . . . , L̄Hn (Ak))

)
converges weakly to L ((ξW (A1) , . . . , ξW (Ak)))

for an arbitrary finite family A1, . . . Ak.

Claim 1: The joint distribution L ((LMMCMn (A1) , . . . , LMMCMn (Ak))) converges weakly to

the distribution L ((ξW (A1) , . . . , ξW (Ak))).

Note Lemmas 5.6.4 and 5.6.5 (with µn = γn, µ = γ, X = B), and Fact 5.8.7, imply

that ξPγn,B converges weakly to ξW , and so by Lemma 5.6.6, L
((
ξPγn,M (A1) , . . . , ξPγn,M (Ak)

))
converges weakly to L ((ξW (A1) , . . . , ξW (Ak))) . Lemma 5.8.15 implies that

dTV
(
L (LCCMn (A1) , . . . , LCCMn (Ak)) ,L

(
ξPρn,M (A1) , . . . , ξPρn,M (Ak)

))
→ 0.

The claim follows from Fact 5.8.11.

Claim 2: Almost surely

dTV
(
L
(
(L̄Hn (A1) , . . . , L̄Hn (Ak))

)
,L ((LMMCMn (A1) , . . . , LMMCMn (Ak)))

)
→ 0.

Let Pn and PMMCMn be as defined in Lemma 5.8.14 with rectangles A1, . . . Ak. The

lemma implies

P(|Pn(j1, . . . jk)− PMMCMn(j1, . . . jk)| > δ) < exp
(
−cδ2`n

)
where c is a constant depending only on A1, . . . Ak. Under the assumption that `n = Ω(log(n)),

∞∑
n=1

exp
(
−cδ2`n

)
<∞.
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The remainder of the proof of this claim follows as Claim 2 in the proof of Theorem 5.2.7.

5.8.2 Proofs of Corollaries 5.3.5 and 5.3.6

To prove Corollaries 5.3.5 and 5.3.6, it suffices to show that for corresponding CCM and

MMCM parameter pairs the corresponding random adjacency measures ξPρ,M and ξPγ,B are

equal. Lemmas 5.8.16 and 5.8.17 and Theorems 5.2.7 and 5.3.2 directly imply Corollaries 5.3.5

and 5.3.6.

Lemma 5.8.16. Let (Dn,M) be CCM parameters, and let (D̃, B) = ΓC→M(Dn,M) be

corresponding MMCM parameters. Let ρ and γ be the CCM and MMCM degree measures

corresponding to the CCM parameters (Dn,M) and MMCM parameters (D̃, B) respectively.

Then γ = ρ.

Proof. Let ¯̀i and ¯̀ be the number of half-edges of color i and total half-edges in the MMCM

respectively. We compute

¯̀j =
∑
v∈V

djv

(∑k
i=1

√
`i
)

√
`j

=
√
`j

(
k∑
i=1

√
`i

)
and ¯̀=

(
k∑
i=1

√
`i

)2

.

Let d̃v and d̂v be as in the definitions of CCM and MMCM measures (Definitions 5.3.1

and 5.2.4). Note that

d̂jv =
d̄jv√

¯̀
=

djv√
`j

= d̃jv.

Since d̃v = d̂v and the expected number of edges between v and u is d̃TvMd̃u in the CCM and

d̂TvMd̂u in the MMCM, it follows that the expected number of edges in the MMCM is `/2.

Thus ρ = γ.

Lemma 5.8.17. Let (Dn, B) be MMCM parameters and let (D̃,M) = ΓM→C(Dn, B) be

corresponding CCM parameters. Let ρ and γ be the CCM and MMCM degree measures
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corresponding to the CCM parameters (D̃n,M) and MMCM parameters (D,B) respectively.

Let ξPρ,M and ξPγ,B be as defined in Equation (5.15). Then ξPρ,M = ξPγ,B.

Proof. Let ¯̀ij denote the number of half-edges of color ij in the CCM. We compute

¯̀ij =
∑
v∈V

Bij`
idiv
`

=
(`i)

2
Bij

`
.

