MINORS OF GRAPHS OF LARGE PATH-WIDTH

A Dissertation
Presented to
The Academic Faculty

Thanh N. Dang

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in
Algorithms, Combinatorics and Optimization

School of Mathematics
Georgia Institute of Technology

January 2018

Copyright (©) Thanh N. Dang 2018



MINORS OF GRAPHS OF LARGE PATH-WIDTH

Approved by:

Dr. Robin Thomas, Advisor
School of Mathematics
Georgia Institute of Technology

Dr. Sebastian Pokutta

School of Industrial & Systems
Engineering

Georgia Institute of Technology

Dr. Prasad Tetali
School of Mathematics
Georgia Institute of Technology

Dr. William T. Trotter
School of Mathematics
Georgia Institute of Technology

Dr. Xingxing Yu
School of Mathematics
Georgia Institute of Technology

Date Approved: January 9, 2018



To my parents.



ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Robin Thomas
for his constant support of my Ph.D. study, for his time, motivation, and immense knowl-
edge. Your help and guidance over the years have been invaluable to me. I could not have
imagined having a better advisor for my Ph.D. study.

Besides my advisor, I would like to thank Prof. Sebastian Pokutta, Prof. Prasad Tetali,
Prof. William T. Trotter, and Prof. Xingxing Yu for serving as my committee members. |
would like to thank Prof. Neil Robertson for being the reader of my thesis. I would also
like to thank Prof. Sebastian Pokutta for his guidance and support when I explored other
research directions.

Last but not the least, I would like to thank my parents and my girlfriend for their

endless love and support throughout writing this thesis and my life in general.

v



TABLE OF CONTENTS

TitlePage . . . . . . . i i i it i i i i et et et e e e e e e e
Acknowledgments . . . . . . . . .. i i ittt e e e e v
Tableof Contents . . . .. .. ..ttt ittt eennnens v
Listof Figures . . . . . . 0 i i i it i it i it i it ettt s oot o nonsoan vii
SUMMATY . & v v v i it e e o e et o ot o oo oo o oo oo oo sooeesoees viii
Chapter 1: Introduction and Background . . . . . ... .............. 1
1.1 Introduction . . . . . . . . . . . . . ... e 1
1.2 Basic concepts and terminology . . . . . . ... ..o 4
1.3 The necessity of the families . . . . ... ... ... ............ 7
1.4 DISCUSSION . . . . . . . o e e e e e e e e e 9
Chapter 2: A special tree decomposition . . . . .. ... ... ..., 12
2.1 Linked tree-decompositions . . . . . . . . . . .. ... 12
2.2 AQuasi-orderontrees . . . . . . .. ... e e e 14
2.3 A theorem about tree-decompositions . . . . . .. ... L. L. 18
Chapter 3: Minors of 2-connected graphs of large path-width . . . . . ... ... 27



3.1 Proofof Theorem 1.1.4 . . . . . . .. .. ... ... ... .. ...... 27
32 Cascades . . . . . . .. 29
33 OrderedCascades . . . . . .. .. .. . . . .. .. 35
34 Taming Linkages . . . .. .. ... ... .. ... .. ... 42
3.5 Proofof Theorem 1.1.3 . . . . . ... ... ... ... ... ... ... 53
Chapter 4: Minors of 3-connected graphs of large path-width . . . . . ... ... 58
4.1 Properties . . . . . . ... e e 58
42 Mainlemma . . . . . ..o 64
4.3 Reduced properties . . . . . . .. ..o 69
44 Proofof Theorem 1.1.5 . . . . . . .. ... ... ... ... ... ... 77
Chapter 5: Minors of 4-connected graphs of large path-width . . . . .. ... .. 82
S.1 Properties . . . . . . ... e e e e e 82
5.2 Mainlemma . . . . . . ..o e 89
5.3 Reduced properties . . . . . . . ... 99
54 Proofof Theorem 1.1.6 . . . . . ... .. ... ... ... ........ 109
References . . . . ... .. it ittt ittt tttneeeeas 116

vi



3.1

3.2

33

34

3.5

4.1

4.2

4.3

5.1

5.2

5.3

54

5.5

LIST OF FIGURES

First case of the construction of thepath R. . . . . . . ... ... ... .. 46
Second case of the construction of thepath k. . . . . . . . ... ... ... 47
Second pairwhen[; € B— Aandandm; € A—B.. ... ......... 48
Second pair when [;, m; € A and [;, m; € B for some distinct¢,j € B.. . . 49
The case when R(u,) is between R;(u;) and R;;(u1) and R(us) is between

Rj (UQ) and Rij(UQ) ............................... 51
Properties A7 form € {0,1,2,3}. ... ............... ... 60
7(t) has color (a,b) innforeveryt € V/(T3). . .. ... .. ... .. ... 74
~7(t) has color (a,cb) innforeveryt € V(TI5). . . . .. .. ... ... ... 75
Properties A7, form € {1,2,3,4}. .. ......... ... ... ... 85
ni, i, € Bandr &€ B. . ..o e 95
M connects P, (u1) and P, (uy). . . . o oo 96
JEAn, it o 97
Q;(uq) is disjoint from P, (u1) U P, (u1) U Py, (u1) U Py (wq). . . . . . .. 98

vil



SUMMARY

Let P be a graph with a vertex v such that P — v is a forest and let () be an outerpla-
nar graph. In 1993 Paul Seymour asked if every two-connected graph of sufficiently large
path-width contains P or () as a minor. Define g(H) as the minimum number for which
there exists a positive integer p(H ) such that every g(H )-connected H-minor-free graph
has path-width at most p(H ). Then g(H) = 0 iff H is a forest and there is no graph H with
g(H) = 1, because path-width of a graph G is the maximum of the path-widths of its con-
nected components. Let A be the graph that consists of a cycle (aq, as, as, a4, as, ag, a1 ) and
extra edges ajag, asas, asa;. Let Cs 5 be a graph of 2 disjoint triangles. In 2014 Marshall
and Wood conjectured that a graph /' does not have K4, K33, C3 5 or A as a minor if and
only if g(H) < 2. In this thesis we answer Paul Seymour’s question in the affirmative and
prove Marshall and Wood’s conjecture, as well as extend the result to three-connected and
four-connected graphs of large path-width. We introduce ‘“‘cascades”, our main tool, and
prove that in any tree-decomposition with no duplicate bags of bounded width of a graph
of big path-width there is an “injective” cascade of large height. Then we prove that every
2-connected graph of big path-width and bounded tree-width admits a tree-decomposition
of bounded width and a cascade with linkages that are minimal. We analyze those minimal
linkages and prove that there are essentially only two types of linkage. Then we convert the
two types of linkage into the two families of graphs P and (). In this process we have to
choose the “right” tree decomposition to deal with special cases like a long cycle. Similar

techniques are used for three-connected and four-connected graphs with high path-width.

viil



CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 Introduction

All graphs in this thesis are finite and simple; that is, they have no loops or parallel edges.
Paths and cycles have no “repeated” vertices or edges. A graph H is a minor of a graph
G if we can obtain H by contracting edges of a subgraph of G. An H minor is a minor
isomorphic to H. A tree-decomposition of a graph G is a pair (7', X'), where 7' is a tree

and X is a family (X; : ¢t € V(T')) such that:

(W1) Use v Xt = V(G), and for every edge of G with ends u and v there exists ¢ €
V(T) such that u,v € X, and

(W2) if t1,ts,t3 € V(T) and £, lies on the path in 7" between ¢; and ¢3, then X;, N X;, C
X,,.

The width of a tree-decomposition (7', X ) is max{|X;| — 1 : t € V(T)}. The tree-width of
a graph G is the smallest width among all tree-decompositions of G. A path-decomposition
of G is a tree-decomposition (7', X ) of G, where T is a path. We will often denote a path-
decomposition as (X7, X, ..., X,,), rather than having the constituent sets indexed by the
vertices of a path. The path-width of G is the smallest width among all path-decompositions
of GG. The concept of tree-width and path-width is useful in structural graph theory [19,
22, 23, 24, 25, 27], as well as in theory of algorithms and computation [1, 2, 8, 7, 26].

Robertson and Seymour [21] proved the following:

Theorem 1.1.1. For every planar graph H there exists an integer n = n(H) such that

every graph of tree-width at least n has an H minor.

Robertson and Seymour [20] also proved an analogous result for path-width:

1



Theorem 1.1.2. For every forest F, there exists an integer p = p(F’) such that every graph

of path-width at least p has an F minor.

Bienstock, Robertson, Seymour and Thomas [3] gave a simpler proof of Theorem 1.1.2
and improved the value of p to |V (F')| — 1, which is best possible, because K}, has path-
width £ — 1 and does not have any forest minor on & + 1 vertices. A yet simpler proof of
Theorem 1.1.2 was found by Diestel [12].

While Geelen, Gerards and Whittle [16] generalized Theorem 1.1.1 to representable
matroids, it is not a priori clear what a version of Theorem 1.1.2 for matroids should be,
because excluding a forest in matroid setting is equivalent to imposing a bound on the num-
ber of elements and has no relevance to path-width. To overcome this, Seymour [11, Open
Problem 2.1] asked if there was a generalization of Theorem 1.1.2 for 2-connected graphs
with forests replaced by two families of graphs. In [9] we answer Seymour’s question in

the affirmative:

Theorem 1.1.3. Let P be a graph with a vertex v such that P\v is a forest, and let () be an
outerplanar graph. Then there exists a number p = p(P, Q) such that every 2-connected

graph of path-width at least p has a P or () minor.

Theorem 1.1.3 is a generalization of Theorem 1.1.2. To deduce Theorem 1.1.2 from
Theorem 1.1.3, given a graph (G, we may assume that GG is connected, because the path-
width of a graph is equal to the maximum path-width of its components. We add one
vertex and make it adjacent to every vertex of (G. Then the new graph is 2-connected, and
by Theorem 1.1.3, it has a P or () minor. By choosing suitable P and (), we can get an F
minor in G.

Marshall and Wood [17] define g(H) as the minimum number for which there exists
a positive integer p(H ) such that every g(H )-connected graph with no H minor has path-
width at most p(H). Then Theorem 1.1.2 implies that g(H) = 0 iff H is a forest. There

is no graph H with g(H) = 1, because path-width of a graph G is the maximum of the



path-widths of its connected components. Let A be the graph that consists of a cycle
aja2a3a4a5a6a, and extra edges ajas, asas, asa;. Let C's o be the graph consisting of two

disjoint triangles. We prove the following, conjectured by Marshall and Wood [17]:
Theorem 1.1.4. A graph H has no K4, Ky 3, Cs 5 or A minor if and only if g(H) < 2.

Let P’ be a graph with two distinct vertices g, us such that P\ {u;, us} is a forest, @’
be a graph with a vertex v such that "\ {v} is an outerplanar graph, and R’ be a tree with a
cycle going through its leaves in order from the leftmost leaf to the rightmost leaf so that R’
is planar. Then Theorem 1.1.3 can be generalized to 3-connected graphs of high path-width

as follows.

Theorem 1.1.5. There exists a number p = p(P’, Q)', R') such that every 3-connected graph

of path-width at least p has a P’, ()" or R’ minor.

Let P” be a graph with three distinct vertices u, us, u3 such that P”\{uy, us, ug} is a
forest, )" be a graph with two distinct vertices w1, ws such that Q”\{w;, w,} is an outer-
planar graph, R” be R’ plus a vertex v such that v is adjacent to leaves of the tree in R/,
and S” be a planar graph that consists of an outerplanar graph with a cycle going through
its degree-2 vertices. Then Theorem 1.1.3 can also be generalized to 4-connected graphs

of high path-width as follows.

Theorem 1.1.6. There exists a number p = p(P",Q", R",S") such that every 4-connected

graph of path-width at least p has a P",Q", R" or S" minor.

Theorem 1.1.6 implies Theorem 1.1.5, which in turn implies Theorem 1.1.3, but we are
presenting these results separately, because most of the lemmas from the lower connectivity
cases are needed for the cases of higher connectivity.

The rest of the thesis is organized as follows. In the next sections, we introduce several
basic concepts and terminologies needed for the following chapters, prove that the families

of the graphs in the theorems above are necessary, and discuss several related conjectures.



In Chapter 2, we present our result in [10] that if a graph has a tree-decomposition of width
at most w, then it has a special tree-decomposition of width at most w with certain desirable
properties in Theorem 2.1.4. In Chapter 3, we prove Conjecture 1.1.4 follows from Theo-
rem 1.1.3 and use the special tree-decomposition in Chapter 2 to prove Theorem 1.1.3. In
Chapter 4 and Chapter 5, we use the same special tree-decomposition in Chapter 2 to prove

Theorem 1.1.5 and Theorem 1.1.6.

1.2 Basic concepts and terminology

Definition Let 4 > 0 be an integer. By a binary tree of height h we mean a tree with a
unique vertex r of degree two and all other vertices of degree one or three such that every
vertex of degree one is at distance exactly h from r. Such a tree is unique up to isomorphism
and so we will speak of the binary tree of height 4. We denote the binary tree of height
h by CT}, and we call r the root of C'T},. Each vertex in C'T}, with distance &k from r has
height k. We call the vertices at distance h from r the leaves of C'T},. If t belongs to the
unique path in CT}, from r to a vertex t' € V (1},), then we say that ¢’ is a descendant of t
and that ¢ is an ancestor of t'. If, moreover, ¢ and ¢’ are adjacent, then we say that ¢ is the
parent of t' and that ¢’ is a child of t.

Let Py be the graph consisting of C'T}, and a separate vertex that is adjacent to every

leaf of C'T},.

Definition Let O; be K3. An arbitrary edge of Q; will be designated as base edge. The
remaining vertex is called leaf. For ¢ > 2 the graph O, is constructed as follows: Now
assume that Q; ; has already been defined, and let ), and (> be two disjoint copies of
Q;_1 with base edges u;v; and usvs, respectively. Let T be a copy of K3 with vertex-set
{wy, wq, w} disjoint from @) and Q. The graph Q; is obtained from (); U Q3 U T' by
identifying u; with wy, us with ws, and v; and v, with w. The edge w,ws will be the base
edge of Q;, and the leaves of ()1 or (), will be the leaves of Q;.

A graph is outerplanar if it has a drawing in the plane (without crossings) such that
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every vertex is incident with the unbounded face. A graph is a near-triangulation if it is
drawn in the plane in such a way that every face except possibly the unbounded one is
bounded by a triangle.

Let H and G be graphs. If G has an H minor, then to every vertex u of H there

corresponds a connected subgraph of GG, called the node of u.

Definition For any positive integer k, let T' be C'T}, after contracting its root and two
children of the root to one vertex. let P, be 7" plus two distinct vertices each adjacent to
the leaves of 7. Let Q) be Oy, plus a vertex adjacent to its leaves. Let R} be 7" plus a cycle

going through its leaves in order from the leftmost leaf to the right most leaf.

Definition By a ternary tree of height h we mean a tree whose vertices have degree one or
four such that there exists a vertex r of degree four such that every vertex of degree one is
at distance exactly h from a vertex r. For any positive integer k, let P;’ be a ternary tree of
height k plus three distinct vertices each adjacent to the leaves of the tree. Let Q) be Oy
plus two distinct vertices adjacent to its leaves. Let R} be a ternary tree of height % plus a
cycle going through its leaves in order from the leaftmost leaf to the rightmost leaf and a
vertex adjacent to every leaf of the ternary tree. Let S; be a planar graph consisting of Qy,

and a cycle going through its leaves.

Let T, T" be trees. A homeomorphic embedding of T into T" is a mapping n : V(T') —
V(T") such that

e 7)1s an injection, and

e if {tq,tty are edges of 7" with a common end, and P; is the unique path in 7" with

ends 7(t) and 7(¢;), then P; and P, are edge-disjoint.

We will write n : T" < T” to denote that 7 is a homeomorphic embedding of 7" into 7".
For every integer h > 1 we will need a specific type of tree, which we will denote by

T},. The tree T}, is obtained from C'T}, by subdividing every edge not incident with a vertex
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of degree one exactly once, and adding a new vertex r’ of degree one adjacent to the root r
of C'T},. The vertices of T}, of degree three will be called major, and all the other vertices
will be called minor. We say that r is the major root of T}, and that 1’ is the minor root of
T},. Each major vertex at distance 2k from r has height k, and each minor vertex at distance
2k from '’ has height k.

If ¢ belongs to the unique path in 7}, from 7’ to a vertex ¢’ € V (7},), then we say that ¢’ is
a descendant of t and that t is an ancestor of t'. If, moreover, ¢t and ¢’ are adjacent, then we
say that ¢ is the parent of t' and that ¢’ is a child of t. Thus every major vertex ¢ has exactly
three minor neighbors. Exactly one of those neighbors is an ancestor of ¢. The other two
neighbors are descendants of ¢t. We will assume that one of the two descendant neighbors
is designated as the left neighbor and the other as the right neighbor. Let ty, 1,15 be the
parent, left neighbor and right neighbor of ¢, respectively. We say that the ordered triple
(to,t1,t2) is the trinity at t. In case we want to emphasize that the trinity is at ¢, we use the
notation (¢o(t),t1(t), t2(t)).

Let h, ' be integers. We say that a homeomorphic embedding ~ : T}, < T}, is mono-

tone if

e {is a major vertex of T}, with trinity (¢, to, t3), then (¢3) is the left neighbor of (%)

and (t3) is the right neighbor of (t), and
e the image under v of the minor root of 7}/ is the minor root of 7},.

Let G be a graph, let v € V(G) and for i = 1,2, 3 let P; be a path in G with ends v and
v; such that the paths Py, P», P; are pairwise disjoint, except for v. Assume that at least two
of the paths P, have length at least one. We say that P, U P, U Pj is a tripod with center v
and feet vy, vo, V3.

Let T be a tree. If t1,t, € V(T), then by t;Tt; we denote the unique path in 7" with

ends t; and ¢, and by T'[t;, t2] we denote the vertex-set of ¢;7t,.



1.3 The necessity of the families

The families of graphs in Theorem 1.1.3, Theorem 1.1.5, and Theorem 1.1.6 are necessary.
To show this, for each R € {P,Q, P',Q’, R, P",Q", R",S"}, let F be the set of minors
of the graphs having form R. We need to show that Fr, Z F, for all distinct Ry, Ry €
{P,Q}, Fr, € Fg, for all distinct Ry, Ry € {P',Q)', R'}, and Fr, Z Fp, for all distinct
Ry, Ry € {P",Q",R", S"}.

For Theorem 1.1.3, Ky 3 € Fp but Ky 3 & Fiy because () is outerplanar. Also, 3o €
Fg but Cs5 € Fp because every cycle in P shares a common vertex. Therefore we need
both families of graphs P and ().

For Theorem 1.1.5, there are two vertices u,v € V(P’) such that for every cycle C
in P/, V(C) N {u,v} # 0, and there are some @’ containing three disjoint cycles, so
Fo € Fpr. The graph Q' is always planar but K33 € Fpr, so Fpr € Fg. Similarly, R’ is
planar so Fpr € Fpg/, and some R’ has three disjoint cycles as a subgraph, so Frr € Fpr.
There is no vertex in R/, whose removal makes the remaining graph outerplanar, but there
is such a vertex in every ()’, so R}, ¢ F and therefore, Fpr € Fr. We will show that
Q) is not a minor of any R'. In fact, assume there exists R’ such that Q) is a minor of
R'. For every u € V(Q)), denote the vertex set of the node of v in R" as N(u). Let the
base edge of Q) be v1v and v € V(Q)) be the only vertex adjacent to both v; and vs. Let
VU304, V2U5Ug be the two K3 in Q) such that vy, v are leaves of the Q4 in Q. Let v7vgvg
be another K3 in Q) such that {v7, vg, vg} is disjoint from {v, vy, ve, v3, vy, U5, Vs } and vy is
a leaf of the Q4 in Q). Let r € V(Q)) be the vertex adjacent to the leaves of the Q, in Q).
Let 7" and C' be the tree and the cycle in R’ as in the definition of R’. Because R'\ E(C)
is acyclic, there exist a; € N(vy) U N(v3) U N(vy), az € N(v2) U N(v5) U N(vg), and
az € N(v7) U N(vs) U N(vg) such that aj, as,a3 € V(C). Also, there exist b € N(v)
and ¢ € N(r) and paths Py, Py, P3,Q1,Q2, Q3 in R’ such that P; is from a; to b for all

i € {1,2,3}, Q; is from a; to ¢ for all i € {1,2,3}, P, P, P; are internally disjoint,



(1, Q2, Q3 are internally disjoint, and P, and (); are disjoint for all distinct 7, j € {1, 2, 3}.
However, this is impossible because when drawn in a plane, R\ E(C) is planar and lies
only in one of the two faces created by C. Hence, Q) ¢ Fp and that means Fiyy  Fip.
For Theorem 1.1.6, there are three vertices u, v,w € V(P") such that for every cycle C'
in P, V(C)N{u,v,w} # 0, and there are some Q”, R”, S” containing four disjoint cycles
as a subgraph, so Fopr € Fpn, Frn € Fpr, and Fsv ¢ Fpr. The graph K33 is a minor
of some P” but R” and S” are planar, so Fp» € Frsand Fpr ¢ Fgr. Similarly, Kj 3 is
a minor of some Q”, so For ¢ Frr and Fv € Fgr. The graph K, 4 is a minor of some
P" but is not a minor of any (), so Fp» € Fg». There are no two vertices in R} whose
removal makes the remaining graph outerplanar, but there are such two vertices in every
Q", so R} ¢ Fgr and therefore, Frw  Fgr. Similarly, there are no two vertices in Sy
whose removal makes the remaining graph outerplanar, but there are such two vertices in
every ", so 8§ ¢ Fgr and therefore, Fis» € Fy». The graph S7 is not a minor of any R”.
In fact, assume S7 is a minor of some R”. Let v € V(R") be the vertex that is adjacent to
every leaf of the tree in R”. Let H be the disjoint union of two Q/, then H is a minor of S7,
so H is a minor of R”. This implies Q/ is a minor of R”\v, which has form R'. But from
above Q) is not a minor of any R’, so this is a contradiction. Hence, S7 ¢ Fr» and that
means Fs» ¢ Frv. The graph RY is not a minor of any S”. In fact, assume R is a minor
of some S”. Let C be the cycle as in the definition of S”. Let u be the root of the tree in R’
and v be the vertex that is adjacent to every leaf of the tree in RY. Let Hy, Hy, Hs be three
graphs isomorphic to K, and let H be the disjoint union of H;, Hy, H3. Then Rj\{u, v}
has an H minor. For x € V(RY), let N(z) be the vertex set of the node of = in S”. Because
S"\E(C) is outerplanar, there exist r; € V(H;) and a; € N(r;) for all i € {1,2,3} such
that a; € V(C) for all i € {1,2,3}. Also, there exist b € N(u) and ¢ € N(v) and paths
Py, Py, P3, Q1,Q2, Q3 such that P; is from a; to b for all i € {1,2,3}, Q; is from q; to
cforalli € {1,2,3}, Py, P,, Ps are internally disjoint, ()1, @2, Q)3 are internally disjoint,

and P, and @); are disjoint for distinct 7, j € {1,2, 3}. However, this is impossible because



S"\E(C) is planar and lies only in one of the two faces created by C'. Hence, R} ¢ Fl»

and that means Frv € Fgn.

