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SUMMARY

Markov chains are an essential tool for sampling from large sets, and are ubiq-

uitous across many scienti�c �elds, including statistical physics, industrial engineering,

and computer science. Our chief concern is bounding the mixing time, the number of

steps needed for a Markov chain to converge to a suitably random sample. We study

problems that arise from the design and analysis of Markov chains that sample from con-

�gurations of lattice structures. Speci�cally, we will be interested in settings where each

state is sampled with a non-uniform weight that depends on the structure of the con�gu-

ration. Our focus will be on exploiting these weightings both to develop new algorithms

for sampling and to prove new mixing time bounds for existing Markov chains.

The �rst problem we study is that of sampling integer partitions of n. A partition of

a whole number n is a way to represent n as a sum of other whole numbers. For example,

n = 11 can be partitioned as n = 2 + 3 + 6. In this setting, we present the �rst provably

e�cient Markov chain based algorithm for generating random integer partitions of n.

Our chain uses weights to generate a partition of n with high likelihood, and rejects

samples of size other than n until one is generated. Our algorithm runs in O(n9/4)

expected time and uses optimal Õ(n1/2) space. Furthermore, our Markov chain can be

adapted to a broad set of restricted classes of integer partitions, and in these settings

is guaranteed to converge in Õ(n5/2) time and still use only Õ(n1/2) space. This allows

us to generate partitions near n e�ciently in practice, and we can uniformly generate

partitions of size exactly n when the restricted partition numbers are well behaved.

For our second problem, we study sampling perfect matchings of �nite, simply con-

nected regions of the square-octagon lattice. We are interested in extending the analysis

of a well studied �rotation� Markov chain, whose analogues have been used in practice
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to sample random perfect matchings of regions of other lattices. However, this Markov

chain on the square-octagon lattice empirically appears to converge slowly. To under-

stand why, we interpret perfect matchings as a weighted model of so-called turning paths,

a related routing structure on Z2, and prove that this chain can converge in exponential

time at certain settings of the parameters, and in polynomial time at other settings.

This provides the �rst rigorous slow mixing result for this model, and makes progress

towards explaining the slow convergence behavior of the original rotation chain on the

square-octagon lattice.

In our �nal problem, we introduce and analyze a generalized version of the Schelling

segregation model, �rst proposed in 1971 by economist Thomas Schelling to explain pos-

sible causes of racial segregation in cities. In this model, Schelling considered residents

of two types living on a housing grid, where everyone prefers that the majority of his

or her neighbors are of the same type. He showed through simulations that even mild

preferences of this type can lead to segregation if residents move whenever they are not

happy with their local environments.

We present a generalized model that includes both a natural variant of the Schelling

model as well as the Ising model of statistical physics, which we call the General In�uence

Model. Our generalization includes a broad class of bias functions that models the

neighborhood preferences of individuals, and the e�ect that this has on their desire

to move. We show that for any in�uence function in this class, the dynamics will be

rapidly mixing and cities will be integrated (i.e., there will not be clustering) if the bias

is su�ciently low. Next, we show that for two broad classes of in�uence functions, when

the bias is su�ciently high, the dynamics take exponential time to mix and we will have

segregation and large monochromatic neighbodhoods will form.
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CHAPTER I

INTRODUCTION

Markov chains are an essential tool for randomly sampling from large sets, and in many

applications o�er the only practical method for generating nearly random samples. As a

result, they are critical for studying complex distributions, and have become integral to

the study of many scienti�c �elds, including statistical physics, industrial engineering,

and computer science.

A Markov chain performs a random walk over the set of states of interest, which

we call the state space. Often, the state space is not explicitly given, but is the set of

con�gurations for an underlying model. Markov chains have proven to be a valuable tool

for random sampling in these settings, as there are frequently far too many con�gura-

tions to sample one at random directly. Instead, beginning at some initial con�guration,

a Markov chain will repeatedly make random, local changes until we arrive at an ap-

proximately random con�guration. The set of possible changes must connect the state

space; in other words it must be possible to eventually reach any state starting from

any other state via transitions of this Markov chain. The probabilities with which the

random walk makes these changes are designed to cause the Markov chain to eventually

converge to a target distribution of interest over the state space.

To be a useful tool for sampling, Markov chains should converge relatively quickly to

their target distribution. The number of steps needed for a Markov chain to converge,

commonly called the mixing time, is well understood to be controlled by the spectral

gap of its transition matrix, the di�erence between its second largest eigenvalue and 1.

However, computing the spectral gap directly is impractical for many large, interesting

state spaces. Over the last 25 years, there have been many advancements that have
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led to the creation and application of many useful tools that allow us to infer bounds

on the mixing time without the transition matrix [25, 28, 17, 56, 68]. These tools have

allowed computer scientists to design e�cient Markov chains to solve di�cult algorithmic

problems, notably those of estimating the permanent of a matrix [48] and estimating

the volume of a convex body [27, 53, 23].

Although Markov chains with a large mixing time are not immediately useful for

sampling, they are of great mathematical interest for a variety of reasons. A slow

convergence rate tells us meaningful information about the underlying state space of

the Markov chain, most importantly that it must have a �bottleneck�, a partition of the

state space into two subsets with a relatively small probability of transitioning between

the two. The Gibbs (or Boltzmann) distribution is natural in statistical physics, and

has provided insight into conditions for which certain classes of Markov chains are or

are not e�cient. A deep understanding of the bottlenecks of a slow Markov chain can

aid in the design of other, e�cient Markov chains that avoid the same bottleneck [77].

One of the most interesting phenomenon that appears in the study of some Markov

chains is the presence of a phase transition, where a small, continuous change in one

underlying parameter of the model leads to a large, discontinuous change in the prob-

ability distribution of the state space. The phase transition phenomenon appears in

many contexts throughout the sciences, and re�ects real world phase transitions that

are found in physics and chemistry. Phase transitions in statistical models reveal a great

deal about the distribution of the model, and can o�er insight into their related, real

world counterparts. The most famous of these is the Ising model of ferromagnetism,

a statistical physics model which describes the spin of electrons in a magnet. As with

real world magnets, a small, continuous change in the �temperature� of the model leads

to a dramatic change in its �magnetization�, the macroscopic alignment of spins. In

many cases in statistical physics, as the distribution of the underlying model undergoes

a phase transition, so too does the mixing time of natural Markov chains for sampling
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from this model. For example, just as the underlying Ising model switches from unmag-

netized to magnetized with a small change in the temperature, so does the mixing time

of the natural, local Markov chain known as the Glauber Dynamics for the Ising model

switches from polynomial in the size of the model to exponential.

In this thesis, we study problems that arise from the design and analysis of Markov

chains where each state is sampled with a non-uniform weight that depends on the

structure of the con�guration. Speci�cally, we will be interested in Markov chains that

generate samples from con�gurations of lattice structures. These weighted lattice models

arise naturally in many contexts, including the Ising model, and are typically more

di�cult to analyze than their unweighted counterparts.

Our main interest is analyzing the e�ect of these weightings on the convergence of the

Markov chain. For example, it is possible to design weighted Markov chains that converge

faster than their corresponding unweighted Markov chains, as is shown in the case of a

simple random walk on a set of states arranged in a line [9, 82]. However, introducing

weights can also cause a Markov chain to become slower than the unweighted case, as

in the Ising model. Our focus will be on exploiting these weightings to develop new,

faster algorithms for sampling, as well as proving new bounds on weighted extensions of

natural Markov chains. In the latter case, we are especially interested in exposing phase

transitions in our weighted model.

The remainder of this introduction gives background for the study of Markov chains

as it relates to this thesis. In Section 1.1, we give some technical background on some

important concepts involved in the study of Markov chains, and some of the analysis

techniques that we will later use in the main body of this thesis. We will present

these techniques in the context of some notable and relevant previous work. Finally in

Section 1.2, we brie�y describe the novel results that constitute the main contributions

of this thesis.
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1.1 Markov Chain Basics and Techniques

AMarkov chain is a random process that undergoes transitions from one state to another

on a state space Ω. The de�ning feature of a Markov chain is its memoryless property,

the fact that the transition probabilities at any given step depend only on the current

state and not on the sequence of states that preceded it. Many real world processes in

the sciences, engineering, economics, and �nance can be thought of as memoryless, and

thus Markov chains have proven to be valuable models in these settings.

Formally, a Markov chain is a sequence of random variables {Xi} for i ≥ 0, where

each Xt ∈ Ω, and the conditional distribution of Xt depends only on Xt−1. In other

words for all i > 0,

Xt|{Xs}s<t = Xt|Xt−1.

Thus it su�ces to describe a Markov chain by its transition probabilities P (u, v) =

P (Xt = v|Xt−1 = u). It is also often convenient to consider the weighted adjacency

matrix of this graph, which we call the transition matrix. If the state of the Markov

chain at time t has probability distribution v over Ω, the state of the Markov chain

at time t + 1 will have distribution P · t. Therefore we say that P t(u, v) is the t-step

transition probability, or the probability that a Markov chain in state u will be at state

v exactly t steps later.

The distance between the t-step distribution P t(·) and the stationary distribution π

is measured in terms of their total variation distance, which is de�ned to be

‖P t, π‖tv = max
σ∈Ω

1

2

∑
ρ∈Ω

|P t(σ, ρ)− π(ρ)|.

We measure the convergence rate of a Markov chain by the number of steps needed until

the total variation distance between P t and π is small. More precisely, for all ε > 0 the

mixing time τ(ε) ofM is

τ(ε) = min{t : ‖P t′ , π‖tv ≤ ε,∀ t′ ≥ t}.
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For a Markov chain to be a useful and e�cient tool for sampling, we want the mixing

time to be small relative to the size n of the con�guration. We say that a Markov chain

is rapidly mixing if the mixing time is bounded above by a polynomial in n and log(ε−1).

Similarly, we call it slowly mixing if it is bounded below by an exponential function in n.

For the remainder of this section, we will introduce examples of more advanced

techniques used to bound the mixing time of a Markov chain. We will present them in

the context of some notable previous work relevant to the main body of this thesis.

1.1.1 Phase Transitions in the Ising Model

One of the most studied and best understood statistical physics models is the Ising

model, which describes the spins of electrons in a magnet. In the Ising model of ferro-

magentism, the vertices of a graph, say a �nite region G = (V,E) of Z2, are assigned +

or - spins. To model the behavior of real world magnets, we weight each con�guration so

that neighboring vertices prefer to have the same spin; the more neighboring electrons

that match, the more likely the con�guration.

Since we are interested in the e�ect of temperature on magnets, we introduce a

parameter λ that is related to the inverse �temperature� of the model. The e�ect of

magnetic �elds on the spins of real world electrons is less pronounced as the temperature

increases. To model this, the weight of each electron interaction increases with λ. More

precisely, the stationary probability of a con�guration is de�ned to be σ ∈ {±1}V is

π(σ) = λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|/Z,

where

Z =
∑

σ∈{±1}V
λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|

is the normalizing constant known as the partition function. The Glauber dynamics

of the Ising model is a natural, local Markov chain that changes one spin at a time

using appropriate probabilities to force the chain to converge to π. This Markov chain
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undergoes a phase transition, where a small change in the value of λ leads to a large

change in the mixing time. In fact, this phase transition is known to be sharp, in

that there is a known value λc such that when λ < λc, the Glauber dynamics for the

Ising model mixes in time polynomial in |V | and when λ > λc, it mixes in exponential

time [46, 69, 54, 77]. Moreover, the phase transition in the mixing time is accompanied

by a corresponding transition in the stationary distribution of the Markov chain; at

low λ, an average sample from the steady state is �unmagnetized� with regards to the

proportions of spins, while at high lambda, an average sample is �magnetized�, and has

large regions of predominantly one spin type.

The one of the key techniques developed for the analysis of the Ising model is the

so-called �Peierls argument,� a method for proving that a candidate subset of the state

space is exponentially small in weight [61]. A Peierls argument de�nes a map from

the candidate set to the entire state space with exponential gain in weight, allowing us

to conclude that the set of interest must have exponentially small weight. When this

unlikely set separates the state space into two peices, this implies that the chain must

take exponential time to move from one side of this cut to the other, and is therefore

slowly mixing. The Peierls argument has proven to be an e�ective tool for identifying

bottlenecks in a state space and proving slow mixing of Markov chains.

1.1.2 Sampling Perfect Matchings of Lattices with Path Structures

We now turn our attention to intersecting path models on lattices, which were developed

as a tool to analyze natural Markov chains on the set of perfect matchings on a graph,

one of the most fundamental structures in computer science. A perfect matching in a

graph G = (V,E) is a set of edges such that every vertex is an endpoint of exactly one

of the edges. They arise in many natural computational and combinatorial contexts,

and are also studied by statistical physicists in the dimer model, a model representing

diatomic molecules.
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The seminal work of Edmonds established that deciding if a given graph has a perfect

matching, and �nding it if so, could be done in polynomial time [29]. Subsequently,

Valiant showed that counting perfect matchings is #P-complete, so it is believed that

there is no such polynomial time general solution [79]. As a consequence, there has been

a great deal of interest in �nding both e�cient approximate counting algorithms, as well

as e�cient exact counting algorithms in restricted settings. Jerrum, Sinclair and Vigoda

showed how to approximately count and sample perfect matchings in any bipartite graph

e�ciently, although the complexity remains open on general graphs [48].

There is a natural Markov chain for this problem on graphs that are sub regions of

lattices. In these settings, perfect matchings can be represented as a tiling of the dual

lattice. This Markov chain takes a random face of the lattice, and attempts to �rotate�

the edges on the boundary of the face if this is possible. Propp and Wilson developed the

�coupling-from-the-past� algorithm for this problem, and showed that it could be run on

dimer covers of the Cartesian lattice Z2 to generate perfectly uniform samples of perfect

matchings, although there were no guarantees that the algorithm would terminate in

expected polynomial time [65]. Subsequently, a proof of rapid mixing was provided by

Luby et al. [55], Randall and Tetali [68] and further improved by Wilson [82]. These

techniques made use of a useful bijection between the natural tiling model and a path

routing model that allowed for a more natural analysis of the Markov chain.

1.1.3 Biased Shu�ing and Plane Partitions

Sampling a random permutation from Sn is a fundamental problem from probability

theory. A natural Markov chain, the nearest neighbor transposition chain, will take

neighboring elements of the permutation and swap them with probability 1/2. This chain

generates permutations uniformly, and is known to converge in time Θ(n3 log n) [82]. A

natural weighting that arises in the context of queueing theory leads to a biased model,

where each permutation is not equally likely but instead prefers adjacent elements to be
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in sorted order. Here the Markov chain puts adjacent elements in order with probability

p ≥ 1/2 and out of order with probability 1 − p. This chain was recently shown to

converge in time Θ(n2) [9] for constant p. However, less in known about the more

general setting where the probability to exchange elements i and j can vary depending

on the elements themselves. The problem of bounding the mixing rate of this chain was

posed by Fill [31, 32] and was motivated by the Move-Ahead-One self-organizing list

update algorithm. It was conjectured that the chain would always be rapidly mixing

if 1/2 ≤ pi,j ≤ 1 for all i < j, but this was only known in the two cases described, or

when pi,j is equal to 1/2 or 1, a case that corresponds to sampling linear extensions of

a partial order.

In joint work with Sarah Miracle, Amanda Strieb, and Dana Randall, we proved that

this chain is rapidly mixing for two much larger classes of probabilities pi,j: �Choose Your

Weapon,� where we are given r1, . . . , rn−1 with ri ≥ 1/2 and pi,j = ri for all i < j (so the

dominant player chooses the game, thus �xing his or her probability of winning), and

�League Hierarchies,� where there are two leagues and players from the A-league have

a �xed probability of beating players from the B-league. In the second setting, players

within each league are similarly divided into sub-leagues with a possibly di�erent �xed

probability, and so forth recursively. Both of these classes include permutations with

constant bias as a special case.

Moreover, we also prove that the most general conjecture is false by constructing

a counterexample where although 1/2 ≤ px,y ≤ 1 for all x < y, the nearest neighbor

transposition chain requires exponential time to converge. This counter-example assigns

probabilities to the px,y that allow us to reinterpret this Markov chain on permutations

as a simpler biased Markov chain on bounded plane partitions, another fundamental and

well studied combinatorial model. A plane partition is a �nite sequence of non-increasing

integers, and is often visualized as a set of supported �boxes,� in our case restricted to

the n × n box. In the context of our counter example, Bhatnagar et. al., showed that
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the Markov chain that adds or removes one box at a time with appropriate probabilities

mixes rapidly if there is a uniform bias in every box [11]. For our counterexample, we

create an exponentially small bottleneck in the state space by adding larger bias to the

boxes in one corner.

1.2 Markov chains on Weighted Lattice Structures

We now present the problems of study that form the main body of this thesis. Each topic

is related to the broader theme of bounding the mixing time of weighted structures of

lattice con�gurations. Our analysis techniques are drawn from the interface of theoretical

computer science with discrete mathematics, statistical physics, and economics.

1.2.1 Sampling Integer Partitions

For our �rst problem, we look at the problem of sampling integer partitions of n. A

partition of a whole number n is a way to represent n as a sum of other whole numbers.

For example, n = 11 can be partitioned as n = 2 + 3 + 6. In this setting, we present

the �rst provably e�cient Markov chain based algorithm for generating random integer

partitions of n. Unlike other attempts at developing e�cient Markov chains on the

space of partitions of n, our Markov chain walks on a larger state space consisting of

partitions of various size, not only those of size n. Our chain is biased to generate a

partition of n with high likelihood, and rejects samples of size other than n until one

is generated. Our algorithm runs in O(n9/4) expected time and uses optimal Õ(n1/2)

space. Other e�cient methods for generating random partitions based on Botlzmann

sampling also adopt this high level strategy. However, they require advance knowledge

of the partition number p(n), the number of partitions of size n, and therefore cannot be

easily adapted to restricted families of partitions, such as those with bounded numbers

of pieces, bounded size, and/or bounded rank. Our Markov chain can be adapted to a

broad set of restricted classes of integer partitions, and in these settings is guaranteed

to converge in Õ(n5/2) time and still use only Õ(n1/2) space. This allows us to generate
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partitions near n e�ciently in practice, and we can uniformly generate partitions of size

exactly n when the restricted partition numbers are well behaved.