Let d̃v and d̂v be as in the definitions of CCM and MMCM measures (Definitions 5.3.1

and 5.2.4). Note that

d̂jiv d̂
ij
u =

d̄jiu d̄
ij
v√

¯̀ij
√

¯̀ji
=
divd

j
vBij

`
= d̃ivd̃

j
u.

It follows that d̂TvBd̂u = d̃TvMd̃u. Since the expected number of edges between v and u is

d̃TvMd̃u in the CCM and d̂TvMd̂u in the MMCM, it follows that the expected number of edges

is the same across the models.

Finally we show ξPρ,M = ξPγ,B. Note that since the expected number of edges is constant

between the two models, we can couple the vertex labeling process in the construction of S

(Equation (5.14)) in the definitions of ρ and γ. Since d̂TvBd̂u = d̃TvMd̃u, it follows that under

this coupling ξPρ,M = ξPγ,B.
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CHAPTER 6

A MARKOV CHAIN FOR THE HARD SPHERE MODEL

This Chapter is joint work with Will Perkins and Tyler Helmuth, and appears in [HPP20].

We prove that the single-center dynamics for the hard sphere model at fugacities λ < 21−d

mixes rapidly.

6.1 The hard sphere model, single-center dynamics, and critical fugacity

We begin by formally defining the hard sphere model and discussing its importance in

mathematics and physics. Then we define single-center dynamics and state our main result

that these dynamics are fast mixing for λ < 21−d. Finally, we outline how this result implies

a lower bound on the critical density and fugacity of the model.

6.1.1 The hard sphere model

The hard sphere model is a simple but fundamental model for monatomic gases. The model

has played a starring role in the development of Markov chain Monte Carlo methods since

the beginning: the Metropolis algorithm was first applied to the study of the two-dimensional

hard sphere model [Met+53]. Its theoretical importance is in part due to the fact that it

(conjecturally) possesses a crystalline phase [BL15]. Understanding the phase diagram of

the model has presented a significant challenge even at the level of physics [BK11], and

mathematical results, including those presented here, are almost exclusively restricted to

understanding the low-density phase (see [Ric16] for a notable exception). See [Löw00] for an

inspiring introduction and broader overview of the model and its implications.

We now give a more precise definition of the hard sphere model. Let r = rd be the radius
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such that a sphere in d dimensions has volume one. Let Λ ⊂ Rd be a bounded measurable

set. Let

ΛInt = {x ∈ Λ : dist(x,Λc) ≥ r}.

The hard sphere model on volume Λ at fugacity λ ≥ 0 with free boundary conditions is a

Poisson point process of intensity λ on ΛInt conditioned on the event that all points are at

pairwise distance at least 2r. We will denote the law of X by µΛ (the dependence on λ will

be suppressed). Note that the requirement that spheres lie entirely within Λ instead of just

requiring the centers to lie in Λ makes no difference in the infinite volume limit, but it does

have a regularizing effect in finite volume.

We will also be interested in the hard sphere model with boundary conditions τ . More

precisely, we define τ ⊆ ΛInt as a set of forbidden locations for centers. The hard sphere

model on a volume Λ at fugacity λ ≥ 0 with boundary conditions τ is a Poisson point process

of intensity λ on ΛInt \ τ conditioned on the event that all points are at pairwise distance

at least 2r. One possibility is that τ represents the volume blocked by a set of permanently

fixed spheres: if Y is a set of centers and τ = ΛInt ∩ (∪y∈YB2r(y)), then ΛInt \ τ is the set of

locations for centers that do not overlap with spheres defined by the centers in Y . Note τ

need not have this form. The law of the hard sphere model on Λ with boundary condition τ

will be denoted by µτΛ.

6.1.2 Single-center dynamics

We consider the following Markov chain on Ωτ
Λ, called the single-center dynamics. Given a

configuration Xt ∈ Ωτ
Λ, form Xt+1 as follows:

1. Pick x ∈ Λ uniformly at random.

2. With probability 1/(1 + λ), remove any y ∈ Xt with dist(x, y) < r; that is, let

Xt+1 = Xt \Br(x).
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3. With probability λ/(1 + λ), attempt to add a center at x. That is, let X ′ = Xt ∪ {x}.