1.4 Discussion

A family F of graphs is closed under minors if for every graph G € F, every graph
isomorphic to a minor of G is also in F. A family of graphs H is called a list of excluded
minors of a family F of graphs if for every graph GG we have that G € F if and only if G
does not have a minor isomorphic to any graph in H. It is easy to see that every family of
graphs that is closed under minors can be characterized by a list of excluded minors. The

Graph Minor Theorem of Robertson and Seymour [27] states that this list is finite.

Theorem 1.4.1. Every family of graphs that is closed under minors can be characterized

by a finite list of excluded minors.

Define 7, = {H : g(H) < [}, where the function g is defined prior to Theorem 1.1.4. Tt
is easy to see that 7; is closed under minors, so by the Graph Minor Theorem, we can char-
acterize these classes of graphs by a finite list of excluded minors. From Theorem 1.1.2,
the only excluded minor of 7y and 77 is K3. From Theorem 1.1.4, the list of excluded mi-
nors for 75 is { K4, K5 3,C52, A}. We can also characterize 73 and 73 by excluded minors.
For 73, the list of these minors will be the union of the three lists of excluded minors of
Fpr, F, and Fr. The excluded minors of the graphs in F'p are the excluded minors of the
class of graphs with minimum feedback vertex set size at most 2. In [6] there is a complete
list of these minors. The graphs in Fy can be characterized by the minors that do not have
a vertex whose removal makes them outerplanar. We have found over 35 of such minors.
The list of excluded minors of F'z is not known yet.

One related question is the general problem of Theorem 1.1.3 for a-connected graphs,
where a > 5. For this, we are interested in finding a list of families of graphs that are

a-connected and have large path-width when £ is large, like (Pj, Q) in Theorem 3.5.1. If



we know this, then we can determine H € 7, or not for any graph H. As shown above,
the families of graphs for the cases a < 4 are based on the binary tree and the outerplanar
graph, but this might be not true for general a. Also, there is no planar graph in the list when
a > 6, so we cannot use Theorem 1.1.1 to limit the tree-width of the graph G' anymore.
For this, one can expect to use other techniques such as in [4] to deal with graphs of large
tree-width.

The authors in [5] proved that for any positive integers k,w,a (a > 3), there exist
n = n(k,w) and ¢ = c(a) such that every c-connected graph G of tree-width at most w
and of order at least n contains K, ; as a minor. Their proof used c(a) = 2a + 1 fora = 3,
and c(a) = 264a + 1 for a > 4. The first part of their proof was to find a homeomorphic
embedding of a path into tree 7" of a chosen tree decomposition (7', X') of GG, such that the
underlying subgraph of GG formed by the union of bags on this path satisfies some special
conditions. This is similar to what we did in our proof of Theorem 1.1.3, but we relied on a
path-decomposition and can get a binary tree instead of a path. Therefore, we can get more
structure of the underlying subgraph. The authors of [5] asked if ¢(a) can be reduced to

2a + 1:

Conjecture 1. For any positive integers a, k, there exists a number N (a, k) such that every

(2a + 1)-connected graph G on at least N (a, k) vertices contains K, as a minor.

A similar problem but with extra conditions on the tree-width and path-width might be

related to our results:

Conjecture 2. For any positive integers k,w,a (a > 4), there exists p = p(k,w,a) such
that every (2a + 1)-connected graph of tree-width at most w and path-width at least p

contains K, j as a minor.

The conditions will help us get a homeomorphic embedding as in our proof for Theo-
rem 1.1.3. If we can handle Conjecture 2, again we can use the techniques as in [4] to deal

with graphs of large tree-width or small path-width to tackle Conjecture 1. The number
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c¢(a) cannot be smaller than 2a + 1 in Conjecture 1, because in [5] the authors show an infi-
nite sequence of 2a-connected graphs without a K, 5,41-minor. For Conjecture 2, it is not
known ¢(a) can be smaller than 2a + 1 or not. If Conjecture 2 is also true when we remove
the tree-width condition, then g(K, ;) < 2a + 1. We have g(K ;) = 0 because K 4 is a
tree. From a result of Ding [14], we can imply g(K> ) = 3. So another related question is

whether 2a + 1 is the right bound for ¢g(/, ;)? We made the following conjecture:
Conjecture 3. For every integers a > 1 and k > a, g(K, ) = a+ 1.

We have g(K3) = 2. From above and a result of Dirac [15], we have g(K,) = 3.
It is known [18] that every large enough (a + 1)-connected graph has a K, minor, so
g(K,) < a+ 1. For a > 5, we can also construct a large path-width a-connected graph
such that it has a — 5 vertices whose removal make it planar. This means g(K,) > a for
a > 5. So we have g(K,) = a + 1 for every a > 5. Define 7(H) as the size of a minimum
feedback vertex set of the graph H. Then it is easy to see that g(H) > 7(H) + 1. Then we

are also interested in the following question:

Open problem 1. Is there an upper bound on g(H) that is a function of T(H)?
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CHAPTER 2
A SPECIAL TREE DECOMPOSITION

The chapter is organized as follows. In the next section we review known results about
tree-decompositions and state our main result, Theorem 2.1.4. In Section 2.2 we introduce
a linear quasi-order on the class of finite trees and prove a key lemma—Lemma 2.2.5. In

Section 2.3 we prove Theorem 2.1.4, which we restate as Theorem 2.3.8.

2.1 Linked tree-decompositions

In this section we review properties of tree-decompositions established in [19, 28], and
state our main result. The proof of the following easy lemma can be found, for instance, in

[28].

Lemma 2.1.1. Let (T,Y") be a tree-decomposition of a graph G, and let H be a connected
subgraph of G such that V(H) NY;, # 0 # V(H) NY,,, where t1,t, € V(T). Then
V(H)NY, # 0 for everyt € V(T) on the path between t; and ty inT.

A tree-decomposition (7', Y") of a graph G is said to be linked if

(W3) for every two vertices t1,%, of 1" and every positive integer k, either there are k
disjoint paths in GG between Y;, and Y;,, or there is a vertex ¢ of 7" on the path between

t1 and ¢, such that |Y;| < k.

It is worth noting that, by Lemma 2.1.1, the two alternatives in (W3) are mutually exclusive.

The following is proved in [28].

Lemma 2.1.2. If a graph G admits a tree-decomposition of width at most w, where w is

some integer, then G admits a linked tree-decomposition of width at most w.

12



Let (7,Y") be a tree-decomposition of a graph G, let ty € V(T'), and let B be a compo-
nent of T'\ty. We say that a vertex v € Y}, is B-tied if v € Y, for some t € V(B). We say
that a path P in G is B-confined if |V (P)| > 3 and every internal vertex of P belongs to

U Y:—Y,,. We wish to consider the following three properties of (7, Y):
teV(B)

(W4) if t, ¢’ are distinct vertices of T, then Y; # Yy,

(W5) ifto € V(T') and B is a component of T'\tg, then |J Y; —Y;, # 0,
teV(B)

(W6) if ty € V(T'), B is a component of T'\ty, and u, v are B-tied vertices in Y;,, then

there is a B-confined path in G between u and v.

The following strengthening of Lemma 2.1.2 is proved in [19].

Lemma 2.1.3. Ifa graph G has a tree-decomposition of width at most w, where w is some

integer, then it has a tree-decomposition of width at most w satisfying (W1)—(W6).

We need one more condition, which we now introduce. Let 1" be a tree. A triad in T is
atriple t1, 19, t3 of vertices of 1" such that there exists a vertex ¢ of 7', called the center, such
that t1, t5, t3 belong to different components of 7'\¢t. Let (7', V) be a tree-decomposition
of a graph G, and let t1,ty,t3 be a triad in 7" with center t,. The torso of (T, W) at
t1,t9,t3 is the subgraph of G induced by the set | J W, the union taken over all vertices
t € V(T) such that either t € {t1,t2,%3}, or for all i € {1,2,3}, the vertex ¢ belongs
to the component of T'\¢; containing ty. We say that the triad t1, t5, t3 is W-separable if,
letting X = W;, N W,, N W,,, the graph obtained from the torso of (7', W) at ¢y, t9, t3 by
deleting X can be partitioned into three disjoint non-null graphs H;, Hy, H3 in such a way
that for all distinct ¢, j € {1,2,3} and all t € T'[t;, o], |V (H;) N Wi > [V (H;) N Wy, | =
Wy, — X|/2 > 1. (Let us remark that this condition implies that |[W, | = |W,,| = [Wy,|
and V(H;) N W,, = 0 for i = 1,2,3.) The last property of a tree-decomposition (7', V)

that we wish to consider is
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(W7) if t1,%9,13 is a W—separable triad in 7" with center ¢, then there exists an integer

1 E€ {1, 2,3} with Wti N Wt — (th N Wt2 N Wt3> 7£ Q)
The following is our main result.

Theorem 2.1.4. If a graph G has a tree-decomposition of width at most w, where w is

some integer, then it has a tree-decomposition of width at most w satisfying (W1)—-(W7).

2.2 A Quasi-order on trees

A quasi-ordered set is a pair (Q), <), where @) is a set and < is a quasi-order; that is, a
reflexive and transitive relation on Q. If ¢, ¢ € Q we define ¢ < ¢’ to mean that ¢ < ¢’ and
q¢ £ q. We say that ¢, ¢’ are <-equivalent if ¢ < ¢’ < q. We say that (Q, <) is a linear
quasi-order if for every two elements ¢, ¢’ € @ either ¢ < ¢’ or ¢ < q or both. Let (@, <)
be a linear quasi-order. If A, B C () we say that B <-dominates A if the elements of A can
be listed as a; > ay > - -+ > a;, and the elements of B can be listed as by > by > --- > b,
and there exists an integer p with 1 < p < min{k,[} such that a; < b; < a; for all

i=1,2,...,p, and either p < min{k,{} and ay; < by41,0rp =Fkand k <.

Lemma 2.2.1. If (Q, <) is a linear quasi-order, then <-domination is a linear quasi-order

on the set of subsets of Q).

Proof. It is obvious that <-domination is reflexive. Assume that B <-dominates A and C'
<-dominates B. Assume that the elements of A can be listed as a; > ay > --- > ay, the
elements of B can be listed as by > by, > --- > by, and the elements of C' can be listed as
¢y > ¢ > -+ > ¢y, By definition, there exists an integer p; with 1 < p; < min{k, [} such
that a; < b; < a; foralli = 1,2,...,p;, and either p; < min{k, [} and ap,+1 < by, 41, Or
p1 = k < [; and there exists an integer p, with 1 < py < min{l, m} such that b, < ¢; < b;
forall i = 1,2,...,ps, and either p» < min{l,m} and b,,11 < Cp,41, Or ps =1 < m.
Let p = min{py,p2}. Thena; < ¢; < a; foralli = 1,2,... p. If either p; < min{k, [}

and ap,+1 < bp,41, or pp < min{l,m} and b,,11 < ¢p,41, then p < min{k, m} and
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ap1 < Cpp1. If pr = k < land p; =1 < m, then p = k < m. Therefore, C' <-dominates
A, and so <-domination is transitive.

Now let A, B be as above, and let p be the maximum integer such that p < min{k, [}
and a; < b; < q;foralli =1,2,...,p. Thenif p < min{k, [}, then A <-dominates B if
ap+1 > byr1 and B <-dominates A if a,; < b,y1. If p = min{k, [} then A <-dominates

Bif k >l and B <-dominates A if k¥ < [. Hence, <-domination is linear. O

We say that B strictly <-dominates A if B <-dominates A in such a way that the
numberings and integer p can be chosen in such a way that either p < min{k,[}, orp = k

and k < [.

Lemma 2.2.2. Let (Q), <) be a linear quasi-order, let A, B C ), and let B <-dominate A.

Then B strictly <-dominates A if and only if A does not <-dominate B.

Proof. Let p be as in the definition of B <-dominates A. Then p < min{k,(} and a,; <
by+1, 0r p =k < l. Assume B strictly <-dominates A. If p < min{k,(} then a,+1 < b,41,
so A does not <-dominate B. If p = k < [ then A also does not <-dominate B. Conversely,
if A does not <-dominate B, then p < min{k,l} or k < [, so B strictly <-dominates

A. ]

Let G be a graph and let P be a subgraph of G. By a P-bridge of G we mean a subgraph
J of GG such that either

e J is isomorphic to the complete graph on two vertices with V(J) C V(P) and

E(J)NE(P)=0,or

e J consists of a component of G — V' (P) together with all edges from that component

to P.

We now define a linear quasi-order < on the class of finite trees as follows. Let n > 1
be an integer, and suppose that 7' < T” has been defined for all trees 7" on fewer than n

vertices. Let 7" be a tree on n vertices, and let 7" be an arbitrary tree. We define 7' < 7" if
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either |V(T)| < |V(T")|, or |V(T')| = |V (T")| and for every maximal path P’ of 7" there
exists a maximal path P of T" such that the set of P’-bridges of 7" <-dominates the set of
P-bridges of T'. It follows from Lemma 2.2.3 below that < is indeed a linear quasi-order;
in particular, it is well-defined.

If T, 7" are trees, P is a path in 7" and P’ is a path in 7" we define (7', P) < (1", P') if
either |V (T)| < |[V(T")

,or |[V(T)| = |V(T")| and the set of P’-bridges of 7" <-dominates
the set of P-bridges of 7.

Lemma 2.2.3. (i) For every tree T there exists a maximal path P(T) in T such that
(T, P(T)) = (T, P) for every maximal path P in T.
(ii) For every two trees T, T, we have T < T" if and only if (T, P(T")) < (17", P(T")).

(iii) The ordering < is a linear quasi-order on the class of finite trees.

Proof. We prove all three statements simultaneously by induction. Let n > 1 be an integer,
assume inductively that all three statements have been proven for trees on fewer than n
vertices, and let 7" be a tree on n vertices.

(1) Statement (i) clearly holds for one-vertex trees, and so we may assume that n > 2.
Let BB be the set of all P-bridges of T for all maximal paths P of 7. Then every member
of B has fewer than n vertices, and hence B is a linear quasi-order by < by the induction
hypothesis applied to (iii). By Lemma 2.2.1 the set of subsets of B is linearly quasi-ordered
by <-domination. It follows that there exists a maximal path P(7") in T" such that the set
of P(T)-bridges of T'is minimal under <-domination.

(ii) The statement is obvious when |V (T")| # |V(T")|, so assume n = |V(T')| = |[V(T")|,
and let B be the set of all P-bridges of 7" for all maximal paths P of 7" and the set of all
P’-bridges of T” for all maximal paths P’ of 7”. Then as in (i) the subsets of B are linearly
quasi-ordered by <-domination. If 7" < 7", then by definition there exists a maximal path
P of T such that (T, P) < (1", P(T")). Hence (T, P(T))) < (17", P(T")) follows from (i).
If (T, P(T))) < (1", P(T")), then by (i) (T, P(T))) = (1", P') for every maximal path P’
inT,soT <T.
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(iii) Let 7" and 7" be two trees. We may assume that n = |[V(T')| = |V(T")|. Let B
be as in (ii); then subsets of B are linearly quasi-ordered by <-domination. Then either

(T, P(T)) < (T", P(T")) ot (T", P(T")) < (T, P(T)), and so by (ii) < is linear. O

For a tree T, the path P(7T") from Lemma 2.2.3(i) will be called a spine of T'. For later

application we need the following lemma.

Lemma 2.2.4. Let T, T’ be trees on the same number of vertices, let P' be a spine of T",
and let P be a path in T. If the set of P'-bridges of T' strictly <-dominates the set of
P-bridges of T, then T < T".

Proof. We have (T, P) < (1", P’) and (1", P') A (T, P) by Lemma 2.2.2. Let P, be a
maximal path that contains P; then (T, P,) = (T, P). Therefore, (T, P;) = (T’, P') and
(T",P") £ (T, Py). By Lemma 2.2.3(1), (T, P(T)) < (T, P,) =X (T",P’) and (1", P") £
(T, P(T)). By Lemma 2.2.3(ii), 7' < 7" and 7" £ T'. Therefore, T' < T". O

By a rank we mean a class of <-equivalent trees. If 7 is a rank we say that 7' has rank
r or that the rank of T'is r if T' € r. The class of all ranks will be denoted by k.
Let T" be a tree, and let ¢ be a vertex of T". By a spine-decomposition of 7' relative to ¢

we mean a sequence (1y, Py, 11, P, ..., T}, P,) such that
i) To =T,
(ii) fori =0,1,...,l, P; is a spine of T}, and
(iii) fori=1,2,...,l,t ¢ V(P;_1) and T; is the P,_;-bridge of T;_; containing t.

Lemma 2.2.5. Let T be a tree, let t be a vertex of T of degree three with neighbors t', t}, t5,
and let (Ty, Py, Ty, Py, ..., ), P)) be a spine-decomposition of T relative to t with t €
V(P,). Then exactly two of t', ty, t§ belong to V (P,), say t and t},. Let r3, 1% be adjacent
vertices of T' such that rs, 15,15, t occur on a path of T' in the order listed. Thus possibly

th = 1}, but ty # rs3. Let T' be obtained from T by subdividing the edge r3r’ twice (let
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rh,ry’ be the new vertices so that v, 145,14’ 3 occur on a path of T' in the order listed),

deleting the edge tt|, contracting the edges tt, and tt; and adding an edge joining t| and

4. Then T" has strictly smaller rank than T.

Proof. Let T) = T" and for i = 1,2,...,[, let T/ be the P,_;-bridge of 7 ; containing
ry’. Let P’ be the unique maximal path in 77 with V(P) — {¢,t5} U {r;} C V(P").
From the definition of a spine-decomposition and the fact that t5 ¢ V(P,) we deduce that
rs € V(T;) forall i = 0,1,...,1. It follows that r3 € V(7}) and |V (T;)| = |V (1})] for
all i = 0,1,...,l. The P,-bridge of 7 that contains r3 is replaced by P’-bridges of 7}
with smaller cardinalities. Other P;-bridges of 7} are unchanged in 7”. Therefore, the set
of P,-bridges of 7; strictly <-dominates the set of P’-bridges of 7}, and hence 7] < T} by
Lemma 2.2.4. This implies, by induction on [ — ¢ using Lemma 2.2.4, that 7] < 7; for all

1=20,1,...,[; thatis, 7" has smaller rank than 7. O]

2.3 A theorem about tree-decompositions

Let (T,Y) be a tree-decomposition of a graph G, let n be an integer, and let  be a rank.
By an (n,r)—cell in (T,Y) we mean any component of the restriction of 7" to {t € V(T) :
|Y;| > n} that has rank at least r. Let us remark that if KX is an (n,r)-cell in (7',Y") and
r > 1/, then K is an (n,r’)-cell as well. The size of a tree-decomposition (7,Y") is the

family of numbers

(1) (@pyr:mn>0,7€R),

where a,, . is the number of (n,r)-cells in (7, Y"). Sizes are ordered lexicographically; that

is, if

2) (bur i1 > 0,7 €R)
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is the size of another tree-decomposition (R, Z) of the graph G, we say that (2) is smaller
than (1) if there are an integer n > 0 and a rank » € R such that a,,, > b, , and a,; ,» =

b, whenever either n’ > n, orn’ =n and r’ > r.

Lemma 2.3.1. The relation “to be smaller than” is a well-ordering on the set of sizes of

tree—decompositions of G.

Proof. Since this ordering is clearly linear, it is enough to show that it is well-founded.
Suppose for a contradiction that {(aﬁf} :n>0,r € R)}Zl is a strictly decreasing se-
quence of sizes, and for7 = 1,2, ..., let n;, r; be such that agfi),” > a%ﬁ) and agf,)r = a%t”
for (n,r) such that either n > n;, or n = n; and r > r;. Since a,(ll} =0 forall r € R and
all n > |V(G)|, we may assume (by taking a suitable subsequence) that n; = ny = -+,
and that r; < ry < r3 < ---. Since clearly ag)?« > a?, for all n > 0, all » < 7" and all

n,r’

1=1,2,..., we have

aD 5@ >a@ S B B

ni,ri ni,ry — Tn2,r2 n2,r2 — TN3,r3

a contradiction. L]

We say that a tree-decomposition (7', W) of a graph G is minimal if there is no tree-de-

composition of GG of smaller size.

Lemma 2.3.2. Let w be an integer, and let G be a graph of tree-width at most w. Then
a minimal tree-decomposition of G exists, and every minimal tree-decomposition of G has

width at most w.