1.2.2 Perfect Matchings on the Square-Octagon Lattice

For our second problem, we study the problem of sampling perfect matchings of �nite,

simply connected regions of the square-octagon lattice. We are interested in extending

the analysis of the �rotation� Markov chain introduced in Section 1.1.2, which is known to

be ergodic and has been used in practice to sample random perfect matchings to discover

their properties. However unlike domino and lozenge tilings, this Markov chain on the

square-octagon lattice appears to converge slowly. To understand why, we introduce

and analyze a weighted Markov chain on turning paths, a related path structure on Z2,

and prove that this chain can converge in exponential time at certain settings of the

parameters, and in polynomial time at other settings. This provides the �rst rigorous

slow mixing result for this model. Our slow mixing results rely on Peierls arguments,

which we use to identify a cut in the state space of a Markov chain that has small

conductance [61]. Our rapid mixing result relies on novel bijection between turning

paths and 3-colorings of regions of the grid.

1.2.3 The Schelling Segregation Model

In the �nal problem, we will introduce and analyze a generalized version of the Schelling

segregation model. The Schelling segregation model attempts to explain possible causes

of racial segregation in cities. In his model, Schelling considered residents of two types

living on a housing grid, where everyone prefers that the majority of his or her neighbors

are of the same type. He showed through simulations that even mild preferences of this

type can lead to segregation if residents move whenever they are not happy with their

local environments.

We present a general model that includes both a natural variant of the Schelling

model as well as the Ising model, which we call the General In�uence Model. Our
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generalization includes a broad class of bias functions that models the neighborhood

preferences of individuals, and the e�ect that this has on their desire to move. We show

that for any in�uence function in this class, the dynamics will be rapidly mixing and

cities will be integrated (i.e., there will not be clustering) if the bias is su�ciently low.

Next we analyze two broad classes of in�uence functions. The �rst type, Increasing Bias

Functions (IBF), has an individual's likelihood of moving increases each time someone

of the same color leaves (this does not include Schelling's threshold models). The second

type, Threshold Bias Functions (TBF) is reminiscent of the model Schelling originally

proposed, and only causes an increase in the likelihood that someone leaves if the number

of same-type neighbors dips below a certain threshold greater than 1/2 of all neighbors.

For both these classes (IBF and TBF), we show that when the bias is su�ciently high,

the dynamics take exponential time to mix and we will have segregation and a large

�ghetto� will form. As in our study of the fortress model, our proofs of slow mixing rely

on Peierls arguments to show slow mixing by identifying an exponentially small cut in

the state space.
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CHAPTER II

MARKOV CHAIN BACKGROUND AND TECHNIQUES

We begin by formally describing some of the critical concepts and key techniques that

have been developed in the analysis of Markov chains that we will use in this thesis.

2.1 Markov Chain Fundamentals

Markov chains on a state space Ω are de�ned by their transition probabilities P (u, v).

At any time t in the evolution of the Markov process, P (u, v) is the probability that the

Markov chain will transition from state u at time t to state v at time t + 1. We will

often represent a Markov chain as a transition graph on the vertex set Ω, with edges

(u, v) weighted by P (u, v) if P (u, v) > 0 and absent otherwise. It is also often convenient

to consider the weighted adjacency matrix of this graph, which we call the transition

matrix. If the state of the Markov chain at time t has probability distribution v over Ω,

the state of the Markov chain at time t+ 1 will have distribution P · t. Therefore we say

that P t(u, v) is the t-step transition probability, or the probability that a Markov chain

in state u will be at state v exactly t steps later.

For a Markov chain to be a viable tool for sampling from the state space Ω, it must

be able to reach every possible state in Ω. We say that a Markov chain is irreducible if

for any states u and v, there exists a time t such that

P t(u, v) > 0.

In other words, a Markov chain is irreducible if the underlying transition graph is strongly

connected. A Markov chain is aperiodic if for every state u,

gcd({t|P t(u, u) > 0}) = 1.

Together, a Markov chain that is both irreducible and aperiodic is called ergodic.
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Lemma 2.1.1: For any ergodic Markov chain M on a �nite state space with transi-

tion matrix P , there exists a unique distribution π over Ω such that

lim
t→∞

P t · v → π

for any initial distribution v.

We call π the stationary distribution of M . By the lemma, any distribution π that

satis�es Pπ = π for an ergodic Markov chain's transition matrix P must be its stationary

distribution. A common special case of this is described below.

Lemma 2.1.2: For any ergodic Markov chain M with transition probabilities P , if

π is a distribution over Ω that satis�es

∀u, v π(u)P (u, v) = π(v)P (v, u),

then π must be the stationary distribution of M .

We say that when the above condition holds, that the Markov chainM satis�es detailed

balance with respect to π, and any Markov chain that satis�es detailed balance with

respect to some distribution is called reversible.

Many natural Markov chains are reversible, and algorithmists often design Markov

chains to be reversible to exploit the well known properties of reversible Markov chains.

The most notable example is the famous Metropolis-Hastings Algorithm [57, 44]. The

Metropolis-Hastings algorithm de�nes an assignment of probabilities to the transitions

of a Markov chain designed to cause the Markov chain to converge to some �target�

distribution π over Ω. More precisely,

The Metropolis-Hastings Markov chain M with target distribution π.

Let ∆ be the maximum degree of the underlying graph of M. Starting at any

initial state σ0, repeat for all t ≥ 1:

� Choose neighbor τ of σt uniformly at random, each with probability 1/2∆,
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� Set σt+1 = τ with probability min(1, π(τ)/π(σ)).

� With remaining probability, set σt+1 = σt.

It is easy to verify that Metropolis-Hasting algorithm satis�es detailed balance with

respect to π, and therefore converges to π as desired.

The Metropolis-Hastings algorithm has the crucial additional bene�t that the target

distribution need not be a true normalized distribution in order to execute the Markov

chain. That is, for any positive weighting w(σ) over Ω, we can de�ne the transition

probabilities in terms of w rather than π. This will cause the Markov chain to con-

verge to the target distribution π(σ) = w(σ)/Z, where Z is the normalizing constant

Z =
∑

σ∈Ω w(σ). In many contexts, this normalizing constant reveals a great deal of

information about the Markov chain, and it is referred to as the partition function of

the weighting.

Although these techniques ensure that the Markov chain converges to the target π,

they say nothing about how long we need to run the Markov chain to obtain samples

close to π. The closeness of the t-step distribution P t(·) and the target π is measured

in terms of their total variation distance, which is de�ned to be

‖P t, π‖tv = max
σ∈Ω

1

2

∑
ρ∈Ω

|P t(σ, ρ)− π(ρ)|.

For all ε > 0, the mixing time τ(ε) ofM is the number of steps until the distribution of

the Markov chain is within ε from π, or

τ(ε) = min{t : ‖P t′ , π‖tv ≤ ε,∀ t′ ≥ t}.

For a Markov chain to be a useful and e�cient tool for sampling, we want the mixing

time to be small. We say that a Markov chain is rapidly mixing if the mixing time is

bounded above by a polynomial in n and log(ε−1). Similarly, we call it slowly mixing if

it is bounded below by an exponential function.
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Much information about a Markov chain can be found from the eigenvalues of its

transition matrix P [73]. In particular, the spectral gap 1 − |λ2| provides a good and

useful bound on the mixing time ofM. However, we will deal with Markov chains with

exponentially large state spaces, and directly calculating λ2 is infeasible in these settings.

The remainder of this chapter discusses some key tools that we will use to study the

mixing times of Markov chains with exponentially large state spaces.

2.2 Coupling

One of the most successful techniques for upper bounding the mixing time of a Markov

chain is known as coupling. A coupling of a Markov chainM is itself a Markov chain

(Xt, Yt)
∞
t=0 on Ω×Ω such that each of the processes Xt and Yt when viewed in isolation

is a faithful representation ofM. By this we mean that

Pr(Xt+1 = σ|Xt = τ) = Pr(Yt+1 = σ|Yt = τ) = P (σ, τ).

We add the requirement that if the two processes should ever �meet�, or both occupy

the same state, then they will always continue to share the same state. In other words

if Xt = Yt, then Xt+1 = Yt+1. Given such a coupling, the coupling time T is a measure

of the time needed until the two processes converge to the same state. Namely, de�ne

T = max
x,y

E[min{t : Xt = Yt|X0 = x, Y0 = y}].

For any coupling, the following theorem (see, e.g. [1]) relates the coupling time and the

mixing time.

Theorem 2.2.1: τ(ε) ≤ Tedln ε−1e.

2.2.1 Path Coupling

Much of the di�culty in using the coupling theorem lies in carefully choosing a coupling

between all pairs of states in such a way as to bound the expected coupling time. A

popular technique is to de�ne a metric φ on Ω such that the expected distance between
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any two states does not increase in a single step. We can then bound the number of steps

expected until this metric reaches 0. This task was made much more convenient with

the Path coupling theorem of Bubley and Dyer [17]. They argue that the argument only

needs to be considered for a relatively small subset U of all pairs of states; in practice

often we need consider only the neighboring pairs in Ω.

We will use the version of the path coupling theorem due to Dyer and Greenhill [28].

Theorem 2.2.2 (Path Coupling): LetM be a Markov chain on Ω and let (Xt, Yt) be

a coupling of M . Let ϕ be an integer-valued metric de�ned on Ω×Ω which takes values

in {0, ..., B}. Let U be a subset of Ω× Ω such that for all (Xt, Yt) ∈ Ω× Ω there exists

a path Xt = z0, z1, ..., zr = Yt between Xt and Yt such that (zi, zi+1) ∈ U for 0 ≤ i < r

and
∑r−1

i=0 φ(zi, zi+1) = φ(Xt, Yt).

Suppose E[φ(Xt+1, Yt+1)] ≤ βφ(Xt, Yt), for all Xt, Yt ∈ U and some 0 ≤ β ≤ 1.

� If β < 1, then the mixing time ofM satis�es

τ(ε) ≤ ln(Bε−1)

1− β

� If β = 1, then let α > 0 satisfy Pr[φ(Xt+1, Yt+1) 6= φ(Xt, Yt)] ≥ α for all t such

that Xt 6= Yt. The mixing time of M then satis�es

τ(ε) ≤
⌈
eB2

α

⌉
dln ε−1e.

The above theorem is useful for proving rapid mixing ofM only if the upper bound

on the metric B is polynomial in n. We will use the following convenient version of

the path coupling theorem, proposed by Greenberg et al. [40], that handles exponential

sized metrics to analyze the mixing time ofM but requires a stronger condition on the

expected change in distance.

Theorem 2.2.3: Let M be a Markov chain on Ω and let (Xt, Yt) be a coupling of

M . Let ϕ : Ω × Ω → R≥0 be a metric that takes �nitely many values in {0} ∪ [1, B].
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Let U be a subset of Ω× Ω such that for all (xt, yt) ∈ Ω× Ω there exists a path xt =

z0, z1, . . . , zr = yt such that (zi, zi+1) ∈ U for 0 ≤ i < r and
∑r−1

i=0 ϕ(zi, zi+1) = ϕ(xt, yt).

Suppose there exists β ≤ 1 such that E[ϕ(xt+1, yt+1)] ≤ βϕ(xt, yt) for all (xt, yt) ∈ U .

1. If β < 1, then the mixing time satis�es

τ(ε) ≤ ln(Bε−1)

1− β
.

2. If there exists κ, η ∈ (0, 1) such that Pr [|ϕ(xt+1, yt+1)− ϕ(xt, yt)] ≥ ηϕ(xt, yt)| ≥ κ

for all t such that xt 6= yt, then the mixing time satis�es

τ(ε) ≤

⌈
e ln2(B)

ln2(1 + η)κ

⌉⌈
ln(ε−1)

⌉
.

2.3 Conductance

Several of our results will center on the relationship between the conductance of a Markov

chain and its mixing time [47, 73]. Introduced by Jerrum and Sinclair, the conductance

of a Markov chain captures the intuitive notion of a bottleneck in the state space, and

is a good measure of the mixing rate of a chain. For an ergodic Markov chainM with

stationary distribution π, the conductance of a subset S ⊆ Ω is de�ned as

Φ(S) =
∑

s1∈S,s2∈S̄

π(s1)P (s1, s2)/π(S).

The conductance of the chainM is then the minimum conductance of all subsets,

Φ = min
S⊂Ω
{Φ(S) : π(S) ≤ 1/2}.

We will focus on the conductance as a lower bound of the mixing time, and show

that Markov chains are slowly mixing by showing that they have an exponentially small

conductance. To do this, we will make use of the following relationship between the

conductance Φ of a Markov chain and its mixing time τ(ε) [47].

Theorem 2.3.1: The mixing time of a Markov chain with conductance Φ satis�es:(
1− Φ

2Φ

)
ln ε−1 ≤ τ(ε) ≤ 1

Φ2

(
ln(π−1

∗) + ln(ε−1)
)
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CHAPTER III

UNIFORMLY SAMPLING INTEGER PARTITIONS WITH

BIASED MARKOV CHAINS

We begin with work on sampling integer partitions of n which was introduced in Section

1.2.1. Speci�cally, we present the �rst provably e�cient Markov chain based algorithm

for generating random integer partitions. Unlike other attempts at developing e�cient

Markov chains on the space of partitions of n, our Markov chain walks on a larger

state space consisting of partitions of various size. Our chain is biased to generate a

partition of n with high likelihood, and rejects samples of size other than n until one

is generated. Our algorithm runs in O(n9/4) expected time and uses optimal Õ(n1/2)

space. Other e�cient methods for generating random partitions based on Botlzmann

sampling also adopt this high level strategy. However, they require advance knowledge

of the partition number p(n), the number of partitions of size n, and therefore cannot be

easily adapted to restricted families of partitions, such as those with bounded numbers

of pieces, bounded size, and/or bounded rank. Our Markov chain can be adapted to a

broad set of restricted classes of integer partitions, and in these settings is guaranteed

to converge in Õ(n5/2) time and still use only Õ(n1/2) space. This allows us to generate

partitions near n e�ciently in practice, and we can uniformly generate partitions of size

exactly n when the restricted partition numbers are well behaved.

3.1 Integer Partitions

The problem of sampling integer partitions of n, one of the most extensively researched

combinatorial structures in discrete mathematics. A partition of a nonnegative integer

n is a decomposition of n into a nonincreasing sequence of positive integers that sum

18



to n. For example, 5 has seven partitions: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1),

and (1, 1, 1, 1, 1). Partitions arise in mathematics and physics in many contexts, includ-

ing exclusion processes [22], random matrices [60], representation theory [45], juggling

patterns [7], and various growth processes [40]. For a comprehensive history, we refer

the reader to any of many books on the topic (see, e.g., [4, 5]).

Common representations of partitions include Young diagrams and Ferrers diagrams,

depending on one's proclivity for squares or circles (see Figure 1). Throughout this

paper, we use French notation, which aligns diagrams in the lower-left corner. The

heights of the columns represent distinct pieces of the partition; hence all partitions of

n will have exactly n squares or circles in total, known as the area of the diagram, and

each column is nonincreasing in height from left to right.

w w w w w ww w w ww
Young diagram Ferrers diagram

Figure 1: Young and Ferrers diagrams for the partition (3, 2, 2, 2, 1, 1).

The partition numbers, denoted as p(n), count the number of partitions of n, with

the convention that p(n) = 0, for all n < 0. The history of the partition numbers begins

with Euler, who discovered the simple generating function

∞∑
n=0

p(n)xn =
∞∏
n=1

(1− xn)−1.

Together with his pentagonal number theorem, the generating function implies the recur-

rence relation p(n) = p(n−1)+p(n−2)−p(n−5)−p(n−7)+· · · =
∑

k 6=0(−1)k−1p(n−gk),

where the sum is over k = 1,−1, 2,−2, 3, . . . and gk = k(3k−1)/2. More than a century

later, Hardy and Ramanujan [43] quanti�ed the rate of growth of the partition numbers

and proved the asymptotic formula

p(n) ∼ 1

4
√

3n
eπ
√

2n/3,
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pioneering the circle method in analytic number theory. Rademacher [66] subsequently

improved the Hardy-Ramanujan formula to an exact formula using a convergent series

in terms of modi�ed Bessel functions of the �rst kind and Kloosterman sums. Bruinier

and Ono [16] recently obtained an explicit �nite formula for p(n) as a sum of algebraic

numbers, speci�cally singular moduli for a weak Maass form. Their discovery stems

from the fractal structure of the partition numbers for every prime. Similar recursive

and asymptotic formulae are known for families of restricted partitions, such as the

number of partitions of n into at most k parts [3].

An equally active and important area of research concerns the design of e�cient

algorithms for generating partitions of n uniformly at random. There have been three

main directions for sampling, those based on counting partitions, Boltzmann samplers,

and those based on �xed-size Markov chains. The �rst class of approaches �rst counts

the total number of partitions of a given type, and then uses of self-reducability to gen-

erate a random partition. Nijinhuis and Wilf [59] give two recursive algorithms based

on dynamic programming that require computing tables of exact values. The �rst is a

straightforward application of the recurrence p(n,m) = p(n−m,m) + p(n− 1,m− 1),

where p(n,m) is the number of partitions of n with largest part equal to m. This

algorithm takes O(n5/2) time and space for preprocessing and O(n3/2) time per sam-

ple. Squire [74] improved the second algorithm of Nijinhuis and Wilf, which makes

use of Euler's pentagonal recurrence, to O(n2) time and space for preprocessing and

O(n3/2 log n) time per sample. The state time and space complexity bounds of these

algorithms account for the fact that each value of p(n), as well as the intermediate sum-

mands, requires O(n1/2) space by the Hardy-Ramanujan formula. Therefore, dynamic

programming approaches for exact sampling break down in practice when n ≥ 106.

