
ACO Comprehensive Exam Fall 2024

Aug 16, 2024

1 Design and Analysis of Algorithms

Given an unweighted, undirected simple graph G = (V,E) and two nodes s ̸= t ∈ V , the
min s-t cut problem is find a subset of edges S ⊆ E of smallest size |S| such that the graph
(V,E \ S) has no path from s to t. Consider the following LP to find the min s-t cut:

min
∑
e∈E

xe subject to

∀paths P from s to t in G,
∑
e∈P

xe ⩾ 1

∀e ∈ E, xe ⩾ 0

1. (3 points) Prove that the optimal objective value of this LP is at most the min s-t cut
value. Give a polynomial-time separation oracle for this LP.

2. (3 points) Given an optimum solution x∗
e for e ∈ E to the above LP, we will now round

it to find an s-t cut of size at most
∑

e∈E x∗
e.

Consider the graph G = (V,E) with length of each edge e being x∗
e. These edge weights

induce a shortest path metric on V . For r ⩾ 0, let Br ⊆ V denote all the vertices
at distance at most r from node s. Show that for a uniform random r ∈ [0, 1], the
expected number of edges in the cut (Br, V \Br) is at most

∑
e∈E x∗

e.

3. (2 points) Show how we can derandomize the above procedure to obtain an s-t cut of
size at most

∑
e∈E x∗

e.

4. (2 points) Write the dual LP of the above LP. Name the algorithmic problem that this
dual LP corresponds to and interpret the dual variables.
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2 Combinatorial Optimization

Let K be a complete graph with vertex set V and T ⊆ V be a subset of vertices with even
cardinality and let k be a positive integer. Let H be an edge-disjoint union of any k T -joins
of K. We would like to show the following statement:

(*) For any s ∈ T , there exists a vertex v ∈ V such that there are at least k-edge disjoint
paths from s to v in H.

Prove the following statements below to infer the statement above.

1. (1 point) Given s ∈ T , it is sufficient to find a vertex v ∈ V such that the minimum
s-v cut in H is at least k.

2. (2 points) Show that if S ⊆ V is such that |S ∩ T | is odd, then δH(S) ⩾ k.

3. (1 point) Consider the Gomory-Hu tree of H and show that it is sufficient to find an
edge of the Gomory-Hu tree incident at s that has weight at least k.

4. (6 points) Using the Gomory-Hu tree or otherwise, show that there exists a vertex v
such that minimum s-v cut in H is at least k.
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3 Probabilistic Combinatorics

Problem. Let p = p(n) ∈ [0, 1] and let G ∼ G(n, p). Let D be the random variable equal
to the largest size of a set of vertex-disjoint triangles in G. Prove the following statements:

(a)[4 points] If p ≪ n−2/3, then D = o(n) with high probability.

(b)[6 points] If p ≫ n−2/3, then D = (1 − o(1))(n/3) with high probability. (Hint: use
Janson’s inequality.)
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4 Solutions

(Algorithms)

1. Consider an optimal s-t cut S ⊆ E with |S| = C∗. Define a feasible solution to the LP
by setting xe = 1 for all e ∈ S and xe = 0 for all e /∈ S. The reason this is feasible is
because it is non-negative and for any s-t path P , at least one edge must belong to S
(since this is a cut), ensuring

∑
e∈P xe ⩾ 1. Thus, the LP’s optimal objective value is

at most C∗.

Given a solution (x∗
e) for the LP, the separation problem asks us to check feasibility and

if not then return a violated constraint. First, we can easily check non-negativity of
all the edge variables x∗

e since there are only |E| of them. Next, to check
∑

e∈P xe ⩾ 1
for every path P , we find the shortest s-t path in the weighted graph where the length
of each edge e is x∗

e. This can be done using Dijkstra’s algorithm. If the shortest
path length is strictly less than 1, then this path corresponds to a violated constraint;
otherwise, no such path exists.

2. Consider any edge e = (u, v). Let du and dv denote the distances of these vertices from
vertex s when the edge lengths are x∗

e. Observe that |du − dv| ⩽ x∗
e since we can reach

from one vertex to another using edge e. Hence, the probability that edge e is in the
random cut is at most x∗

e. By linearity of expectation, the expected number of edges
in the cut is the sum of edge-cut probabilities, which is at most

∑
e∈E x∗

e.

3. Since the expected value of the cut size is at most
∑

e∈E x∗
e, there exists an r in [0, 1]

such that the cut size is at most
∑

e∈E x∗
e. Although there are an infinite number of

potential r values, note that as we increase r from 0 the cut changes at most |V | times.
Hence, we can try all these |V | potential r values and return the minimum of these
cuts.