Proof. The existence of a minimal tree-decomposition follows from Lemma 2.3.1. If G
has a tree-decomposition of width at most w, then every minimal tree-decomposition has

width at most w, as desired. U]

Theorem 2.3.3. Let (T, W) be a minimal tree-decomposition of a graph G. Then (T, W)

satisfies (W1)—(W6).
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Proof. That (T, W) satisfies (W3) is shown in [28], and that it satisfies (W4), (W5) and
(W6) is shown in [19]. Let us remark that [19] and [28] use a slightly different definition
of minimality, but the proofs are adequate, because a minimal tree-decomposition in our

sense is minimal in the sense of [19] and [28] as well. L]

Lemma 2.3.4. Let (T, W) be a minimal tree-decomposition of a graph G. Then for every
edge tt' € E(T) either W, C Wy or Wy C W,

Proof. Assume for a contradiction that there exists an edge tt' € E(T) such that W, € Wy
and Wy, & W,. Let R be obtained from 7" by subdividing the edge ¢¢’ and let " be the new
vertex. Let Yiv = W, N Wy and Y, = W, forallr € V(T'),and let Y = (Y, : r € V(R)).
Then (R,Y) is a tree-decomposition of G' with smaller size than (7', W), contrary to the

minimality of (7', V). O]

Lemma 2.3.5. Let (T, W) be a minimal tree-decomposition of a graph G, lett € V(T), let
X C W, let B be acomponent of T\t, lett' be the neighbor of t in B, let Y = UTGV(B) W,
and let H be the subgraph of G induced by Y U W,. If H\X = H, U Hy, where V(H;) N
V(Hy) = () and both of V(H,), V (H,) intersect Wy, then either Wy — X C W, NV (H;)
orWy — X CW, NV (Hs).

Proof. We first prove the following claim.
Claim 2.3.5.1. Either W,N Wy — X CV(Hy) or WyN Wy — X C V(H,).

To prove the claim suppose for a contradiction that there exist vertices v; € W; N Wy N
V(Hy) and v, € W;NWu NV (H;). Thus both v, and v, are B-tied, and so by (W6), which
(T, W) satisfies by Theorem 2.3.3, there exists a B-confined path ) with ends v; and vs.
Since () is B-confined, it is a subgraph of H\ X, contrary to the fact that V (H;)NV (Hs) =
() and H, U Hy = H\X. This proves Claim 2.3.5.1.
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Since both of V' (H;), V(H,) intersect W;, Claim 2.3.5.1 implies that W; ¢ W, and
hence W, C W, by Lemma 2.3.4. By another application of Claim 2.3.5.1 we deduce that
either Wy, — X C W, NV (H;) or Wy — X C W, NV (Hs), as desired. O

Lemma 2.3.6. Let k > 1 be an integer, let (T, W) be a minimal tree-decomposition of
a graph G, let t1,ty € V(T), let X = Wy, N Wy, let H be the subgraph of G induced
by |UW,, the union taken over all vertices t € V(T) such that either t € {ty,t2}, or for
i = 1,2 the vertex t belongs to the component of T'\t; containing t3_;, let H\X = H,UHo,
where V (H,) NV (Hs) = 0, and assume that |W;, NV (H,)| = k and |W, NV (H;)| > k
foralli,j € {1,2} and all t € T[ty,ts). Let t,t' be two adjacent vertices on the path
of T between t| and to. Then there exists an integer i € {1,2} such that W, NV (H;) =
Wy NV (H;) and this set has cardinality k.

Proof. We begin with the following claim.
Claim 2.3.6.1. For everyt € Tty,ts] either Wy NV (Hy)| = k or Wy NV (Hs)| = k.

To prove the claim let R be the subtree of 7" induced by vertices r € V(7') such that either
r € {t1,t2} or r belongs to the component of 7\ {t1, ¢, } that contains neighbors of both t;
and o, let Ry, Ry be two isomorphic copies of R, and for r € V(R) let r; and 1, denote the
copies of 7 in R; and Ry, respectively. Assume for a contradiction that there is ty € T'[ty, to]
such that |W;, N V(H;)| > k for all i € {1,2}, and choose such a vertex with ¢, € V(R)
and |3, | maximum. We construct a new tree-decomposition (77, W) as follows. The tree
T" is obtained from the disjoint union of 7\(V(R) — {t1,t2}), Ry and R, by identifying
t1 with (¢1)1, (t2)1 with (¢1)2 and (¢2)2 with t5 (here (¢1)2 denotes the copy of ¢; in Ry and

similarly for the other three quantities). The family W’ = (W} : t € V(T")) is defined as
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follows:

;

W, ift € V(T) = V(R)
(WTQV(Hl)) U (th ﬁV(HQ)UX ift:T1 forr € T[tl,tg]
Wi =q(W,NV(H,))UWy, NV(H)UX ift=r,forre T[t,ts]

WT N V(HI) ift = ™ forr € V(R) — T[tl,tg]

W, NV (H,) ift =ryforr € V(R) — T[ty, ts]

Please note that the value of W/ is the same for ¢ = (¢5); and ¢t = (t1)2, and hence W’
is well-defined. Since no edge of G has one end in V' (H;) and the other end in V' (H), it
follows that (7", W) is a tree-decomposition of G.

We claim that the size of (7", W) is smaller than the size of (7, W). Indeed, let ny =
Wi, |, andlet Z = {t € V(T") : |W]| > no}. Then ng > 2k + | X|. We define a mapping
f:Z—=>V(T)by f(t)=tfort € Z—V(Ry) —V(R2), f(r1) = r forr € V(R) such that
ry € Z and f(ry) = r for r € V(R) such that o, € Z. We remark that the vertex obtained
by identifying (t5); with (¢;)2 does not belong to Z, and hence there is no ambiguity. Then

Z and f have the following properties:
o Wyl > |W{|foreveryt € Z,
e forr € V(R), at most one of 1, 7, belongs to Z, and

e (to)1,(to)2 € Z

These properties follow from the assumptions that |W,, NV (H,)| = k and |W, NV (H;)| >
k for all i,5 € {1,2} and all t € T'[t;,ts]. (To see the second property assume for a
contradiction that for some » € V(R) both r; and ry belong to Z. Then ny = |W;,| >
Wreol = [W,| > no, by the maximality of |1V, | and the first property, and so equality
holds throughout, contrary to the construction.) It follows from the first two properties

that f maps injectively (n, r)-cells in (7", W) to (n,r)-cells in (7', W) for all n > ny and
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all ranks 7. On the other hand, the third property implies that, letting r; denote the rank
of one-vertex trees, no (ng, r1)-cell in (7", W’) is mapped onto the (ng, r1)-cell in (T, W)
with vertex-set {¢o}. Thus the size of (7", W) is smaller than the size of (7, W), contrary

to the minimality of (7", ). This proves Claim 2.3.6.1.

Now let ¢,t" € T[ty, o] be adjacent. By Lemma 2.3.4 we may assume that W, C W.
Then W, NV (H,) € Wy NV (H,) and W, NV (H,) € Wy NV (Hy). By Claim 2.3.6.1 we
may assume that |W, NV (H,)| = k. Given that |W; NV (H,)| > k we have W,NV (H;) =
Wy NV (H,) and this set has cardinality k, as desired. O

Lemma 2.3.7. Let (T,W) be a minimal tree-decomposition of a graph G, let ti,to,13
be a W-separable triad in T" with center ty, and let X, H, H,, Hy and H3 be as in the
definition of W -separable triad. Let k = |W;, — X|/2 and for i = 1,2,3 let t; denote the
neighbor of ty in the component of T\t containing t;. Then for all distinct i, j € {1, 2, 3},

V(H;)N Wt; = V(H;) N W,,, and this set has cardinality k.

Proof. Let X3 = |JW,, the union taken over all ¢ € V(T') that do not belong to the
component of 7'\t3 containing ty. Since |W;, NV (H;)| > k and |W;, N V(H3)| > k by
the definition of 1//-separable triad, by Lemma 2.3.6 applied to ¢, 2, H3 and the subgraph
of G induced by V' (H;) UV (H;) U X3 we deduce that V(H3) N W, = V(H3) N Wy =
V(Hsz) N Wy, and this set has cardinality k. Similarly we deduce that V' (Hy) N W, =
V(Hy) "Wy =V (Hy) "Wy and V(Hy) "Wy, = V(Hy) "Wy, = V(H;) "Wy, and that

the latter two sets also have cardinality . [

We are finally ready to prove Theorem 2.1.4, which, by Lemma 2.3.2 is implied by the

following theorem.

Theorem 2.3.8. Let (T, W) be a minimal tree-decomposition of a graph G. Then (T, W)

satisfies (W1)—(WT7).

Proof. That (T, W) satisfies (W1)—(W6) follows from Theorem 2.3.3. Thus it remains to

show that (7', W) satisfies (W7). Suppose for a contradiction that (7", W) does not satisfy
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(WT7), and let ¢;, 1, t2 be a W-separable triad in 1" with center ¢, such that W, N W, € X
forevery i = 1,2,3, where X = W, N W,, N W,,. Let H, H,, H, and Hj be as in the
definition of W -separable triad, and for ¢ € {1, 2,3} let ¢; denote the neighbor of #; in the
component of 7'\ ¢, containing ;.

Letn := |W,]|, let k := |W,, — X|/2, let r; denote the rank of 1-vertex trees, and let
To denote the (n,r;)-cell containing ty. By the definition of 11/ -separable triad we have
[Wy| > nforalli € {1,2,3}, and hence the degree of ¢ in Tj is at least three and by
Lemmas 2.3.7 and 2.3.5 it is at most three.

Let (Ty, Po, Th, Py, ..., T}, F)) be a spine-decomposition of Tj relative to ¢, with ¢y €
V(P,). Since P, is a maximal path in 7; we may assume that ¢}, t, € V(F,) and tj & V(P)).

It follows from Lemma 2.3.7 that W;, "W}, = X. By Lemma 2.3.6 applied to ¢3 and t;
and ¢4 and its neighbor in T'[t3, t;] we deduce that there exists a vertex r5 € T'[ts, ] — {t}}
such that either V(H;) N Wy, = V(Hy) N W, for every r € T'rs, t3], or V(Hy) N Wy, =
V(Hy) N W, for every r € T'[rs, t;]. Without loss of generality we may assume the latter.
We may choose r3 to be as close to ¢ as possible. The fact that W;, N Wy, = X implies
that 73 # t5. By another application of Lemma 2.3.6, this time to t3, ¢}, 3 and the neighbor
of r3 in T'[rs, t3], we deduce that |V (Hy) N W,,| = |V (Hy) N W,,| = k.

Let 74 be the neighbor of 73 in T[r3, ty] and let the tree 7" be defined as follows: for
every component B of T\T'[t, r5] not containing t1, t5 or t3 let r(B)r’(B) denote the edge
connecting B to T'[ty, %], where r(B) € V(B) and r'(B) € T[to,r3]. By Lemma 2.3.5
there exists an integer 7 € {1, 2,3} such that W,z C W,z NV (H;). Let us mention in
passing that this, the choice of 7, and Lemma 2.3.7 imply that for every such component
B, every (n,rq)-cell is either a subgraph of B or is disjoint from B. The tree 7" is obtained
from 7" by, for every such component B for which either i = 2, or i = 3 and 7'(B) = t,,
deleting the edge r(B)r’(B) and adding the edge t|r(B); and for every such component
B for which ¢ = 1 and 7'(B) = t, deleting the edge r(B)r'(B) and adding the edge
tyr(B). Since Wy gy N (V (Hz) UV (H3)) € Wy by the choice of r3 and Lemma 2.3.7; and
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Wigy NV (Hy) € Wy, by Lemma 2.3.7 it follows that (7", W) is a tree-decomposition of
G.

Let 7" be defined as in Lemma 2.2.5, starting from the tree 7", let ¢;, be the vertex
that resulted from contracting the edges tot}, and tot5, and let W' = (W] | t € V(T")) be

defined by

W, ift € V(T') — T'[r", 1]
W,, U (V(H3) NWy,) ift =yl
Wi =q(W,, — V(H)) U (V(H;) "\ W,,) ift=r!

(Wy =V (H)) U (V(Hs) " Wy,) it e T'[rh, ty] — {t,}

We claim that (7", ') is a tree decomposition of G. Indeed, since V' (Hy) "W, C W,
for all r € T'[r, to] it follows that (77, W') satisfies (W1).

To show that (7", W’) satisfies (W2) let v € V(G), let Z = {t € V(T) : v € W,}.
and let Z' = {t € V(T") : v € W/}. It suffices to show that Z’ induces a connected
subset of 7", for this is easily seen to be equivalent to (W2). To that end assume first
that v & Wy = Wy = W, N (V(Hy) U V(Hs)). It follows that, since Z induces a
subtree of 7, that Z’ induces a subtree of 7. We assume next that v € W, N V(H,).
The choice of 7" and the definition of W’ imply that no vertex in the component of 7"\ 7%’
containing ¢{, belongs to Z’. Again, it follows that Z’ induces a subtree of 7". Finally, let
v € Wy, NV (Hj). Then T'[t),t;] € Z’, and it again follows that Z’ induces a subtree of
T'. This proves our claim that (7", W’) is a tree-decomposition.

We claim that the size of (7", W) is smaller than the size of (7, W). Let r denote the
rank of Tp, and let 7} denote the (n, r1)-cell in (7", W) containing t;. First, by the passing
remark made a few paragraphs ago, for every integer m > n and every rank s, to every

(m, s)-cell in (7", W) other than T} there corresponds a unique (m, s)-cell in (7, W). (To
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the (n+1,ry)-cell in (77, W’) with vertex-set {r}’} there corresponds the (n+ 1, 71)-cell in
(T, W) with vertex-set {to}.) Second, by Lemma 2.2.5 the rank of Ty is strictly larger than
the rank of 7. Thus no (n,r)-cell in (7", W') corresponds to T. It follows that (77, W’)

is a tree-decomposition of GG of smaller size, contrary to the minimality of (7', V). [l
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CHAPTER 3
MINORS OF 2-CONNECTED GRAPHS OF LARGE PATH-WIDTH

The chapter is organized as follows. In Section 3.1 we prove that Theorem 1.1.4 follows
from the main result of this chapter, Theorem 1.1.3. In Section 3.2 we introduce ‘“cas-
cades”, our main tool, and prove that in any tree-decomposition with no duplicate bags of
bounded width of a graph of big path-width there is an “injective” cascade of large height.
In Section 3.3 we prove that every 2-connected graph of big path-width and bounded tree-
width admits a tree-decomposition of bounded width and a cascade with linkages that are
minimal. In Section 3.4 we analyze those minimal linkages and prove that there are essen-
tially only two types of linkage. This is where we use the properties of tree-decompositions
from Chapter 2. Finally, in Section 3.5 we convert the two types of linkage into the two

families of graphs from Theorem 1.1.3.

3.1 Proof of Theorem 1.1.4

In this section we prove that Theorem 1.1.4 is implied by Theorem 1.1.3. Recall that in
the introduction we define A as the graph that consists of a cycle a;asazasasaga; and extra

edges ajas, agas, asa; and Cs 5 as the graph consisting of two disjoint triangles.

Lemma 3.1.1. If a graph H has no K4, Cs 9, or A minor, then H has a vertex v such that

H\wv is a forest.

Proof. We proceed by induction on |V H)|. The lemma clearly holds when |V (H)| = 0,
and so we may assume that /7 has at least one vertex and that the lemma holds for graphs on
fewer than |V (H)| vertices. If H has a vertex of degree at most one, then the lemma follows
by induction by deleting such vertex. We may therefore assume that A has minimum

degree at least two.
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If H has a cutvertex, say v, then v is as desired, for if C'is a cycle in H\v, then H\V (C)
also contains a cycle (because /4 has minimum degree at least two), and hence H has a C 5
minor, a contradiction. We may therefore assume that /7 is 2-connected.

We may assume that / is not a cycle, and hence it has an ear-decomposition H =
HyUHU---UHg, where k > 1, Hyisacycleand for: = 1,2, ..., k the graph H, is a path
with ends u;, v; € V(HoUHU---UH,;_1) and otherwise disjoint from HyUHU- - -UH,;_;.
If uy € {u;,v;} foralli € {2,3,... k}, then u; satisfies the conclusion of the lemma,
and similarly for v;. We may therefore assume that there exist 7,5 € {2,3,...,k} such
that uy & {u;,v;} and v; & {u;,v;}. It follows that H has a K4, C54, or A minor, a

contradiction. O

Lemma 3.1.2. If a graph H has a vertex v such that H\v is a forest, then there exists an

integer k such that H is isomorphic to a minor of Py.

Proof. Let v be such that 7' := H\v is a forest. We may assume, by replacing H by a graph
with an A minor, that 7" is isomorphic to C'I; for some ¢, and that v is adjacent to every

vertex of 7T'. It follows that H is isomorphic to a minor of Py, as desired. O

Lemma 3.1.3. Let H be a 2-connected outerplanar near-triangulation with k triangles.
Then H is isomorphic to a minor of Q. Furthermore, the minor inclusion can be chosen
in such a way that for every edge ayay € E(H) incident with the unbounded face and for

every i € {1,2}, the vertex w; belongs to the node of a;, where wiws is the base edge of Qy.

Proof. We proceed by induction on k. The lemma clearly holds when £ = 1, and so we
may assume that /7 has at least two triangles and that the lemma holds for graphs with
fewer than £ triangles. The edge a;a, belongs to a unique triangle, say ajasc. The triangle
aiasc divides H into two near-triangulations H; and H,, where the edge a;c is incident
with the unbounded face of H;. Let Q1,Qs,u1, v, us, Vo, w1, ws be as in the definition

of Q. By the induction hypothesis the graph H; is isomorphic to a minor of (); in such a
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way that the vertex u; belongs to the node of a; and the vertex v; belongs to the node of c.

It follows that H is isomorphic to Q,, in such a way that w; belongs to the node of a;. [

Lemma 3.1.4. Let H be a graph that has no K, or K, 3 minor. Then there exists an integer

k such that H is isomorphic to a minor of Qy.

Proof. It is well-known [13, Exercise 23] that the hypotheses of the lemma imply that /7
is outerplanar. We may assume, by replacing H by a graph with an A minor, that / is a 2-

connected outerplanar near-triangulation. The lemma now follows from Lemma 3.1.3. [

Corollary 3.1.5. Let H be a graph that has no K, Ky3, Cs9, or A minor. Then there
exists an integer k such that H is isomorphic to a minor of Py and H is isomorphic to a

minor of Q.

Proof. This follows from Lemmas 3.1.1, 3.1.2 and 3.1.4. O]

Proof of Theorem 1.1.4, assuming Theorem 1.1.3. To prove the“if” part notice that P, and
Q. are 2-connected and have large path-width when £ is large, because Q; has a C'T}_
minor. There is no vertex v in A such that A\v is acyclic. So, A and ('3 o are not minors
of Py, for any k. The graph O, is outerplanar, so K, and K> 3 are not minors of Q, for any
positive integer k. This means g(H) > 3 for H € {Ky, K3 3,52, A}. This proves the “if”
part.

To prove the “only if” part, if H has no Ky, Ky3, C55 or A minor, then by Corol-
lary 3.1.5 H is a minor of both P, and Qj for some k. Then g(H) < 2 by Theo-
rem 1.1.3. [

3.2 Cascades

In this section we introduce ‘“‘cascades”, our main tool. The main result of this section,
Lemma 3.2.6, states that in any tree-decomposition with no duplicate bags of bounded

width of a graph of big path-width there is an “injective” cascade of large height
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Lemma 3.2.1. Let p, w be two positive integers and let G be a graph of tree-width strictly
less than w and path-width at least p. Then for every tree-decomposition (T, X) of G of

width strictly less than w, the path-width of T'is at least |p/w] .

Proof. We will prove the contrapositive. Assume there exists a tree-decomposition (7, X')
of G of width < w such that the path-width of 7" is less than |p/w|. Because the path-
width of 7" is less than |p/w], there exists a path-decomposition (Y7, Ys, ..., Y;) of T with
Yi| < |p/w] for all i. We will construct a path-decomposition (Z;, Zs, ..., Z;) for G

with width less than p. Set Z; = | X, for every i € {1,2,...,s}. For every vertex

yeY;
v € V(G), v belongs to at least one set X; for some ¢t € V(7). The vertex t of tree 7" must
bein Y, for some [ € {1,2,...,s},s0ov € X; C Z,. Therefore, | Z; = V(G). Similarly,
for every edge uv € E(G), there exists ¢ € V(T') such that u, v € X;. Therefore, u,v € Z
for some [ € {1,2,...,s}.

Now, if a vertex v € V(&) belongs to both Z, and Z, for some a,b € {1,2,...,s},a < b,
we will show that v € Z,. for all ¢ such that a < ¢ < b. Let c be an arbitrary integer
satisfying a < ¢ < b. The fact that v € Z, implies v € X, for some y; € Y,. Similarly,
v € X,, forsome y, € Y,. Let H be the set of vertices of 7" on the path from y; to y». Since
y1 € Yoandy, € Yy, HNY, # () # H NY,. Hence, by Lemma 2.1.1 with H = T and
(T,Y) the path-decomposition (Y7, Y5, ..., Y;), we have H NY, # (). Lett € H NY,, then
ve X, CZ. So(Zy, 2, ..., Zs) is a path-decomposition of G. Since the width of (7, X)
is less than w, we have | X,| < w for every y € Y;, where i € {1,2,...,s}. Therefore,
|Z:| < w.|p/w] < pforeveryi € {1,2,...,s}. Therefore, the width of (71, Zs, ..., Z;) is

less than p, so the path-width of G is less than p, as desired. [

Since C'T, has maximum degree at most three, the following lemma follows from [17,

Lemma 6].

Lemma 3.2.2. Let T be a forest with path-width at least a > 1. Then there exists a

homeomorphic embedding CT, 1 — T.
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Letn : T — T'. We define sp(n), the span of n, to be the set of vertices ¢t € V(1”)
that lie on the path from 7)(¢;) to 7(t2) for some vertices 1,1 € V(T).