By avoiding the computationally expensive task of counting partitions, Boltzmann

samplers o�er a more direct method for sampling. A Boltzmann sampler generates

samples from a larger combinatorial class with probability proportional to the Boltzmann
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weight λ|σ|, where |σ| is the size of the partition. Samples of the same size are drawn

uniformly at random, and the algorithm rejects those that fall outside of the target

size [26, 33]. The value λ is chosen to maximize the yield of samples of our target

size n. Fristedt [34] suggested an approach which quickly generates a random partition

using appropriate indpendent geometric random variables. His approach exploits the

factorization of the generating function for p(n) and can be interpreted as sampling

Young diagrams σ in the n ×∞ grid with probability proportional to the Boltzmann

weight λ|σ|. A recent breakthrough by Arratia and DeSalvo [6] gives a probabilistic

approach that is substantially more e�cient than previous algorithms, thus allowing

fast generation of random partitions for signi�cantly larger numbers (e.g., n ≥ 106).

Building on the work of Fristedt [34], they introduce the probabilistic divide-and-conquer

(PDC) method to generate random partitions of n in optimal Õ(n1/2) expected time

and space (where Õ suppresses log factors). Their PDC algorithm also uses appropriate

independent geometric random variables to generate a partition, but does so recursively

in phases. This approach acheives a superior runtime over previous Boltmann sampling

approaches because they reject these phases early when possible.

Finally, stochastic approaches using Markov chains have produced a similarly rich

corpus of work, but until now have not provided algorithms with rigorous polynomial

bounds. One popular approach designs Markov chains based on coagulation and frag-

mentation processes that allow pieces of the partition to be merged and split [2, 10].

Recently Ayyer et al. [7] proposed several natural Markov chains on integer partitions

in order to study juggling patterns. In all of these works, most of the e�ort has been to

show that the Markov chains converge to the uniform distribution over partitions and of-

ten use stopping rules in order to generate samples; experimental evidence suggests that

these chains converge quickly to equilibrium but they lack explicit polynomial bounds.
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3.1.1 Results

We give the �rst provably e�cient Markov chain algorithm for uniformly sampling inte-

ger partitions. A key contribution of this algorithm is that it can be applied to sample

e�ciently from the set of partitions restricted to lie between arbitrary upper and lower

envelopes. This includes commonly studied classes of restricted partitions, namely par-

titions with restricted numbers and/or size of parts, partitions with bounded rank, and

more.

For the special case of sampling unrestricted partitions, we prove

Theorem 3.1.1: There is a Markov chain Monte Carlo algorithm for sampling parti-

tions of n that runs in O(n9/4) expected time and uses O(n1/2 log n) space.

We apply Boltzmann sampling techniques [6, 34] and insights from biased card shuf-

�ing [9, 40] to sample Young diagrams of varying sizes restricted to a simply connected

region in the �rst quadrant of Z2 that includes all Young diagrams of area n. We use

a natural biased �mountain-valley� Markov chain on staircase walks representing the

upper envelope of the Young diagram to choose a diagram σ with weight proportional

to λ|σ|. Setting λn = p(n − 1)/p(n), we show that we will hit our target set consisting

of partitions of n with probability at least Ω(1/n1/4). Applying this rigorous analysis

along with the coupling from the past variant of the sampling algorithm, we can in fact

generate partitions of n exactly from the uniform distribution in expected time O(n9/4).

Although using a Markov chain for random generation of a partition is slower than the

approaches using independent geometric random variables taken by Fristedt's Boltzmann

Sampler and Arratio and Delavso's PDC algorithm, our method is much more versatile

and can be adapted to e�ciently sample general classes of restricted partitions. Tech-

niques using geometric random variables could be easily extended to sample from sets of

restricted partitions that have generating functions of the formG(x) = xa
∏

b∈S(1−xb)−1,

where a is a nonnegative integer and S is a countable multiset of positive integers. This
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class includes partitions with a bounded number of parts, partitions with part sizes re-

stricted to a countable set of positive integers, and partitions with �xed rank. There

are, however, several natural restrictions on partitions that do not have generating func-

tions of this form, such as those whose Young diagram �ts inside an M × N rectangle

and partitions with bounded rank. Although we are unable to adapt generation using

geometric random variables in these settings, we can sample these restricted partitions

in polynomial time with our Markov chain Monte Carlo (MCMC) algorithm.

Our Markov Chain algorithm can be adapted to sample partitions of a given size from

families of �region-restricted partitions,� i.e., Young diagrams restricted to lie within a

general simply-connected �bounding region.� For any choice of the bias parameter λ and

any simply-connected bounding region R, we show the Markov chain will converge in

O(n5/2) time, and, for λ de�ned as a ratio of successive partition numbers, the chain will

provably converge in time O(n2), even for arbitrarily region-restricted Young diagrams.

Importantly, our approach does not rely on estimates of the numbers of partitions

of each size in our restricted region, or on assumptions about the log-concavity of those

numbers. We then show that with probability at least Ω(1/n2), we will obtain a sample

of the desired size, no matter the shape of the bounding region. If there is log-concavity

or concentration for our restricted class, as is the case for unrestricted partitions, our

algorithm will produce samples of area n with a signi�cantly higher frequency than our

bounds imply, reducing the time to produce a random restricted partition of n.

Finally, although dynamic programming techniques can also be extended to sample

from these general regions, they are space prohibitive for large values of n > 106. Our

algorithm only uses Õ(n.5) space, and therefore is more suitable for sampling restricted

partitions for large n.
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3.1.2 Techniques

We use a biased Markov chain on Young diagrams to sample a con�guration σ with

probability proportional to λ|σ|, for some λ. This chain was studied in the context of

biased growth processes and biased card shu�ing and is known to converge in at most

O(|R|2) time on any simply connected lattice region R, where |R| is the area of R [40].

DeSalvo and Pak [24] recently showed that p(n) is log-concave when n > 25, so the

function p(n)λn is also log-concave, and hence is unimodal. By setting λn = p(n−1)/p(n)

when sampling unrestricted partitions, the mode of the weighted distribution will be

concentrated around partitions of n. This gives a polynomial time stochastic algorithm. 1

Several observations allow us to improve the running time. First, instead of sampling

Young diagrams in an n × n lattice region, we restrict to diagrams lying in the �rst

quadrant of Z2 below the curve y = 2n/x, since this region contains the Young diagrams

of all partitions of n and has area Θ(n log n). Next, we show that we can derive better

bounds on the convergence time of the Markov chain than given in [40] using a more

careful analysis of the exponential metric for our particular choice of λ. Last, there is

a simple mapping from partitions of size greater than n to partitions of size n that will

succeed with probability at least Ω(1/n1/4). From this we conclude that the chain will

converge in O(n2) time and O(n1/4) trials are needed in expectation before generating

a sample corresponding to a partition of n.2 Moreover, all Young diagrams that are

contained within the region R have at most O(n1/2) �corners,� so each con�guration can

be stored in O(n1/2 log n) space.

1 The function p(n) fails to be log-concave for small n because of oscillations due to parity, but

the function q(n) = p(2n) + p(2n + 1) is log-concave for all n. This su�ces for our applications, and

we suspect that qR(n) = pR(2n) + pR(2n + 1) will be log-concave for most natural sets of restricted

partitions as well.
2Note that if we restrict our state space to Young diagrams in R, we can no longer infer that the

number of diagrams of each size is log-concave. However, diagrams with area n will continue to be

the mode since we are reducing the number of diagrams of size greater than n while still including all

diagrams with area exactly n.
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The following analysis of the mixing time holds when the Young diagrams are re-

stricted to lie in any simply connected subregion of R. For example, if R is intersected

with the half-plane x < k, diagrams correspond to restricted partitions of n with at most

k parts.

Even in more complicated cases when the number of Young diagrams in a class are

not known a priori to be log-concave, we can still use this Markov chain, but we rely

on well-believed conjectures to bound the rejection rates. Regardless of the class of

restricted partitions we wish to sample, the chain always converges in polynomial time

for any λ, and samples with area n are guaranteed to be chosen uniformly. Note that for

applications where we need uniform partitions with size approximately n, our algorithm

always produces useful samples in polynomial time.

3.2 A Markov chain on Young Diagrams

We begin by presenting background information about partitions and Markov chains

before presenting our Markov chain. A Young diagram is a �nite subset σ of Z2
≥0 with

the property that if (a, b) ∈ σ, then {(x, y) ∈ Z2
≥0 : 0 ≤ x ≤ a and 0 ≤ y ≤ b} ⊆ σ.

They are visualized as a connected set of unit squares on the integer lattice with a corner

at (0,0) and a nonincreasing upper boundary from left to right. Each unit square in the

diagram is labeled with the coordinate of its lower-left corner. Partitions of n are in

bijection with Young diagrams σ with |σ| = n, so we give an algorithm to uniformly

sample Young diagrams of area n.

Our Markov chainM samples from the state space Ω of all Young diagrams in the

�rst quadrant whose upper boundary lies under the curve y = 2n/x. Observe that

all partitions of n lie in this region. We could sample Young diagrams from an n× n

grid, but this square region has area Θ(n2) instead of Θ(n log n), which increases the

runtime of our algorithm, as we will see later. Additionally, we use the curve y = 2n/x

as an upper limit instead of y = n/x to reduce the rejection rate of our algorithm by
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mapping Young diagrams with area greater than n to diagrams of area n while preserving

uniformity.

The chain repeatedly chooses a square on the upper envelope of the Young diagram

and attempts to either add or remove that square. Using the Metropolis-Hastings al-

gorithm to de�ne transition probabilities, the stationary probability of each diagram σ

is π(σ) = λ|σ|/Z, where Z =
∑

σ∈Ω λ
|σ| is the normalizing constant. Any con�gura-

tion σ drawn from this distribution with area |σ| will be uniformly chosen from the set

{ρ ∈ Ω : |ρ| = |σ|} when the chain is in equilibrium. For sampling partitions of n, we set

λn = p(n− 1)/p(n) to force the stationary distribution to concentrate at n. This works

because p(k) is log-concave for k > 25, which was recently shown in [24]. It follows

that the sequence p(k)λk is log-concave for any λ > 0 and k > 25, and so p(k)λkn is

log-concave with the dual mode n− 1 and n.

Although we are sampling Young diagrams lying under y = 2n/x, the analysis of

our algorithm holds for y = (n +
√
n)/x. The choice of y = 2n/x, however, is more

convenient and does not a�ect the complexity. The following claim shows that we can

store a Young diagram in O(n1/2 log n) space.

Claim 3.2.1: A Young diagram σ restricted to lie under the curve y = 2n/x can be

stored in O(n1/2 log n) space.

Proof: For any square in σ, both of its coordinates cannot be greater than
√

2n, for

then it would lie above y = 2n/x. We may record the height of each column and width

of each row in the range {0, 1, . . . , b
√

2nc − 1} and capture every square in σ at least

once. Therefore, we can represent σ using exactly these 2b
√

2nc heights and widths.

Using the representation in the previous claim, we see that there will not be more

than O(n1/2) possible transitions at any possible state, since our algorithms adds or

removes at most one square on the upper boundary in each step.
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Claim 3.2.2: For any Young diagram σ restricted to lie under the curve y = 2n/x,

there will be at most 4
√

2n potential transitions.

Proof: We observe that since the squares in any row or column must be connected,

there are at most two valid moves in any particular row or column: that of removing

the current furthest square, or that of adding the next one. Therefore, by Claim 3.2.1,

there are at most 4b
√

2nc valid transitions possible from any σ.

We now formally present the Markov chainM that samples Young diagrams σ that lie

under the curve y = 2n/x with probability proportional to λ
|σ|
n . When we say a diagram

ρ is valid, we mean that it is a Young diagram that lies under the curve y = 2n/x.

The Young diagram Markov chain M with bias λn.

Starting at any Young diagram σ0, repeat for all t ≥ 1:

� Select laziness ` ∈ {0, 1}, index i ∈ {0, 1, . . . , b
√

2nc−1}, axis a ∈ {“x”, “y”}, and

bit b ∈ {−1, 1} uniformly at random.

� If laziness ` = 0:

� If axis a = “x” and bit b = 1, let ρ be the diagram obtained by adding a

square to column i.

� If axis a = “x” and bit b = −1, let ρ be the diagram obtained by removing a

square from column i.

� If axis a = “y”, bit b = 1, and row i has width at least b
√

2nc, let ρ be the

diagram obtained by adding a square to row i.

� If axis a = “y”, bit b = −1, and row i has width at least b
√

2nc+ 1, let ρ be

the diagram obtained by removing a square from row i.

� If bit b = 1 and ρ is valid, set σt+1 = ρ with probability λn.

� If bit b = −1 and ρ is valid, set σt+1 = ρ with probability 1.
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� With all remaining probability, set σt+1 = σt.

The Markov chain M is constructed so that every valid transition occurs with the

uniform probability 1/(8b
√

2nc), and each state update takes O(1) time to execute using

our representation of a Young diagram as a series of rows widths and column heights.

The state space Ω is connected, since any con�guration can eventually reach the �bottom�

con�guration σ = ∅ with positive probability. We de�nedM to be lazy, i.e., it is always

possible that σt = σt+1, so it follows thatM is an ergodic Markov chain. This Markov

chain transitions according to the Metropolis-Hastings algorithm with respect to the

probability distribution π(σ) = λ|σ|/Z, and therefore π is its stationary distribution.

As M is ergodic, the process σt eventually converges to the stationary distribution π

starting from any σ0 [50].

3.3 Bounding the mixing time

We now prove our main result that the Markov chainM mixes in O(n2 log(ε−1)) steps

using a path coupling argument.

We follow the approach of Greenberg et al. [40] to show thatM is rapidly mixing.

For convenience, let λ = λn from here onwards. De�ne the distance between any two

σ, ρ ∈ Ω as

ϕ(σ, ρ) =
∑

(x,y)∈σ⊕ρ

λ−(x+y)/2,

where σ⊕ρ is the symmetric di�erence of σ and ρ. In other words, ϕ(σ, ρ) is a weighted

sum over all squares on which σ and ρ disagree, where each square (x, y) is weighted by

λ−(x+y)/2.

We de�ne the path coupling ξt = (σt, ρt) as follows. Let σt and ρt be two Young

diagrams that di�er by one square, i.e., |σt ⊕ ρt| = 1, and let the coordinates of this

square be (x, y). Choose the same index, axis, and bit (i, a, b) uniformly at random

for both σt and ρt. Let the coordinates of the square that would be added or removed

in σt by move (i, a, b) be (x′, y′). If |x − x′| + |y − y′| ≥ 2, then we choose the same
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laziness ` for both con�gurations uniformly at random, so that we accept or reject the

move with the same probability in σt and ρt. In this case, |σt+1 ⊕ ρt+1| = 1 for the

resulting con�gurations. For all transitions (i, a, b) such that |x− x′| + |y − y′| ≤ 1, we

allow at most one of σt or ρt to transition by coupling the probability that ` = 0 in

one con�guration with the probability that ` = 1 in the other. Speci�cally, choose `σt

uniformly from {0, 1} and set `ρt = 1− `σt , and proceed with the move (i, a, b).

To prove our main mixing result, we �rst bound λn using bounds for p(n) given by

DeSalvo and Pak [24]. Then we analyze the previously de�ned path coupling and apply

Theorem 2.2.2 to bound the mixing time ofM.

Lemma 3.3.1: For n su�ciently large, we have

1− 2√
n
< λn < 1− 1√

n
.

Proof: For convienience and clarity, let µ(n) = π
6

√
24n− 1.

Proposition 3.3.1 ([24, Proposition 2.4]): For n ≥ 2,∣∣∣∣p(n)− π2

6µ(n)2
√

3

[(
1− 1

µ(n)

)
eµ(n) +

(−1)n√
2
eµ(n)/2

]∣∣∣∣ < 1 +
16

µ(n)3
eµ(n)/2.

Using this asymptotic bound, it follows for n ≥ 565 that∣∣∣∣p(n)− π2

6µ(n)2
√

3

(
1− 1

µ(n)

)
eµ(n)

∣∣∣∣ < 1 +
16

µ(n)3
eµ(n)/2 +

π2

6µ(n)2
√

6

∣∣(−1)neµ(n)/2
∣∣

≤ 1 + eµ(n)/2

(
π2

6µ(n)2
√

6
+

16

µ(n)3

)
≤ π2eµ(n)/2

6µ(n)2
√

3

(
1− 1

µ(n)

)
.

The �nal step follows from the fact the second to last term is asypmtotically equal to

π2eµ(n)/2

6µ(n)2
√

6
(1 + o(1)),
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while the �nal term is

π2eµ(n)/2

6µ(n)2
√

6

(√
2− o(1)

)
.

We now use the following basic fact about real numbers, which we state without proof.

Fact 3.3.1: Let a, a′, b, b′, εa, εb be positive real numbers with b
′ > εb. If |a−a′| ≤ εa

and |b− b′| ≤ εb, then ∣∣∣∣ab − a′

b′

∣∣∣∣ ≤ a′

b′

(
εb/b

′ + εa/a
′

1− εb/b′

)
.

