ACO Comprehensive Exam Fall 2024

Aug 16, 2024

1 Design and Analysis of Algorithms

Given an unweighted, undirected simple graph $G = (V, E)$ and two nodes $s \neq t \in V$, the min s-t cut problem is find a subset of edges $S \subseteq E$ of smallest size $|S|$ such that the graph $(V, E \setminus S)$ has no path from s to t. Consider the following LP to find the min s-t cut:

$$
\min \sum_{e \in E} x_e \quad \text{subject to}
$$
\n
$$
\forall \text{paths } P \text{ from } s \text{ to } t \text{ in } G, \sum_{e \in P} x_e \ge 1
$$
\n
$$
\forall e \in E, \quad x_e \ge 0
$$

- 1. (3 points) Prove that the optimal objective value of this LP is at most the min s-t cut value. Give a polynomial-time separation oracle for this LP.
- 2. (3 points) Given an optimum solution x_e^* for $e \in E$ to the above LP, we will now round it to find an s-t cut of size at most $\sum_{e \in E} x_e^*$.

Consider the graph $G = (V, E)$ with length of each edge e being x_e^* . These edge weights induce a shortest path metric on V. For $r \geq 0$, let $B_r \subseteq V$ denote all the vertices at distance at most r from node s. Show that for a uniform random $r \in [0,1]$, the expected number of edges in the cut $(B_r, V \setminus B_r)$ is at most $\sum_{e \in E} x_e^*$.

- 3. (2 points) Show how we can derandomize the above procedure to obtain an s-t cut of size at most $\sum_{e \in E} x_e^*$.
- 4. (2 points) Write the dual LP of the above LP. Name the algorithmic problem that this dual LP corresponds to and interpret the dual variables.

2 Combinatorial Optimization

Let K be a complete graph with vertex set V and $T \subseteq V$ be a subset of vertices with even cardinality and let k be a positive integer. Let H be an edge-disjoint union of any kT -joins of K . We would like to show the following statement:

(*) For any $s \in T$, there exists a vertex $v \in V$ such that there are at least k-edge disjoint paths from s to v in H .

Prove the following statements below to infer the statement above.

- 1. (1 point) Given $s \in T$, it is sufficient to find a vertex $v \in V$ such that the minimum s-v cut in H is at least k .
- 2. (2 points) Show that if $S \subseteq V$ is such that $|S \cap T|$ is odd, then $\delta_H(S) \geq k$.
- 3. (1 point) Consider the Gomory-Hu tree of H and show that it is sufficient to find an edge of the Gomory-Hu tree incident at s that has weight at least k .
- 4. (6 points) Using the Gomory-Hu tree or otherwise, show that there exists a vertex v such that minimum s -v cut in H is at least k.

3 Probabilistic Combinatorics

Problem. Let $p = p(n) \in [0, 1]$ and let $G \sim \mathbb{G}(n, p)$. Let D be the random variable equal to the largest size of a set of vertex-disjoint triangles in G . Prove the following statements:

 (a) [4 points] If $p \ll n^{-2/3}$, then $D = o(n)$ with high probability.

(b)[6 points] If $p \gg n^{-2/3}$, then $D = (1 - o(1))(n/3)$ with high probability. (Hint: use Janson's inequality.)

4 Solutions

(Algorithms)

1. Consider an optimal s-t cut $S \subseteq E$ with $|S| = C^*$. Define a feasible solution to the LP by setting $x_e = 1$ for all $e \in S$ and $x_e = 0$ for all $e \notin S$. The reason this is feasible is because it is non-negative and for any s -t path P , at least one edge must belong to S (since this is a cut), ensuring $\sum_{e \in P} x_e \geq 1$. Thus, the LP's optimal objective value is at most C^* .

Given a solution (x_e^*) for the LP, the separation problem asks us to check feasibility and if not then return a violated constraint. First, we can easily check non-negativity of all the edge variables x_e^* since there are only |E| of them. Next, to check $\sum_{e \in P} x_e \geq 1$ for every path P , we find the shortest $s-t$ path in the weighted graph where the length of each edge e is x_e^* . This can be done using Dijkstra's algorithm. If the shortest path length is strictly less than 1, then this path corresponds to a violated constraint; otherwise, no such path exists.

- 2. Consider any edge $e = (u, v)$. Let d_u and d_v denote the distances of these vertices from vertex s when the edge lengths are x_e^* . Observe that $|d_u - d_v| \leq x_e^*$ since we can reach from one vertex to another using edge e . Hence, the probability that edge e is in the random cut is at most x_e^* . By linearity of expectation, the expected number of edges in the cut is the sum of edge-cut probabilities, which is at most $\sum_{e \in E} x_e^*$.
- 3. Since the expected value of the cut size is at most $\sum_{e \in E} x_e^*$, there exists an r in [0, 1] such that the cut size is at most $\sum_{e \in E} x_e^*$. Although there are an infinite number of potential r values, note that as we increase r from 0 the cut changes at most $|V|$ times. Hence, we can try all these $|V|$ potential r values and return the minimum of these cuts.
- 4. The dual LP can be written as:

 \max \sum P is an s-t path y_P (1)

subject to \sum P ∋e $y_P \leq 1 \quad \forall e \in E$ (2)

$$
y_P \geqslant 0 \quad \forall P \tag{3}
$$

The dual LP corresponds to the maximum $s-t$ flow problem, where dual variables y_P represent the flow along path P , and the constraints ensure that the total flow through each edge does not exceed edge capacity 1.