Let s > 0 be an integer and let (7', X') be a tree-decomposition of a graph G. By a
cascade of height h and size s in (T, X') we mean a homeomorphic embedding n : T}, — T
such that | X, )| = s for every minor vertex ¢ € V/(7},) and | X;| > s for every ¢ in the span

of n.

Lemma 3.2.3. For any positive integer h and nonnegative integers a, k, the following holds.
Let m = (a + 2)h + a. Let (T, X) be a tree-decomposition of a graph G and let ¢ :
CT,, — T be a homeomorphic embedding such that | X;| > k for all t € sp(¢). If for
everyt € V(CT,,) at height | < m — a there exist a descendant t' of t at height | + a and a
vertex r € T[¢p(t), d(t')] such that | X,.| = k, then there exists a cascade n of height h and
size k in (T, X).

Proof. By hypothesis there exist a vertex 2o € V(CT,,) at height a and a vertex uy € V (T')
on the path from the image under ¢ of the root of C'T},, to ¢(x¢) such that | X, | = k. Let
x be a child of z(, and let z; and x5 be the children of z. By hypothesis there exist, for
i =1,2,avertex y; € V(CT,,) at height 2a + 2 that is a descendant of x; and a vertex
u; € T[o(z;), #(y;)] such that | X,,,| = k. Let r be the major root of T3, and let (¢, t1, t2)
be its trinity. We define n; : 77 — T by n1(¢;) = w; fori =0, 1,2 and 1, (r) = ¢(x). Then
7 is a cascade of height one and size k in (7', X). If h = 1, then 7 is as desired, and so
we may assume that » > 1.

Assume now that for some positive integer [ < h we have constructed a cascade 7; :
T, — T of height [ and size k in (7', X') such that for every leaf ¢, of 7} other than the
minor root there exists a vertex o € V(CT,,) at height (a + 2)I + a such that the image
under 7); of every vertex on the path in 7; from the minor root to ¢, belongs to the path in
T from the image under ¢ of the root of C'T},, to ¢(x). Our objective is to extend 7; to a
cascade 7,1 of height [ + 1 and size k in (7', X') with the same property. To that end let

ma1(t) = mu(t) for all t € V(T)), let ¢y be a leaf of T} other than the minor root and let x
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be as earlier in the paragraph. Let = be a child of x, and let z; and x5 be the children of x.
By hypothesis there exist, for i = 1,2, a vertex y; € V(CT,,) at height (a +2)(I + 1) +a

that is a descendant of x; and a vertex u; € T[¢(x;), ¢(y;)] such that | X,,| = k. Let r be

the child of ¢y in T}, 1, and let (¢, t1, t2) be its trinity. We define 7,,1(¢;) = u; fori = 1,2
and 7;41(r) = ¢(x). This completes the definition of 7.

Now 7, 1s as desired. 0

Lemma 3.2.4. For any two positive integers h and w, there exists a positive integer p =
p(h,w) such that if G is a graph of path-width at least p, then in any tree-decomposition of

G of width less than w, there exists a cascade of height h.

Proof. Let a1 = 0, and for k = w,w —1,...,0 let a, = (agr1 + 2)h + ax,1, and let
p = w(ap + 1). We claim that p satisfies the conclusion of the lemma. To see that let
(T, X)) be a tree-decomposition of G of width less than w. Let k € {0,1,...,w + 1} be
the maximum integer such that there exists a homeomorphic embedding ¢ : CT, — T
satisfying | X;| > k for all ¢ € sp(¢). Such an integer exists, because £ = 0 satisfies
those requirements by Lemmas 3.2.1 and 3.2.2, and it satisfies £ < w, because the width
of (T, X) is less than w. The maximality of k£ implies that for the integers h, k and ay the

hypothesis of Lemma 3.2.3 is satisfied. Thus the lemma follows from Lemma 3.2.3. [

Let (7, X) be a tree-decomposition of a graph GG, and let ) : T}, < T be a cascade of
height h and size s in (7', X'). We say that 7 is injective if there exists I C V' (G) such that
1] < s and X,y N X,y = I for every two distinct vertices ¢,t' € V/(T},). We call this set

I the common intersection set of 1.

Lemma 3.2.5. Let a,b, s,w be positive integers and let k be a nonnegative integer. Let
(T, X) be a tree-decomposition of a graph G of width strictly less than w. Let h =(2(a +
2)w+2)b. Ifthere is a cascade ) of height h and size s+k in (T', X') such that | (\,cy (7, ) Xy =

k, then either there is a cascade 1 of height a and size s+Fk in (T, X)) such that | ey 1,y X t)| =
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k + 1 or there is an injective cascade 1’ of height b, size s + k and common intersection set

of size k in (T, X).
Proof. We may assume that

(%) there does not exist a cascade 7’ of height a and size s + k in (7, X) such that

| ﬂtGV(Ta) Xn’(t)‘ >k + 1
Let F' = (v (1) Xnw- By (%), [F'| = k. We claim the following.

Claim 3.2.5.1. For every vertex t € Tj, at height| < h — a — 2 and every u € Xy ) — I

there exists a descendant t' € V (1},) of t at height at most | + a + 2 such that u & X, ).

To prove the claim let u € X, — F. By (x) in the subtree of T}, consisting of ¢ and its
descendants there is a vertex ¢’ of height at most [ + a + 2 such that u € X, . This proves

the claim.

We use the previous claim to deduce the following generalization.

Claim 3.2.5.2. For every vertex t € V(1},) at height | < h — (a + 2)w there exists a

descendant t' € V(T') of t at height at most | + (a + 2)w such that X,y N Xy = F.

To prove the claim let X, )\ F' = {u1, us,...,up}, where p < w. By Claim 3.2.5.1 there
exists a descendant ¢; € V/(T') of ¢ at height at most [ + a + 2 such that u; € X, ). By
another application of Claim 3.2.5.1 there exists a descendant t, € V(T') of ¢; at height
at most | + 2(a + 2) such that uy ¢ X, ). By (W2) u; & X,y By continuing to argue
in the same way we finally arrive at a vertex ¢, that is a descendant of ¢ at height at most

[ + (a+ 2)p such that X, ;) N X, ) = F. Thus t, is as desired. This proves the claim.

Let g € V(T}) be the minor root of T},. By Claim 3.2.5.2 and (W2) there exists a
major vertex « € V(T') at height at most (a +2)w + 1 such that X, ;) N X, ) = F. Let yy
and - be the children of x. By Claim 3.2.5.2 and (W2) there exists, for 7 = 1,2, a minor

vertex x; € V(T},) at height at most 2(a + 2)w + 2 that is a descendant of y; and such that
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Xoy(@) N Xp@) = F. Let r be the major root of 77, and let (o, t1, t2) be its trinity. We define
m Ty = T by ni(t;) = n(x;) fori = 0,1,2 and 7, (r) = n(x). Then 1 is an injective
cascade of height one and size s + k in (7, X') with common intersection set F. If b = 1,
then 7, is as desired, and so we may assume that b > 1.

Assume now that for some positive integer [ < b we have constructed an injective
cascade 1, : T; < T of height [ and size s + k with common intersection set /" in (7', X)
such that for every leaf ¢, of 7} other than the minor root there exists a vertex xq € V (7},)
at height (2(a + 2)w + 2)I such that the image under 7, of every vertex on the path in 7;
from the minor root to ¢y belongs to the path in 7' from the image under 7 of the root of
Ty, to n(zo). Our objective is to extend 7; to an injective cascade 7,1 of height [ + 1, size
s + k, and common intersection set F' in (7, X') with the same property. To that end let
m+1(t) = ni(t) forall t € V(T;), let t, be a leaf of T other than the minor root, and let zy be
as earlier in the paragraph. By Claim 3.2.5.2 and (W2) there exists a descendant = of x at
height at most (2(a+2)w +2)l + (a+2)w + 1 such that x is major and X, 4,y N Xy = F.
Let y; and ys be the children of . By Claim 3.2.5.2 and (W2) there exists, forz = 1,2, a
minor vertex x; € V (7},) at height at most (2(a + 2)w + 2)(I + 1) that is a descendant of
y; and such that X, .y N X, ;) = F. Let r be the child of ¢y in Tj,4, and let (o, 1, ;) be
its trinity. We define 7,41 (¢;) = n(z;) fori = 1,2 and n;41(r) = n(x). This completes the
definition of 7, .

Now n, is as desired. [

Lemma 3.2.6. For any two positive integers h and w, there exists a positive integer p =
p(h,w) such that if G is a graph with tree-width less than w and path-width at least p, then
in any tree-decomposition (T, X)) of G that has width less than w and satisfies (W4), there

is an injective cascade of height h.

Proof. Let a,, = 0, and for k = w — 1,...,0 let ax = (2(axs+1 + 2)w + 2)h. Let p
be the integer in Lemma 3.2.4 for input integers ay and w. We claim that p satisfies the

conclusion of the lemma. To see that let (7', X') be a tree-decomposition of G of width
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less than w satisfying (W4). By Lemma 3.2.4, there exists a cascade 7 of height ag in
(T, X). Let k € {0,1,...,w} be the maximum integer such that there exists a cascade
n' : T, — T satistying |ﬂteV(Tak)Xﬁ'(t)| > k. Such an integer exists, because &k = 0
satisfies those requirements and k& < w because of (W4) and because the width of (7', X) is

less than w. The maximality of k& implies that there does not exist a cascade ” : T, , — T

k+1

satisfying | (Ve (7, . ) Xyrv| = k + 1. Thus the lemma follows from Lemma 3.2.5. [

K1)

3.3 Ordered Cascades

The main result of this section, Theorem 3.3.5, states that every 2-connected graph of big
path-width and bounded tree-width admits a tree-decomposition of bounded width and a
cascade with linkages that are minimal.

Let (7, X) be a tree-decomposition of a graph G, and let 7 be an injective cascade in
(T, X') with common intersection set /. Assume the size of 77 is |/| + s. Then we say 7 is
ordered if for every minor vertex t € V(7},) there exists a bijection & : {1,2,...,s} —
X,y — I such that for every major vertex t, with trinity (¢1,t,,?3), there exist s disjoint
paths Py, Ps, ..., P;in G — I such that the path P, has ends &, (i) and &, (i), and there exist
s disjoint paths 1, Q2, . . ., Qs in G — I such that the path @; has ends &, (¢) and &, (7). In
that case we say that ) is an ordered cascade with orderings &;. We say that the set of paths
Py, Py, ..., Psis aleft ty-linkage with respect to 1, and that the set of paths ()1, Qs, ..., Qs
is a right ty-linkage with respect to 1.

We will need to fix a left and a right ¢(-linkage for every major vertex ¢, € V' (7},); when
we do so we will indicate that by saying that 7 is an ordered cascade in (T, X) with order-
ings & and specified linkages, and we will refer to the specified linkages as the left specified
to-linkage and the right specified ty-linkage. We will denote the left specified ¢,-linkage by
Pi(ty), Pa(to), - .., Ps(to) and the right specified to-linkage by Q1 (o), Q2(to), - - ., Qs(to)-
We say that the specified ¢y-linkages are minimal if for every set of disjoint paths Py, P,

..., Pyin G—1I from X4,y —I to X, 4,y — I such that & (i) is an end of P; (let the other end
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be p;) and every set of disjoint paths ()1, Qs, ..., Qs in G — I from X, ;) — I to X, — 1

such that &, (¢) is an end of ); (let the other end be ¢;) we have

‘E (U(Izpzpz U szzQz))‘ > ‘E (U(yipi(to)ftg (Z) U yin’(to)fts (U)) ) (3.1

where the unions are taken over ¢ € {1,2, ..., s}, ; is the first vertex from &, (i) that P

departs from @);, and y; is the first vertex from &;, (7) that P;(¢y) departs from Q; ().

Lemma 3.3.1. Let h and s be two positive integers, and let ) : T, — T’ be an injective
cascade of height h and size s in a linked tree-decomposition (T, X) of a graph G. Then
the cascade 1 can be turned into an ordered cascade with specified ty-linkages that are

minimal for every major vertex to € V (T},).

Proof. Let s’ := s — |I|. To show that ) can be made ordered let r be the minor root
of T, let & : {1,2,...,s'} = X,y — I be arbitrary, assume that for some integer | €
{0,1,...,h — 1} we have already constructed & : {1,2,...,s'} — X, — I for all minor
vertices t € V/(T},) at height at most [, let t € V' (7},) be a minor vertex at height exactly
[, let to be its child, and let (¢,t1,ts) be the trinity at to. By condition (W3) there exist s’
disjoint paths Py, P, ..., Py in G — I from X4 — I to X,,) — I and s disjoint paths
Q1,Q2,...,Qy in G — I from X, ) — I to X,y — I. We may assume that &(7) is an
end of P; and Q; and we define &, (i) and &, (i) to be their other ends, respectively. We
may also assume that these paths satisfy the minimality condition (3.1). It follows that 7 is
an ordered cascade with orderings &; and specified ¢,-linkages that are minimal for every

major vertex to € V(T}). O

Lemma 3.3.2. For every two integers a > 1 and k > 1 there exists an integer h = h(a, k)
such that the following holds. Color the major vertices of T}, using k colors. Then there
exists a monotone homeomorphic embedding n : I, — I}, such that the major vertices of

T, map to major vertices of the same color in Ty,
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Proof. Let c be one of the colors. We will prove by induction on k and subject to that by
induction on b that there is a function . = g(a, b, k) such that there is either a monotone
homeomorphic embedding 7 : T, < 7}, such that the major vertices of 7, map to major
vertices of the same color in 7},, or a monotone homeomorphic embedding 7 : 1, — T},
such that the major vertices of T, map to major vertices of color ¢ in 7j,. In fact, we will
show that g(a,b,1) = a, g(a,1,k+1) < g(a,a,k)and g(a,b+1,k+1) < g(a,b,k+ 1)+
gla,a, k).

The assertion holds for £ = 1 by letting » = a and letting 7 be the identity mapping.
Assume the statement is true for some &£ > 1, let the major vertices of 7}, be colored using
k + 1 colors, and let ¢ be one of the colors. If b = 1, then if 7}, has a major vertex colored
¢, then the second alternative holds; otherwise at most k colors are used and the assertion
follows by induction on k.

We may therefore assume that the assertion holds for some integer b > 1 and we must
prove it for b + 1. To that end we may assume that 7}, has a major vertex ¢, colored c at
height at most g(a, a, k), for otherwise the assertion follows by induction on k. Let the
trinity at ¢y be (t1,1o,t3). For ¢ = 2,3 let R; be the subtree of 7}, with minor root ¢;. If
for some i € {2, 3} there exists a monotone homeomorphic embedding 7;, < R; such that
the major vertices of 7, map to major vertices of the same color in 7}, then the statement
holds. We may therefore assume that for i € {2, 3} there exists a monotone homeomorphic
embedding 7; : T} < R; such that the major vertices of 7} map to major vertices of
color ¢, the major root of T}, is rg, the trinity at rq is (rq, 72, 7r3) and Tbi is the subtree of
Tyi1 — {ro,r1} with minor root r;. Letn : Ty,; < T}, be defined by n(t) = n;(t) for
t € V(T}), n(re) = to and n(ry) is defined to be the minor root of Tj,. Thenn : Ty < T},
is as desired. This proves the existence of the function g(a, b, k).

Now h(a, k) = g(a,a, k) is as desired. O

Let (T, X) be a tree-decomposition of a graph G, and let ) : T}, <— T be an injective

cascade in (7', X') with common intersection set I. Let t, € V/(7},) be a major vertex, and
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let (t1,to,t3) be the trinity at to. We define the n-torso at t, as the subgraph of G induced
by | X; — I, where the union is taken over all ¢ in V' (7T') such that the unique path in 7
from ¢ to n(to) does not contain 7(¢1),n(t2), or n(t3) as an internal vertex.

Let s > 0 be an integer. Let (7', X) be a tree-decomposition of a graph G, letn : T}, —
T be an ordered cascade in (7', X') with size ||+ s and orderings &;, where [ is the common
intersection set of 7). Let ¢y € V(7},) be a major vertex, let (1, to, t3) be the trinity at ¢y, let
G’ be the n-torso at to, and let 7, j € {1,2,..., s} be distinct. We say that to has property
A,;; in n if there exist disjoint tripods L;, L; in G’ such that for each m € {i, j} the tripod
L., has feet &, (m), &, (ms), &, (ms) for some mo, m3 € {i,5}.

We say that ¢, has property B;; in 1 if there exist vertices v,, for all x € {i,j},y €

{1,2,3}, and tripods L;, L; in G’ with centers ¢;, ¢; such that
e foreachy € {1,2,3}, {viy,vjy} = {&, (1), &, ()}
e foreachm € {i,j}, L,, has feet v,,, 1, U2, U 3
o L;NL;=c;Liv;3MNcjL;v;s and itis a path that does not contain ¢;, ¢;.

We say that ty has property C;; in n if there exist three pairwise disjoint paths R?;, R;, R;;
and a path R in G’ such that the ends of R; are &, (¢) and &, (7), the ends of R; are &, (j) and
&i,(7), the ends of R;; are &, () and &, (i), and R is internally disjoint from R;, R;, R;; and
connects two of these three paths. We will denote these paths as R; (o), R;(to), Ri;(to), R(to)
when we want to emphasize they are in the 7)-torso at the major vertex t.

We say that the path P; of a left or right ¢y-linkage is confined if it is a subgraph of the
n-torso at g.

Now let 7 : T}, < T be an ordered cascade in (7, X') with orderings & and specified
linkages. Let ty € V (7},) be a major vertex with trinity (¢, to,t3), and let P, P, ..., Ps be
the left specified to-linkage. We define A,, to be the set of integers i € {1,2,...,s} such
that the path P, is confined, and we define B;, in the same way but using the right specified

to-linkage instead. Define C;, as the set of all triples (¢,/,m) such thati € {1,2,...,s},
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the path P; is not confined and when following P; from &, (7), it exits the n-torso at ¢, for
the first time at &, () and re-enters the 7)-torso at ¢, for the last time at &, (m). Let Dy, be
defined similarly, but using the right ¢y-linkage instead. We call the sets A;,, By, C, and
D,, the confinement sets for 1) at ty with respect to the specified linkages.

Let A;, and B,, be the confinement sets for 7 at £,. We say that ¢, has property C'in n
if s is even, A;, and B;, are disjoint and both have size s/2, and there exist disjoint paths

Ri, Ry, ..., Rs,2 in G’ in such a way that

e cach R; is a subpath of both the left specified ¢(-linkage and the right specified -
linkage,

e fori € Ay, the path R; has ends &, (7) and &, (i),
e fori € By, the path R; has ends &, (i) and &, (7), and

o fori=s+1,s+2,...,3s/2the path R; has one end &, (k) and the other and &, (/)

for some k € By, and [ € Ay,.

Let (T, X) be a tree-decomposition of a graph G, let ) : T}, < T be a cascade in (T, X)
and let v : Ty — T} be a monotone homeomorphic embedding. Then the composite
mapping 17 := o~y : Ty — T is a cascade in (T, X) of height i/, and we will call it a

subcascade of .

Lemma 3.3.3. Let (T, X) be a tree-decomposition of a graph G, let n : T, < T be an
ordered cascade in (T, X) with orderings &, specified linkages and common intersection
set I, let vy : Ty — T}, be a monotone homeomorphic embedding, and let /' := n o~y :

Ty — T be a subcascade of ) of height h'. Then for every major vertex to € V(T})
() 1’ is an ordered cascade with orderings &) and common intersection set I,

(ii) if the vertex ~y(to) has property A;; (B, Cyj, resp.) inn, then ty has property A;;

(Bij, Cyj, resp.) in 1.
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Furthermore, the specified linkages for ' may be chosen in such a way that

(lll) (Atoa Btoa Ctoa Dto) = (A'y(to)a Bv(to)v C’y(to); D')/(to) ))
(iv) the vertex to has property C in 1’ if and only if v(ty) has property C in n, and

(v) if the specified linkages for n are minimal, then the specified linkages for 1’ are

minimal.

Proof. For each major vertex t € V(T}/) ort € V(1},) we denote its trinity by (¢1(t), t2(t),
t3(t)). Assume tg is a major vertex of Tj,,. Let vg = Y(t1(tg)), v1, - . ., v = t1((to)) be the
minor vertices on 7}, [vo, vy]. Let U be the union of the left (or right) linkage from X,y — I
to Xyy(,,) — L foralli € {0,1,...,k — 1} depending on whether v; 4 is a left (or right)
neighbor of its parent. Let P be the left specified (%, )-linkage and ) be the right specified
v(to)-linkage. Then U U P is a left t,-linkage and U U () is a right ¢o-linkage. We designate
U U P to be the left specified o-linkage and U U () to be the right specified ¢y-linkage. It

is easy to see that this choice satisfies the conclusion of the lemma. [

Let (T, X) be a tree-decomposition of a graph G, and let 1) be an ordered cascade with
specified linkages in (7', X) of height h and size |I|+ s, where [ is the common intersection
set. We say that 1) is regular if there exist sets A, B C {1,2,...,s}, and sets C' and D such
that the confinement sets A;,, By, Cy, and D,, satisfy A;,, = A, By, = B, C};, = C and

D, = D for every major vertex to € V(T}).

Lemma 3.3.4. For every two positive integers a and s there exists a positive integer h =
h(a, s) such that the following holds. Let (T, X) be a linked tree-decomposition of a graph
G. If there exists an injective cascade 1 of height h in (T, X), then there exists a regular
cascade n : T, — T of height a in (T, X) with specified ty-linkages that are minimal for
every major vertex to € V(T,) such that ' has the same size and common intersection set

as .
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Proof. Let 1) be an injective cascade of size || 4 s and height & in (7', X'), where we will
specify h in a moment. By Lemma 3.3.1 7 can be turned into an ordered cascade with
specified t,-linkages that are minimal for every major vertex ¢ty € V(7},). For every major
vertex ty € V(1},), the number of possible quadruples (Ay,, By, , Ct,, Dy, ) is a finite number
k = k(s) that depends only on s.

