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1 Algorithms

Problem (MAX-SAT with all positive variables)

Consider a Boolean function f in Conjunctive Normal Form with n Boolean variables
x1, x2, . . . xn and m clauses C1, C2, . . . , Cm such that all variables appear positively in all
clauses. This problem has a trivial satifying assignment (all variables set to True).

(a) (4 points) You are given nonnegative weights w1, w2, . . . , wn, one for each variable, and
w′

1, w
′
2, . . . , w

′
m, one for each clause. Your goal is to maximize the sum of the weights of

satisfied clauses plus the sum of the weights of the variables set to false. Note that you
do not need to get a satisfying assignment! Write an Integer Linear Program for
this problem with one variable yi for each Boolean variable xi and one variable zj for
each clause Cj. Prove the equivalence of your proposed ILP with the original problem.

(b) (2 points) Set each variable to True with probability y∗i , where {y∗i }ni=1 is the solution of
the LP relaxation of the Integer Program from part (a). Bound the ratio of the expected
weight of the solution obtained by this algorithm to the weight of the optimal solution.

(c) (4 points) Now set each variable to True with probability 1 − λ + λy∗i , where λ is a
scalar to be set later and {y∗i }ni=1 is the solution of the LP relaxation from part (a).
Bound the ratio of the expected weight of the solution obtained by this algorithm to
the weight of the optimal solution, as an expression in terms of λ. Choose the value of
λ in the algorithm to obtain a better approximation ration than in part (b).
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2 Graph Theory

Let G be a 2-connected graph and x1, x2 ∈ V (G) be distinct, and let n1, n2 be positive
integers such that n1 + n2 = |V (G)|. Show that G contains vertex disjoint subgraphs G1

and G2 such that, for i ∈ [2], Gi is connected, xi ∈ V (Gi), and |V (Gi)| = ni. (Hint: Use ear
decomposition, a decomposition into a cycle and paths.)
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3 Linear Inequalities

(i) (2pt) Give an example of a polytope in dimension n defined by exactly 2n inequal-
ities, such that removing any inequality describing the polytope makes the resulting
polyhedron unbounded.

(ii) Consider a polyhedron P = {x ∈ Rn|Ax ≤ b} ≠ ∅ where A ∈ Rm×n.

(a) (3pt) Show that {c ∈ Rn|∃y ≥ 0, A⊤y = c} = Rn iff P is bounded.

(b) (1pt) Suppose rank(A) = n and let A⊤ = [a1, . . . , an, . . . , am] where we assume
(WLOG) that the matrix [a1, . . . , an] is non-singular (i.e., the left-hand-side of the
first n constraints of Ax ≤ b are linearly independent). Let B = ([a1, . . . an])

−1.
Show that {c ∈ Rn|∃y ≥ 0, BA⊤y = c} = Rn if and only if P is bounded.

(c) (1pt) Suppose rank(A) = n and B is as defined above. Let {e1, e2, . . . , en} be the
n-standard unit vectors and −1 = [−1,−1, . . . ,−1]⊤. Show that if P is bounded,
then all these vectors lie in the conic combinations of a subset of columns of BA⊤

where the cardinality of this subset is at most 2n.

(d) (3pt) Show that if P is bounded and m > 2n, then one can always select a
constraint in the system Ax ≤ b such that removing this inequality leaves the
resulting polyhedron bounded.
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