For convenience, denote our current estimate for λn = p(n− 1)/p(n) by

E(n) =

(
µ(n)3

µ(n− 1)3

)(
µ(n− 1)− 1

µ(n)− 1

)
eµ(n−1)−µ(n)

Applying Fact 3.3.1, we have∣∣∣∣p(n− 1)

p(n)
− E(n)

∣∣∣∣ ≤ E(n)

[
e−µ(n)/2 + e−µ(n−1)/2

1− e−µ(n)/2

]
Expressed di�erently, λn = E(n)(1+O(e−µ(n)/2)). We now focus on bounding each term

of E(n) to bound λn. Firstly,

µ(n)

µ(n− 1)
=

√
24n− 1

24n− 25
=

√
1 +

24

24n− 25
≤ 1 +

12

24n− 25

We then use the fact that for n ≥ 3, we have

π√
6(n− 1)

< µ(n)− µ(n− 1) <
π√
6n
.

Put di�erently, µ(n)− µ(n− 1) = π√
6n

(1−O(n−3/2)). Therefore,

µ(n− 1)− 1

µ(n)− 1
= 1 +

µ(n− 1)− µ(n)

µ(n)− 1
≥ 1− π√

6nµ(n)

(
1−O(n−3/2)

)
= 1−O

(
n−1
)
,

and

eµ(n−1)−µ(n) = e
− π√

6n
(1−o(n−3/2))

= e
− π√

6n e−o(n
−2)

= e
− π√

6n

(
1− o(n−2)

)
. (Taylor series)

30



We now have all the pieces needed to prove our bounds on λn.

Lemma 3.3.2: We have ∣∣∣λn − e− π√
6n

∣∣∣ ≤ O
(
n−1
)
.

Proof: Using the previously calculated bounds, observe that

λn = E(n)
(
1 +O

(
e−µ(n)/2

))
=
(
e
− π√

6n

)(
1 +O

(
n−1
))(

1−O
(
n−2
))(

1−O
(
n−1
))(

1 +O
(
n−1
))3(

1 +O
(
e−µ(n)/2

))
=
(
e
− π√

6n

)(
1 +O

(
n−1
))
.

The desired result follows.

Lemma 3.3.3: We have ∣∣∣∣λn − (1− π√
6n

)∣∣∣∣ ≤ O
(
n−1
)
.

Proof: This is an immediate consequence of Lemma 3.3.2 and the fact that

e
− π√

6n =

(
1− π√

6n
+O

(
n−1
))
,

by considering the Taylor series expansion.

Proof (Lemma 3.3.1): The result follows immediately from Lemma 3.3.3, as 1 <

π/
√

6 < 2.

Lemma 3.3.4: For Young diagrams σt and ρt satisfying |σt ⊕ ρt| = 1, the coupling

ξt = (σt, ρt) has the property

E[ϕ(σt+1, ρt+1)] <

(
1− 1

32
√

2n3/2

)
ϕ(σt, ρt)

under the distance metric ϕ, for su�ciently large n.
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Proof: Let (σt, ρt) di�er at square (x, y), and assume (x, y) /∈ σt and (x, y) ∈ ρt,

without loss of generality. Then ϕt = ϕ(σt, ρt) = λ−(x+y)/2. If the square chosen by ξ

is (x′, y′) and |x − x′| + |y − y′| ≥ 2, then σt+1 ⊕ ρt+1 = σt ⊕ ρt and ϕt+1 − ϕt = 0.

Otherwise, we have the following three cases by symmetry:

∆

∆λ−1/2

∆λ−1/2

Case 1.

∆∆λ1/2

∆λ1/2

Case 2.

∆ ∆λ−1/2∆λ1/2

Case 3.

Figure 2: Cases for the path coupling.

There are two moves in all three cases that reduce the distance to 0: that of removing

(x, y) from ρt, and that of adding (x, y) to σt. The probability that this happens is

(1 + λ)p, where p = 1/(8b
√

2nc) is the probability that any con�guration transitions to

a neighboring state. We consider moves that may increase the distance in each case:

� Case 1: There are two moves with probability λp that increase the distance by

ϕtλ
−1/2.

� Case 2: There are two moves with probability p that increase the distance by

ϕtλ
1/2.

� Case 3: There is one move with probability λp that increases the distance by

ϕtλ
−1/2, and one other move with probability p that increases the distance by

ϕtλ
1/2.

Upper bounding E[ϕt+1] for Case 1, we have

E[ϕt+1] ≤ 2λp
(
ϕt + ϕtλ

−1/2
)

+ (1− (1 + λ)p− 2λp)ϕt =
(

1− p
(
1− λ1/2

)2
)
ϕt,
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and bounding the expectations for the other two cases, we see they are all equal. Next,

we use Lemma 3.3.1 to bound λ1/2 by

√
λn <

√
1− 1√

n
<

√
1− 1√

n
+

1

4n
= 1− 1

2
√
n
,

for su�ciently large n. It follows that

1− p
(
1− λ1/2

)2
< 1− 1

8b
√

2nc

(
1

2
√
n

)2

≤ 1− 1

32
√

2n3/2
,

since 1/(2
√
n) < 1− λ1/2 < 1, which completes the proof.

Theorem 3.3.5: The Markov chainM mixes in O(n2 log(ε−1)) time.

Proof: An upper bound for the maximum possible distance between any two con�g-

urations is the maximum weight of any square λ−n times the number of squares under

the curve y = 2n/x, which is
∑2n

k=1b2n/kc ≤ 2nH2n ≤ 2n(ln(2n) + 1). It follows from

Theorem 2.2.2 and Theorem 3.3.4 that the mixing time ofM satis�es

τ(ε) ≤ ln (2n (ln(2n) + 1)λ−nε−1)

1−
(

1− 1
32
√

2n3/2

) ≤ cn3/2 ln
(
ε−1
)

ln
(
λ−n

)
≤ cn3/2 ln

(
ε−1
)

ln

((
1 +

2√
n− 2

)n)
= O

(
n2 log

(
ε−1
))
,

for a su�ciently large constant c.

3.4 E�cient Rejection Sampling

In this section, we give our Markov chain Monte Carlo algorithm for sampling partitions

of n that runs in expected time O(n9/4) and uses O(n1/2 log n) space. We prove Theo-

rem 3.1.1, and then show how to adapt our algorithm to sample restricted partitions in

polynomial time using techniques introduced in [67] for self-avoiding walks.

33



3.4.1 Main results

Our MCMC algorithm uses coupling from the past [65] to sample perfectly from the

stationary distribution of M. We can implement coupling from the past in expected

time O(n2), our bound on the mixing time ofM, because our coupling is monotone with

respect to the natural partial order for Young diagrams. This means we only need to con-

sider the �bottom� state σ = ∅ and the �top� state ρ = {(x, y) ∈ Z2
≥0 : (x+ 1)(y + 1) ≤ n}

of the partial order on the state space Ω to determine when all states have coalesced,

because monotonicity ensures that when σ and ρ coalesce, all other con�gurations will

have too.

Next, we show how to use random samples with area greater than n to reduce the

rejection rate of our algorithm. Suppose our algorithm produces a Young diagram σ

such that |σ| > n. Instead of rejecting σ and resampling until we obtain a diagram

with area n, we attempt to map σ to a partition of n while preserving uniformity

over all partitions of n. Let Yn denote the set of Young diagrams with area n, and

consider the function fk : Yn → Yn+k that maps a partition σ = (σ1, σ2, . . . , σm) ∈ Yn

to fk((σ1, σ2, . . . , σm)) = (σ1 + k, σ2, . . . , σm) ∈ Yn+k. Note that σ1 ≥ σ2 ≥ · · · ≥ σm

since σ is a Young diagram. Clearly fk is injective, so we can consider the inverse map

f−1
k ((q1, q2, . . . , q`)) that subtracts k from q1 if q1 − k ≥ q2, and is unde�ned otherwise.

Then, de�ne g :
⋃
k≥0 Yn+k → Yn ∪ {0} as

g((q1, q2, . . . , q`)) =


(q1 − k, q2, . . . , q`) if q1 + q2 + · · ·+ q` = n+ k and q1 − k ≥ q2,

0 otherwise.

Lemma 3.4.1: Let X be a random sample from the stationary distribution of M,

and let g be the function de�ned above. Then for n su�ciently large, we have

Pr[g(X) yields partition of size n] ≥ 1

100n1/4
.
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Proof: From the Hardy-Ramanujan asymptotic formula for p(n) given in [43], we have

that for some constant c > 0,

1− c
4n
√

3
eπ
√

2n
3 ≤ p(n) ≤ 1 + c

4n
√

3
eπ
√

2n
3 . (3.4.1)

Letting λ = λn for convenience, Lemma 3.3.2 implies that

(1− c)e−πk
1√
6n ≤ λk ≤ (1 + c)e

−πk 1√
6n . (3.4.2)

Note that we can make c arbitrarily small in both of the above inequalities by selecting

n large enough.

Claim 3.4.2: Let Zn be the normalizing constant for the target distribution. Then we

have

Zn ≤ 12n3/4λnp(n).

Proof: We have that

Zn ≤
∞∑
k=0

λkp(k).

We further know that f(k) = λkp(k) has a maximum at k = n. Note that by the

log-concavity of f , we have that for k > 0,

f(n+ k)

f(n)
≥ f(n+ 2k)

f(n+ k)
and

f(n− k)

f(n)
≥ f(n− 2k)

f(n− k)
.

Therefore, for any k > 0, we can bound Zn as

Zn ≤ kf(n)

(
1

1− f(n+ k)/f(n)
+

1

1− f(n− k)/f(n)

)
. (3.4.3)

Speci�cally, if both f(n + k)/f(n) and f(n − k)/f(n) are at most some �xed constant

less than 1, then Zn = O(kf(n)). Using (3.4.1) and (3.4.2), we see that

f(k) = λkp(k)

≤ (1 + c)2 1

4k
√

3
e
− π√

6n
(k−2

√
kn)

= (1 + c)2 1

4k
√

3
e
− π√

6n
(
√
k−
√
n)

2

eπ
√

n
6 .
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Setting k = (
√
n+ n1/4)2 gives

f
(
(
√
n+ n1/4)2

)
≤ (1 + c)2 1

4n
√

3
eπ
√

n
6 e
− π√

6 .

We can then bound the density value at (
√
n+ n1/4)2 relative to the maximum:

f
(
(
√
n+ n1/4)2

)
f(n)

≤
(1 + c)2 1

4n
√

3
eπ
√

n
6 e
− π√

6

(1− c)2e−π
√

n
6 1

4n
√

3
eπ
√

2n
3

≤ (1 + c)2

(1− c)2
e
− π√

6 .

Assuming that c ≤ 0.1, we have

f
(
(
√
n+ n1/4)2

)
f(n)

≤ 1.12e
− π√

6

0.92
<

1

2
.

Similarly,

f(
(√

n− n1/4)2
)
≤ (1 + c)2 1

4n
√

3
eπ
√

n
6 e
− π√

6 ,

and thus

f(
(√

n− n1/4
)2

)

f(n)
<

1

2
.

Therefore, by (3.4.3) and using the fact that k ≤ 3n3/4, we have that

Zn ≤ 12n3/4λnp(n), (3.4.4)

which proves the claim.

Proof (Lemma 3.4.1): We can bound the probability of generating a partition of size

n as

Pr[g(X) yields partition of size n] =
n∑
k=0

λn+kp(n+ k)

Zn
· p(n)

p(n+ k)

≥ 1

12n3/4

n∑
k=0

λk (by Claim 3.4.2)

≥ 1

12n3/4

n∑
k=0

(
1− 2√

n

)k
≥ 1

12n3/4

√
n

(
1− 2√

n

)√n
≥ 1

100n1/4
,
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which proves the lemma.

Now we formally present our MCMC algorithm for generating a uniformly random

partition of n in expected time O(n9/4) and O(n1/2 log n) space, and give the proof of

Theorem 3.1.1.

Integer Partition Sampling Algorithm.

Repeat until success:

� Sample σ ∈ Ω with M using coupling from the past.

� If n ≤ |σ| ≤ 2n and g(σ) 6= 0, return g(σ).

Proof (Theorem 3.1.1): Using coupling from the past, the Markov chainM mixes

in expected time O(n2) by Theorem 3.3.5. The expected number of trials until a suc-

cessful sample is O(n1/4) by Lemma 3.4.1 and properties of the geometric distribution.

Therefore, this algorithm runs in expected time O(n9/4). By recycling space in each

iteration,M requires O(n1/2 log n) space by Claim 3.2.1.

3.4.2 Adaptive sampling for restricted partitions

Here we outline how to modify our Markov chain to sample from families of restricted

partitions in polynomial time. We adapt the approach used by Randall and Sinclair [67]

in the context of self-avoiding walks for our setting. For the remainder of this section, we

de�neM to be the Markov chain given in Section 3.3, but restricted to Young diagrams

that are contained in an arbitrary simply connected region R ⊆ Z2
≥0 containing (0, 0),

instead of the region below y = 2n/x. We de�ne pR(n) to be the number of Young

diagrams of area n contained in R.

Two particular classes of restricted partitions are of particular interest, because they

demonstrate the versatility of our algorithm. The �rst is the set of partitions of n into at

most M parts each of size at most N . Let p(M,N ;n) denote the number of such parti-

tions. To sample from this set, we let R be an M ×N rectangle. Almkvist and Andrews
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[3] extended the Hardy-Ramanujan-Rademacher formula to p(M,N ;n), so we should

be able to obtain similar results about log-concavity and rejection rates for this class.

The second family of restricted partitions is those with bounded rank, or equivalently a

bounded Durfee squre. We let R = ({0, 1, . . . , r − 1} × Z≥0}) ∪ (Z≥0 × {0, 1, . . . , r − 1})

to sample partitions of n with rank at most r, and we rely on the well-believed conjecture

that pR(n) is log-concave for all r to achieve an expected polynomial runtime.

Even if pR(n) is known to be log-concave, the primary obstacle to modifying our

algorithm for arbitrary regions is computing λn = pR(n − 1)/pR(n), since we do not

have estimates of pR(n) for general regions R. To overcome this, we use an adaptive,

self-testing strategy introduced by Randall et al. [67], which runs a sequence of Markov

chainsM1,M2, . . . ,Mn to discover and iteratively improve an estimate of λn. The self-

testing aspect of the algorithm guarantees polynomial run time, and if the bootstrapping

process is successful, which it will be if the sequence pR(n) is polynomially close to log-

concave, then the algorithm produces samples of size n with a high acceptance rate.

Otherwise, if the process is unsuccessful, we have strong evidence that pR(n) is not

log-concave, which is also a useful outcome.

Regardless of the restricted family of partitions, we may bound R to lie under

y = 2n/x when we desire samples of size n. This allows us to represent states us-

ing O(n1/2 log n) space by Claim 3.2.1, and allows each transition of M to be made

with probability Θ(1/n1/2). By a similar path coupling argument and Theorem 2.2.2,

we see that the mixing time ofM, for any parameter λ, is O(n5/2 log2(n) log(ε−1)). The

details are omitted here. Note that in any restricted setting it su�ces that Pr[|σ| = k] ≤

Pr[|σ| = n] · poly(n), for all k ≥ 0, to achieve an expected polynomial time acceptance

rate, which is a substantially weaker property than log-concavity. Lastly, we reiterate

that for approaches were we need uniformly random partitions with size close to n, our

algorithm always produces useful samples in polynomial time.

38



CHAPTER IV

MIXING TIMES OF THE WEIGHTED FORTRESS MODEL

In this chapter, we study the problem of sampling perfect matchings of �nite, simply

connected regions of the square-octagon lattice, which was introduced in Section 1.2.2.

We are interested in a natural local Markov chain that is known to be ergodic and has

been used in practice to sample random perfect matchings to discover their properties.

However, unlike related Markov chains used for sampling domino and lozenge tilings, this

Markov chain on the square-octagon lattice appears to converge slowly. To understand

why, we introduce and analyze a weighted Markov chain on turning paths, a related path

structure on Z2, and prove that this chain can converge in polynomial or exponential

time, depending on the settings of the parameters. This provides the �rst rigorous slow

mixing result for this model. Our slow mixing results rely on Peierls arguments, which we

use to identify a cut in the state space of a Markov chain that has small conductance [61].

Our rapid mixing result relies on novel bijection between turning paths and 3-colorings

of regions of the grid.

4.1 Fortresses

Perfect matchings arise in many natural computational contexts, and have been the cor-

nerstone problem underlying many fundamental complexity questions. They are also of

speci�c interest to the statistical physics community, where they are studied in the con-

text of dimer models. Here, edges in a matching represent diatomic molecules, or dimers,

and perfect matchings of a lattice region correspond to dimer packings. Physicists study

the properties of these physical systems by relating fundamental thermodynamic quan-

tities to weighted sums over the set of all con�gurations of the system, in our case the

set of all perfect matchings of the lattice region.
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The seminal work of Edmonds established that the decision and construction prob-

lems, i.e. e�ciently deciding if a given graph has a perfect matching and �nding it if so,

were in P [29]. Subsequently, Valiant showed that counting perfect matchings is #P-

complete, so it is believed that there is no such polynomial time general solution [79].

As a consequence, there has been a great deal of interest in �nding both e�cient approx-

imate counting algorithms, as well as e�cient exact counting algorithms in restricted

settings. Jerrum, Sinclair and Vigoda showed how to approximately count and sample

perfect matchings in any bipartite graph e�ciently, although the complexity remains

open on general graphs [48]. Alternatively, in 1969, Kasteleyn et al. developed a robust

method to exactly count perfect matchings on any planar graph in polynomial time by

calculating a Pfa�an on a directed version of the adjacency matrix [49, 78]. In fact,

when the underlying graph is a lattice region, determinant-based methods for counting

matchings have been shown to be even more e�cient [36, 52].

Matchings on lattices arise naturally as well. For example, on �nite regions of the

hexagonal lattice, perfect matchings correspond to lozenge tilings of the dual region,

and on �nite regions of the Cartesian lattice Z2, they correspond to domino tilings of

the dual. A common Markov Chain approach for sampling perfect matchings on these

lattices that is popular among experimentalists is based on rotations. Speci�cally, on Z2

the Markov Chain evolves by choosing a unit face uniformly, and if this face contains

two edges of the matching on opposite sides, the Markov chain replaces those edges with

the other two opposing edges on the face with some probability. A similar approach on

the hexagonal lattice replaces three alternating edges around a hexagonal face with the

complement set of alternating edges with some probability.