Consider each choice of (A, By,, Cy,, Dy,) as a color; then by Lemma 3.3.2, there
exists a positive integer h = h(a, k) such that there exists a monotone homeomorphic
embedding v : T, — 7T}, such that the quadruple (A, By, Cy1), Do) for n is the
same for every t € V(T,). Now, lety’ = no~ : T, — T. Then 7 is as desired by
Lemma 3.3.3. L

The following is the main result of this section.

Theorem 3.3.5. For any two positive integers a and w, there exists a positive integer p =
p(a,w) such that the following holds. Let k be an integer such that k < w and let G be
a k-connected graph of tree-width less than w and path-width at least p. Then G has a

tree-decomposition (T, X) such that:
o (T, X) has width less than w,
o (T, X) satisfies (WI1)~(W7), and

o for some s, where k < s < w, there exists a regular cascade n : 'T;, — T of height
a and size s in (T, X) with specified to-linkages that are minimal for every major

vertex ty € V(Ty).

Proof. Given positive integers a and w let h be as in Lemma 3.3.4, and let p = p(h, w) be
as in Lemma 3.2.6. We claim that p satisfies the conclusion of the theorem. To see that let G
be a graph of tree-width less than w and path-width at least p. By Theorem 2.1.4, G’ admits
a tree-decomposition (7', X') of width less than w satisfying (W1)-(W7). By Lemma 3.2.6

there is an injective cascade of height i in (7', X'). Let s be the size of this cascade, then
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s < w. If G is k-connected, then s > k. The last conclusion of the theorem follows from

Lemma 3.3.4. ]

3.4 Taming Linkages

Lemma 3.4.6, the main result of this section, states that there are essentially only two types
of linkage.

Let s > 0 be an integer. Let (7', X) be a tree-decomposition of a graph G, letn : T}, —
T be an ordered cascade in (7', X') with size |I|+ s and orderings &;, where I is the common
intersection set of 7. Let t, € V(T},) be a major vertex, let (¢, t2, t3) be the trinity at ¢, let
G’ be the n-torso at tg, and let 7, j € {1,2,..., s} be distinct. We say that to has property
AB;; in n if there exist disjoint paths L;, L; and disjoint paths R;, R; in G’ such that the
two ends of L,, are &, (m) and &,(m) for each m € {i,j} and the two ends of R,, are

&, (m) and &, (m) for each m € {3, j}.

Lemma 3.4.1. Let (T, X) be a tree-decomposition of a graph G. Letn : Ty — T be an

ordered cascade in (T, X) with orderings & of height one and size s + |I|, where I is the

common intersection set. Let ty be the major vertex in Ty, and let i,j € {1,2,..., s} be

distinct. If to has property AB;j in n, then t, has either property A;; or property B;; in 1.

Proof. Let (t1,ty,t3) be the trinity at t5. Let G’ be the n-torso at ¢,. Since ¢, has property
AB,;; in 7, there exist disjoint paths L;, L; and disjoint paths R;, R; in G’ such that two
endpoints of L,, are &, (m) and &, (m) for all m € {i,j}, and two endpoints of R,, are
&, (m) and &, (m) for all m € {i, j}.

We may choose L;, L;, R;, R; such that |[E(L;) U E(L;) U E(R;) U E(R;)| is as small
as possible.

Let v = &, (k) and 2z, = &, (k) for k € {i,j}. Starting from z;, let a be the first
vertex where I?; meets L; U L;, and starting from z;, let b be the first vertex where R;

meets L; U L;. If a and b are not on the same path (one on L; and the other on L;), then by
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considering L;, L; and the parts of 1?; and I; from z; to a and from z; to b we see that %
has property A;; in 7.

If a and b are on the same path, then we may assume they are on ;. We may also
assume that a € L;[y;,b]. Then following R; from a away from z;, the paths R; and L;
eventually split; let ¢ be the vertex where the split occurs. In other words, c is such that
alL;cNaR;cis a path and its length is maximum. Let d be the first vertex on cR;x; N (L; U
L;) — {c} when traveling on R, from c to z;. If d € V(L;), then by replacing cL;d by cR;d
we obtain a contradiction to the choice of L;, L;, R;, R;. Thus d € V(L;). Now L;, L; and

the paths z; I?;d and z; I?;b show that ¢, has property B;; in 7. [

Let (T, X) be a tree-decomposition of a graph G and let ) : T}, < T be an injective
cascade in (7', X) of height  and size |I|+ s, where [ is the common intersection set. Let v
be a vertex of 7}, and let Y consist of 77(v) and the vertex-sets of all components of 7'—17(v)
that do not contain the image under 7 of the minor root of 7},. Let H be the subgraph of G

induced by | J,., X; — I. We will call H the outer graph at v.

Lemma 3.4.2. Let (T, X) be a tree-decomposition satisfying (W6) of a graph G and let
n : T, — T be an ordered cascade in (T, X) of height h and size |I| + s, where I is
the common intersection set. Let vy be a major vertex of T}, and let v be a minor vertex
adjacent to vy. let Y consist of n(v) and the vertex-set of the component of T — n(v) that
contains 1(vo). Let H be the subgraph of G induced by \J,o,, X; — 1. Let x,y € Xy ).
Then there exists a path of length at least two with ends x and y and every internal vertex
inV(H) — X,. In particular, let v be a minor vertex of Ty, at height at most h — 1, let H
be the outer graph at v, and let x,y € X, .. Then there exists a path of length at least two

with ends x and y and every internal vertex in V (H) — X ..

Proof. Let v; be a child of v if v is the parent of vy, otherwise let v; be the parent of vy.
Let B be the component of 7' — 7(v) that contains 7(v;). We show that = is B-tied. This

is obvious if x € I, and so we may assume that = ¢ [. Since 7 is ordered, there exist
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s disjoint paths from X,y — I to X,y — I in G — I. It follows that each of the paths
uses exactly one vertex of X,y — I, and that vertex is its end. Let P be the one of those
paths that ends in xz, and let 2’ be the neighbor of x in P. The vertex x’ exists, because
Xow) N Xy = I. By (W1) there exists a vertex t € V(T') such that z, 2’ € X,;. Since
P — x is disjoint from X, ,), it follows from Lemma 2.1.1 applied to the path P — x and
vertices ¢t and 7)(vy) of T' that t € V(B). Thus z is B-tied and the same argument shows

that so is y. Hence the lemma follows from (W6). ]

We will refer to a path as in Lemma 3.4.2 as a W6-path.
Let h, b’ be integers. We say that a homeomorphic embedding ~ : Tj, < T}, is weakly

monotone if for every two vertices ¢,t" € V(T})

e if ¢’ is a descendant of ¢ in T}, then the vertex ~(t') is a descendant of () in 7},

e if ¢ is a minor vertex of T}, then the vertex () is minor in 77,.

Let (7, X) be a tree-decomposition of a graph G, letn : T}, — T be a cascade in (7', X') and
let v : T}, — T}, be a weakly monotone homeomorphic embedding. Then the composite
mapping 7' := no~y : Ty — T is a cascade in (7, X) of height &/, and we will call it a

weak subcascade of n.

Lemma 3.4.3. Let s > 2 be an integer, let (T, X) be a tree-decomposition of a graph G
satisfying (W6), and let ) : Ts — T be a regular cascade in (T, X) of height five and
size |I| 4+ s with specified linkages that are minimal, where I is the common intersection
set of 1. Then either there exists a weak subcascade 1/ : Ty — T of n of height one such
that the unique major vertex of Ty has property A;; or B;; in 1) for some distinct integers

i,7 € {1,2,...,s}, orthe major root of Ts has property C in n.

Proof. We will either construct a weakly monotone homeomorphic embedding v : 77 —
T5 such that in 7’ = 7 o vy the major root of 77 will have property AB;; for some dis-
tinct i,7 € {1,2,...,s}, or establish that the major root of 75 has property C in 7. By

Lemma 3.4.1 this will suffice.
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Since 7 is regular, there exist sets A, B,C, D as in the definition of regular cascade.
Let to be the unique major vertex of 73 and let (¢1, 9, t3) be its trinity. Let uq be the major
root of T5 and let (v, v, v3) be its trinity. Let u; be the major vertex of Ty of height one
that is adjacent to v3 and let (vs, vy, v5) be its trinity. Let us recall that for a major vertex
u of T5 we denote the paths in the specified left u-linkage by P;(u) and the paths in the
specified right u-linkage by Q;(u). If there exist two distinct integers 7, j € AN B, then the
paths P;(ug), P;(uo), Qi(uo), Q;(uo) show that ug has property AB;; inn. Lety : Ty — T
be the homeomorphic embedding that maps ¢y, t1, ts, t3 to ug, vy, v2, v3, respectively. Then
1’ = no~is as desired. We may therefore assume that |[A N B| < 1.

Fori € {1,2,...,s} — A the path P;(ug) exits and re-enters the 7-torso at v, and it
does so through two distinct vertices of X, (). But | X,,,)\I| = s, and hence |A| > s/2.
Similarly |B| > s/2. By symmetry we may assume that |B| > |A|. It follows that
|A| = [s/2], and hence fori € {1,2,...,s} — A and every major vertex w of T} the path
P;(w) exits and re-enters the 7)-torso at w exactly once. The set C' includes an element of
the form (i, [, m), which means that the vertices &, (7), &w; (1), Ews (M), &, (1) appear on the
path P;(w) in the order listed. Let [; := [,m; := m, z;(w) = &,y (1), yi(w) = &uy(m),
Xi(w) = &, (1) Py(w)x;(w) and Y;(w) = y;(w)P;(w)&w, (7). Thus X;(w) and Y;(w) are

subpaths of the 7-torso at w. We distinguish two main cases.

Main case 1: |A N B| = 1. Let j be the unique element of A N B. We claim that
B — A # (). To prove the claim suppose for a contradiction that B C A. Thus |B| = 1,
and since |B| > |A| we have |A| = 1, and hence s = 2. We may assume, for the duration
of this paragraph, that A = B = {1}. The paths P;(uo), X2(uo), Yo(ug) are pairwise
disjoint, because they are subgraphs of the specified left uy-linkage. The path (Qa(ug) is
unconfined, and hence it has a subpath R joining &,,(1) and &,,(2) in the outer graph at vs.
It follows that P; (up) U RUY5(ug) and X5 (ug) are disjoint paths from X, ,,) to X, (,,), and
it follows from the minimality of the specified u(-linkage that they form the specified right

up-linkage, contrary to 1 € A. This proves the claim that B — A # (), and so we may select
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anelement: € B — A.

Figure 3.1: First case of the construction of the path R.

Let us assume as a case that either [; € A orl; ¢ B. In this case we let v map g, t1, t2, t3
to ug, V1, U2, Us, respectively, and we will prove that ¢, has property AB;; in 7. To that end
we need to construct two pairs of disjoint paths. The first pair is @;(uo) U @;(u;) and
Q;(ug) U Qj(uy). The second pair will consist of P;(ug) and another path from &, (7)
to &,,(7) which is a subgraph of a walk that we are about to construct. It will consist of
Xi(up) U Yi(up) and a walk R in the outer graph of v3 with ends x;(uo) and y;(ug). To
construct the walk R we will construct paths R, R, and a walk R3, whose union will
contain the desired walk R. If [; € A, then we let Ry := P, (u1). If [; ¢ B, then the
path @, (u,) is unconfined, and hence includes a subpath R, from z;(ug) to X, thatis a
subgraph of the n-torso at u;. We need to distinguish two subcases depending on whether
m; € B. Assume first that m; ¢ B and refer to Figure 3.1. Then similarly as above the
path @y, (u1) is unconfined, and hence includes a subpath Rs3 from y;(ug) to X, ,,) that is
a subgraph of the 7-torso at u;, and we let Ry be a W6-path in the outer graph at v, joining
the ends of R; and Rz in X,,,). This completes the subcase m; ¢ B, and so we may
assume that m; € B. In this subcase we define R3 := Y;(u;) U @y, (uq) and we define R
as above. See Figure 3.2. This completes the case that either [; € Aorl; ¢ B.

Next we consider the case [; € B and m; ¢ A — B. We proceed similarly as in
the previous paragraph, but with these exceptions: the homeomorphic embedding v will

map t3 to vy, rather than vs, the first pair of disjoint paths will now be Q;(uo) U P;(u1)
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Figure 3.2: Second case of the construction of the path R.

and Q;(ugp) U Pj(uy), and for the second pair we define Ry = @, (u1), Ry = X, (uy) if
m; ¢ Aand Ry = Qp,(uy) if m; € B, and R, will be a W6-path in the outer graph of vs
joining the ends of R; and Rs.

Therefore assume that [; € B — Aand m; € A — B foreveryi € B — A. Let us
be the major vertex of 75 at height two whose trinity includes v; and assume its trinity is
(vs, vg, v7). Let uz be the major vertex of 75 at height three whose trinity includes v; and
assume its trinity is (v;, vs, vg). Let vy map to, t1, ta, t3 to ug, v1, v, vs, respectively. Then ¢
also has property AB;; in 7. To see that the first pair of disjoint paths is ¢;(ug) U Q;(u;) U
Qi(u2) U P;(us) and Q;(uo) U Q;(u1) U Q;(uz) U Pj(us). The first path of the second pair
is Pj(ug). Let Ry = Y;(ug) U Qm,(u1) U Py, (ug), Ry = Pj(u2) U Q;(u2) U Q,(us), and
R3 = X;(uo) U Qi (u1) U Xy, (u2) U Xy, (u3). Then the second path of the second pair is
a path from &,, (7) to &,,(7) that is a subgraph of R; U Ry U R3 U Ry U R5, where Ry is a
W6-path in the outer graph of v joining the ends of R; and R, and Rj5 is a W6-path in the
outer graph of vy joining the ends of R, and R3. See Figure 3.3. This completes main case

1.

Main case 2: AN B = (). It follows that s is even and |A| = |B| = s/2. Assume as a
case that for some integer i € B either [;, m; € A or [;, m; € B. But the integers [;, m; are
pairwise distinct, and so if /;, m; € A, then there exists j € B such that [;, m; € B, and
similarly if /;, m; € B. We may therefore assume that /;, m; € A and [;, m; € B for some

distinct 7, j € B. Let us recall that us is the child of vs and (vs, vg, v7) is its trinity. We
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Figure 3.3: Second pair when [; € B — Aand and m; € A — B.

let v map to, t1, t2, t3 to ug, v1, V2, Vg, respectively, and we will prove that ¢, has property
AB;; in 7. To that end we need to construct two pairs of disjoint paths. The first pair
is Qi(ug) N Qi(ur) N Pi(ug) and Q;(ug) N Qj(u1) N Pj(uz). The first path of the second
pair will consist of the union of X;(ug) with a subpath of @, (u1) from X,y to X, u,),
and Y;(ug) with a subpath of Q,,, (u1) from X, ,,) to X, ,,), and a suitable W6-path in
the outer graph of v4 joining their ends, and the second path will consist of the union of
X (ug) U Qy,(u1) UQy,(uz) and Yj(ug) U Qu,(u1) U Qu, (u2) and a suitable W6-path in
the outer a graph of v; joining their ends. See Figure 3.4. This completes the case that for
some integer ¢ € B either [;, m; € Aorl;,m; € B.

We may therefore assume that for every ¢ € B one of [;, m; belongs to A and the other
belongs to B. Let us recall that for every i € B a subpath of P;(ug) joins &,,((;) to &,,(m;)
in the outer graph at v3 and is disjoint from the 7)-torso at ug, except for its ends. Let J be
the union of these subpaths; then .J is a linkage from {,,(i) : i € A} to {&,,(7) : i € B}.
For i € B the path Q);(ug) is a subgraph of the n-torso at uy. For i € A the intersection
of the path @Q;(ug) with the n-torso at u, consists of two paths, one from Xo(or) 10 Xys)>
and the other from X ,,) to X, ,,). Let L denote the union of these subpaths over all

i € A. It follows that J U L U (J,. 5 Qi(uo) is a linkage from X, to X,(,,), and so by
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Figure 3.4: Second pair when [;, m; € A and [;, m; € B for some distinct ¢, j € B.

the minimality of the specified ug-linkages, it is equal to the specified left u(-linkage. It

follows that u( has property C in 7. [

Lemma 3.4.4. Let (T, X) be a tree-decomposition of a graph G satisfying (W6) and (W7).
If there exists a regular cascade 1 : T3 — T with orderings &; in which every major vertex
has property C, then there is a weak subcascade 1’ of 1 of height one such that the major

vertex in 1)’ has property C;; for some i, j.

Proof. Let the common confinement sets for 1 be A, B,C, D. For a major vertex w €
V (T3) with trinity (v, ve, v3) there are disjoint paths in the 7-torso at w as in the definition
of property C. Fora € A and b € B let R,(w) denote the path with ends &, (a) and &,,(a),
let R,(w) denote the path with ends &, (b) and &,,(b), and let R,;(w) denote the path with
ends &,,(b) and &, (a).

Assume the major root of T3 is ug and its trinity is (vq, ve, v3), and let I be the common
intersection set of . Then 7n(vy),n(vs),n(vs) is a triad in 7" with center 7(wug) and for all
i € {1,2,3} we have X)) N Xy = I = Xyy01) N Xy(0q) N X5y(03)> and hence the triad is
not X -separable by (W7). Thus by Lemma 2.1.1 there is a path R(ug) connecting two of
the three sets of disjoint paths in the 7-torso at uy. Assume without loss of generality that
one end of R(up) is in a path R;(u), where i € A. Then the other end of R(uy) is either in

a path R;(uo), where j € B; or in a path R,;(ug), where j € B and a € A. In the former
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case we define a € A to be such that R,;(uo) is a path in the family.

Let the major root of 7} be ¢, and its trinity be (¢1, ¢, t3). Let y(to) = o, y(t1) = v1,
v(ts) = wy. Let the major vertex that is the child of v3 be uy, and the trinity at u; be
(vs,v4,vs). Let y(t3) = vs. We will prove that ¢ has property C;; inn’ =no~. Letb € B
be such that R;,(u1) is a member of the family of the disjoint paths in the 7-torso at u,
as in the definition of property C. By Lemma 3.4.2, there exists a I//6-path P in the outer
graph at v, joining &, (a) and &,,(b). By considering the paths R;(uo), R;j(uo) U R;(uy),
R.;(up) U Ry(uy) U P U Ry(uq) and R(ug) we find that ¢, has property C; in 7/, as
desired. 0

Lemma 3.4.5. Let s > 2 be an integer and let (T, X) be a tree-decomposition of a graph G
satisfying (W6). Let 1) : T3 < T be an ordered cascade in (T, X) of height three and size
|I| + s with orderings & and common intersection set I such that every major vertex of T3
has property C;; for some distinct i, j € {1,2, ..., s}. Then there exists a weak subcascade

n' : Th — T of n of height one such that the unique major vertex of T\ has property B;; in

/

n.

Proof. Assume that three major vertices at height zero and one of 75 are wug, u, us. Let the
trinity at ug be (v1, v2, v3), the trinity at u; be (vq, v4, v5), and the trinity at us be (vs, vg, v7).
Assume the major vertex of 17 is to, and its trinity is (1, 2, t3). For a major vertex w €
V(T3) let R;(w), R;(w), R;;(w) and R(w) be as in the definition of property C;;.

We need to find a weakly monotone homeomorphic embedding ~ : 7} — 75 such
that ' = n o y satisfies the requirement. Set (ty) = uo and y(¢;) = v;. Our choice for
7v(t2) will be vy or vs, depending on which two of the three paths R;(u1), R;(u1), Rij(u1)
in the 7-torso at u; the path R(u,) is connecting. If R(u,) is between R;(u;) and R;(u;),
then choose either v, or vs for y(t2). If R(u;) is between R;(u;) and R;;(uq), then set
Y(t2) = vy, and if it is between R;(u1) and R;;(u, ), then set y(t2) = vs. Do this similarly

for v(t3). Then ' = n o y will satisfy the requirement. In fact, we will prove this for the
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case when R(u;) is between R;(u;) and R;;(u;) and R(us) is between R, (uq) and R;j(usz).

See Figure 3.5. The other five cases are similar.

Figure 3.5: The case when R(u;) is between R;(u;) and R;;(u;) and R(us) is between
Rj(U,Q) and Rij (Ug)

In this case, our choice is Y(tg) = ug,v(t1) = vi,¥(t2) = v4,7(t3) = v;. Assume
the two endpoints of R(u,) are x and y and the two endpoints of R(us) are w and z. By
Lemma 3.4.2, there exists a W6-path P, between &, (i) and &, (j) in the outer graph at vs

and a W6-path P, between &, (i) and &,,(j) in the outer graph at vg. Now let

P = yRij(u1)&u (i) U Py U Rj(u1) U Rij(ug) U Ri(ug) U Py U &y (5) Rij(u2)w,

Li = Rz(UO) U R,(ul) U R(u1> JUPU wa(ug)gw(z)

and

L; = Rj(uo) U R;(uz) U R(uz) U P U yR;;(u1)&u, (5)-

The tripods L; and L; show that the major vertex of ' = no~ : 17 < T has property B;;.
]

Lemma 3.4.6. For every positive integers h' and w > 2 there exists a positive integer
h = h(h',w) such that the following holds. Let s be a positive integer such that 2 < s < w.
Let (T, X) be a tree-decomposition of a graph G of width less than w and satisfying (W6)

and (W7). Assume there exists a regular cascade 1 : Ty, — T of size |I| + s with specified
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linkages that are minimal, where [ is its common intersection set. Then there exist distinct
integers i,j € {1,2,...,s} and a weak subcascade ' : Ty, — T of n of height I such

that
o every major vertex of Ty, has property A;; in ', or
o cevery major vertex of Ty, has property B;; in 1/

Proof. Let h(a, k) be the function of Lemma 3.3.2, let az = 3/, az = h(as,2(})), a1 =
Say and h = h(ay,2). Consider having property C or not having property C as colors, then
by Lemma 3.3.2 there exists a monotone homeomorphic embedding v : 7,,, — 7}, such
that either (t) has property C in 7 for every major vertex t € V' (7T, ) or y(t) does not have
property C in 7 for every major vertex t € V(7). By Lemma 3.3.3 7, =no~vy: T, — T
is still a regular cascade with specified linkages that are minimal. Also, either ¢ has property
C in 7, for every major vertex t € V(1,,) or t does not have property C in 7, for every
major vertex t € V(T,,).