If X ′ ∈ Ωτ
Λ, then set Xt+1 = X ′; if not, then set Xt+1 = Xt.

We show in Lemma 6.3.1 below that the stationary distribution of this Markov chain is indeed

µτΛ.

We will use the path coupling theorem (Theorem 6.2.2) to prove that the single-center

dynamics are rapidly mixing at fugacities λ < 21−d.

Theorem 6.1.1. Let Λ ⊂ Rd be compact and measurable, n = |Λ|, γ ∈ (0, 1), and let

λ = (1 − γ)21−d. The mixing time of the single-sphere dynamics with fugacity λ on Ωτ
Λ

satisfies

tmix(ε) ≤
⌈

4n(log(2d+2n)− log ε)

γ

⌉
.

for all boundary conditions τ .

6.1.3 Rapid mixing and critical values

We define the critical fugacity λc(d) as the supremum over λ such that the hard sphere model

has a unique infinite volume limit in the sense of van Hove, i.e., such that the set of weak

limit points of {µΛ,λ}Λ is a singleton set. When d = 1, λc(d) =∞, but it is not known for

any d ≥ 2 whether or not λc(d) <∞. It is believed that λc(d) is finite in dimension 3 (and

in some or all dimensions d ≥ 4), while the case d = 2 is subtle and remains an active area of

investigation in physics [BK11, Tho+17].

We next define the density of the hard sphere model in dimension d at fugacity λ as

ρ(λ) = lim inf
n→∞

1

n
EQn,λ|X| , (6.1.1)

where Qn is the d-dimensional cube of volume n centered at the origin and the expectation is

with respect to the hard sphere model on Qn at fugacity λ. The use of liminf in (6.1.1) is
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necessary as a priori the limit is only known to exist for Lebesgue-a.e. values of λ. We then

can define the critical density ρc(d) of the hard sphere model as ρ(λc(d)) (or as limλ→∞ ρ(λ)

if λc =∞). That is, ρc(d) is the limiting expected packing density of the hard sphere model

at the critical fugacity λc(d).

Theorem 6.1.1 yields an improved lower bounds on the critical fugacity and density when

combined with a new continuous analogue of the equivalence of spatial and temporal mixing

from lattice spin systems established in [HPP20]. We state these results here to emphasize

the consequences of our mixing time result. For proofs, see [HPP20].

Theorem 6.1.2. For all d ≥ 2, λc(d) ≥ 21−d.

Hofer-Temmel [HT19] used disagreement percolation [Ber93] and known bounds on

the critical activity of d-dimensional Poisson-Boolean percolation to prove lower bounds

on the critical fugacity of the hard sphere model. As d → ∞, this gives a bound of

λc(d) ≥ (1 + o(1))2−d. Recent work on developing exact sampling algorithms for the hard

sphere model using the partial rejection sampling algorithm of Guo and Jerrum [JG a]. Guo

and Jerrum showed that this algorithm is efficient in dimension 2 for λ ≤ .21027 and Wellens

improved this bound to λ ≤ .2344 [Wel18]. For comparison with the previous results, our

bound λc(d) ≥ 21−d is an improvement of a factor 2 as d→∞, and of more than 2 compared

to the rigorous results in dimension 2.

Applying non-trivial lower bounds on the expected packing density of the hard sphere

model from [JJP19] the lower bound on critical fugacity translates the following lower bound

on the critical density.

Theorem 6.1.3. For all d ≥ 2, ρc(d) ≥ 2
3·2d . As the dimension d tends to infinity we have

ρc(d) ≥ (.8526 + od(1))2−d.
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6.2 Markov chain mixing basics

We use the following notation throughout this Chapter. B`(x) denotes the open ball of radius

` centered at x ∈ Rd, and V` = |B`(x)| will denote the volume of this set. In particular,

Vr = 1. More generally, |A| will denote the Lebesgue measure of A ⊂ Rd. For Λ ⊂ Rd the

`-parallel set Λ(`) of Λ is {x ∈ Rd : d(x,Λ) ≤ `}. By an abuse of notation, if B is a finite set,

we will write |B| for the cardinality of B.

