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1 Algorithms

Problem (MAX-SAT with all positive variables)

Consider a Boolean function f in Conjunctive Normal Form with n Boolean variables
x1, x2, . . . xn and m clauses C1, C2, . . . , Cm such that all variables appear positively in all
clauses. This problem has a trivial satifying assignment (all variables set to True).

(a) (4 points) You are given nonnegative weights w1, w2, . . . , wn, one for each variable, and
w′

1, w
′
2, . . . , w

′
m, one for each clause. Your goal is to maximize the sum of the weights of

satisfied clauses plus the sum of the weights of the variables set to false. Note that you
do not need to get a satisfying assignment! Write an Integer Linear Program for
this problem with one variable yi for each Boolean variable xi and one variable zj for
each clause Cj. Prove the equivalence of your proposed ILP with the original problem.

(b) (2 points) Set each variable to True with probability y∗i , where {y∗i }ni=1 is the solution of
the LP relaxation of the Integer Program from part (a). Bound the ratio of the expected
weight of the solution obtained by this algorithm to the weight of the optimal solution.

(c) (4 points) Now set each variable to True with probability 1 − λ + λy∗i , where λ is a
scalar to be set later and {y∗i }ni=1 is the solution of the LP relaxation from part (a).
Bound the ratio of the expected weight of the solution obtained by this algorithm to
the weight of the optimal solution, as an expression in terms of λ. Choose the value of
λ in the algorithm to obtain a better approximation ration than in part (b).

Solution

(a) We set binary variables yi equal to 1 if and only if xi is set to be True and binary
variables zj to be 1 if and only if clause Cj evaluates to True. Our ILP is

max W =
∑

wi(1− yi) +
∑

w′
jzj

with the following restrictions:∑
xi∈Cj

yi ≥ zj for all 1 ≤ j ≤ m.
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The restrictions guarantee that zj = 0 when all xi ∈ Cj satisfies xi = 0. With this
equivalence, it follows that the function W corresponds to the weight of true clauses
plus the weights of those variables set to false, and any clause Cj is set to true if and
only if there is at least one literal on it set to true.

(b) Let (ŷ, ẑ) be the randomized solution. Since ẑj = 0 if and only if
∑

i:xi∈Cj
ŷi = 0, we

have
P(ẑj = 0) =

∏
i:xi∈Cj

P(yi = 0) =
∏

i:xi∈Cj

(1− y∗i ).

Set |Cj| = k. Using the Arithmetic Mean-Geometric Mean inequality we get

P(ẑj = 0) ≤
(
1−

∑
y∗i
k

)k

≤
(
1−

z∗j
k

)k

where the last inequality uses the constraints of the ILP instance from part (a). De-
noting by Ŵ the weight of the solution obtained by the randomized algorithm, we
compute

E(Ŵ ) ≥
∑

wi(1− y∗i ) +
∑

w′
j

(
1−

(
1−

z∗j
k

)k
)

(1)

Let f(z) = 1−
(
1− z

k

)k
. One can check that f ′(z) > 0, f ′′(z) < 0 and so

f(z) ≥ f(1)z =

(
1−

(
1− 1

k

)k
)
z ≥

(
1− 1

e

)
z

holds for all z ∈ [0, 1] (the curve from (0, f(0)) to (1, (f(1)) stays above the straight
line between these points). Substituting back in (1) we conclude

E(Ŵ ) ≥
∑

wi(1− y∗i ) +
∑

w′
j

(
1− 1

e

)
z∗j

≥
(
1− 1

e

)(∑
wi(1− y∗i ) +

∑
w′

jz
∗
j

)
≥
(
1− 1

e

)
OPTILP

where OPTILP is the weight of the optimal solution. In the last inequality, we use that
the optimal value of the LP relaxation is always greater or equal to the optimal value
of the ILP.

(c) As in part (b), we compute the probability of the events {ẑj = 0}, this time as a
function of λ. Analogous calculations yield

P(ẑj = 0) =
∏

i:xi∈Cj

P(xi = 0) = λ|Cj |
∏

i:xi∈Cj

(1− y∗i ).
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Using again the Arithmetic Mean-Geometric Mean inequality and setting |Cj| = k, we
get