If ¢ has property C in 7; for every major vertex ¢ € V(7,,), then by Lemma 3.4.4
there exists a weak subcascade 7, of 1; of height a, such that every major vertex of 7,
has property C;; in 7, for some distinct 4,5 € {1,2,...,s}. Consider each choice of pair
1,7 as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic embedding
1 : Tay — T,, such that for some distinct 7, j € {1,2, ..., s}, 71(¢) has property C;; in 1,
for every major vertex t € V(T,,). Let n3 = 1y o ;. Then by Lemma 3.3.3 this implies ¢
has property C;; in 13 for every major vertex t € V (T, ). Then by Lemma 3.4.5 there exists
a weak subcascade 1), : b’ < a3 of 13 such that every major vertex of 7}, has property B;;
in n4. Hence 7, is as desired.

If ¢ does not have property C in 1), for every major vertex t € V' (T, ), then by Lemma 3.4.3
there exists a weak subcascade 72 of 7, of height ay such that every major vertex of 7,
has property A;; or B;; for some distinct ¢, 5 € {1,2,...,s}. Consider each property A;;

or B;; as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic embedding
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v ¢ T — T,, such that for some distinct i,j € {1,2,..., s}, either ,(¢) has property
A;; in 1, for every major vertex ¢t € V' (T},) or 1 (t) has property B;; in 7, for every major
vertex t € V(T}). Let g3 = 19 o ;. Then ¢ has property A;; in 15 for every major vertex
t € V(Tjy) or t has property B;; in n3 for every major vertex ¢t € V(7},,/) by Lemma 3.3.3.

Hence 73 is as desired. [

3.5 Proof of Theorem 1.1.3

By Lemmas 3.1.2 and 3.1.4 Theorem 1.1.3 is equivalent to the following theorem.

Theorem 3.5.1. For any positive integer k, there exists a positive integer p = p(k) such
that for every 2-connected graph G, if G has path-width at least p, then G has a minor

isomorphic to Py, or Q.
We need the following lemma.

Lemma 3.5.2. Let (T, X) be a tree-decomposition of a graph G, let n : T, < T be an
ordered cascade in (T, X') with orderings & of height h and size s + I, where I is the
common intersection set, and let i,j € {1,2,..., s} be distinct and such that every major
vertex of T}, has property B;j in 1. Let t be the minor root of Tj,, and let wiw, be the base
edge of Qy,. For every major vertex 1 in Tj, let V,, be the vertex set of the n-torso at .
Let G' be the subgraph of G induced by Uto Viy» where the union is taken over all major
vertices to € V(1y,). Then G' has a minor isomorphic to Qp, — wyws in such a way &(i)
belongs to the node of wy, £(j) belongs to the node of ws, and the node of each leaf of Qy,

contains &.(i) or &.(j) for some minor vertex r at height h of T),.

Proof. We proceed by induction on h. Let ¢, be the major root of T}, let (¢1,ts,t3) be its
trinity, and let L; and L, be the tripods in the 7)-torso at ¢, as in the definition of property
B;j. The graph L; U L; contains a path P joining &, (7) to &, (j) and a path P’ joining
&, (1) or &, (j) to P such that &, (), &, (j) & V(P'), which shows that the lemma holds for
h=1.
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We may therefore assume that 2 > 1 and that the lemma holds for 2 — 1. For k € {2,3}
let R be the subtree of T}, rooted at ty, let 7, be the restriction of 7 to Ry, and let G, be
the subgraph of G induced by | J,, V4,, where the union is taken over all major vertices
to € V(Ry). By the induction hypothesis applied to 7, and Gy, the graph G, has a minor
isomorphic to Q,_; — ujus in such a way &, (i) belongs to the node of uy, &, (j) belongs
to the node of us, where u;us is the base edge of Qp_1, and the node of each leaf of Q)
contains &,.(7) or &.(j) for some minor vertex r at height h — 1 of Ry. By using these two
minors, the path P and the rest of the triads L; and L; we find that G’ has the desired

minor. L]

Lemma 3.5.3. For every two positive integers k and w > 2 there exists an integer h such
that the following holds. Let (T, X)) be a tree-decomposition of a graph G of width less
than w and satisfying (W1)—(W7). Assume there exists a regular cascade n : T}, — T of
size |I| + s with specified linkages that are minimal, where [ is its common intersection set

and 2 < s < w.
(i) Then G has a minor isomorphic to Py, or Q.
(ii) If|I| > 1, then G has a minor isomorphic to P;, or Q.
(iii) If |I| > 2, then G has a minor isomorphic to P, or QJ.

Proof. Let h' = 4k + 1, and let h = h(h/,w) be the number as in Lemma 3.4.6. By
Lemma 3.4.6 there exist distinct integers i, € {1,2,...,s} and a weak subcascade 7’ :

Ty — T of n of height A’ such that
e every major vertex of 7}, has property A;; in 7/, or
e every major vertex of 7}, has property B;; in 1/

Assume that every major vertex of T} has property A;; in ', and let R be the union of the

corresponding tripods, over all major vertices ¢t € V' (7},) at height at most A’ — 2. It follows
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that R is the union of two disjoint trees, each containing a subtree isomorphic to 7/ _1) /2.
Let ¢ be a minor vertex of 7}, at height »’ — 1. By Lemma 3.4.2 there exists a W6-path
with ends & (i) and &(j) in the outer graph at t. Let R; be the union of these W6-paths for
all minor vertices ¢ at height ' — 1. By contracting one of the trees comprising R and by
considering R; we deduce that G has a Py minor, as desired. If || > 1, assume x € [. By
Lemma 3.4.2 there exists a W6-path with ends = and &(7) in the outer graph at t. Let Ry
be the union of these W6-paths for all minor vertices ¢ at height 2" — 1. By contracting the
tree that contains &;(i) of R and by considering R;, R» we deduce that G has a P;, minor,
as desired. If |I| > 2, assume x1, 25 € I. By Lemma 3.4.2 there exist a W6-path with ends
x1 and &(j) and a W6-path with ends x5 and & (j) in the outer graph at t. Let R3 be the
union of these W6-paths for all minor vertices ¢ at height A’ — 1. By contracting the tree
that contains & (i) of R and by considering R;, R; we deduce that G has a P} minor, as
desired.

We may therefore assume that every major vertex of 7}, has property B;; in 7. For
every major vertex t, in 7}, let V;, be the vertex set of the 7-torso at ¢y. Let G’ be the
subgraph of G induced by UtO Vi,» where the union is taken over all major vertices ¢, €
V' (T},) at height at most ' — 2. Tt follows from Lemma 3.5.2 applied to 7}, that G’
has a minor isomorphic to Qy 5, as desired. Let ¢ be a minor vertex of 7}, at height
R — 1. If |[I| > 1, assume € [. By Lemma 3.4.2 there exist a W6-path with ends
x and &(i) and a W6-path with ends x and &,(j) in the outer graph at ¢. Let R; be the
union of these W6-paths for all minor vertices ¢ at height " — 1. By considering R; and
the minor isomorphic to Q5 in G’ we deduce that G has a Q}, , minor, as desired. If
|I| > 2, assume z1, x5 € I. By Lemma 3.4.2 there exist W6-paths with ends a and b for
all a € {1,292} and b € {&(i),&(j)} in the outer graph at ¢. Let R, be the union of
these W6-paths for all minor vertices ¢ at height A" — 1. By considering R, and the minor

isomorphic to Q5 in G’ we deduce that GG has a Q},_, minor, as desired. ]

We deduce Theorem 3.5.1 from the following lemma.
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Lemma 3.5.4. Let k and w be positive integers. There exists a number p = p(k,w) such
that for every 2-connected graph G, if G has tree-width less than w and path-width at least

p, then G has a minor isomorphic to Py, or Qy.

Proof. Let i/ be as in Lemma 3.5.3 and let h = max{h’, k + 1}. Let p be as in Theo-
rem 3.3.5 applied to a = h and w. We claim that p satisfies the conclusion of the lemma.

By Theorem 3.3.5, there exists a tree-decomposition (7', X') of G such that:
e (7, X) has width less than w,
e (T, X) satisfies (W1)—(W7), and

e for some s, where 2 < s < w, there exists a regular cascade n : T}, — T' of height
h and size s in (T, X') with specified ,-linkages that are minimal for every major

vertex tg € V(1}).

Let I be the common intersection set of 7, let & be the orderings, and let s; = s — |I|. Then
s1 > 1 by the definition of injective cascade.

Assume first that s; = 1. Since s > 2, it follows that I # (). Let z € I. Let R be
the union of the left and right specified ¢-linkage with respect to 7, over all major vertices
t € V(T}) at height at most A — 2. The minimality of the specified linkages implies that
R is isomorphic to a subdivision of 7},_;. Let ¢ be a minor vertex of 7}, at height h — 1.
By Lemma 3.4.2 there exists a W6-path with ends & (1) and = and every internal vertex in
the outer graph at ¢t. The union of R and these W6-paths shows that G has a P, minor, as
desired.

We may therefore assume that s; > 2. By Lemma 3.5.3(i), G has a minor isomorphic

to Py, or Q.. O

Proof of Theorem 3.5.1. Let a positive integer k£ be given. By Theorem 1.1.1 there exists
an integer w such that every graph of tree-width at least w has a minor isomorphic to Pj.

Let p = p(k,w) be as in Lemma 3.5.4. We claim that p satisfies the conclusion of the
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theorem. Indeed, let G be a 2-connected graph of path-width at least p. By Theorem 1.1.1,
if G has tree-width at least w, then GG has a minor isomorphic to Py, as desired. We may
therefore assume that the tree-width of G is less than w. By Lemma 3.5.4 G has a minor

isomorphic to Py, or Oy, as desired. O]
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CHAPTER 4
MINORS OF 3-CONNECTED GRAPHS OF LARGE PATH-WIDTH

4.1 Properties

Let s > 0 be an integer. Let (7, X') be a tree decomposition of a graph G, letny : T}, — T
be an ordered cascade in (7', X ) with size || + s and orderings &, where [ is the common
intersection set of 7). Let ty € V' (7},) be a major vertex, let (1, to, t3) be the trinity at ¢, let
G’ be the n-torso at £, and let 4, j, k € {1,2,..., s} be distinct.

We say that ¢, has property A;j;, in 1 if there exist disjoint paths L;, L;, Ly, R;, R;, Ry,
in G’ and vertices v;, y;, Yk, 2i, 2, 2 € V(G') such that the two ends of L,, are &, (m) and

ym for each m € {3, j, k}, the two ends of R,, are &, (m) and z,, for each m € {3, j, k},

and {yiayj7yk} = {£t2 (i)aftz (j)a 5152(]{7)}’ {ziv Zjs Zk} = {gts (i);€t3(j)7€t3 (k>}

0
ijk

We say that ¢, has property A}, in 1 if there exist three disjoint tripods L;, L;, L, in G’
such that for each m € {3, j, k}, the tripod L, has feet &, (m), &, (m2), &, (m3) for some
ma, m3 € {i,7,k}. See Figure 4.1(a).

We say that ¢ty has property Alljk in 1 if there exist vertices v, , for all = € {1, j, k},

y € {2, 3}, and tripods L;, L;, L;, in G’ with centers ¢;, ¢;, ¢ such that:
e for each Yy € {27 3}’ {Ui,gp Uj,ya Uk,y} = {gty (Z)v gty (])7 gty (k)}
e foreach m € {i,j, k}, L, has feet &, (m), V.2, Um 3

o L;NL;=ciLiv;3Nc;jL;v;, anditis a path that does not contain ¢;, c;. Let vy, be the

vertex of this path that is closest to ¢;, for h € {i, j}.
[ J V(Lh N Lk) g V(CthUh) - {Ch, Uh} for h € {’L,j}

e the paths &, (m)L,, v, 2 for all m € {i, j, k} are disjoint and the paths &;, (m) Ly, vy, 3

for all m € {i, j, k} are disjoint.
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See Figure 4.1(b).

We say that ¢ty has property A?jk in 1 if there exist vertices v, , for all z € {1, j, k},

y € {2, 3}, and tripods L;, L;, L;, in G' with centers ¢;, ¢;, ¢ such that:
e foreachy € {2,3}, {viy, vjy, iy} = {&, (1), &, (5), &, (k) }
e foreachm € {i, j, k}, L, has feet &, (m), vy.2, U 3
o LiNLy=10

e L;NL;=cjLjvjsMNc;L;v; 3 and it is a path that does not contain ¢;, c;;
L; N Ly = cjLjvj3 N cpLyvy 2 and it is a path that does not contain c;, ¢y.

See Figure 4.1(c).

We say that to has property A%, in 1 if there exist vertices v, for all z € {i,j, k} and

y € {2, 3} such that:

e foreach y € {2,3}, {viy, vjy, vy} = {&, (4), &, (45), &, (K) }

for each m € {i, j, k}, L,,, has feet &, (m), U2, Um 3

LlﬂLk:(Z)andLjﬁLk:(Z)

LN L; = c¢;Liv;3Nc;Li&, () and it is a path that does not contain ¢;, ¢;.

there exist three disjoint paths, each from &, (h) to vy, 3 for h € {i, j, k}.

See Figure 4.1(d).

If ¢y has one of the properties above, we say that £, has that property with ordered feet
if for all h € {i,j,k}, L, has feet &, (h), &, (h), &4 (R).

If to has one of the properties above, we will denote the three tripods as L;(to), L;(to), Lk (to)
and their centers as ¢;(to), ¢;(to), cx(to) when we want to emphasize they are in the 7-torso

at the major vertex t.
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(a) Property AD;, (b) Property A},

L, Ly,
(c) Property A7, (d) Property A},

Figure 4.1: Properties A7}, for m € {0, 1,2, 3}.

Let A;, and By, be the confinement sets for 7 at t,. We say that ¢, has property B in n
if s is even, A;, and B, are disjoint and both have size s/2, and there exist disjoint paths

Ri, Ry, ..., Rss/5 in G’ in such a way that

e cach R; is a subpath of both the left specified ?y-linkage and the right specified ¢-

linkage,
e fori € Ay, the path R; has ends &, (7) and &, (7),
e fori € By, the path R; has ends &, (i) and &, (i), and

o fori=s+1,5+2,...,3s/2 the path R; has one end &, (k) and the other end &, ({)

for some k € By, and [ € Ay,.

We say that ty has property B;j;, in 1 if there exist three paths R;, R;, I?;; and a tripod
Ry, in G’ such that they are pairwise disjoint and the ends of R; are &, () and &, (), the
ends of R; are &, (j) and &, (j), the ends of R;; are &,(j) and &, (7), and the three feet
of Ry, are &, (k), &, (k), and &, (k). We will denote them as R; (o), R;(to), Ri;(to), Ri(to)

when we want to emphasize they are in the 7-torso at the major vertex t.
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Lemma 4.1.1. Let (T, X) be a tree-decomposition of a graph G. Letn : T1 — T be an

ordered cascade in (T, X) with orderings &, of height one and size s + |I|, where I is the

common intersection set. Let ty be the major vertex in Ty, and let i, j, k € {1,2,...,s} be
distinct. If to has property A;ji, inn, then to has property A7, inn for some m € {0, 1,2, 3}

abc

and a, b, c such that {a,b,c} = {i, j, k}.

Proof. Assume the trinity at ¢, is (¢1,t2,¢3). As in the definition of property A,;;, in the
n-torso at ¢, there exist disjoint paths L;, L;, L; such that L,, has ends &, (m) and y,, for
all m € {i,j,k} and there exist disjoint paths R;, R;, Ry such that R,, has ends &, (m)
and z,, for all m € {i,j,k}, {vi,vyj,ur} = {&,(0), &, (1), & (k) ), and {2, 25, 2} =
{&4(1),&,(5), &5 (k) Y. Let z, = &, (m) for all m € {i,j,k}. Among all the possible
choices of such paths, choose the one such that M/ = ||, ,[E(L,,) U E(R,,)]| is minimal.

Assume from z;, 2;, zj, the paths I?;, R;, Ry, first meet L; U L; U Ly, at a, b, c, respectively.

Claim 4.1.1.1. Let m,n € {i, j, k}. Assume R, meets L, at a vertex v. Then from v, after

departing from the path L., vR,,x,, must meet Ly, before L, for some h € {i,j, k} —{n}.

Proof: Assume it is not true. From v, assume vR,,z,, departs from L, at a vertex
vy, and then meets L,, again before any L, where h € {i,j,k} — {n} at a vertex vs.
Assume vy is closer to y,, than v;. Let L), = x,,L,,v; U vy R,,us Uvs Ly, and L = L;, for
h e {i,j,k}—{n}. Let G, = LJUL,UL,UR,UR;UR}, and G, = L;UL;UL,UR;UR;UR.
It is clear that (G, is a subgraph of G5. In addition, there exists an edge of vy L, v that is
not an edge of R; U R; U R. So |E(Gh)| < |E(G2)| = M, contradicting the minimality
of M. [

Claim 4.1.1.2. Let m,n, h,l € {i,j, k} where m # n. Let P, be a subpath of R, with
two ends vy, wy such that vy € V(Ly,),wy € V(L,) and P, be a subpath of R; with two
ends vy, wy such that vy € V(Ly,), ws € V(L,). Assume Py, P, are internally disjoint from

L;UL;U Ly and P, is disjoint from Ps. Assume vy € V (VoL ypm,). Then wy € V(woLyys,).
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Proof: Assume it is not true, then wy € V(woL,x,,). Let L) = xp, Lyvo U PyUws Ly,
and L), =z, L,w; U PyUv Ly Letr € {i,5,k} —{m,n}. Let Gy = L, UL, UL U
RiUR;URyand Gy = L; UL; ULy UR; UR;URy. Then (G is a subgraph of G. In
addition, there exists an edge of vy L,,,v2 U wy L, w that is not an edge of R; U R; U Ry,. So

|E(Gh)| < |E(G2)| = M, a contradiction. O

Claim 4.1.1.3. Let m,n,p € {i,j,k} where n # p. Assume R,, meets L,, at a vertex v.
From v, assume after departing from L,, the path vR,,x,, meets L, and after departing
from L, it meets L,, again at a vertex w. Then there exist uw € {a,b,c} and h € {3, j,k} —

{m} such that v € V(vL,w) NV (Ry).

Proof: Assume it is not true. Without loss of generality, assume v € V(wL,z,). As-
sume v 2, w first meets L,, at v; and departs from L,, at vo. There exist ¢, € V(vL,w)N
V(R,,) such that t; L,ts is internally disjoint from R,,, otherwise R,, will contain a cy-
cle. If V(vL,w) N V(Ule{i7j7k}_{m} R;) = 0, then by changing t1 R,,ts by t1 L, t2, we can
reduce M, a contradiction. So there exists a vertex v3 € V(vL,w) N V(R,,,) for some
my € {i,j,k} — {m}. Assume from v the path v3R,,, x,,, departs L,, at a vertex v,. By
Claim 4.1.1.1, from v, the path v4R,,, x,,, must meet L;, at a vertex v; before meeting L,,
again for some h; € {i,j,k} — {n}. Assume from v the path v3R,,, z,,, departs from L,,
at a vertex vg. Since my # m, vg € {a,b,c}, 80 v R, 2y, must meet L; U L; U L. By
Claim 4.1.1.1, vg R, 2, must meet L, at a vertex v; before meeting L,, again for some
hy € {i,j,k} — {n}. By Claim 4.1.1.2, hy # p and hy # p, so hy = hy = r, where r €
{i,7,k} —{n,p}. Assume v5 € V(x,L,v7). As above, V (vsL,v7) NV (R; UR; URy,) # 0.
Letvs € V(vsL,v7)NV (R, ) for some msy € {3, j, k}. From vg, assume vg R, z,, departs
from L, at a vertex vg. From vy the path vgR,,,2,,, must meet L, at a vertex vy before
meeting L, again for some h3 € {i,j,k} — {r}. By Claim 4.1.1.2, hy # n, so hy = p. If
vig € V(zpLypvr), let L, = x, LovsUvs Ry, 04U0s Ly, Ly = 2, Lyv10Uv10 Ry 09 Uvg Ly Yy,

and L, = z, L,v UvR,,v1 Uwv;Ly,y,, then these paths together with R;, R;, R, show that
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M is not minimal. If vig € V (v2Lypy,), then let L. = x, L,vg U vg Ry, v10 U v19Lyyyp, Ly, =
ZpLyve U vaRyyw UwLyyy,, and L, = x, L, v U v6 Ry, v7 U v7 Ly, then we also have M

i1s not minimal, a contradiction. ]

Back to the proof of the lemma, if no two of a, b, ¢ lie on the same path in L;, L;, Ly,

then it is clear that ¢, has property A?j & in 7. So consider two cases:

Case 1: all of a, b, c lie on some path in L;, L;, L;,. Without loss of generality, assume
they all lie on L; such that b € V(aL,x;) and ¢ € V(bL,x;). From b the path bR;z;
must depart from L; at a vertex b;. From b, the path b, R;z; must meet L; or L, before
meeting L; again. Assume from b, the path b; R;z; meets L; at a vertex b,. From a the
path a?;x; must depart from L; at a vertex a,. From a, the path a; ?;x; must meet L; or L,

before meeting L; again. If from a; the path a; R;z; meets L;, before L; or L;, then ¢, has

property A,lgji. So assume from a; the path a; R;z; meets L; before L; or Ly, at a vertex as.
By Claim 4.1.1.2, ay € V(byL;y;). From ay the path as R;x; must depart from L; at a vertex

as. From as the path a3 ?;x; must meet L; or L; before meeting L, again. If from a3 the

path a3 R;z; meets Ly, before L; or L, then ¢, also has property A ;- SO assume from a;
the path a3 R;z; meets L, before L; or Ly, at a vertex ay. By Claim 4.1.1.2, a4 € V(bL;y;).