This Markov chain based on dimer rotations was �rst studied by Propp and Wil-

son [65]. They innovated their �coupling-from-the-past� algorithm for this problem,

and showed that it could be run on dimer covers of the Cartesian lattice Z2 to gener-

ate perfectly uniform samples of perfect matchings, although there were no guarantees
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that the algorithm would terminate in expected polynomial time. The proof that the

expected time to converge is polynomially bounded was provided by Luby et al. [55],

Randall and Tetali [68] and further improved by Wilson [82]. Coupling-from-the-past has

subsequently been used to study matchings on many other lattices as well, providing

perfectly random samples, although not always e�ciently. This paradigm gave rise to

many conjectures about the convergence times and stationary distributions underlying

these chains. A compelling example is perfect matchings on the square-octagon lattice,

Λso, where the dual is a dimer problem on a graph of squares and triangles known as

�fortresses� [64]. Many remarkable properties of lozenge and domino tilings, such as the

existence of frozen regions at equilibrium, are known to hold for fortresses [64].

There is a natural analogue to the dimer-rotating Markov chain for fortress graphs,

that has been used experimentally to study these matchings. This chain is known to

connect the state space of perfect matchings [11], but nothing is known rigorously about

its convergence time. Although related Markov chains on other lattices are known to

converge in polynomial time, including the Cartesian and hexagonal lattices, simulations

suggest this chain may in fact require exponential time on the square-octagon lattice

to converge. As an informal explanation of the motivation for why the convergence

time of this Markov chain is likely exponential, it is useful to interpret these perfect

matchings as �contours� [11, 42, 54]. In particular, given any perfect matching on a

simply connected region of the square-octagon lattice, we �rst contract the four vertices

of each square into a single vertex, leaving only the edges bordering two octagons. The

resulting con�guration will be a collection of edges on the Cartesian lattice where every

vertex, except possibly those on the boundary, must have even degree, and where each

vertex of degree 2 must be incident to one horizontal and one vertical edge (see Figure 3).

If we decompose these sets of edges by pairing non-crossing adjacent edges at the

degree 4 vertices, we therefore get a collection of �turning paths,� that terminate at odd-

degree boundary vertices, and closed �turning cycles.� The �turning� property refers to
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Figure 3: The mapping between (a) perfect matchings of G and (b) turning graphs of
G∗.

the fact that traversals of the edges of a path or cycle are required to turn left or right

at every step.

It is important to note that this map is not bijective, and each turning graph is

the image of 2k perfect matchings on the square-octagon lattice, where k is the number

of degree 0, or free, vertices in σ (see Figure 4). Each free vertex corresponds to a

square on Λso containing two matched edges, and there are exactly two ways this can

occur. Thus each turning graph σ has weight proportional to 2V (σ), where V (σ) is the

number of free vertices in σ. This tells us con�gurations with more free vertices will have

greater weight, and this weighting penalizes con�gurations with long paths and cycles.

This is the key insight gained by considering this transformation, as it allows us to use

analysis similar to other models in statistical physics, most notably the Ising model of

ferromagnetism, that are slowly mixing when long contours are similarly disfavored [54].

As with many statistical physics models, we see a relationship between the rate of

convergence of local Markov chains and an underlying phase transition in the physical

model itself. For the Ising model, a fundamental model of ferro-magnetism, local al-

gorithms are known to converge in polynomial time (in the diameter of the region) at

high temperature, but require exponential time at low temperature [46, 54, 69]. On Z2,

there is a sharp phase transition: there is a critical temperature below which the chain is

slowly mixing (requiring exponential time), and at and above which it is rapidly mixing
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Figure 4: Two possible orientations (a) and (b) for each free vertex in G∗ (c).

(converging in polynomial time) [54]. A similar behavior is seen for weighted indepen-

dent sets on Z2 as we change the �activity� (or �fugacity�), a parameter that controls

the expected density of an independent set. Local sampling algorithms for independent

sets are known to be rapidly mixing when this parameter is small, favoring sparse in-

dependent sets [80], and slow to converge when this parameter is high, favoring denser

independent sets [14].

To understand the interaction of these turning paths, we introduce a more general

weighted version of the model to expose a phase transition in the mixing time. Such

an approach was taken recently in the context of triangulations [20] and rectangular

dissections and dyadic tilings [18], revealing similar dichotomies. A similar approach

was previously considered to study a di�erent, nonlocal Markov chain on sets of perfect

and near-perfect matchings on the square-octagon lattice [11], but the behavior of the

more natural local dimer-rotating Markov chain studied here remains open.

We focus our attention on a modi�ed version of the Aztec Diamond graph, which we

call the �Decorated Aztec Diamond.� The Decorated Aztec Diamond has 4 additional

edges attached to the corners of diamond, which cause the corner vertices to have an odd

number of incident edges. These four boundary vertices must be connected by a pair of

turning paths in one of the two non-crossing ways, and moving between these two classes

of con�gurations requires passing through con�gurations where the two paths touch. We

will show that for this to happen, the paths must be quite long, which is exponentially
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less likely at equilibrium for appropriate settings of the parameters. We then argue that

because it will take exponential time to reach such a con�guration, the Markov chain

will require exponential time to converge. Formalizing this type of intuition is often

challenging, however, and this particular problem has been open since proposed by Jim

Propp in 1997 [63, 64].

We now state our results. For simplicity of notation, our terminology throughout

the paper is based on weighted turning graphs rather than matchings. Let G ⊂ Z2 be

a �nite region on the Cartesian lattice, and let T be the set of turning graphs on G.

(i.e., all vertices v ∈ G \ ∂(G) have even degree, and any traversal must �turn� at each

vertex.) For input parameters λ > 0 and µ > 0, we de�ne the distribution as follows.

Let σ ∈ T be a turning graph. Then

πλ,µ(σ) = λ|E(σ)|µ|V (σ)|/Z,

where E(σ) are the edges in σ, V (σ) are the �free� vertices in σ, those that are not

incident with any edge. Z =
∑

τ∈T λ
|E(τ)|µ|V (τ)|, is a normalizing constant known as the

partition function.

When µ = 1, we weight con�gurations σ ∈ T by λ|E(σ)|, favoring shorter contours

when λ < 1 and longer ones when λ > 1. We show that when µ = 1 and λ < 1/(2
√
e)

or λ > 2
√
e, the Markov chain M mixes slowly. (A duality in the lattice implies that

when µ = 1, if the chain is slow for λ = λ∗ then it is also slow for λ = 1/λ∗.) For µ > 1,

we show that if λ <
√
µ/2
√
e or λ > 2µ

√
e, the Markov chainM again mixes slowly.

4.2 The Fortress Model

We begin by formalizing our model. Let Λso = (V,E) be the in�nite square-octagon

lattice, and let Gso be a �nite, simply connected region of Λso. We are interested

in randomly sampling from the set of perfect matchings on Gso, which we denote

ΩSO = PM(Gso). The local Markov chain Mso, at any initial perfect matching σso,

�rst chooses a face ∈ Gso uniformly from the interior faces. If the boundary of the
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face contains alternate edges of σso, the Markov chain then attempts to transition to

the con�guration with the complement alternate edges about the face, and with and all

other edges unchanged. We call this a �rotation� of the edges about the face.

It will be convenient to introduce an alternate representation of perfect matchings on

the square-octagon lattice as turning contours on Z2. We distinguish two types of edges

of Gso, the edges that border both a square and an octagon, which we call square edges,

and those that have octagons on both sides, which we call octagon edges. Consider the

map from Λso to Z2 that contracts every square into a single vertex, eliminating self

loops. This map eliminates all square edges in Λso, and leaves the octagon edges in Λso

as edges of Z2. Let GC be the image of Gso under this map, and let σ ⊂ E(GC) be

the image of perfect matching σso ∈ PM(Gso). GC is a simply connected region of Z2,

formed from the octagon edges of Gso, and σC corresponds to the octagon edges of σso.

We observe that for σso ∈ PM(Gso), there must be an even number of octagon edges

incident to any interior square, and that if there are only two incident octagon edges,

then they are not diametrically opposite. This means that σC must have an even number

of edges incident to every interior vertex, and if only two edges are incident to a vertex,

they must form a right angle, or �turn.� The squares on the boundary of Gso can have

an even or odd number of outgoing edges, and are therefore mapped to vertices in GC

that retain an �even� or �odd� designation that indicates the parity of incident edges

that any con�guration σC may have. It follows that any valid perfect matching σso on

Gso maps to a σC that can be decomposed into cycles and paths that begin and end

at odd-parity vertices on the boundary. Since our paths and cycles alternate between

horizontal and vertical edges of GC , we call such con�gurations turning graphs [11].

To correspond with the set ΩSO of all perfect matchings on Gso, let ΩC be the

corresponding set of all turning graphs on GC . There is a well-structured many-to-one

map between ΩSO and ΩC . Let a vertex of GC be called a free vertex of σC if it is

not incident to any edge of σC . For every σC ∈ GC with exactly k free vertices, there
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are exactly 2k pre-images ∈ Gso, as each �free� vertex in σ corresponds to a square in

Gso whose edges can freely be matched in exactly two ways, independently of all other

vertices (see Figure 4).

4.2.1 Weighted Turning Graphs

It will be useful to consider a generalized, weighted model of turning graphs on GC .

First, we introduce a natural weighted model on ΩSO. Given a perfect matching

σso ∈ ΩSO, let #N(σso) be the number of octagon edges. For input parameter λ > 0,

let the weight of σso be de�ned as λ#N(σso)/Z, where Z =
∑

σso∈PM(Gso)
λ#N(σso) is a

normalizing constant, also known as the partition function.

Projecting this weighting to ΩC , for a particular turning graph σC , it follows that

π(σC) is

π(σC) = πλ(σC) =
2k(σC)λ|σC |

Z
,

where k(σC) is the number of free vertices of σC . Given a turning contour on GC

sampled according to the prescribed probability distribution, we can easily sample a

perfect matching on Gso by �ipping a bit for each free vertex uniformly at random,

and assigning one of the two orientations of the perfect matching at each free vertex

accordingly (see Figure 4).

We further generalize this model by introducing a parameter µ, and letting the weight

of a con�guration

π(σC) = πλ,µ(σC) = (µk(σC)λ|C|)/Z,

where

Z =
∑
τ∈ΩC

µk(τ)λ|E(τ)|.

For convenience, we denote this probability model on ΩC as πλ,µ : ΩC → R. Note that

the case where µ = 2 corresponds to perfect matchings of the square-octagon lattice.

By setting µ = 1 in this model, we e�ectively ignore the e�ect of the free vertices and

the weight of a con�guration is more directly in�uenced by the underlying geometry of
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the turning graphs. We show that techniques used to analyze this special case can be

extended to the general case of arbitrary µ.

4.2.2 A Markov chain on weighted turning graphs

A natural Markov chain that has been considered in the context of perfect matchings on

the square-octagon lattice iteratively took a square or octagon face and rotated all the

edges present if this resulted in a valid con�guration. Rotations on square faces did not

a�ect the weight of a con�guration, while rotations of an octagonal face could increase

or decrease the weight of a con�guration multiplicatively by λ4.

We de�ne the local Markov chain M on turning graphs ΩC , starting at any initial

con�guration σ0. The number of steps t required to produce samples su�ciently close

to equilibrium will be discussed subsequently.

The Markov chain M

Repeat for t steps:

� Choose a face x of GC uniformly at random.

� If no edges of x are in σt, let σ be the turning path created by adding the edges of

face x.

� If every edge of x is in σt, let σ be the turning path created by removing the edges

of face x.

� With probability min(1, π(σ)
π(σt)

), let σt+1 = σ, and with the remaining probability,

let σt+1 = σt.

This Markov chain represents precisely the octagon rotating moves ofMso and ignores

the square rotating moves. Note that two con�gurations that di�er by only a square

rotation will map to the same turning graph. The fact thatM connects the state space
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ΩC of turning graphs of GC and is aperiodic follows from the ergodicity of Mso on

perfect matchings of the square octagon lattice [63].

For all ε > 0, the mixing time τ(ε) of Markov chainM is de�ned as

τ(ε) = min{t : max
x∈ΩC

1

2

∑
y∈ΩC

|P t(x, y)− π(y)| ≤ ε,∀ t′ ≥ t}.

We say that a Markov chain is rapidly mixing (or polynomially mixing) if the mixing

time is bounded above by a polynomial in n and log(ε−1). It is slowly mixing if it is

bounded below by an exponential function. In Section 4.3, we bound the mixing time of

the Markov chainM on the turning graph model at various input parameters λ when

µ = 1. In Section 4.4, we extend these results to the more general model when µ > 1.

4.3 Mixing of the Markov Chain M on πλ,1

The proofs thatM is slowly mixing use so-called �Peierls arguments,� �rst introduced to

study phase transitions in statistical physics models [61]. The Peierls argument identi�es

an exponentially small (or unlikely) set in the state space by de�ning a map from this

set to the entire state space with exponential gain in weight. When this unlikely set is

a cut in the state space, this implies that the chain will take exponential time to move

from one side of the cut to the other. This therefore implies that the chain is slowly

mixing.

It is fairly simple to show that the chain mixes exponentially slowly when λ > 4

or λ < 1/4. We improve this by using a more careful combinatorial analysis, thereby

showing slow mixing when λ < 1/(2
√
e) or λ > 2

√
e. The proof that M is rapidly

mixing when µ = 1 and λ = 1 relies on a novel bijection between turning graphs and

3-colorings of the grid.

We �rst focus on the problem of sampling from our weighted distribution over turning

graphs in the case when µ = 1. Here, the weight of a contour depends only on the number

of edges in the contour. We will show in Sections 4.3.1 and 4.3.2 thatM is slowly mixing

when λ is su�ciently small (or su�ciently large) by bounding the chain's conductance.
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(a) Disjoint T-L and B-R

paths

(b) Disjoint T-R and B-L

paths (c) A crossing pair of paths

Figure 5: Con�gurations in (a) ΩL, (b) ΩR, and (c) ΩC respectively.

Conversely, in Section 4.3.3 we show when M is polynomially mixing when λ = 1 by

reducing to a related chain on 3-colorings of �nite regions of the grid.

4.3.1 Slow mixing of M on πλ,1 for λ < 1/2
√
e

We will begin by showing that when λ < 1/2
√
e, the Markov Chain M mixes slowly

on a decorated version of a certain diamond graph also known as the�Aztec Diamond�

graph G [30]. Starting with the standard Aztec Diamond graph of order n, Gn, we

add extra edges EB to the four corners of the diamond, which we denote as �T, R, B,

L� to indicate the top, bottom, left and right corners of the diamond respectively. Let

this subgraph of Z2 be GC , and the corresponding region of Λso be Gso. We force a

perfect matching in Gso to include our added corner edges, since those edges are degree

1. Therefore in GC , each of those four corners must be the endpoint of some turning

path. By construction, these four corners are in fact the only possible endpoints of a

turning path, and therefore in any turning graph σC of GC , there must either be turning

paths from T to L and B to R, or alternately from T to R and B to L. (See Figure 5).

We will use these paths to de�ne our cut, with the cut ΩC separating the �left� and

�right� sets ΩL and ΩR. Let ΩL to be the set of con�gurations with paths from T to L

and B to R but not from T to R or B to L. Similarly, let ΩR be the set of con�gurations
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with paths from T to R and B to L but not from T to L or B to R. Finally, let the cut

ΩC consist of all states where both paths exist. For any state in ΩC , we can identify a

�crossing pair of paths� that are a connected set of edges that are the union of a T to L

path and a B to R path. This crossing pair of paths has the interesting property that

it could alternatively also have been interpreted as the union of a T to R path and a B

to L path. In order to pass from con�gurations in ΩL to ΩR, the Markov chainM must

pass through a crossing con�guration in ΩC [11].

When λ is small, we are favoring con�gurations where the turning paths are short,

i.e. have few total edges. We will show that average con�gurations in ΩC have many

more edges than those of ΩL or ΩR, and thereby we will show that ΩC has small weight

relative to ΩL and ΩR. Recall that the conductance of a subset S ⊆ Ω is de�ned as

Φ(S) =
∑

s1∈S,s2∈S̄ π(s1)P (s1, s2)/π(S). We will show that the conductance of the chain

is exponentially small when λ < 1/(2
√
e. This suggests that it will take a long time

to transition between con�gurations in ΩL and ΩR if we have to pass through ΩC , and

from Theorem 2.3.1, we will therefore conclude thatM mixes exponentially slowly.

Theorem 4.3.1: When λ < 1/(2
√
e), the mixing time of the Markov ChainM on πλ,1,

weighted turning graphs of the Aztec Diamond Gn, is at least

τ(ε) ≥ n(2λ
√
e)−4n ln ε−1.

Proof: For any σ ∈ ΩC , we �rst decompose the edges of σ into its crossing pair of

paths, the union of a T to L turning path and a B to R turning path that share a vertex,

which we call the crossing vertex. For any crossing pair of paths, we can uniquely identify

the lexicographically �rst crossing vertex as a special vertex. These paths de�ne four

regions of G, one for each diagonal boundary, that can be viewed as a maximal connected

component of faces that do not cross any edges of the crossing pair of paths (through

they may cross edges of cycles). We will refer to these regions by the two corners of G

that they border, e.g. the �T-L� region shown in Figure 5.
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We will show that ΩC is an exponentially small cut in our state space, thereby

bounding the conductance. We �rst describe a map φr : ΩC → Ω such that for any

σ ∈ ΩC , the weight of the image π(φr(σ)) is exponentially larger in n than π(σ). We

construct φr(σ) for σ ∈ ΩC as follows (see Figure 6). Given a state σ ∈ ΩC , take a pair

of crossing paths in σ with maximal edges, and call the edges in this pair of crossing

paths C. We remove the edges of C from G, and then shift all edges in σ from the B-L

region up by one edge (we increase the y-coordinate by 1), and all edges from the T-R

region down by one edge. Finally, we add in edges along the bottom left and top-right

boundaries of G to form a valid turning graph.