P(Cj = 0) ≤ λk

(
1−

∑
y∗i
k

)k

≤ λk

(
1−

z∗j
k

)k

Let fλ(z) = 1− λk
(
1− z

k

)k
. One can check that f ′′

λ (z) < 0 for λ > 0, and then

fλ(z) ≥ fλ(1)z

for all z ∈ [0, 1]. Finally, we see that f(1) = 1 − λk
(
1− 1

k

)k ≥ 1 − λ2/4 for all
k ≥ 2. Clauses Cj with one literal can be analysed separately to check they satisfy
P(ẑj = 1) ≥ λz∗j as long as λ < 1. Combining all these inequalities, we get the following

lower bound on Ŵλ, the weight of this randomized algorithm:

E(Ŵλ) ≥
∑

wiλ(1− y∗i ) +
∑

w′
j

(
1− λk

(
1−

z∗j
k

)k
)

≥ λ
∑

wi(1− y∗i ) + min(λ, 1− λ2/4)
∑

w′
jz

∗
j

≥ min(λ, 1− λ2/4)
(∑

wi(1− y∗i ) +
∑

w′
jz

∗
j

)
≥ min(λ, 1− λ2/4)OPTILP

The optimal parameter arises when λ = 1−λ2/4 which yields a 2(
√
2−1) lower bound.

Note that 2(
√
2− 1) ≈ 0.828 > 0.632 ≈ (1− e−1).
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2 Graph Theory

Question. Let G be a 2-connected graph and x1, x2 ∈ V (G) be distinct, and let n1, n2 be
positive integers such that n1+n2 = |V (G)|. Show that G contains vertex disjoint subgraphs
G1 and G2 such that, for i ∈ [2], Gi is connected, xi ∈ V (Gi), and |V (Gi)| = ni. (Hint: Use
ear decomposition, a decomposition into a cycle and paths.)

Solution. We show that there is a linear ordering of the vertices of G, v1 < v2 < . . . < vn, such
that v1 = x1, vn = x2, and for any i ∈ [n] \ {n}, both G[{v1, . . . , vi}] and G[{vi+1, . . . , vn}]
are connected. Then the statement follows by letting i = n1.
Let G + x1x2 = G if x1x2 ∈ E(G); otherwise let G + x1x2 be obtained from G by adding
an edge beween x and x2. Then G+ x1x2 is 2-connected, and the edge x1x2 is contained in
a cycle in G + x1x2. Whitney’s theorem on ear decomposition states that G + x1x2 has a
decomposition P0, P1, . . . , Pk such that

• P0 is a cycle and x1x2 ∈ E(P0),

• for each i ∈ [k], Pi is a
(⋃i−1

j=0 Pj

)
-path, and

•
⋃k

j=0 Pj = G.

We apply induction on k to prove the above assertion on linear ordering.
For the base case, let k = 0. Then G + x1x2 = P0 is a cycle and we may order the vertices
along the path P0 − x1x2 from x1 to x2 as v1 < v2 < . . . < vn with v1 = x1 and vn = x2.
Note that, for each i ∈ [n] \ {n}, both G[{v1, . . . , vi}] and G[{vi+1, . . . , vn}] are paths and,
hence, must be connected.
Now let t ≥ 1 be an integer such that the assertion is true when k < t, and consider the
case when k = t. Let H be obtained from G by removing all edges and internal vertices of
Pt. Then H is 2-connected, P0, P1, . . . , Pt−1 is an ear decomposition of H, and xy ∈ E(P0).
So by induction hypothesis, we may linearly order the vertices of H as u1 < u2 < . . . < um

such that u1 = x1 and um = x2 and for each i ∈ [m] \ {m}, both H[{u1, . . . , ui}] and
H[{ui+1, . . . , um}] are connected.
Let Pt = w1 . . . ws. Then w1 = up and ws = uq for some p, q ∈ [m], and we may assume
p < q. Order the vertices of G as u1 < . . . < up < w2 < . . . < ws−1 < up+1 < . . . < um and
relabel them as v1 < v2 < . . . < vn. We claim that this gives the desired linear ordering. To
see this, fix i ∈ [n] \ {n}.

Case 1. vi = ui for some i ≤ p.
Then G[{v1, . . . , vi}] = H[{u1, . . . , ui}] is connected. Note that H[{ui+1, . . . , um}] and the
path Pt − ui span G[{vi+1, . . . , vn}]. Hence, G[{vi+1, . . . , vn}] must be connected.

Case 2. vi = wr for some r with 2 ≤ r ≤ s− 1. (This case occurs only when s ≥ 3.)
In this case, H[{u1, . . . , up}] and the path w1 . . . wr span G[{v1, . . . , vi}] which, therefore,
must be connected. Also, H[{up+1, . . . , um}] and the path wr+1 . . . ws span G[{vi+1, . . . , vn}];
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so G[{vi+1, . . . , vn}] is connected.