By Claim 4.1.1.3, this cannot happen.

Case 2: exactly two of a, b, c lie on some path in L;, L;, L;. Without loss of generality,
assume that ¢ and b lie on L; and ¢ lies on L;, and a € V(bL;y;). Because b € V(R;),
from a the path a?;x; must depart from L; at some vertex a,. If a; R;x; meets L, before
L; or Ly, then t, has property A}jk. The path a; R;x; cannot meet L; before L; or L, by

Claim 4.1.1.1. So assume from a; the path a; R;z; meets L, before L; or L; at a vertex as.

Assume first ay € V(cLyxy). Because as & V(Ry), from c the path cRyx) must depart

2
ikj*

from Lj, at some vertex c;. If ¢; Ryx), meets L, before L; or Ly, then ¢, has property A
The path ¢, Rjx), cannot meet L, before L; or L; because of Claim 4.1.1.1. So assume
c1 Ry, meets L; before L; or Ly, at a vertex ¢;. By Claim 4.1.1.2, ¢; € V(aL;y;). Because

a ¢ V(caRyxy), from ¢y the path coRjx), must depart from L, at some vertex c3. From
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cs the path c3 R,x, cannot meet L; before L; or Lj, because of Claim 4.1.1.1. If c3Ryxy,
meets L; before L; or L, at a vertex cy, then the tripods T = L; UcyRycz U csLjaUaR;z;,
Ty = L; UbR;zj, and T3 = Lj, U cRy,z;, show that ¢, has property A%jk. So assume c3 Ry,
meets L before L; or L; at a vertex c4. Because a,b ¢ V(1 Lgcy), by Claim 4.1.1.3, this

cannot happen. Now assume as € V(cLgyy). From ay the path ay R;x; must depart from

1
kji*

Ly, at a vertex ag. From a3 if agR;x; meets L; before L; or Ly, then t, has property A
From a3 the path a3 R;x; cannot meet L, before L; or L;, so assume it meets L; at a vertex
ay before L; or L. By Claim 4.1.1.3, a4 & V(bL;y;). So as € V(bL;x;). Then from b
the path bR;x; must depart from L; at a vertex b;. From b, the path b; ?;z; cannot meet
L; again before L; or L. If from 0, the path b R;z; meets L; before L; or Ly, then %

has property A;?’jk. From 0; the path b; R;z; cannot meet L; before L; or L; because of

Claim 4.1.1.2. ]

4.2 Main lemma

Lemma 4.2.1. Let s > 3 be an integer. Let (T, X) be a tree decomposition of a graph G
satisfying (W6), and let n : Ts — T be a regular cascade in (T, X) of size |I| + s with
specified linkages that are minimal, where [ is the common intersection set of 1. Then there
exists a weak subcascade n' : Ty — T of n of height one such that in 1/ the unique major
vertex of Ty has property A;;i, for some distinct integers i, j, k € {1,2, ..., s}, or the major

root of T’ has property B in n.

Proof. We will either construct a weakly monotone homeomorphic embedding v : 77 —
T such that in 7’ = 7 o 7 the major root of 77 will have property A;;;, for some distinct
integers i, 7, k € {1,2, ..., s}, or establish that the major root of 75 has property B in 7.
Since 7 is regular, there exist sets A, B, C, D as in the definition of a regular cascade.
Let to be the unique major vertex of T3 and let (¢1, ¢, t3) be its trinity. Let ug be the major
root of T5 and let (vy, vy, v3) to be its trinity. Let uq, us be the major vertices of T of height

one such that u; is adjacent to vy and us is adjacent to vs. Let (vq, v4, v5) be the trinity at
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uy and (vs, vg, v7) be the trinity at us. Let uz, uy be the major vertices of 75 of height two
such that u3 is adjacent to vy and wuy is adjacent to vg. Let (v4, vs, v9) be the trinity at us
and (vg, v10, v11) be the trinity at uy. Let us, ug be the major vertices of 75 of height three
such that us is adjacent to vg and ug is adjacent to vyg. Let (vs, v12, v13) be the trinity at us
and (vyg, v14, v15) be the trinity at ug.

Let us recall that for a major vertex u of 75 we denote the paths in the specified left u-
linkage by P;(u) and the paths in the specified right u-linkage by @Q;(u). If there exist three
distinct integers 7, j, k € ANDB, then the paths P;(ug), P;(uo), Pe(uo), Qi(uo), Q;(uo), Qr(uo)
show that v, has property A;;;, in n. Let v : T} — T5 be the homeomorphic embedding
that maps tg, t1, ta, t3 to ug, v1, V2, v3, respectively. Then ' = n o 7 is as desired. We may
therefore assume that |A N B| < 2.

Fori € {1,2,...,s} — A the path P;(uo) exits and re-enters the 7)-torso at ug, and it
does so through two distinct vertices of X, ,,) — 1. But | X}y — I| = s, hence |A| > s/2.
Similarly |B| > s/2. Let a be a major vertex with trinity (a;, as, as). The set C' includes
an element of the form (¢, [, m), which means that the vertices &,, (1), €45 (1), Eas (M), &ay (7)
appear on the path P;(a) in the order listed. Let [; :== [, m; := m, z;(a) := &,,(1), yi(a) :=
Eas(m), Xi(a) := &, (1) Pi(a)z;(a) and Y(a) := y;(a)P;(a)é,, (7). Thus X;(a) and Y;(a)
are subpaths of the n-torso at a. Similarly, the set D includes an element of the form
(7,n, ), which means that the vertices &,, (1), &4, (1), £4,(7), €as (7) appear on the path Q;(a)
in the order listed. Let n; := n,r; = r, wi(a) = &, (n), z(a) = &,(r), Wi(a) =

€0, (1) Qi(a)w;(a) and Z;(a) = z;(a)Q;(a)&,, (7). We distinguish three main cases.

Main case 1: |[ANB| = 2. Assume ANB = {i,5}. Assume B— A = (), then B = {3, j}.
Let k € {1,...,s}\B. Let v(to) = ug,y(t1) = v1.

Consider the following cases depending on n; and ri. If ng, 7, € B (so they are
also in A), let y(t2) = v4, Ep, = Py(uy) for all h € {i, j,k}, and let L be the union of
Wi(ug) U Qn, (u1) and @y, (u1) U Z(up) and a W6-path in the outer graph at v; joining

their ends by Lemma 3.4.2. If at least one of ny, 7 is not in B, let v(t2) = vs and E), =
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Qn(uy) forall b € {i,j, k}. If ng,rp & B, let L be the union of Wy (ug) U W, (u1) and
W, (u1) U Zg(up) and a W6-path in the outer graph at v, joining their ends by Lemma
3.42.1ftny, € Bandr, ¢ B, let L be the union of Wy, (ug) U P, (u1) and W, (u1) U Zg(uo)
and a W6-path in the outer graph at v, joining their ends by Lemma 3.4.2. If n;, ¢ B and
ri € B, let L be the union of Wy, (ug) U W, (u1) and Py, (u1) U Z(ug) and a W6-path in
the outer graph at v, joining their ends by Lemma 3.4.2.

If £ € Athen welet y(t3) = vs, F; = F; = Fy, = 0 and R = Py(ug). If k ¢ A
then we consider the following cases depending on [, and my. If [, my, € B, let y(t3) =
vg, F, = Pp(ug) for all h € {i,7,k}, and let R be the union of X (ug) U @y, (u2) and
Qm,, (u2)UY (up) and a W 6-path in the outer graph at v7 joining their ends by Lemma 3.4.2.
If at least one of [, my, is not in B, let v(t3) = vy and Fj, = Qp(usg) forall h € {i, j, k}. If
I, mx & B, let R be the union of X (ug) UW,, (u2) and Wy, (ug) U Yy (ug) and a W6-path
in the outer graph at vg joining their ends by Lemma 3.4.2. If [, € B and my € B, let R
be the union of X (ug) U P, (ug) and W, (us) U Yy (uo) and a W6-path in the outer graph
at vg joining their ends by Lemma 3.4.2. If [, ¢ B and m; € B, let R be the union of
Xi(uo) U Wi, (uz) and Py, (ug) U Yy (uo) and a WW6-path in the outer graph at vg joining
their ends by Lemma 3.4.2.

Let L' be a subpath of L with the same ends and R’ be a subpath of R with the same
ends. Then the unique major vertex of 7} has property A;;; in y’ = o~ with the first triple
of disjoint paths being R’ U Ej, and P, (ug) U E}, for all h € {4, j}, and the second triple
being L' U Fy, and Q(ug) U Fy, forall h € {i,j}.

Now assume B — A # (). Select an element & € B — A. Let y(to) = ug,y(t1) =
v1,7(t2) = va.

If i, € Aorl, & B, let y(t3) = vy and F, = Qp(us) for h € {i,j,k}. If [ € A, let
My = Py (uz). If I, & B, let My = Wi, (us). If my, € B, let My = Yi(t) U Qp, (u2). If
my & B, let My = W,,, (u2). Let R be the union of M and M5 and a W 6-path in the outer

graph at vg joining their ends by Lemma 3.4.2. If [, € Band my, ¢ A — B, let y(t3) = vg
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and F, = Py, (uy) forall h € {i, 7, k}. Let My = @y, (u2). i my, & Alet My = Xy, (ug). If
my € Blet My = Qp, (u2). Let R be the union of M, and M, and a W 6-path in the outer
graph at v; joining their ends by Lemma 3.4.2. If [, € B— Aand m;, € A— B, let y(t3) =
vis and Fj, = Py, (ug) U Pp(ug) U Qp(ug) forall b € {7, j, k}. Let My = Py, (ug) U X, (ug),
My = Qj(ug) U Pj(ug) U Pj(ug) and M3 = P, (u2) U Py, (ug) U Py, (ug). Let R be the
union of My, M, Ms, a W6-path in the outer graph at vy joining the ends of M; and M,,
and a W 6-path in the outer graph at v14 joining the ends of M, and M3 by Lemma 3.4.2.

Then the unique major vertex of 7} has property A;;, in ' = 1 o~y with the first triple
of disjoint paths being P, (u) for all h € {i, j} and a path between &,, (k) and &,, (k) that
is a subgraph of X (ug) U R U Yj(ug), and the second triple being Qp,(ug) U Fj, for all
h e {i, j,k}.

Main case 2: |A N B| = 1. Let j be the unique element of A N B. Notice that A — B # ().
In fact, if A— B = (), then |A| = 1. So 2(s — 1) < s and this means s < 2, a contradiction.
Similarly, B — A # (). Therefore, we canleti € A — Band k € B — A. Let y(ty) =
ug, Y(t1) = v1.

If n; € Born; € A, lety(t2) = vy and Ej, = Py(uy) forall h € {i,j,k}. If n; € B,
let My = Qn,(u1). Ifn; & A, let My = X, (uq). Ifr; € A, let My = Z;j(up) U Py, (uq). If
ri & A, let My = X, (uy). Let L be the union of M, and M, and a W6-path in the outer
graph at vs joining their ends by Lemma 3.4.2. If n, € Aandr; ¢ B — A, let y(t3) = vs
and Fy, = Qp(uy) for all b € {i,j,k}. Let My = P, (uy). If r; & B let My = W, (uq).
If r, € Alet My = P,,(uy). Let L be the union of M; and M, and a W 6-path in the outer
graph at v, joining their ends by Lemma 3.4.2. If n; € A—Bandr; € B—A, lety(t2) = v13
and Fy, = Ppy(u1) U Py(u3) U Qp(us) for all h € {i,j,k}. Let My = P, (uy) U X, (u3),
My = Qj(us) U Pj(us) U Pj(us) and M3 = P,,(u1) U Py, (us) U Py, (us). Let L be the
union of My, M, Ms, a W6-path in the outer graph at vy joining the ends of M; and M,
and a W6-path in the outer graph at v, joining the ends of M, and M3 by Lemma 3.4.2.

Ifl, € Aorly & B,lety(t3) = vy and F), = Qp(uz) forall h € {i, 5, k}. If [, € A, let
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M1 = Plk(UQ) If lk g B, let M1 = VVlk<’LL2) Ifmk € B, let M2 = Yk(UQ) U ka(UQ) If
my & B, let My = W,,, (us2). Let R be the union of M, and M and a W 6-path in the outer
graph at vg joining their ends by Lemma 3.4.2. If [, € Band my, ¢ A — B, let y(t3) = vg

and F, = Py, (ug) forall h € {i, 7, k}. Let My = Qy, (u2). f my, & Alet My = Xy, (ug). If

K
my € Blet My = Qp, (u2). Let R be the union of M; and M, and a W 6-path in the outer
graph at v; joining their ends by Lemma 3.4.2. If [, € B— Aand m;, € A— B, lety(t3) =
vis and Fy, = Py, (ug) U Py (ug) U Qp(ug) forall h € {7, j, k}. Let My = P, (ug) U X, (uy),
My = Qj(us) U Pj(us) U Pj(ug) and M3 = P, (u2) U Py, (us) U Py, (ug). Let R be the
union of My, M, Ms, a W6-path in the outer graph at vy joining the ends of M; and M,
and a W6-path in the outer graph at vy4 joining the ends of M, and M3 by Lemma 3.4.2.

Let L' be a subpath of L with the same ends and R’ be a subpath of R with the same
ends. Then the unique major vertex of 7} has property A;;; in y’ = 1o~ with the first triple
of disjoint paths being P, (ug) U Ej, for all h € {i,j} and Xy (uo) U RU Yy (ug) U Ej, and
the second triple being @, (ug) U F}, for all h € {j, k} and W;(ug) U L U Z;(ug) U F;.

Main case 3: AN B = (). It follows that s is even and |A| = | B| = s/2. Assume as a case
that for some integer i € B either [;, m; € Aorl;, m; € B and for some k € A, ny,r, € A
or n, 1, € B. But the integers [;, m; are pairwise distinct, and so if [;, m; € A, then there
exists j € B such that [;,m; € B, and similarly if /;, m; € B. We may therefore assume
that there exist k € Aand i, j € B such that ng,r, € A, [;, m; € Aand [;, m; € B. We let
v map to, t1, ta, t3 to ug, v1, vs, V11, respectively, and we will prove that ¢, has property A,
in 7). To that end we need to construct two triples of disjoint paths. The first two paths of
the first triple are (; (ug) U P;(u2) U Q;i(uy) and Q;(ug) U Pj(u2) U Q;(u4). The third path
of the first triple is the union of Wy, (ug) U P, (u1) and P, (u1) U Z,(ug) U Py (u2) U Q. (u4)
and a suitable W6-path in the outer graph at v, joining their ends by Lemma 3.4.2. The
first path of the second triple is Py (ug) U Qx(u1). The second path of the second triple is
the union of X;(uo) U P, (u2) U P, (us) and Q;(u1) U Y;(ug) U P, (u2) U Py, (uy) and a

suitable W6-path in the outer graph at vy( joining their ends by Lemma 3.4.2. The third

68



path of the second triple is the union of X;(ug) U Xj, (u2) and Q;(u1) U Yj(ug) U Xy, (u2)
and a suitable W6-path in the outer a graph at v; joining their ends by Lemma 3.4.2. This
completes the case that for some integer ¢ € B either [;, m; € A or[;, m; € B and for some
integer k € A either ny,r, € Aornyg,rp € B.

We may therefore assume that for every ¢ € B one of [;, m; belongs to A and the other
belongs to B, or for every k£ € A one of ny,r; belongs to A and the other belongs to
B. Without loss of generality, assume that for every ¢ € B one of [;, m; belongs to A
and the other belongs to B. For every i € B a subpath of P;(ug) joins &, (1;) to &,,(m;)
in the outer graph at v and is disjoint from the 7-torso at ug, except for its ends. Let J
be the union of these subpaths; then .J is a linkage from {{,,(i) : i € A} to {&,(i) :
i € B}. Fori € B the path Q;(uo) is a subgraph of the 7-torso at ug. It follows that
JU(Usep Qi(10)) U (U;ea Zi(uo)) U (U;eq Wiluo)) is a linkage from X,y to X;(,,), and
so by the minimality of the specified linkages it is equal to the specified left uy-linkage. It

follows that u( has property B in 7. O

4.3 Reduced properties

Similarly to the 2-connected case, we have the following result:

Lemma 4.3.1. Let (T, X) be a tree-decomposition of a graph G, letn : T, — T be an
ordered cascade in (T, X) with orderings &, specified linkages and common intersection
set I, let v : Ty, — T}, be a monotone homeomorphic embedding, and let /' := n o~ :

Ty — T be a subcascade of n) of height h'. Then for every major vertex ty € V(Tj)

(i) 7' is an ordered cascade with orderings &) and common intersection set I,

(i) if the vertex ~y(ty) has property ALy (or Byjy, resp.) inn, then to has property Al

(or Bijy, resp.) in 1.
Furthermore, the specified linkages for /' may be chosen in such a way that
(lll) (Atoa Btoa Ct07 Dto) = (A'y(to)a B’y(to)v C’y(to); D'y(to) ))
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(iv) the vertex ty has property B in 7' if and only if v(to) has property B in 1), and

(V) if the specified linkages for n are minimal, then the specified linkages for n' are

minimal.

Lemma 4.3.2. There exists a positive integer h such that the following holds. Let s >
3 be an integer and let (T, X) be a tree-decomposition of a graph G. Let n : T, —
T be an ordered cascade in (T, X) of height h and size |I| + s with orderings & and
common intersection set I such that there exist some distinct 1,5,k € {1,2,..., s} and

m € {0,1,2,3} such that every major vertex of T, has property Al Then there exists a
weak subcascade 1/ : Ty — T of n of height one such that the unique major vertex of Ty

has property Ay with ordered feet in 1.

Proof. Let h(a, k) be the function of Lemma 3.3.2. Let h = h(3, (3!)?). Assume u is an
arbitrary major vertex of 7}, and its trinity is (v1,vq, v3). Assume the feet of L;, L;, Ly
in X, ,,) are x1, ra, r3 and the feet of L;, L;, Ly in X, are x4, x5, x. Then for every
major vertex u of T}, consider the tuple (z1,x2, z3, x4, x5, T6) as its color. By Lemma
3.3.2, there exists a monotone homeomorphic embedding ~y : 75 < T}, such that v(¢) has
the same tuple of six feet for every major vertex t € V(T3). Letny = no~vy : T3 — T.

By Lemma 4.3.1, 7, is still an ordered cascade where every major vertex ¢t € V (73) has

m
ijk

property A, . Also, ¢ has the same tuple of six feet for every major vertex t € V (713).

Let u be a major vertex in 73 and let (vy, ve, v3) be its trinity. Let z;, ;, z, be the feet
of Lij(u), Lj(u), Li(u) in X, (), respectively. Let f, g be functions such that f(x;) are
the feet of L;(u) in X, (,,) and g(x;) are the feet of L;(u) in X, () for all I € {3,j, k}.
Define fy(x) = f(2) and fo(x) = f(fo_1(x)) for n > 1, and go(x) = g(x) and go(x) =
9(gn_1(x)) forn > 1.

Assume t is a major root of 7} and its trinity is (¢, t2, t3). Let ug be the major root of

T3 and its trinity be (v, vy, wy). Let 1 (to) = up and y1(¢t1) = v. For [ € {1,2}, let u; be

the child of v; and v; 1 be the left child of u;, and let r; be the child of w; and w;; be the
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right child of r;. Let z;, x;, z;, be the feet of L;(uo), L;(uo), Lr(uo) in X y. Then there
exist [1,ly € {1,2,3} such that f;,(x) = x and ¢;,(z) = x for all z € {x;,z;,x}. Let

Y1 (t2) = vy (t3) = wi,, and ' = 1y 0 41 For I € {4, j, k}, let

Ly = Li(up) U ( U fn(ﬂfz)Lz(Un)an(ﬂ?l)) U ( U gn(ﬂfz)B(Tn)gnH(xz))a
1<n<ly 1<n<la
where g, (1) P (rn)gn+1(21) = gn(21) Li(rn) g1 (20) whenm # 3, otherwise g, (1) Py (rn) gn1 (1)
forall [ € {i, 7, k} are three disjoint paths as in the definition of property A?j - Then these

tripods show that 7’ is as desired. 0

Lemma 4.3.3. Let s > 3 be an integer and let (T, X) be a tree-decomposition of a graph
G satisfying (W6). Let n : Ty — T be an ordered cascade in (T, X) of height two and
size |I| + s with orderings & and common intersection set I such that there exist distinct

2

i,7,k € {1,2,...,s} such that every major vertex of Ty has property Az with ordered

feet. Then there exists a weak subcascade n' : Ty — T of n of height one such that the

1

unique major vertex of T has property A . in 1’ with ordered feet.