Let Ω denote the state space of a discrete time Markov chain. Let p(0) be the initial

probability distribution on Ω, and let p(t) be the distribution after t steps of the Markov

chain. Suppose the chain has a unique stationary distribution µ. The mixing time of the

chain is a worst-case estimate for the number of steps it takes the Markov chain to approach

stationarity. More precisely,

Definition 6.2.1. The mixing time of a Markov chain is

tmix(ε) = sup
p(0)∈P

min
{
t : ‖p(t) − µ‖TV ≤ ε

}
(6.2.1)

where P denotes the set of probability distributions on Ω.

A common approach to bounding the mixing time of a Markov chain is to construct a

coupling. For our purposes, a coupling of two Markov chains (Xt)t≥0 and (Yt)t≥0 on Ω is

a stochastic process (Xt, Yt)t≥0 with values in Ω × Ω such that the marginals (Xt)t≥0 and

(Yt)t≥0 are faithful copies of the Markov chains, and Xt+1 = Yt+1 whenever Xt = Yt.

The path coupling theorem of Bubley and Dyer says that constructing a coupling for

single steps of the Markov chains from certain pairs of configurations in Ω is sufficient for

establishing an upper bound on the mixing time. To use this approach, one must represent

the state space as the vertex set of a connected finite or infinite graph with a function D̂ ≥ 1

defined on the edges. D̂ is called the pre-metric. The path metric D corresponding to D̂ is
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the shortest path distance on the graph with edge weights given by D̂, i.e.,

D(X, Y ) = inf
γ : X→Y


|γ|−1∑
i=0

D̂(γi, γi+1)

 , (6.2.2)

where the infimum is over nearest-neighbor paths γ = (γ0, γ1, . . . , γ|γ|) in the graph on Ω

with γ0 = X and γ|γ| = Y . To establish a rapid mixing regime for the single-center dynamics

we will apply the version of Bubley and Dyer’s path coupling theorem stated below. In the

theorem, the diameter diam(Ω) of Ω is supX,Y ∈Ω D(X, Y ).

Theorem 6.2.2 ([LP17, Corollary 14.7]). Suppose the state space Ω of a Markov chain is

the vertex set of a connected graph, suppose D̂ is a pre-metric on this graph, and let D be the

corresponding path metric.

Suppose that for each edge of this graph {X0, Y0} the following holds: if p(0) and q(0) are

the distributions concentrated on the configurations X0 and Y0 respectively, then there exists

a coupling (X1, Y1) of the distributions p(1) and q(1) such that

E [D(X1, Y1)] ≤ D(X0, Y0)e−α = D̂(X0, Y0)e−α,

where E is the expectation with respect to the Markov chain. Then

tmix(ε) ≤
⌈
− log ε+ log(diam(Ω))

α

⌉
.

Remark 6.2.3. [LP17, Corollary 14.7] concerns Markov chains on finite state spaces, but

the proof applies essentially verbatim to our context.
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6.3 Proof that single-center dynamics are fast-mixing

To establish rapid mixing for the single-center dynamics, we follow the approach of Vigoda

for the discrete hard-core model on bounded degree graphs [Vig01]. This approach makes

use of an extended state space Ω∗ ⊇ Ω. In our setting, let Ωτ,∗
Λ be the collection of all sets of

centers X ⊆ ΛInt such that each point in Λ is covered by at most two balls of radius r with a

center in X, i.e.

X ∈ Ωτ,∗
Λ ⇐⇒ for all x ∈ Λ, |{y ∈ X : dist(x, y) < r}| ≤ 2. (6.3.1)

The purpose of this extended state space will become clear below when we introduce a

pre-metric. Note that the boundary conditions τ play no role in the definition of Ωτ,∗
Λ . Next

we extend our definition of the single-center dynamics to Ωτ,∗
Λ . At each step of the chain:

1. Pick x ∈ Λ uniformly at random.

2. With probability 1/(1 + λ), remove any y ∈ Xt with dist(x, y) ≤ r. That is, set

Xt+1 = Xt \Br(x).