4. The dual LP can be written as:

max
∑

P is an s-t path

yP (1)

subject to
∑
P∋e

yP ⩽ 1 ∀e ∈ E (2)

yP ⩾ 0 ∀P (3)

The dual LP corresponds to the maximum s-t flow problem, where dual variables yP
represent the flow along path P , and the constraints ensure that the total flow through
each edge does not exceed edge capacity 1.
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(Combinatorial Optimization)

(a) By Menger’s theorem, we have that there are k edge disjoint path from s to v iff the
minimum s-v cut is at least k.

(b) Observe that δH(S) is a T -cut and every T -join must intersect this T -cut. Since H
contains k edge-disjoint T -joins, each of these T -joins contains at least one distinct
edge in δH(S).

(c) By property of the Gomory-Hu tree, the weight of any edge {u, v} is the value of the
min-cut separating the two vertices. Thus if {s, v}-edge has weight at least k, the
minimum s-v cut must have weight at least k.

(d) Consider the Gomory-Hu tree of H, say T . Consider the components of T \{s}. Since
s ∈ T and |T | is even, at least one such component with vertex set C must have |C∩T |
be odd. Let v be the neighbor of s in this component defined by C. Then δH(C) ⩾ k
by part (b) and moreover, δH(C) is the capacity of the edge {s, v} by the property of
Gomory-Hu tree. By part (c), the capacity of {s, v} edge is exactly the value of the
minimum s-v cut and thus it is at least k.

Page 5



Probabilistic Combinatorics. (a) Let T be the set of all triangles in Kn. For each T ∈ T ,
let AT be the event that T ⊆ G and let 1T be the corresponding indicator random variable.
Define

X =
∑
T∈T

1T and µ = E[X] =

(
n

3

)
p3.

Since D ⩽ X by definition, we have E[D] ⩽ µ = Θ(n3p3). If p ≪ n−2/3, then n3p3 = o(n),
so we can fix a function f = f(n) such that n3p3 ≪ f ≪ n. By Markov’s inequality,

P[D ⩾ f ] ⩽
E[D]

f
= O

(
n3p3

f

)
= o(1).

Hence, D ⩽ f = o(n) with high probability, as desired.

(b) We shall apply Janson’s inequality to prove the following claim:

Claim. If p ≫ n−2/3, then the graph G ∼ G(n, p) is triangle-free with probability at most
e−h(n) for some function h(n) ≫ n.

Proof. To begin with, we replace p by min{p, n−0.6} WLOG so that n−2/3 ≪ p ≪ n−1/2.
(This step is not necessary, but simplifies the argument.) For a pair of triangles T , T ′ ∈ T ,
write T ∼ T ′ if T ̸= T ′ and the events AT , AT ′ are not independent, i.e., E(T )∩E(T ′) ̸= ∅.
In other words, T ∼ T ′ if and only if T and T ′ have exactly 2 common vertices. Now we
compute

∆ =
∑
T∼T ′

P[AT ∩ AT ′ ] =

(
n

3

)
︸︷︷︸

choices for T

3(n− 3)︸ ︷︷ ︸
choices for T ′

p5 = Θ(n4p5).

Since p ≪ n−1/2, it follows that n4p5 = o(n3p3), so ∆ = o(µ). By Janson’s inequality,

P[X = 0] ⩽ exp

(
−µ+

∆

2

)
= e−(1−o(1))µ = e−Θ(n3p3).

As p ≫ n−2/3, we have n3p3 ≫ n, as desired. ■

Let G ∼ G(n, p), where p ≫ n−2/3, and fix the function h given by the claim. Since h
is super-linear, we may choose m = m(n) so that m ≪ n and h(m) ⩾ 100n. We also
choose m(n) so that p ≫ n−2/3 implies that p ≫ m−2/3 as well (e.g., set m(n) = n/g(n)
and p(n) = g(n)n−2/3 for any asymptotically growing function g(.). Now for every fixed
m-element subset S ⊆ V (G), the induced subgraph G[S] is distributed as G(m, p). Next
we choose Since p ≫ m−2/3, we may apply the claim with G[S] in place of G to conclude
that G[S] is triangle-free with probability at most e−h(m) ⩽ e−100n. By the union bound, it
follows that G has a triangle-free induced subgraph on m vertices with probability at most(

n

m

)
e−100n ⩽ 2ne−100n = o(1).

That is, with high probability every set of m vertices in G contains a triangle. Assuming this
happens, we can form a family of at least (n−m)/3 vertex-disjoint triangles by iteratively
picking a triangle and removing its vertices from the graph until fewer than m vertices
remain. Therefore, D ⩾ (n−m)/3 = (1− o(1))n/3 with high probability, as desired.
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