It will be convenient to partition ΩC into sets ΩC,h,v for h, v ≥ 0 as follows. Given

σ ∈ ΩC , consider the lexicographically �rst pair of crossing paths in σ. We separate these

into �top-left� and �bottom-right� turning paths that meet at their lexicographically �rst

crossing point x. We de�ne the �horizontal path� as the sub path of the top-left path

from the left vertex to x, concatenated with the sub path of the bottom-right path from

x to the right vertex. We similarly de�ne the �vertical path� from the top vertex to

x to the bottom vertex passing through x. This horizontal path, viewed as a left-to-

right path, contains some h ≥ 0 �backwards� edges from right to left. Similarly the

�vertical path� has v ≥ 0 backwards edges from bottom to top. In this case, we say that

σ ∈ ΩC,h,v.

Note that since the horizontal path ends exactly 2n edges to the right of its origin,

it contains exactly 2n + 2h total horizontal edges. Moreover, it is the union of two

turning paths, alternating horizontal and vertical edges, so the number of vertical edges

in the horizontal path must be 2n + 2h + δh, where δh = 0 if the edges at the point of

intersection are vertical, and δh = −2 if they are horizontal. Similarly, the vertical path

has exactly 2n+ 2v vertical edges and 2n+ 2v + δv horizontal edges, with |δv| ≤ 2. We

note that δv = δh = δ, as if the horizontal path crosses the point of intersection with

horizontal edges, then the vertical path must cross the point of intersection with vertical
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(a) A con�guration

σ ∈ ΩC .

(b) Remove the

crossing paths.

(c) Shift away from

boundary.

(d) Add the bound-

ary to get φ(σ).

Figure 6: The mapping φ : ΩC → Ω.

edges.

If δ = 0, we may encode the horizontal and vertical paths essentially as two separate,

equal length interleaved bit sequences, one sequence for the horizontal moves, another

for the vertical moves, and a single special symbol x to indicate the location of the

crossing. Given the location x, we can also account for the case where δ = −2 by adding

a single extra bit.

By this encoding, we see that a bound on the number of pre-images of the map φ

that have left-right paths of type h is at most

n

(
2n+ 2h

h

)(
2n+ 2h

n+ h

)
.

Similarly, the number of preimages of φ that have top-down paths of type v is at most

n

(
2n+ 2v

v

)(
2n+ 2v

n+ v

)
.

First, we see that by Sterling's approximation,(
2n+ 2h

n+ h

)(
2n+ 2v

n+ v

)
≤ 22n+2h√

π(n+ h)

22n+2v√
π(n+ v)

=
24n+2h+2v

π
√
n+ h

√
n+ v

.
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Similarly by Sterling's approximation and the well known approximation for e,(
2n+ 2h

h

)(
2n+ 2v

v

)
≤ (2n+ 2h)h

h!

(2n+ 2v)v

v!

≤ (2e)h+v

2π
√
hv

(
1 +

n

h

)h(
1 +

n

v

)v

≤ e2n(2e)h+v

2π
√
hv

.

Finally, it follows that P (h, v), the total number of preimages of type (h, v), is therefore

at most

P (h, v) ≤ 2n2

(
2n+ 2h

h

)(
2n+ 2h

n+ h

)(
2n+ 2v

v

)(
2n+ 2v

n+ v

)

≤ 2
n224n+2h+2v(2e)h+v(e)2n

2π2
√
hv
√
n+ h

√
n+ v

.

We map from a con�guration with 8n + 4v + 4h edges in the crossing paths to a

con�guration with exactly 4n new edges, so it follows that for all σ ∈ ΩC,h,v, the gain

in weight π(φr(σ))/π(σ) = λ−(4n+4h+4v). Summing over all possible 0 ≤ h, v ≤ n2, we

conclude:
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π(ΩC) =
∑
h,v

π(ΩC,h,v))

≤
∑
h,v

∑
σ∈ΩC,h,v)

π(φ(σ))
π(σ)

π(φ(σ))

≤
∑
h,v

∑
σ∈ΩC,h,v)

π(φ(σ))λ(4n+4h+4v)

≤
∑
h,v

λ(4n+4h+4v) 2n224n+2h+2v(2e)h+v(e)2n

π
√
hv
√
n+ h

√
n+ v

≤
∑
h,v

2n2

π
√
hv
√
n+ h

√
n+ v

(2λ
√
e)4n+4h+4v

(2e)h+v

≤ 2n(2λ
√
e)4n.

We �nd that for any constant λ < 1/(2
√
e), the probability π(ΩC) is exponentially

small in n. We can conclude that the conductance ΦM of the Markov chainM must be

bounded by

ΦM ≤
∑

s1∈ΩR,s2∈ΩR

π(s1)P (s1, s2)/π(ΩR)

≤ π(ΩC)/π(ΩR)

≤ 2 · 2n(2λ
√
e)4n.

By Theorem 2.3.1, it follows that τ(ε), the mixing time ofM, satis�es

τ(ε) ≥ 1

8n
(2λ
√
e)−4n ln ε−1,

so we require exponentially many steps to converge when λ < 1/(2
√
e).

4.3.2 Slow mixing of M on πλ,1 for λ > 2
√
e
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(a) G,λ (b) G′, λ′ = 1/λ

Figure 7: Weight-preserving bijection between σ ⊂ G at parameter λ and σ′ ⊂ G′ at
λ′ = 1/λ.

Perhaps surprisingly, we can also show that the chain is slowly mixing when λ is large.

This actually follows from a duality between the edges and non-edges in a turning graph

on the grid.

Speci�cally, we show that when each edge present in the turning contour is given

weight at least λ > 2
√
e, the Markov ChainM also mixes slowly on a slightly di�erent

version of the Aztec Diamond graph. Rather than prove this case directly, we exhibit a

bijection between the model on graph G for any λ < 1, and the complimentary model

on G′ = G with altered boundary conditions for λ′ = 1/λ > 1.

For each vertex v in G with parity p(v), set the parity of that vertex to deg(v)−p(v)

in G′. It follows that the complementary turning graph C ′ = E\C on G′ will be a valid

turning graph that, by construction, will satisfy the parity boundary conditions of G′,

as a vertex v with k incident edges in G corresponds to a vertex with deg(v)−k incident

edges in E ′. Let G be the Aztec diamond graph described in the previous section, and

let G′ be the Aztec Diamond graph with boundary conditions modi�ed as in Figure 7.

Corollary 4.3.2: When λ > 2
√
e, the mixing time of the Markov Chain M on πλ,1,

weighted turning graphs of the Aztec Diamond Gn, is at least

τ(ε) ≥ n

(
λ

2
√
e

)−4n

ln ε−1.
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Proof: We show that the missing edges in this model G′ behave exactly like the present

edges in G, and will form turning paths of missing edges between vertices that have

di�erence in parity between its degree and other parity requirement. It follows then

that the unnormalized weight of a turning graph C ′ with parameter λ′ = 1/λ is exactly

G′ = λ′
|C′|

= λ′
|E|−|C|

= λ′
|E|
λ′
−|C|

= λ′
|E|
λ|C|.

Since this is exactly the weight of the corresponding turning path C of G multiplied by

λ|E|, it follows that the normalization

Z ′ =
∑
C′∈G′

λ′
|C′|

= λ|E|Z.

Thus, the normalized probability π(C ′) = π(C).

The Markov chain M behaves exactly the same on both models, by adding or re-

moving edges with probabilities depending on the relative weights of the current and

proposed next state. ThusM on G with parameter λ behaves exactly the same asM on

G′ with parameter 1/λ. The corollary then follows immediately from Theorem 4.3.1.

4.3.3 Polynomial mixing of M on πλ,1 when λ = 1

On the positive side, we now show that the chain M does converge to equilibrium

e�ciently when µ = λ = 1. Our proof relies on the fact that a corresponding Markov

chain on proper three colorings of �nite regions of Z2 is known to be polynomially

mixing [55, 68]. We will then describe a novel bijection between turning paths of a

region of the grid G = (V,E) with three-colorings of the faces of G, both subject to

certain boundary conditions. This bijection will allow us to infer that the Markov chain

M is polynomially mixing on any region G of Z2 when µ = λ = 1.

A proper three coloring of a region G of the grid is a labeling of each vertex v in

G with a color chosen from {0, 1, 2} such that no edge of G has two ends with the
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same color. Three colorings of graphs are a natural combinatorial structure that arise

in numerous contexts across mathematics and computer science. They are also studied

in statistical physics, notably as the anti-ferromagnetic Potts model for general graphs,

and the so called �6 vertex ice model� for regions of Z2. In many of these settings, the

following natural, local Markov chain, known as the single-site Glauber Dynamics, is of

key interest.

Let G be a �nite, connected region of Z2, and Ω3 be the space of three colorings of

G. We de�neM3 as follows:

Beginning at any initial coloring σ0,

The Markov chain M3

Repeat for t steps:

� Choose a vertex v of G uniformly at random, and b ∈ 0, 1, 2 uniformly at random.

� If vertex v can be colored with b to obtain a valid three-coloring, then let σt+1 be

this con�guration.

� Otherwise σt+1 = σt.

In the context of sampling Eulerian rotations, Luby et. al. proved that the chainM3 is

rapidly mixing for any region G of Z2 with �xed colors on the boundary of G [55]. Later,

Goldberg et. al. proved thatM3 is also rapidly mixing for rectangular regions G with

no boundary conditions [37]. Cannon and Randall then generalized these results to more

complicated regions G with hybrid �xed and free boundary conditions [19]. Importantly,

these results made use of the height representation of a 3-coloring of G.

Since we will be be construction a coloring of the faces of G, we will describe what

follows in the context of face coloring, although these results were originally described in

the context of coloring vertices. Given a region G of Z2, a height function on the faces

F (G) of G is an assignment h : F (G)→ Z such that for any two neighboring faces v, w
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(a) The parity function hp

(b) Twice the level function

2hl (c) The height h = hp + 2hl

Figure 8: Coloring representations of boundary conditions and turning graphs.

on G,

|h(v)− h(w)| = 1.

Every height function is assigned a canonical 3-coloring of G simply by assigning color

h(f) mod 3 to each face f . As each 3-coloring has multiple possible height functions,

we may �x an arbitrary face f0 of G and declare its height to be 0. There is then a

bijection between all 3 colorings of G where f0 is colored 0 and all valid height functions

of G where h(f0) = 0 [55]. Note that as the graph of the faces of G is bipartite (and also

a region of Z2, all vertices with even height must lie on the same side of the bipartition

as f0. We call these �even� faces, and all other vertices �odd� faces.

We are now ready to describe a novel bijection between turning graphs of a region of

the grid G = (V,E) with three-colorings of the faces of G, both subject to �xed boundary

conditions. Essentially, we can think of a turning graph as every other level curve of the

height function of some 3-coloring. We will then observe that a face rotation transition

of Min the turning graph G corresponds exactly to changing the color assigned to a

single face of G, which is a move of M3. This will allow us to translate the proofs of

rapid mixing ofM3 in the context of three colorings to a proof of rapid mixing ofM in

the context of turning graphs.

Theorem 4.3.3: Given a simple, connected region G of Z2, along with boundary con-

ditions representing the parity of incident edges allowed in any turning graph of G at
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each boundary vertex v, we can assign colors to the faces on the external boundary of G

such that there is a bijection between the set of turning graphs on G satisfying the given

vertex boundaries and the set of 3-colorings on the faces of G satisfying the constructed

coloring boundaries.

Proof: It will be convenient to �rst understand the properties of the mapping from

height functions to turning paths. Let f0 be any face on the exterior boundary, and

without loss of generality we consider only height functions that set h(f0) = 0. For any

integer k, we say that the faces at level k are those with height value either 2k or 2k+ 1.

By properties of the height function, faces at level k can only be adjacent to faces at

level k − 1, k, or k + 1.

Consider the (possibly non-simple) path of edges along the boundary between maxi-

mally connected regions of faces at height levels k and k+ 1. By construction, this path

must have odd faces on one side, and even faces on the other side. It is easy to see that

this can only happen if this path has the turning property. By construction, the paths

between levels k and k + 1 cannot touch the paths between k − 1 and k (or any other

levels), as this would imply that there are vertices connected by a path of two edges

with at least a height di�erence of at least three.

We de�ne the map ρ of the height function h to be the set of all edges between

levels of h, which by the above argument form a valid turning graph on G. This turning

graph can be decomposed into paths and cycles. The paths end at edges that separate

boundary faces from two di�erent levels. Since the locations of these endpoints depend

only on the values of the height function on the boundaries of σ, it follows that any σ2

with the same values of the height function on the boundaries must map to a turning

graph with paths that end in the same locations as σ.

It is easy to show that this map from height functions to turning paths is injective,

as if two height functions di�er in their assignment at any face f , the di�erence in

assigned height values must be at least 2 by parity. Therefore that vertex would belong

59



to di�erent levels in the map from each height function. As we �xed face f0 to have color

0 in both maps, the number of turning paths crossed in any path from f0 to f would

be di�erent in the two maps, and therefore the two turning graphs must be di�erent as

well.

To show that this map is surjective, we consider the following reverse map ρ−1 from

the set of turning graphs to height functions. Say we are given a simply connected region

G of Z2 with parities p(v) on each vertex on the boundary. We begin by identifying the

vertices for which p(v) is odd; these are the starting points for the turning paths of G.

These vertices separate the boundary into disjoint sections of edges, which we identify

as B1, B2, . . .. We may identify each boundary section as either a set of edges or exterior

faces as convenient. For any turning graph σ on G, the edges of σ separate the faces of

G into maximal, connected regions R1, R2, . . ., and each boundary section connects to

exactly one (possibly empty) region.

We begin by �xing a face f0 of the external boundary of G. We will say that the

height parity hp(f) = 0 for even faces and hp(f) = 1 for odd faces. We then assign a

height level to each region as follows. Let R0 be the region that contains f0. We �rst set

hl(R0) = 0. We require that if regions R1 and R2 share a boundary with odd faces on

R1's side and even faces on R2's side, then hl(R1) + 1 = hl(R2). We can assign height

levels to every region by performing a depth-�rst search beginning at R0 and assigning

each region a height relative to its parent following the above requirement. For any face

f in R1, we say that hl(f) = hl(R1).

We can then de�ne h(f) = hp(f) + 2hl(f). Let f1, f2 be two two adjacent faces

of G. If they are in the same region, |h(f1) − h(f2)| = |hp(f1) − hp(f2)| = 1. If they

are in di�ering regions, then without loss of generality let f1 be the odd face. Then

|h(f1)− h(f2)| = |hp(f1)− hp(f2) + 2(hl(f1)− hl(f0))| = |(1) + 2(−1)| = 1. Therefore, h

is a valid height function. The corresponding turning graph ρ(h) consists of the edges

between every other level of the h, which by construction are exactly the edges of σ.
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Therefore σ = ρ(h), and we have shown that ρ is a bijection.

Corollary 4.3.4: The Markov chain M when λ = µ = 1 is polynomially mixing on

�nite regions of the grid G.

Proof: The Markov chainM that adds or removes a single square of edges around a

face f would create or destroy a region that consists of a single vertex. This would either

increase or decrease the height function at that vertex by exactly two. This corresponds

to the local Markov chain on 3-colorings that changes the color at a single square at a

time. This chain was shown to be polynomially mixing on all subsets of Z2 with any

�xed boundary conditions by a coupling argument on a related chain [55].

4.4 Mixing of M on πλ,µ for general µ > 1

We extend our analysis of the special case when µ = 1 to the general model for any µ > 1

by considering an amortized �cost� for each non-free vertex in σ, distributed among its

incident edges.

Theorem 4.4.1: When λ <
√
µ/(2
√
e), the mixing time of the Markov Chain M on

πλ,µ, weighted turning graphs of the Aztec Diamond Gn, is at least

τ(ε) ≥ n(2λ
√
e)−4n ln ε−1.

Proof: To handle the case where µ > 1, we need to consider the change in the number

of vertices used by the turning graph. We follow the structure of Theorem 4.3.1, keeping

both the structure of the proof and the map φ.

Let σ be a con�guration in ΩC,v,h. As in Theorem 4.3.1, we see that σ has 8n+4h+4v

edges in some pair of crossing paths. It follows that the sum of all degrees of all vertices

incident to these edges must add to 16n+8h+8v. This pair of crossing paths includes at

least the topmost and bottommost vertex at each x coordinate, and thus must contain

at least 4n vertices of degree 2. The degrees of the remaining vertices therefore sum
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to 8n + 8h + 8v. Since the maximum degree of any vertex is 4, there must be at least

2n + 2h + 2v other vertices used by this pair of crossing paths. The map φ(σ) removes

this pair of crossing paths, and adds two paths of exactly 4n edges and 4n vertices.

Thus, we have a net gain of at least 2n + 2h + 2v vertices between σ and φ(σ). Thus,

the change in weight for any σ ∈ ΩC,h,v will be

π(φr(σ))/π(σ) ≥ µ2n+2h+2vλ−(4n+4h+4v)

= (λ/
√
µ)−(4n+4h+4v).

As in Theorem 4.3.1, this implies by Theorem 2.3.1 thatM mixes exponentially slowly

when λ/
√
µ < 1/2

√
e, or more simply λ <

√
µ/2
√
e.