Case 3. vi = ul for some l with p+ 1 ≤ l ≤ m.
Then G[{vi+1, . . . , vn}] = H[{ul+1, . . . , um}] is connected. Moreover, H[{u1, . . . , ul}] and the
path Pt − ul span G[{v1, . . . , vi}]; so G[{v1, . . . , vi}] must be connected.
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3 Linear Inequalities

1. (2 pt) Give an example of a polytope in dimension n defined by exactly 2n inequal-
ities, such that removing any inequality describing the polytope makes the resulting
polyhedron unbounded.
Solution. Consider the unit cube, P = {x ∈ Rn|0 ≤ xj ≤ 1∀j ∈ {1, . . . , n}}, that is
it a polytope described using 2n inequalities. If we remove any inequality, clearly the
resulting polyhedron is unbounded.

2. Consider a polyhedron P = {x ∈ Rn|Ax ≤ b} ≠ ∅ where A ∈ Rm×n.

(a) (3 pt) Show that {c ∈ Rn|∃y ≥ 0, A⊤y = c} = Rn iff P is bounded.
Solution. Consider the primal-dual pair:

max c⊤x
s.t. Ax ≤ b.

min b⊤y
s.t. A⊤y = c

y ≥ 0.

⇒ Given a c ∈ Rn, since the dual is feasible, it either has an optimal solution or
is unbounded. However, the dual cannot be unbounded, since P ̸= ∅. Thus, the
dual has an optimal solution for all c ∈ Rn. By strong duality, the primal has an
optimal solution for all c ∈ Rn. Thus, P is bounded.
⇐ Since P ̸= ∅ and if P is bounded, therefore the primal has an optimal solution
for all c ∈ Rn. Thus, the dual is feasible for all c ∈ Rn, i.e., {c ∈ Rn|∃y ≥
0, A⊤y = c} = Rn.

(b) (1 pt) Suppose rank(A) = n and let A⊤ = [a1, . . . , an, . . . , am] where we assume
(WLOG) that the matrix [a1, . . . , an] is non-singular (i.e., the left-hand-side of the
first n constraints of Ax ≤ b are linearly independent). Let B = ([a1, . . . an])

−1.
Show that {c ∈ Rn|∃y ≥ 0, BA⊤y = c} = Rn if and only if P is bounded.
Solution. This follows from part (a) above and the fact that {c ∈ Rn|∃y ≥
0, BA⊤y = c} = Rn iff {c ∈ Rn|∃y ≥ 0, A⊤y = B−1c} = Rn iff {c ∈ Rn|∃y ≥
0, A⊤y = c} = Rn, since B is non-singular.

(c) (1 pt) Suppose rank(A) = n and B is as defined above. Let {e1, e2, . . . , en} be the
n-standard unit vectors and −1 = [−1,−1, . . . ,−1]⊤. Show that if P is bounded,
then all these vectors lie in the conic combinations of a subset of columns of BA⊤

where the cardinality of this subset is at most 2n.
Solution. Let BA⊤ = [e1, e2, . . . , en, ãn+1 . . . , ãm]. Clearly, {e1, e2, . . . , en} are
conic combinations of the first n columns of BA⊤. Now consider −1. We know
from part(b) that −1 is a conic combination of columns of BA⊤. Note that −1
can be written as a conic combination of n columns (e.g., simplex standard form
argument) of BA⊤. Therefore,{e1, e2, . . . , en} and −1 are in conic combination of
at most 2n columns of BA⊤.

(d) (3 pt) Show that if P is bounded and m > 2n, then one can always select a
constraint in the system Ax ≤ b such that removing this inequality leaves the
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resulting polyhedron bounded.
Solution. Since P is bounded, this implies that the lineality space of P is {0}.
Since the lineality space of P is equal to {x|Ax = 0}, we have that the rank(A)
is the number of columns of A, which is n.
Therefore, by part(c) (e1, e2, . . . , en) and −1 can all be written as conic combina-
tion of at most 2n columns of BA⊤. Thus, any vector in Rn can be written as a
conic combination of these 2n columns of BA⊤. WLOG, let these be the first 2n
columns of BA⊤. Since m > 2n, we can therefore drop a constraint a⊤j x ≤ b with
j > 2n. The resulting left-hand-side matrix still has rank n. Thus, by part (b),
this polyhedron is bounded.
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