3. With probability λ/(1 + λ), attempt to add a center at x. Let X ′ = Xt ∪ {x}. If

x ∈ ΛInt \ τ and dist(x,Xt) ≥ 2r, then set Xt+1 = X ′. If not, set Xt+1 = Xt. That

is, we add a center at x if it locally satisfies the packing constraints and boundary

conditions.

If Xt ∈ Ωτ
Λ then the chain will remain in Ωτ

Λ and the dynamics agree with the definition given

in Section 6.1.2. In addition, a Markov chain that starts in Ωτ,∗
Λ \ Ωτ

Λ will eventually reach

Ωτ
Λ. Since the chain has a unique invariant measure when considered on the state space Ωτ

Λ,

this shows the chain also has a unique invariant measure on Ωτ,∗
Λ , and that the mixing time

of the chain on Ωτ,∗
Λ is an upper bound for the mixing time of the chain on Ωτ

Λ.

238



Throughout the remainder of this section, we fix the dimension d, the region Λ ⊂ Rd, and

the boundary conditions τ . For simplicity we write Ω = Ωτ
Λ and Ω∗ = Ωτ,∗

Λ .

Lemma 6.3.1. The stationary distribution of the single-center dynamics on Ω is the

distribution of the hard sphere model on Ω.

Proof. Consider two distinct configurations X, Y ∈ Ω. The transition density between X and

Y (and vice versa) is non-zero if and only if the symmetric difference X∆Y is a singleton.

Suppose without loss of generality that Y = X ∪ {x}. Let π denote the density of µ, and

let πU (V ) denote the transition density from state U to state V . Then π(Y )/π(X) = λ, and

πX(Y )/πY (X) = λ, and so the chain is reversible with respect to the hard sphere measure on

Ω.

Since the single-center dynamics are a Harris recurrent chain, the previous lemma implies

that µ is the unique invariant measure for the dynamics on Ω, and that p(t) → µ for all initial

distributions p(0), see, e.g., [RR04, Section 3.2].

6.3.1 Proof of Theorem 6.1.1

We begin with some preliminary definitions. For X ∈ Ω∗ let

Γ(X) = (Λ \ ΛInt) ∪ τ ∪

(⋃
x∈X

B2r(x)

)
. (6.3.2)

This is the ‘blocked volume’ of a configuration X where an additional center cannot be placed.

For v ∈ Λ we write the ball B2r(v) as the disjoint union of the occupied (or blocked) set

OX(v) and the unoccupied (or free) set UX(v),

OX(v) = B2r(v) ∩ Γ(X), UX(v) = B2r(v) \ Γ(X). (6.3.3)

We now use these notions to define a pre-metric on Ω∗. For X, Y ∈ Ω∗, we say that X
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and Y are adjacent (X ∼ Y ) if X has exactly one more center than Y , and all the centers in

X are also in Y (or vice versa). We define a pre-metric D̂(·, ·) on adjacent states by

D̂(X,X ∪ {v}) = 2d − c|OX(v)|, c =
λ2d

2 + λ2d
. (6.3.4)

For 0 ≤ λ ≤ 21−d, c ∈ [0, 1/2], and so D̂(X,X ∪ {v}) ≥ 2d−1 ≥ 1. Hence D̂ is a pre-metric

for such fugacities. Let D be the path metric on Ω∗ obtained from D̂.

The pre-metric D̂ is the continuous analogue of the pre-metric introduced by Vigoda

in [Vig01]. Defining the state space to be Ω∗ rather than Ω affects the metric D. Consider

a simple example with free boundary conditions in which Λ is a ball of radius 3r/2. Then

Ω = ∅ ∪
⋃
x∈ΛInt

{{x}}. For the state space Ω the graph of adjacent states is a star graph

with center ∅, and so for non-empty distinct X, Y ∈ Ω, D(X, Y ) = D̂(X, ∅) + D̂(Y, ∅) = 2d+1.

In contrast, for the state space Ω∗, we have that D(X, Y ) ≤ D̂(X,X ∪ Y ) + D̂(Y,X ∪ Y ) =

2d+1(1 − c). This is relevant in our proof when we bound the distance between a pair of

configurations using the triangle inequality applied with a third configuration that is in Ω∗ \Ω

(see (6.3.12)).