We now similarly analyze the case where λ > 1 and obtain a result analogous to

Corollary 4.3.2 for this more general case. Following the bijection in Corollary 4.3.2 that

maps a turning graph in G with the complementary graph in G′, we could immediately

conclude from Theorem 4.4.1 that for any µ < 1, M is slowly mixing whenever λ >

2
√
e/
√
µ. However, we are chie�y interested in the case when µ > 1, especially when

µ = 2. In this case, we can reason directly from Corollary 4.3.2.

Theorem 4.4.2: When λ > 2µ
√
e, the mixing time of the Markov Chain M on πλ,µ,

weighted turning graphs of the Aztec Diamond Gn, is at least

τ(ε) ≥ n(2λ
√
e)−4n ln ε−1.

Proof: We proceed similarly to the proof of Theorem 4.4.1, but with one important

di�erence. By the nature of the bijection, the mapping φ in this context doesn't remove

edges and add shorter ones, it removes non edges, and adds a shorter path of unchosen

edges, potentially increasing the total number of chosen vertices in the process.

However, as in the argument of Theorem 4.4.1, the sum of the degrees of vertices

incident to these edges, other than the boundaries, adds to 8n+ 8h+ 8v. It follows then
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that at most 4n + 4h + 4v vertices will be added by the map φ in the complementary

context.

Thus, as before, the change in weight for any σ ∈ ΩC,h,v is

π(φr(σ))/π(σ) ≥ µ2n+2h+2vλ−(4n+4h+4v)

= (λ/µ)−(4n+4h+4v).

Treating µ as a constant, by Corollary 4.3.2 we conclude thatM mixes slowly whenever

(λ/µ) > 2
√
e, or when λ > 2µ

√
e.
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CHAPTER V

CLUSTERING AND MIXING TIMES FOR SEGREGATION

MODELS ON Z2.

In our �nal chapter, we will introduce and analyze a generalized version of the Schelling

segregation model using some of the same techniques that we adapted for the study of

the fortress model in Chapter 4. The Schelling segregation model attempts to explain

possible causes of racial segregation in cities. Schelling considered residents of two types,

where everyone prefers that the majority of his or her neighbors are of the same type.

He showed through simulations that even mild preferences of this type can lead to

segregation if residents move whenever they are not happy with their local environments.

We generalize the Schelling model to include a broad class of bias functions determining

individuals happiness or desire to move, called the General In�uence Model. We show

that for any in�uence function in this class, the dynamics will be rapidly mixing and

cities will be integrated (i.e., there will not be clustering) if the racial bias is su�ciently

low. Next we show complementary results for two broad classes of in�uence functions:

Increasing Bias Functions (IBF), where an individual's likelihood of moving increases

each time someone of the same color leaves (this does not include Schelling's threshold

models), and Threshold Bias Functions (TBF) with the threshold exceeding one half,

reminiscent of the model Schelling originally proposed. For both classes (IBF and TBF),

we show that when the bias is su�ciently high, the dynamics take exponential time to

mix and we will have segregation and a large �ghetto� will form.
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5.1 Introduction

The Schelling Segregation Model was introduced by Thomas Schelling in 1971 to explain

how global behavior can arise from small individual preferences [72]. In Schelling's orig-

inal model, agents are one of two colors and move if there are too many neighbors of the

opposite color within their immediate neighborhood. Simulations show that con�gura-

tions rapidly become segregated with like colored neighbors clustered together. Schelling

used this simple model to argue that �micro-motives� can determine �macro-behavior,�

thereby forming the basis for Agent-Based Computational Economics.

Despite extensive interest in the Schelling model and its many variants, almost all

research remains non-rigorous. Our goal here is to consider families of Schelling models

in an attempt to put them on �rmer footing. There are many natural extensions worth

considering: How large a neighborhood is relevant to one's happiness, and do all neigh-

bors within this neighborhood in�uence us equally? Can residents move away, or are

they restricted to remain in the city? Are all houses occupied, or are there empty houses

(say, foreclosures) that might be even less desirable to have in one's proximity? Is one's

happiness determined solely by the color of the majority of one's neighbors, as Schelling

originally proposed, or does one get increasingly happy or unhappy as new people of one

type or the other move into the neighborhood? Are decisions to move somewhere based

on each person's relative happiness, or is one less likely to move to a house where he is

not wanted if doing so decreases the happiness of his new neighbors?

Economists and social scientists use statistical and non-rigorous computational tools

to study the dynamics and limiting distributions, as well as for connecting the model

to real world populations [8, 38, 71, 81]. Even the concept of segregation or clustering

typically is not formally de�ned. An exception is the rigorous analysis of the Schelling

model in the one-dimensional setting [15, 35, 51, 84]. Additional rigorous work has

considered further variations designed to simplify the neighbors' interactions for some

speci�c, basic models [39, 51, 71, 85].
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5.1.1 Relation to spin systems.

The concept of micro-motives e�ecting macro-behavior is well-studied and far better

understood in the statistical physics community, where it is used to explain fundamental

concepts such as phase transitions. The Schelling model itself is reminiscent of many

physical models, most notably spin systems such as the Ising model which are used to

understand ferro-magnetism. In the Ising model, vertices of a graph, say a �nite region

G = (V,E) of Z2, are assigned + or - spins, and neighboring vertices prefer to have

the same spin. Although in the original Schelling model a person's happiness depends

only on the color of the majority of his neighbors, in the Ising analogue everyone is

incrementally more likely to move as more people of the opposite color move into their

neighborhood.

Speci�cally, in the Ising model we are given a parameter λ that is a function of

temperature, and the stationary probability of a con�guration σ ∈ {±1}V is

π(σ) = λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|/Z,

where

Z =
∑

σ∈{±1}V
λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|

is the normalizing constant known as the partition function. Glauber dynamics is a

Markov chain on Ising con�gurations that changes one spin at a time using Metropolis

probabilities to force the chain to converge to π. The Ising model on Z2 is known

to undergo a phase transition, i.e., there exists a value λc such that when λ < λc, the

Glauber dynamics for the Ising model mixes in time polynomial in |V | and when λ > λc,

it mixes in exponential time [46, 69, 54, 77]. Moreover, the phase transition in the mixing

time is accompanied by a corresponding transition in the stationary distribution of the

Markov chain; at low λ, an average sample from the steady state is �evenly mixed� with

regards to the proportions of spins, while at high lambda, an average sample is clustered,

and has large regions of predominantly one spin type. Indeed, the Ising model has been
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studied empirically as an alternative to the Schelling model [71, 75, 76]. In open systems

at low temperature (high bias) the population will become predominantly one color or

the other, and in closed systems (arising as a �xed magnetization Ising model), large

clusters of one color (or spin) will form, indicating segregation [77, 83].

While extensions of the Ising model on Z2 have been examined extensively by physi-

cists and mathematicians, the resulting models are typically less-tractable and give little

insight into Schelling variants (such as neighborhoods of size larger than 4, unoccupied

houses, or bias functions that do not scale geometrically with the number of di�erently

colored neighbors). A lot is known about the Ising model on graphs with more than

nearest-neighbor interactions see, e.g., Chapters 2 and 9 of [62] and general spin systems

on Zd have been shown to have a phase transition whenever there is a phase transition in

the associated mean �eld model for certain classes of interactions [13, 12, 21]. However,

while these results apply only to certain classes of interactions, they fail to give insight

into more general utility functions which more closely resemble the original Schelling

model.

5.1.2 Generalized segregation models.

We consider a generalization of the Schelling model called the General In�uence Model

(GIM) and give rigorous results demonstrating a dichotomy in mixing times and clus-

tering for two broad classes. The GIM considers open cities in a non-saturated setting,

with neighborhoods of any radius, and where moving is based on the product of every-

one's happiness. Open cities allow residents to move away, while closed cities require

�xed racial demographics. Unsaturated cities allow houses to be unoccupied. An indi-

vidual's happiness is a function depending only on the number of unoccupied, red and

blue houses within a certain radius. This function can be a threshold, as suggested by

Schelling, a geometric function, similar to the Ising model, or anything else. Moreover,

these in�uence functions are controlled by parameters measuring the strength of these
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biases, so for any in�uence function we can study the e�ects of large or small racial bias.

First, we consider a natural extension of the Schelling dynamics where people move

according to the relative global happiness and we analyze the mixing time, or the time

to approach equilibrium. The relevance of bounding the mixing time to understanding

Schelling dynamics is indirect and will help us discern properties of the stationary dis-

tribution. Second, we formalize a concept of clustering in order to predict when typical

con�gurations are likely to be segregated or integrated. We show that for any in�uence

function, the dynamics will be fast mixing and cities will be integrated (i.e, there will

not be clustering) if the racial bias is su�ciently low. Next, we show complementary

results for two broad classes of in�uence functions. The �rst is for Increasing Bias Func-

tions (IBF), where an individual's likelihood of moving increases each time someone of

the other color moves close or someone of the same color leaves (this does not include

Schelling's threshold model). The second is for Threshold Bias Functions (TBF) when

the threshold is more than one half, reminiscent of the model Schelling originally pro-

posed. Here a resident is happy as long as the majority of his neighbors share his color,

and is unhappy otherwise, regardless of the actual percentage. For both classes (IBF

and TBF) we show that when the bias is su�ciently high, the dynamics take exponential

time to mix and we will have segregation. Note that because we are considering open

cities, segregation means the city will become predominantly one color, a large ghetto,

and slow mixing means that it will take exponentially long for the city to transition from

a ghetto of one color to one of the other color. It's important to note that this does

not imply that it will take long to see the emergence of ghettos or for the con�guration

to �stabilize� as one large ghetto; it only means that it will take exponentially long to

transition from one essentially stable con�guration to another. (We also have initial

results showing that these results can be extended to closed cities where our de�nition

of clustering also holds for populations with any �xed racial demographics.)

In Section 5.2 we formalize the General In�uence Model, which we subsequently view
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as a Markov chain on the set of all housing assignments. We also formalize de�nitions of

mixing times and clustering that we will use to establish dichotomies in the subsequent

sections. In Section 5.3 we provide the proofs of fast mixing for all in�uence functions at

low bias and slow mixing for the IBF and TBF classes at high bias. Finally, we conclude

with some open problems.

5.2 Preliminaries

We �rst formalize our generalization of the Schelling model, which we call the General

In�uence Model (GIM), and present some background on the mixing time of Markov

chains and clustering.

5.2.1 The General In�uence Model.

Let Ω be the set of all 3-colorings of the faces of the n x n grid Gn, where the colors

represent the types of occupants in a housing grid. We label the possible colors B,R

and U where B and R represent two types of residents, red and blue, U represents an

unoccupied house and we refer to each of these as B, R, or U -faces respectively (see

e.g., Figure 10). An occupied face refers to a B or R-face. We denote the color of face

x in con�guration σ as σ(x). To simplify our notation, we let σx1=c1,x2=c2,... denote the

con�guration σ with face xi colored ci, for each speci�ed i.

We consider a natural Markov chain M on Ω whose transitions alter the color of

one face at a time. We select a face x ∈ Gn and a color c ∈ {B,R,U} uniformly at

random, then set face x to color c with probability that depends on the total change in

�happiness� of the con�guration. The happiness of any occupied face is determined by

the colors of faces within a radius of r, and the weight of a con�guration is the product

of the happiness of each occupied face.

Formally, we are given a �xed radius r as a parameter of the model. Each resident

(or occupied face) is in�uenced equally by all N = 2r2 + 2r neighbors which we de�ne

as faces within taxicab distance r. We are also given a utility function u : {(s, d) : s, d ∈
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[0, N ], s + d ≤ N} → [0, 1], that relates the coloring of a resident's neighborhood to

its happiness with an arbitrary bias (or utility) function. For an occupied face x, let

s(σ, x) be the number of neighbors of x that have the same color as x in σ and d(σ, x)

be the number of neighbors of x which have a di�erent, but occupied color. (i.e. R-

for B-faces and vice versa) in σ. The happiness of an occupied face x is de�ned to

be u(s(σ, x), d(σ, x)). We also require that for all d ≥ 1, the utility function u satis�es

u(s+1, d−1) ≥ u(s, d) ≥ u(s, d−1). In other words, one prefers a same colored neighbor

to an oppositely colored neighbor to an abandoned house. For our model, we require

that u(0, 0) = 0 and u(N, 0) = 1 for normalization purposes.

We will state our results in terms of bounds on the discrete partial derivatives of the

utility function u. In particular, let

u′α = min
a,b
{u(a+ 1, b)− u(a, b− 1)},

u′β = max
a,b
{u(a+ 1, b)− u(a, b− 1)},

u′κ = min
a,b
{u(a+ 1, b)− u(a, b)}, and

u′γ = max
a,b
{u(a+ 1, b)− u(a, b)}.

The Markov chainM performs moves using the Metropolis transition probabilities

with respect to the distribution π which we will de�ne (see, e.g., Chapter 3 of [50]). The

weight π of a con�guration σ is de�ned as

π(σ) =
∏

x:σ(x)6=U

λu(s(σ,x),d(σ,x))/Z,

where Z =
∑

σ∈Ω

∏
x:σ(x) 6=U λ

u(s(σ,x),d(σ,x)) is the normalizing constant. We are now ready

to formally de�neM.

The Markov chain M:1

1We present the results in the unsaturated setting where we allow empty houses. For the saturated

model the Markov chain allows houses to move between B and R in one move, indicating that a new

resident will move in as soon as one vacates a house. All of the proofs carry over in this case and are

in fact simpler.
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Starting at any σ0, at step t iterate the following:

� Choose a face x of Gn, and a color c ∈ {B,R,U} uniformly at random.

� If σt(x) = U, with probability 1 let σt+1 = σt,x=c.

� If σt(x) = R and c = U, with probability π(σt,x=U)/π(σt,x=R) let σt+1 = σt,x=c.

� If σt(x) = B and c = U, with probability π(σt,x=U)/π(σt,x=B) let σt+1 = σt,x=c.

� With the remaining probability, let σt+1 = σt.

This Markov chain trivially connects the state space since we can always reach the empty

con�guration from any starting con�guration.

The General In�uence Model (GIM) is a generalization of many well-studied models

on the grid. For example, if we let r = 1 (each resident has N = 4 neighbors), and

u(s, d) = s/4, then (after a suitable change of variables), this model is equivalent to the

non-saturated Ising model on the grid [40]. Here, B-faces correspond to + spins and R-

faces correspond to − spins. The in�uence on a site is the number of matching neighbors,

and the fact that u(s, d) = s/4 means that this in�uence is linearly proportional to the

corresponding exponent of λ in the weight of the con�guration.

If instead we let r = 1 and u(s, d) = U0(s − d), where U is a step function, then

this model corresponds to a reversible version of the original Schelling Model based on

thresholds [76, 71]. Here, a site is �happy� if it has at least as many neighbors of the

same color as the opposite color. If we let r = 1, and u(s, d) = UN/2(s), we have another

variant of the Schelling Model where a site is �happy� if at least half of its neighbors are

of the same color.

5.2.2 Mixing and clustering.

We give rigorous results demonstrating a dichotomy in mixing times and clustering

for two broad classes. Here we formally de�ne both mixing time and clustering. For all
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ε > 0, the mixing time τ(ε) ofM is de�ned as

min{t : max
x∈Ω

1

2

∑
y∈Ω

|P t(x, y)− π(y)| ≤ ε,∀ t′ ≥ t}.

We say that a Markov chain is rapidly mixing if the mixing time is bounded above by a

polynomial in n and log(ε−1) and slowly mixing if it is bounded below by an exponential

function. In Section 5.3, we bound the mixing time of the Markov chain M under

di�erent conditions.

In order to characterize whether a con�guration is segregated or integrated, we deter-

mine whether one group of residents has �clustered.� We build on a concept of clustering

developed in [58] based on the presence of a large region with small perimeter that is

densely �lled with either R- or B-faces.

More precisely, we will de�ne a cluster region C = (CF , CE) where CF is a set of

faces in the grid Gn and CE is a connected set of edges that contains every edge which

is adjacent to a face in CF and a face in CF = Gn\CF . The perimeter of a region C is

|CE|.

De�nition 5.2.1: Given a con�guration σ ∈ Ω, we say that the X-faces are c-clustered

if σ contains a cluster region C satisfying:

1. the perimeter of C (i.e. |CE|) is at most cn and

2. the density of X-faces in CF is at least c and in CF is at most 1− c.

This de�nition is useful to characterize clustering in open and closed cities, but

in open cities the region will be the entire grid and a random con�guration will be

predominantly one color or the other.

5.3 Bounding the Mixing Time

We begin by showing a dichotomy in the mixing time ofM at high and low bias. First,

we show that for any IBF and TBF utility function with threshold exceeding one half,M
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Figure 9: (a) A con�guration with a contour, (b) the corresponding fat contour, and (c)
an R-cross.

is slowly mixing when λ is su�ciently high. Then we show for all utility functions u,

M is rapidly mixing if λ is su�ciently low.

The proofs of fast mixing and integration at low bias use standard coupling and

information-theoretic arguments. The proofs of slow mixing and segregation at high

bias are subtle and signi�cantly more challenging. In fact, it is not clear whether the

latter results extend to the whole class of GIMs, as our proofs only verify that segregation

occurs in the IBF and TBF settings.

The strategy used to show slow mixing of Markov chains and clustering e�ects is

a Peierls argument, which originated in physics in order to study Gibbs measures on

the in�nite lattice. The argument works by showing certain types of con�gurations

are exponentially unlikely by using combinatorial maps and information theory. In

the context of Markov chains, Peierls arguments can be used to show that cut sets

in the state space are exponentially unlikely, and this is su�cient to show that the

Markov chain will require exponential time to converge to equilibrium. Similarly, in the

context of clustering, we can use a similar argument to show that con�gurations that are

integrated, or lack large clustered components, also have exponentially small probability

at equilibrium.