(Combinatorial Optimization)

- (a) By Menger's theorem, we have that there are k edge disjoint path from s to v iff the minimum s -v cut is at least k .
- (b) Observe that $\delta_H(S)$ is a T-cut and every T-join must intersect this T-cut. Since H contains k edge-disjoint T -joins, each of these T -joins contains at least one distinct edge in $\delta_H(S)$.
- (c) By property of the Gomory-Hu tree, the weight of any edge $\{u, v\}$ is the value of the min-cut separating the two vertices. Thus if $\{s, v\}$ -edge has weight at least k, the minimum s -v cut must have weight at least k .
- (d) Consider the Gomory-Hu tree of H, say \mathcal{T} . Consider the components of $\mathcal{T} \setminus \{s\}$. Since $s \in T$ and |T| is even, at least one such component with vertex set C must have $|C \cap T|$ be odd. Let v be the neighbor of s in this component defined by C. Then $\delta_H(C) \geq k$ by part (b) and moreover, $\delta_H(C)$ is the capacity of the edge $\{s, v\}$ by the property of Gomory-Hu tree. By part (c), the capacity of $\{s, v\}$ edge is exactly the value of the minimum s -v cut and thus it is at least k .

Probabilistic Combinatorics. (a) Let T be the set of all triangles in K_n . For each $T \in \mathcal{T}$, let A_T be the event that $T \subseteq G$ and let $\mathbf{1}_T$ be the corresponding indicator random variable. Define

$$
X = \sum_{T \in \mathcal{T}} \mathbf{1}_T \quad \text{and} \quad \mu = \mathbb{E}[X] = \binom{n}{3} p^3.
$$

Since $D \leqslant X$ by definition, we have $\mathbb{E}[D] \leqslant \mu = \Theta(n^3p^3)$. If $p \ll n^{-2/3}$, then $n^3p^3 = o(n)$, so we can fix a function $f = f(n)$ such that $n^3p^3 \ll f \ll n$. By Markov's inequality,

$$
\mathbb{P}[D \ge f] \le \frac{E[D]}{f} = O\left(\frac{n^3 p^3}{f}\right) = o(1).
$$

Hence, $D \leq f = o(n)$ with high probability, as desired.

(b) We shall apply Janson's inequality to prove the following claim:

Claim. If $p \gg n^{-2/3}$, then the graph $G \sim \mathbb{G}(n, p)$ is triangle-free with probability at most $e^{-h(n)}$ for some function $h(n) \gg n$.

Proof. To begin with, we replace p by $\min\{p, n^{-0.6}\}\$ WLOG so that $n^{-2/3} \ll p \ll n^{-1/2}$. (This step is not necessary, but simplifies the argument.) For a pair of triangles $T, T' \in \mathcal{T}$, write $T \sim T'$ if $T \neq T'$ and the events A_T , $A_{T'}$ are not independent, i.e., $E(T) \cap E(T') \neq \emptyset$. In other words, $T \sim T'$ if and only if T and T' have exactly 2 common vertices. Now we compute

$$
\Delta = \sum_{T \sim T'} \mathbb{P}[A_T \cap A_{T'}] = \underbrace{\binom{n}{3}}_{\text{choices for } T} \underbrace{3(n-3)}_{\text{choices for } T'} p^5 = \Theta(n^4 p^5).
$$

Since $p \ll n^{-1/2}$, it follows that $n^4 p^5 = o(n^3 p^3)$, so $\Delta = o(\mu)$. By Janson's inequality,

$$
\mathbb{P}[X = 0] \le \exp\left(-\mu + \frac{\Delta}{2}\right) = e^{-(1 - o(1))\mu} = e^{-\Theta(n^3 p^3)}.
$$

As $p \gg n^{-2/3}$, we have $n^3 p^3 \gg n$, as desired.

Let $G \sim \mathbb{G}(n, p)$, where $p \gg n^{-2/3}$, and fix the function h given by the claim. Since h is super-linear, we may choose $m = m(n)$ so that $m \ll n$ and $h(m) \geq 100n$. We also choose $m(n)$ so that $p \gg n^{-2/3}$ implies that $p \gg m^{-2/3}$ as well (e.g., set $m(n) = n/g(n)$ and $p(n) = g(n)n^{-2/3}$ for any asymptotically growing function $g(.)$. Now for every fixed m-element subset $S \subseteq V(G)$, the induced subgraph $G[S]$ is distributed as $\mathbb{G}(m, p)$. Next we choose Since $p \gg m^{-2/3}$, we may apply the claim with $G[S]$ in place of G to conclude that $G[S]$ is triangle-free with probability at most $e^{-h(m)} \leqslant e^{-100n}$. By the union bound, it follows that G has a triangle-free induced subgraph on m vertices with probability at most

$$
\binom{n}{m} e^{-100n} \leq 2^n e^{-100n} = o(1).
$$

That is, with high probability every set of m vertices in G contains a triangle. Assuming this happens, we can form a family of at least $(n - m)/3$ vertex-disjoint triangles by iteratively picking a triangle and removing its vertices from the graph until fewer than m vertices remain. Therefore, $D \geqslant (n - m)/3 = (1 - o(1))n/3$ with high probability, as desired.