To apply Theorem 6.2.2 we will couple adjacent configurations using the following coupling.

Definition 6.3.2 (The identity coupling for the single-center dynamics). The identity

coupling for the single-center dynamics is defined as follows. If Xt and Yt are separate

instances of the single-center dynamics for µτΛ at time t, we couple them in a Markovian

manner via the transition rule

� Choose a point x ∈ Λ uniformly at random.

� With probability 1/(1 + λ), in both Xt and Yt delete any center in Br(x) to form Xt+1

and Yt+1 respectively.
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� With probability λ/(1 + λ), attempt to add a center at x in both Xt and Yt.

Consider X, Y ∈ Ω∗ with Y = X ∪ {v}. Let X ′ and Y ′ denote the resultant states after

one step of the Markov chains coupled according to the above identity coupling, and let

∆ = D(X ′, Y ′)−D(X, Y ) (6.3.5)

denote the random change in distance between configurations. The next lemma bounds the

expectation of ∆.

Lemma 6.3.3. Let X, Y ∈ Ω∗ such that Y = X ∪ {v}. Let λ = (1− γ)21−d, with γ ∈ (0, 1).

Then

E [∆] ≤ 2d(2c− 1)

n(1 + λ)
= − γ2d

(2− γ)(1 + λ)n
< 0. (6.3.6)

Proof. Let Y = X ∪ {v}. The change in distance ∆ is a random variable whose value is

function of the current configurations of the chains, the random point w chosen in a single

step of the coupling, and whether or not the coupling tries to add or remove spheres. We

begin with a case analysis of how ∆ changes.

1. Let A1 be the event the center v is removed from Y , i.e., the chain removes spheres

and w lies within distance r of v. The probability of this event is 1/(n(1 + λ)). After

A1 occurs, X ′ = Y ′, and so ∆ = −D(X, Y ). It follows that

E [∆ · 1A1 ] = − 1

n(1 + λ)
D(X, Y ) = −2d − c|OX(v)|

n(1 + λ)
(6.3.7)

2. Let A2 denote the event that a center is added to X but not Y . This occurs when w

lies in UX(v) and the coupling attempts to add a sphere, as UX(v) is blocked in Y and
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not blocked in X. In this case we have ∆ = D(X ∪ {w}, Y )−D(X, Y ). It follows that

E [∆ · 1A2 ] =
λ

n(1 + λ)

∫
UX(v)

(D(X ∪ {w}, Y )−D(X, Y )) dw. (6.3.8)

3. Let A3 be the event that a new center w is added to both X and Y . Note that this

event only occurs when w ∈ Λ \ Γ(Y ) and the coupling adds a center. In this case

∆ = −c|{x ∈ UX(v) : x is blocked by the new center w}|.

For x ∈ UX(v), let Ax3 be the event that x becomes blocked by the new center, i.e., that

X ′ = X ∪ {w}, Y ′ = Y ∪ {w} and x ∈ OX∪{w}(v). In order for the event Ax3 to occur,

it must be the case that w ∈ B2r(x) \ Γ(Y ). Hence

E [∆ · 1A3 ] = E
[∫

Ux(v)

−c1Ax3 dx
]

= − cλ

n(1 + λ)

∫
Ux(v)

∫
Λ

1w∈B2r(x)\Γ(Y ) dw dx

= − cλ

n(1 + λ)

∫
UX(v)

|B2r(x) \ Γ(Y )| dx (6.3.9)

4. Let A4 be the event that at least one center is removed in both X and Y , and v

is not removed. Let Sw be the set of centers removed; since w 6∈ Br(v) we have

Sw = X ∩Br(w) = Y ∩Br(w). In this case,

∆ = c|{x ∈ OX(v) : x is no longer blocked after Sw is removed}|.

For x ∈ OX(v), let Ax4 be the event that X ′ = X \ Sw, Y ′ = Y \ Sw, and x ∈ UX\Sw(v).