The proofs of slow mixing build on some techniques established previously, but these
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pieces had to be put together in novel ways. We use a strategy introduced in [70]

to partition the state space according to topological features, namely monochromatic

crosses (similarly colored neighboring houses that connect all four sides of the housing

region) and fault lines, or long paths separating houses of di�erent colors. Con�gurations

with fault lines form the cut in the state space, and our objective is then to show that

they have exponentially small probability. For the Ising model on Z2, for instance,

completing the argument is simple because we can reverse the spins (or �ip the colors)

of all houses on one side of the fault to move to a new con�guration with exponentially

larger stationary probability. The introduction of unoccupied houses complicates this

approach, but we use a technique used in [41] by characterizing the cut as con�gurations

with �fat faults.� The greater challenge occurs when the radius of in�uence is larger

than 1 and residents are equally in�uenced by neighbors up to r houses away, for r > 1.

In this case faults or fat faults are not su�cient and reversing the colors on one side

of a fault can actually decrease the probability of a con�guration. To address this we

introduce the notion of bridges and build a complex of fat faults connecting components

that are within distance r.

The arguments are �ne tuned to the speci�c classes, IBF, where everyone gets in-

creasingly happy as more people of their color move into their neighborhood, and TBF,

where residents are unhappy unless some threshold over 50% is reached. Either of these

conditions give us the leverage to push through the Peierls argument and show that the

cutset has exponentially small probability. The signi�cance of 50% is that if we change

the color of a resident who is currently happy then he necessarily becomes unhappy, and

this only happens in a threshold model when the threshold is beyond one half.

5.3.1 Slow mixing at high λ.

We begin by extending the concept of fat faults introduced in [41] to fat faults that

are essentially large boundaries that can �jump� up to a distance of r. By showing that
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Figure 10: (a) A con�guration σ with a fault line, (b) the 1-extended fault, and (c) φ(σ).

these types of faults are unlikely for su�ciently large values of λ, we show thatM mixes

exponentially slowly when the utility function is in the IBF or TBF class. We begin by

describing the general technique and then give the detailed proofs for the IBF and TBF

classes. We make use of the well known relationship between the conductance and the

mixing time of a Markov chain to show that three sets ΩB,ΩR and ΩF , which we will

de�ne shortly, partition the state space with ΩF being a cutset with exponentially small

weight. This lets us show that the conductance of the chain is small, and we can conclude

the chain mixes exponentially slowly. (See [47, 73] for details.) The conductance of an

ergodic Markov chainM with stationary distribution π and transition matrix P is

ΦM = min
S⊆Ω

π(S)≤1/2

∑
s1∈S,s2∈S̄

π(s1)P (s1, s2)/π(S).

The following theorem relates the conductance and mixing time (see [73, 47]).

In order to de�ne the three sets that form our cut we start with some terminology.

We call a pair of faces within taxicab distance r to be an in�uence, and refer to this as

a bad in�uence if the two faces are colored di�erently or are both U -faces. In�uences

at distance 1, adjacent faces, we call edges since they correspond to edges of the n× n

grid. We de�ne a contour to be a connected set of bad edges and a fat contour (see [41]

and Figure 9) to be a maximally connected set of bad edges.

A fat contour, or set of fat contours, partitions the faces of the grid into regions whose
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border along any single fat contour is monochromatic. With respect to a single contour,

we call these R-regions, B-regions, etc. to denote the color along their border. Note

that the entire regions are not necessarily monochromatic, as a B-bordered region may

fully enclose a set of R faces that do not border the contour. Also note that U -regions

are single squares, since all 4 sides of a U -face are bad edges. For example, see Figure 9b

where the fat contour partitions the con�guration into a B-region, a R-region and 4

U -regions. Given two fat contours c1 and c2, c1 is within distance r of c2 if there exists

a face adjacent to c1 that is within taxicab distance r of a face adjacent to c2, and these

faces are in di�erent regions, where the regions are the unique regions de�ned by c1 and

c2. We can think of all the disjoint fat contours of a con�guration to be connected to

each other in an auxiliary graph if they are within distance r of each other. We then

de�ne an r-extended contour to be the union of all fat contours in a maximally connected

component of this auxiliary graph.

We say that a con�guration has amonochromatic cross if it has a connected monochro-

matic connected set of B-faces or R-faces that touches all four sides of the grid (see

Figure 9c). We will refer to a monochromatic cross as a B-cross or a R-cross depending

on the color of the faces. A fat contour that spans from the top to bottom or left to

right of the grid is a fault line. We use the fact that every con�guration falls into one

of three disjoint classes: ΩB (those with a B-cross), ΩR (those with a R-cross), and ΩF

(those with a fault line). It is known that ΩB, ΩR, and ΩF partition the state space Ω,

and moves of the Markov chainM cannot directly move from ΩB to ΩR or vice-versa,

and thus must move through ΩF [41].

Our goal is to show that ΩF is an exponentially small cut in our state space by

exhibiting a mapping φr : ΩF → Ω such that for any σ ∈ ΩF , the image φr(σ) ��xes�

a fault line by reversing the colors in some of the monochromatic regions that border

the r-extended contour containing the fault line. This causes many more same-color

interactions, yielding a gain π(φr(σ))/π(σ) that is exponentially large in n. This gain is
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exponentially larger than the total weight of all potential pre-images ∈ ΩF of any state

∈ Ω, from which we can conclude that π(ΩF ) is exponentially small.

We construct φr(σ) for σ ∈ ΩF as described below (see Figure 10).

� Take the lexicographically �rst fault line in σ.

� Find the r-extended contour (and associated regions) which contains this fault

line.

� Finally, for the regions de�ned by the r-extended contour, map all U -regions to

R-faces and within any B-region change all R-faces to B-faces and all B-faces to

R-faces.

We note that all faces within distance r of the fat fault line in σ will map to R-faces

in φr(σ). This map causes all elements within distance r of the fault line to be mapped

to R-faces. We also note that no bad in�uences are created by the map φr between

previously good in�uences - this can only happen to faces P and Q if they are within

r of each other, and also in di�erent fault regions. However, if they are in di�erent

fault regions, some fault edge must pass through any shortest path between P and Q,

and the r-extended contour would necessarily pick up the borders of the monochromatic

regions containing P and Q. Thus, the mapping φr would cause both P and Q to map

to R-faces.

We now bound the number of pre-images of a con�guration β such that φr repairs a

r-extended contour of length m (i.e. σ : φr(σ) = β). Starting on one of 4n points on the

border, a r-extended contour can be expressed by a depth �rst search of m edges, using

at most 2m steps, and each step travels in up to 2r2+2r directions. Each monochromatic

region is surrounded by at least four edges, and each edge is on the boundary of two

regions. Thus, there are at most m/2 distinct regions bordering this contour, each of

which can be colored one of 3 ways. Therefore, there are at most 4n3m/2(2r2 + 2r)m

pre-images σ such that φr(σ) �xes this contour.
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5.3.1.1 Increasing Bias Functions.

We �rst present result for utility functions u with bounded u′α.

Theorem 5.3.1: For the Markov chain M, with radius r and utility function u with

u′α > 0, there exists a constant λ1 = λ1(r, u′α) such thatM mixes exponentially slowly

when λ > λ1.

Proof: We partition ΩF into sets ΩF,m where σ ∈ ΩF,m if m is the number of bad edges

�xed by φr. We observe that for two adjacent faces I and J with a bad edge, every face

that in�uences both I and J will share a bad in�uence with at least one of them. Thus

each of these 2r2 − 2 faces, excluding I, J , gains at least one new neighbor of the same

type, which causes an increase of happiness of at least u′α. Any one in�uence between

any P and Q is counted at most 8 times in this way, once for each potential bad edge

bordering P or Q. Also, the happiness of both P and Q improve from is. Thus, we see

a gain of at least u′α((2r2 − 2)/4 + 1) per face bordering the fault line. Let σ ∈ ΩF,m,

then by applying φr we �x a r-extended contour with m edges and the gain in weight

satis�es

π(φr(σ))

π(σ)
≥ (λ)u

′
α
m
4

(2r2−1) ≥ (λ)u
′
α
mr2

4 .

Next, let

λ > λ1 = (9(4r2 + 4r)4)(r2u′α)−1

.

Then we have:

π(ΩF ) =
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))
π(x)

π(φr(x))

≤
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))(λu
′
α)−mr

2/4
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≤
2n2∑
m=n

2n(2r2 + 2r)m · 3m/2(λ−u
′
αmr

2/4)

≤
2n2∑
m=n

2n2−n/4 ≤ 4n32−n/4.

Next, we will combine this bound on π(ΩF ) with the detailed balance condition which

states that for an ergodic reversible Markov chain on Ω with transition matrix P and

stationary distribution π, (see e.g. [73])

∀i, j ∈ Ω Pij π(i) = Pji π(j).

Thus, we have that

ΦM =
∑

s1∈ΩR,s2∈Ω̄R

π(s1)P (s1, s2)/π(ΩR)

≤
∑

s1∈ΩR,s2∈Ω̄F

π(s2)P (s2, s1)/π(ΩR)

≤ π(ΩF )/π(ΩR).

By symmetry, we know that

π(ΩR) = π(ΩB) = (1− π(ΩF ))/2.

Thus, the conductance ofM is at most

ΦM ≤ π(ΩF )/π(ΩR)

= 2π(ΩF )/(1− π(ΩF ))

≤ 2π(ΩF )

≤ 8n32−n/4.

By Theorem 2.3.1, it follows that τ(ε), the mixing time ofM, satis�es

τ(ε) ≥ (n−32n/4−4 − 1) ln ε−1.
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5.3.1.2 Threshold Bias Functions.

We now consider the threshold variant where a face needs θ matching neighbors to

be happy, so u(s, d) = Uθ(s), where U is a step function with threshold θ. Here u′α = 0

so we cannot apply the bounds in the previous subsection. However, a key observation

allows us to apply our technique to a certain class of threshold utility functions.

Theorem 5.3.2: For the Markov Chain M, with radius r, neighborhood size N =

2r2 + 2r, threshold θ > 1
2

+ 1
2r+2

N and utility function u(s, o) = Uθ(s), there exists a

constant λ2 = λ2(r) such thatM mixes exponentially slow when λ > λ2.

Proof: We again partition ΩF into sets ΩF,m where σ ∈ ΩF,m if m is the number of

bad edges �xed by φr. Again, every two adjacent faces I and J with a bad edge shares

a neighborhood of 2r2 − 2 faces, excluding I and J . Thus if

θ > r2 + 2r = (2r2 + 2r)

(
1

2
+

1

2r + 2

)
,

both I and J cannot be happy. Thus the mapping φr will cause at least one of I and J

to become happy (from unhappy), leading to a gain of 1 per edge of the fault line. This

gain is counted at most 4 times, once for each edge bordering the �xed face. Thus, we

see a a gain of at least m/4 by �xing a contour of size m, or an amortized gain of at

least 1/4 per such face. Again, we let

λ > λ2 = (9(4r2 + 4r)4).

Then we have:

π(ΩF ) ≤
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))(λu
′
α)−m/4

≤
2n2∑
m=n

2n(2r2 + 2r)m · 3m/2(λ−m/4)

≤ 4n32−n/4.
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By the same argument as in the case of Increasing Bias Function, it follows that τ(ε),

the mixing time ofM, satis�es

τ(ε) ≥ (n−32n/4−4 − 1) ln ε−1.

5.3.2 Rapid mixing at low λ.

In contrast, we show that when λ is su�ciently low, we can guarantee that the chain

mixes in polynomial time for all utility functions. Our bound on λ depends on the

discrete partial derivative

u′γ = max
a,b
{u(a+ 1, b)− u(a, b)}.

The proof relies on the now standard path coupling technique (see, e.g., [17]). We present

the results in the unsaturated setting where we allow empty houses. For the saturated

model the Markov chain allows houses to move between B and R in one move, indicating

that a new resident will move in as soon as one vacates a house. All of the proofs carry

over in this case and are in fact simpler. We prove the following.

Theorem 5.3.3: For the Markov ChainM, with radius r and utility function u, there

exists a constant λ3 = λ3(r, u′γ) such thatM is fast mixing when 1 ≤ λ < λ3.

Proof: We use a path coupling argument with the natural coupling. Notice that a

move ofM consists of selecting a face f and a color c. The coupling uses the same face

and color for both con�gurations. The distance metric we use is the minimal number

of steps ofM required to change one con�guration into another. At any face, it takes

at most two steps to change the color at that face to any possible color. Thus, the

maximum distance between any two con�gurations is 2n2.

In order to apply the path coupling theorem, we consider pairs of con�gurations

at distance 1, without loss of generality let them be (σ = σg=U , σg=R). For notational

purposes, for a given face y, it will be helpful to use the shorthand uy = u(s(σ, y), d(σ, y))
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to describe the total utility on face y. Since we are interested in the changes to this

utility as a function of changing faces near y, we will also use the shorthand uy(a, b) =

u(s(σ, y) + a, d(σ, y) + b) to mean the utility on face y if a additional same colored tiles

and b additional opposite colored tiles are in the neighborhood of y. As the probability

of a move depends on the set of neighbors near a tile, it will also be helpful to let R(y)

denote an indicator for the event that site y is colored R in σ, B(y) an indicator for the

event that y is colored B in σ, C(y) an indicator for the event that d(y, g) <= r, and

F (y) an indicator for the event d(y, g) > r. Roughly speaking, C and F indicate if y is

�close� or �far� from g.

Let f be the face selected by M. The distance can increase or decrease if f = g;

here we consider three cases.

� If f = g and c = R, then we accept both moves with probability 1, decreasing the

distance by 1.

� If f = g and c = B, then con�guration σg=U will accept the transition with

probability 1, while the move is disallowed for σg=R; thus increasing the distance

by 1.

� If f = g and c = U , then the distance decreases by 1 with the probability that

σg=R transitions to σ,
π(σg=U )

π(σg=R)
. Every occupied face in the neighborhood around g

will lose one occupied neighbor, and every R-face will also lose one same colored

neighbor. Thus:

π(σg=U)

π(σg=R)
=

1

λug

∏
y:σ(y)6=U,
d(g,y)≤r

λuy

λuy(A(y),1)

≥ 1

λug
1

λu
′
γs(g)+u

′
βd(g)

82



We now consider other cases where the distance between con�gurations can increase,

namely whenever f 6= g. We again consider three cases:

� If f = U , both transitions are accepted with probability 1 and the distance does

not change.

� If f = R, the probability that we increase the distance by 1 is the di�erence

in the chance that σg=U becomes U at f but σg=R does not. This is exactly

| σf=0,g=0

σf=R,g=0
− σf=0,g=R

σf=R,g=R
|. In the �rst term, every face within r of f is losing an occupied

neighbor, and ever R face is losing a same-colored neighbor. The second term is

more complicated. Every face within r of f is still losing an occupied neighbor,

but g in�uences not only f , but also those neighbors that are within r of both g

and f . Also, these neighbors are a�ected di�erently if the face is an A or B face.

In this case,

| σf=0,g=0

σf=R,g=0

− σf=0,g=R

σf=R,g=R

|

=

∣∣∣∣ 1

λuf

∏
y:σ(y)6=U
d(y,f)≤r

λuy(−R(y),−B(y))

λuy
−

1

λuf (1,1)

∏
y:σ(y)6=U
d(y,f)≤r

λuy(−R(y)F (y),−R(y)F (y))

λuy(R(y)C(y),B(y)C(y))

∣∣∣∣
≤ 1

λuf

 ∏
y:σ(y)6=U

d(y,f)≤r,d(y,g)>r

λuy(−R(y),−B(y))

λuy


·
∣∣∣∣ 1

λu′κs(g)λu′αd(g)
− 1

λu
′
γs(g)λu

′
βd(g)

∣∣∣∣
≤
∣∣∣∣ 1

λu′κs(g)λu′αd(g)
− 1

λu
′
γ

1

λu
′
γs(g)λu

′
βd(g)

∣∣∣∣
≤ 1− 1

λu
′
γ+(u′γ−u′κ)s(g)λ(u′β−u′α)d(g)

� Similarly, if f = B, this is bounded by

≤ 1− 1

λu
′
β

1

λ(u′β−u′α)s(g)λ(u′γ−u′κ)d(g)
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Let η = max(u′γ − u′κ, u′β − u′α). (Note that for the Ising model, η = 0.) The expected

change in distance is then

E[∆(σg=U , σg=R)]

≤ 1

3n2

(
−1

λug
1

λu
′
γs(g)+u

′
βd(g)

+ s(g)(1− 1

λu
′
γ

1

λ(u′γ−u′κ)s(g)λ(u′β−u′α)d(g)
)

+ d(g)(1− 1

λu
′
β

1

λ(u′β−u′α)s(g)λ(u′γ−u′κ)d(g)
)

)
≤ 1

3n2

(
−1

λ2u′γs(g)+2u′βd(g)

+ N(1− 1

λu
′
γs(g)+u

′
βd(g)

1

ληN(u′γs(g)+u
′
βd(g))

)1/N

)
≤ −1

3n2

(
1

λ2u′γs(g)+2u′βd(g)

− (log(ληN(2u′γs(g)+2u′βd(g)

)

where the second to last step uses the inequality of arithmetic and geometric means,

and the �nal step uses the fact that

lim
n→∞

n(1− x1/n)→ − log x

from below. Recall that η ≤ u′γ ≤ u′β. Thus we see our expected change is negative

whenever the value v = ληN(u′γ+u′β) satis�es 1/v > log v. This occurs if

1 ≤ λ ≤ (1.8)η/(2r
2−1) = 1 +O(1/r2)

Setting λ = (1.5)η/(2r
2−1), the expected change in distance is at most −.2612/3n2 per

step. At last applying the path coupling theorem [17] gives the bound on the mixing

time,

τ(ε) ≤ 3n2 log(2n2ε−1)

.2612
= O(n2 log(nε−1)).
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