If Ax4 occurs there is a center bx ∈ X that is the closest center to x that blocks x. In
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particular, bx ∈ Sw, and hence w ∈ Br(bx). Using this observation we obtain

E [∆ · 1A4 ] = E
[∫

Ox(v)

c1Ax4 dx

]
≤ c

n(1 + λ)

∫
Λ

∫
Ox(v)

1w∈Br(bx) dx dw

=
c |OX(v)|
n(1 + λ)

. (6.3.10)

The events A1, A2, A3, and A4 are mutually exclusive and exhaustive, so

E[∆] = E

[
∆ ·

4∑
i=1

1Ai

]
. (6.3.11)

To derive an upper bound on E[∆] we first need to estimate the integrand in (6.3.8). We will

use the triangle inequality with the configurations Y ∪ {w}, X ∪ {w}, and Y . Temporarily

deferring the justification of the use of the triangle inequality, note that since c ≥ 0,

D(Y ∪{w}, X∪{w}) ≤ D(Y,X). Further, by definition, D(Y ∪{w}, Y ) = 2d−c|B2r(w)∩Γ(Y )|.

Hence by the triangle inequality

D(X ∪ {w}, Y )−D(X, Y ) ≤ D(Y ∪ {w}, X ∪ {w}) +D(Y ∪ {w}, Y )−D(X, Y )

≤ 2d − c|B2r(w) ∩ Γ(Y )|. (6.3.12)

To justify this use of the triangle inequality we must establish that X ∪ {v, x} ∈ Ω∗. Note

that no point of Λ is covered by three balls of radius r whose centers are in Y because Y ∈ Ω∗.

No point that is covered by Br(x) is covered by Br(u) for some u ∈ X since x is added to X

by the Markov chain. It follows that no point in Λ is covered three times by Y ∪ {x}, i.e.,

Y ∪ {x} ∈ Ω∗.
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Inserting the estimates given in (6.3.7)–(6.3.10) into (6.3.11) we obtain

E [∆] ≤ 1

n(1 + λ)

(
− (2d − c|OX(v)|) + λ

∫
UX(v)

(2d − c|B2r(w) ∩ Γ(Y )|) dw

− cλ
∫
UX(v)

|B2r(x) \ Γ(Y )| dx+ c|OX(v)|
)

=
1

n(1 + λ)

(
−2d + 2c|OX(v)|+ λ2d(1− c)|UX(v)|

)
,

where the last line follows from |B2r(x) ∩ Γ(Y )| + |B2r(x) \ Γ(Y )| = 2d. Since |UX(v)| +

|OX(v)| = 2d and 2c = λ2d(1− c), it follows that

E [∆] ≤ 2d(2c− 1)

n(1 + λ)
= − γ2d

(2− γ)(1 + λ)n
.

Now we deduce Theorem 6.1.1 from Theorem 6.2.2.

Proof of Theorem 6.1.1. First we bound the diameter of Ω∗. Note that if X ∈ Ω∗ then

|X| ≤ 2n since each ball covers one unit of volume and each point cannot be covered more

than twice. It follows that the combinatorial diameter of the graph representing the states of

Ω∗ is bounded above by 4n. For two adjacent states X ∼ Y , D(X, Y ) ≤ D̂(X, Y ) ≤ 2d, and

hence diam(Ω∗) ≤ n2d+2.

Next we find a suitable value for α in the statement of Theorem 6.2.2. Let X0 = X and

Y0 = X ∪ {v}. Applying Lemma 6.3.3 we obtain

E [D(X1, Y1)] = D(X0, Y0)

(
1 +

E [∆(X0, Y0)]

D(X0, Y0)

)
≤ D(X0, Y0)

(
1− γ

n(2− γ)(1 + λ)

)
≤ D(X0, Y0) exp

[
− γ

n(2− γ)(1 + λ)

]
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≤ D(X0, Y0)e−
γ
4n .

The first inequality used that E[∆] < 0 and D(X0, Y0) ≤ 2d, and the last used that 1 + λ ≤ 2.

Applying Theorem 6.2.2 with α = γ/4n gives Theorem 6.1.1.
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