Proof. Assume that the major root of 75 is ug and its trinity is (vq, va,v3). Let u; be the
major vertex at height one that is adjacent to v, and let v4 be its left child. Let the major root
of T} be ty and its trinity be (t1, 2, t3). Let y(to) = o, y(t1) = v1, Y(t2) = v4, Y(t3) = vs.
Then ' = 1 o 7y is as desired. Let a be the end of L;(ug) N Li(uo) that is closest to &,,(7),
b be the end of L;(u;) N Li(uy) that is closest to ¢;(uy), ¢ be the end of L;(u1) N L;j(uy)

that is closest to ¢;(u1 ), and d be the end of L;(ug) N L;(uo) that is closest to &,, (7). Let

Li = &, (1) Li(10) €0, () U o, (8) L (un )0, (4) U &uy () Lj (u0)a U a Ly (1), (K)U

U &y (k) L (u1)b U DL (ur)cj(ur) U ej(ur) Lj(ur)c U eLy(uq)ci(u),

Lj = £v1 (j>LJ (UO)&Q (]) U 51)2 (])LJ (Ul)fm (]) U gvs (Z)LZ(UQ)d,
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and

Ly = Lk(u(J) U €U2(k)Lk<u1>£v4 (k)7
then they are the tripods needed for property A}kj inn. 0

Lemma 4.3.4. Let s > 3 be an integer and let (T, X) be a tree-decomposition of a graph
G. Letn : Ty — T be an ordered cascade in (T, X) of height two and size |I| + s
with orderings & and common intersection set I such that there exist distinct 1, j, k €
{1,2,..., s} such that every major vertex of Ty has property Ag’jk with ordered feet. Then
there exists a weak subcascade ' : Ty — T of 1 of height one such that the unique major

vertex of I has property A}j L inn.

Proof. Assume that the major root of 7 is g and its trinity is (vq, v2,v3). Let u; be the
major vertex at height one that is adjacent to v, and let v4 be its left child. Let the major
root of T} be ty and its trinity be (¢1,%s,t3). Let y(to) = uo, V(t1) = v1, Y(t2) = vy,
v(t3) = vs. Then ' = n o~ is as desired. Assume a is the end of L;(ug) N L;(up) that is

closest to &,,(¢), and b is the end of L;(u;) N L;(u;) thatis closest to ¢;(uy ). Let

Li = o, (1) Li0) &y (1) U () Li(1) €, (4) U §ug (5) Lj (o) e (u0) U ¢ (uo) Lj(uo)Ew, (5)U
U &y () L (u1)b U bL;(uy )ei(uy),
Lj = 5111 (])LJ (UO)sz (]) U gvz (j)Lj(ul)gm (]) U 51)3 (i)Li(uo)a7

and

Ly = Li(uo) U &, (k) L (u1) €0, (K),
then they are the tripods needed for property A}j L in 7. [

Lemma 4.3.5. For every integer s > 3 there exists a positive integer h such that the
following holds. Let (T, X) be a tree-decomposition of a graph G satisfying (W6) and

(W7). Let n) : T, — T be a regular cascade in (T, X) of height h and size |I| + s with
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orderings & and common intersection set I such that every major vertex of T}, has property
B. Then there exists a weak subcascade ' : Ty — T of n of height one and distinct

i,7,k € {1,2,..., s} such that the unique major vertex of T\ has property B;jj, in 1’

Proof. Let h be as in Lemma 3.3.2 applied to a = 3 and k = (s5/2)% + 2(s/2)3. Let the
common confinement sets for 7 be A, B, C, D. Let the major root of 77 be ¢, and its trinity
be (t1,ts,t3). Let the major root of 75 be ug and its trinity be (wy, we, w3). Let two major
vertices at height one of 75 be u; and uy. Assume the trinity at u; is (ws, wy, ws) and the
trinity at us is (w3, wg, wr).

For a major vertex w € V/(7},) with trinity (v, vq, v3) there are disjoint paths in the
n-torso at w as in the definition of property B. Fora € A and b € B let R,(w) denote the
path with ends &,, (a) and ,,(a), let Ry(w) denote the path with ends &,, (b) and £, (b), and
let R, (w) denote the path with ends &, (b) and &,,(a).

Let I be the common intersection set of 7. Then 7n(vy),n(ve),n(vs) is a triad in T with
center n(w) and for all ¢ € {1,2,3} we have X, ,,) N Xyyw) = 1 = Xy01) N Xyyw) N Xip(ug)s
and hence the triad is not X -separable. By (W7) there is a path R(w) connecting two of
the three sets of disjoint paths in the n-torso at w.

If R(w) goes from R,(w) to Ry(w) fora € A and b € B, we say it w has color (a, b).
If R(w) goes from R,(w) to Ry, fora € Aora € Bandb € B,c € A, we say w has color
(a,cb). By Lemma 3.3.2, there exists a monotone homeomorphic embedding v : T3 < T},
and a € A,b € B such that () has color (a, b) in n for every major vertex t € V (73), or
there exists a monotone homeomorphic embedding v : 73 < T, and a € A or a € B and
b € B,c € Asuch that (¢) has color (a, ¢b) in 1 for every major vertex t € V(713).

Assume there exists a monotone homeomorphic embedding v : 75 — 1} and a €
A,b € B such that y(t) has color (a,b) in n for every major vertex ¢ € V(73). Let
71 = 1 o 7, then by Lemma 4.3.1, ¢ has property B in 7, for every major vertex t € V (7T3)
and one end of R(t) is in the path R,(t) and the other end is in Ry(t). Let 1 (ty) =

ug, Y1(t1) = wi, 71 (ta) = wy, and vy, (t3) = we. Lety’ = nyovy. Letc € A — {a} and
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d € B — {b}. Let x; € B be such that R, (uo) is a member of the family of the disjoint
paths in the n-torso at g as in the definition of property B, 25 € A be such that R,,4(u;)
is a member of the family of the disjoint paths in the 7-torso at u; as in the definition of
property B, and z3 € A be such that R,.4(uz) is a member of the family of the disjoint
paths in the 7-torso at us as in the definition of property B. Let y be the end of R(ug) in
the path Ry (uo), z be the end of R(us) in the path R;(us), and r be the end of R(us) in the
path R, (us). Let R. = R.(up)U R.(u1), R4 be the union of Ry(uo) U Ra(us) and Ry q(us)
and a W6-path in the outer graph at w- joining their ends, R4 be the union of R,,4(u) and
R, (u1) U Rey, (up) U Re(u2) and a W6-path in the outer graph at w; connecting the ends
of these two paths, and R, = R, (ug) U R, (u1) U R(ug) Uy Ry (uo)Euws (b) U&ws (b) Ry(uy)zU
R(us) UrRy(u2)éy,(a), then these paths and tripod show that ¢y has property B4, in 77/,

so 7/’ is as desired. See Figure 4.2.

Figure 4.2: ~(t) has color (a, b) in 7 for every t € V (T3).

Therefore we can assume there exists a monotone homeomorphic embedding v : 75 —
Tr,anda € Aora € Band b € B,c € A such that () has color (a, cb) in n for every
major vertex ¢t € V(T3). Without loss of generality, assume a € A. Let ; = 1 o v, then
by Lemma 4.3.1, ¢ has property B in 7, for every major vertex t € V' (73) and one end of
R(t) is in the path R,(t) and the other end is in R (t). Letd € B — {b}. If a = c then let
e € A—{a} such that R.4(uo) is a member of the family of the disjoint paths in the 7-torso

at ug as in the definition of property B. Let vy (ty) = ug and v (t;) = w, foralll € {1, 2, 3},
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then ¢y has property B4, in 7’ = 11 0 71, so 7’ is as desired. Therefore assume a # c. Let
x1 € B be such that R,,, (u2) is a member of the family of the disjoint paths in the 7-torso
at uy as in the definition of property B. Let f € B be such that R,s(uo) is a member of
the family of the disjoint paths in the 7-torso at ug as in the definition of property B. Then
x1 # band f # bbecause a # c. Let y be the end of R(uy) in the path R (), 2z be the end
of R(us) in the path R, (u2), and r be the end of R(us) in the path R, (us). Let v1(ty) = uo,
7 (t) = wy forall [ € {1,2}, and v,(t3) = wq. Let ' = n 0 y1. Let R. = Re(uy),
Ry = Ry(up) U Rf(ua), Rey = Rap(ug) U &y (a)Ry(u2)z U R(usg) UrRep(us)uy,(c), and
R, be the union of R, (ug) U R(up) UyRep(uo)uws (¢) U Re(ug) and Ry, (ug) and a W6-path
in the outer graph at wg connecting the ends of these two paths, then they show that ¢, has

property B.s, in 1)'. See Figure 4.3. Hence 1/ is as desired. O

Figure 4.3: v(t) has color (a, cb) in 7 for every t € V(T3).

Lemma 4.3.6. For every positive integers h' and w > 3 there exists a positive integer
h = h(h',w) such that the following holds. Let s be a positive integer such that 3 < s < w.
Let (T, X) be a tree-decomposition of a graph G of width less than w and satisfying (W6)-
(W7). Assume there exists a regular cascade n : Ty, — T of size |I| + s with specified
linkages that are minimal, where [ is its common intersection set. Then there exist distinct
integers 1,5,k € {1,2,...,s} and a weak subcascade 1 : Ty, — T of n of height b/ such

that
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e cvery major vertex of Iy, has property A%k with ordered feet in 1/, or

1

e every major vertex of Ty has property A;j;, with ordered feet in 1’

o cvery major vertex of Ty has property B, in 1/

Proof. Let h(a, k) be the function of Lemma 3.3.2. Let h; be i in Lemma 4.3.2 and h, be
h in Lemma 4.3.5. Let ay = 21/, ag = hjay, ay = h(as, 12(7“;)), a; = max{5ay, haas}
and h = h(aq,2). Consider having property B or not having property B as colors, then by
Lemma 3.3.2 there exists a monotone homeomorphic embedding «y : 7,, < 7}, such that
either (¢) has property B in 7 for every major vertex ¢t € V(T,,) or ~(¢) does not have
property B in 1) for every major vertex t € V(71,,). By Lemma4.3.1 9, =no~: T, — T
is still a regular cascade with specified linkages that are minimal. Also, either ¢ has property
B in 1, for every major vertex ¢t € V(Ty,) or ¢t does not have property B in r; for every
major vertex t € V(Ty,).

If ¢ has property B in 7, for every major vertex ¢ € V' (7,, ), then by Lemma 4.3.5 there
exists a weak subcascade 7, of 7; of height as such that every major vertex of 7,, has
property B;jj in 1, for some distinct 4, j, k € {1,2,...,s}. Consider each choice of tuple
(1, 7, k) as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic embedding
71t Tay — Ty, such that for some distinct ¢, j, k € {1,2, ..., s}, 71(¢) has property B in
1y for every major vertex t € V' (1,,). Let 53 = 1 o 7;. Then by Lemma 4.3.1 this implies
t has property B in 13 for every major vertex t € V' (1,,). Hence 7 is as desired.

If ¢ does not have property B in 1); for every major vertex t € V' (71y, ), then by Lemma 4.2.1
there exists a weak subcascade 7, of 1; of height a, such that every major vertex of 7,
has property A;;;, for some distinct 7,5,k € {1,2,...,s}. By Lemma 4.1.1, every major
vertex of 7, has property Ag;%k for some distinct i, j, k € {1,2,...,s} and m € {0, 1,2, 3}.
Consider each property A7 as a color; then by Lemma 3.3.2 there exists a monotone
homeomorphic embedding v; : T,,, < T, such that for some distinct ¢, j, k € {1,2, ..., s}

and m € {0,1,2,3}, y1(t) has property A7, in 1, for every major vertex t € V(7).
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Let m3 = m2 o 71, then ¢ has property A7 in 73 for every major vertex ¢ € V(T,,) by
Lemma 4.3.1. By Lemma 4.3.2, there exists a weak subcascade 7, of 13 of height a4 such
that every major vertex of T, has property Aj, with ordered feet. If m € {0, 1}, then 7,
is as desired. If m = 2 (or m = 3, resp.), then by Lemma 4.3.3 (or Lemma 4.3.4, resp.),
there exists a weak subcascade 7); of 7, of height A’ such that every major vertex of 7), has

property A7 with ordered feet. Then 75 is as desired. 0

4.4 Proof of Theorem 1.1.5

Lemma 4.4.1. If a graph H has two distinct vertices u,v such that H\{u, v} is a forest,

then there exists an integer n such that H is isomorphic to a minor of 'P),.

Proof. Let u and v be such that 7' := H\{u, v} is a forest. We may assume, by replacing
H by a graph with an H minor, that 7" is isomorphic to C'T} for some ¢, and that each of
u, v is adjacent to every vertex of 7. It follows that H is isomorphic to a minor of P;,, as

desired. ]

Lemma 4.4.2. Let H be a graph with a vertex v such that H\{v} is an outerplanar graph.

Then there exists an integer n such that H is isomorphic to a minor of Q...

Proof. By Lemma 3.1.4, there exists an integer ¢ such that H\{v} is isomorphic to a minor
of Q;. We may assume, by replacing H by a graph with an H minor, that H\{v} is
isomorphic to Q; for some ¢, and that v is adjacent to every vertex of Q;. It follows that H

is isomorphic to a minor of Q; . O

Lemma 4.4.3. Let H be a tree with a cycle going through its leaves in order from the
leftmost leaf to the rightmost leaf. Then there exists an integer n such that H is isomorphic

; /
to a minor of R,,.

Proof. Let T be the tree in H and C' be the cycle going through its leaves. We may assume,

by replacing H by a graph with an H minor, that 7" is isomorphic to C'T; for some ¢, and
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that C' goes through its leaves in order from the leftmost leaf to the rightmost leaf. It follows

that H is isomorphic to a minor of R, as desired. O]

By Lemmas 4.4.1,4.4.2 and 4.4.3 Theorem 1.1.5 is equivalent to the following theorem.

Theorem 4.4.4. For every positive integer n, there exists a number p = p(n) such that

every 3-connected graph with path-width at least p has P),, Q.. or R as a minor.

Lemma 4.4.5. For every two positive integers n and w > 3 there exists an integer h such
that the following holds. Let (T, X)) be a tree-decomposition of a graph G of width less
than w and satisfying (W1)—(W7). Assume there exists a regular cascade n : T}, — T of
size |I| + s with specified linkages that are minimal, where [ is its common intersection set

and 3 < s < w. Then
(i) G has a minor isomorphic to P), or R.,.
(ii) If |I| > 1, then G has a minor isomorphic to P! or R}

Proof. Let ' = 4n + 1, and let h = h(h’,w) be the number as in Lemma 4.3.6. By
Lemma 4.3.6 there exist distinct integers 4,7,k € {1,2,...,s} and a weak subcascade

n' : Ty — T of n of height A’ such that

0

e every major vertex of T}, has property A7y, with ordered feet in 7/, or

e every major vertex of 7}, has property A}j  With ordered feet in 1/

e cvery major vertex of T}, has property B;;;, in 7’

0
ijk

Assume that every major vertex of 7}, has property A7, with ordered feet in 7/, and let R
be the union of the corresponding tripods, over all major vertices t € V(7T}) at height at
most i’ — 2. It follows that R is the union of three disjoint trees, each containing a subtree
isomorphic to T{;/_1)/2. Let t be a minor vertex of 7}, at height h' — 1. By Lemma 3.4.2
there exist a W6-path with ends &;(7) and & (k) and a W6-path with ends &,(j) and & (k)

in the outer graph at t. Let R?; be the union of these W6-paths for all minor vertices ¢ at
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height 1/ — 1. By contracting the tree that contains (i) and the tree that contains &(j),
and by considering the remaining tree and R, we deduce that G has a P, minor, as desired.
If || > 1, assume = € . By Lemma 3.4.2 there exists a W6-path with ends x and & (k) in
the outer graph at ¢. Let 25 be the union of these W6-paths for all minor vertices ¢ at height
h' — 1. By contracting the tree that contains &(7) and the tree that contains &,(j), and by
considering the remaining tree and R, Ry we deduce that G has a P/ minor, as desired.

Assume next that every major vertex of 7}, has property Agj , with ordered feet in 7.
Let the major root of 7}/ be 1y and its left child be v. For every major vertex u that is a
descendant of v, let L;(u), L;(u), Ly(u) be the three tripods in the 7’-torso at u as in the

definition of property A};;., and let a(u), b(u) be the two ends of the path L;(u) N L;(u). Let

Rl = U(évl (Z)Lz (u)gvz (Z) U 51)1 (])LJ<U)§U3 (])U

u

U &, () L (w)a(u) U alu) L;(u)b(u) U b(u) Li(u)&u, (7)),

and

R2 = ULk(U),

where the unions are taken over all major vertices u at height at most ' — 2 that are
descendants of v and (vy, vo, v3) here is the trinity at u. Then R; is disjoint from R, which
is a tree isomorphic to a subdivision of 7}, _,. Let ¢ be a minor vertex of T} at height A’ — 1.
By Lemma 3.4.2 there exist a W6-path with ends &,(7) and &;(k) and a W6-path with ends
&:(7) and & (k) in the outer graph at t. Let R3 be the union of these W6-paths for all minor
vertices t at height A’ — 1. By Lemma 3.4.2, there exists a W6-path P with ends &,(7) and
&,(j) in the subgraph of G induced by | J X, — I, where the union is taken over all 7 in the
component containing 7'(ug) of T'— n/(v). By considering Ry, Ry, R3 and P we deduce
that G has a R}, _, minor, as desired. If [/| > 1, assume x € /. By Lemma 3.4.2 there
exists a W6-path with ends z and &;(k) in the outer graph at ¢. Let R, be the union of these

W6-paths for all minor vertices ¢ at height ' — 1. By considering R1, Ry, R3, P and R, we
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deduce that G has a R, minor, as desired.
We may therefore assume that every major vertex of 7}, has property B;;;, in 7. For
every major vertex v in 7}, let R;(u), R;(u), R;j(u) and Ry (u) be as in the definition of

property B;j;,. Let the major root of 7}, be g and its left child be v. Let

Rl = U (RZ(U> U R](u) U Rij (U)) and RQ = U Rk(u),

u

where the unions are taken over all major vertices u at height at most A’ — 2 that are
descendants of v. Then R is disjoint from R5, which is a tree isomorphic to a subdivision
of Tj,_5. By considering R, R, and W6-paths as in the above case, we deduce that GG also

has a Rj,_, minor and a R, minor if |I| > 1, as desired. O

Lemma 4.4.6. Let n and w be positive integers. There exists a number p = p(n,w) such
that for every 3-connected graph G, if G has tree-width less than w and path-width at least

p, then G has a minor isomorphic to P.,, Q. or R.,.

Proof. Let hy be as in Lemma 3.5.3 applied to £ = n and w. Let hs be as in Lemma 4.4.5.
Let h = max{hq, ho,n + 2}. Let p be as in Theorem 3.3.5 applied to a« = h and w. By

Theorem 3.3.5, there exists a tree-decomposition (7', X') of G such that:

e (T, X) has width less than w,
e (T, X) satisfies (W1)~(W7), and

e for some s, where 3 < s < w, there exists a regular cascade 7 : 7}, — T of height
h and size s in (T, X') with specified ¢,-linkages that are minimal for every major

vertex to € V(Th)

Let I be the common intersection set of 7, let {; be the orderings, and let s; = s — |/|. Then
s1 > 1 by the definition of injective cascade.
Assume that s; = 1. Since s > 3, it follows that [I| > 2. Let z,y € I. Let R be

the union of the left and right specified ¢-linkage with respect to 7, over all major vertices
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t € V(Ty,) at height at most h — 2. The minimality of the specified linkages implies that R
is isomorphic to a subdivision of 7j,_;. Let ¢t be a minor vertex of 7}, at height h — 1. By
Lemma 3.4.2 there exist a W6-path with ends &(1) and = and a W6-path with ends & (1)
and y in the outer graph at ¢. The union of R and these W6-paths shows that G has a P/,
minor, as desired.

Assume that s; = 2. Since s > 3, it follows that [ # (). By Lemma 3.5.3(ii), G has a
P, minor or a Q] minor, as desired.

We may therefore assume that s; > 3. By Lemma 4.4.5(i), G has a minor isomorphic

to P, or R, as desired. O

Proof of Theorem 4.4.4. Let a positive integer n be given. By Theorem 1.1.1 there exists
an integer w such that every graph of tree-width at least w has a minor isomorphic to Q.
Let p = p(n,w) be as in Lemma 4.4.6. We claim that p satisfies the conclusion of the
theorem. Indeed, let G be a 3-connected graph of path-width at least p. By Theorem 1.1.1,
if G has tree-width at least w, then GG has a minor isomorphic to Q. , as desired. We may
therefore assume that the tree-width of G is less than w. By Lemma 4.4.6 G has a minor

isomorphic to P),, Q. or R/, as desired. O

81



CHAPTER §
MINORS OF 4-CONNECTED GRAPHS OF LARGE PATH-WIDTH

5.1 Properties

Let s > 0 be an integer. Let (7, X') be a tree decomposition of a graph G, letny : T}, — T

be an ordered cascade in (7', X ) with size || + s and orderings &, where [ is the common
intersection set of 7). Let ty € V' (7},) be a major vertex, let (1, to, t3) be the trinity at ¢, let

G’ be the n-torso at £, and let 4, j, k € {1,2,..., s} be distinct.

We say that t, has property A;jy, in 1 if there exist disjoint paths L;, L;, Ly, L;, R;, R, Ry, R

in G’ and vertices v;, Y;, Yk, Ui, %is %, ks 21 € V(G') such that the two ends of L,, are

&, (m) and y,,, for each m € {i,j,k,l}, the two ends of R,, are &, (m) and z,, for
each m € {i,7,k,1}, and {ys, Y, Yr, Ui} = {60(1), 0 (5), 602 (K), E (D)} {245 255 21y 21} =

{812 (1), €63 (1) e (), & (D) }-

We say that to has property A?

ik in m 1f there exist three disjoint tripods L;, L, Ly, Ly
in G’ such that for each m € {i, j, k, [}, the tripod L,,, has feet &, (m), &, (ms), &, (ms) for
some mqy, m3 € {1, j, k,}.

1

We say that t has property A;;, in 1 if there exist vertices v, , for all z € {i,4,k, 1},

y € {2,3}, and tripods L;, L;, Ly, L; in G’ with centers ¢;, ¢;, ¢, ¢; such that:
e for each ) € {27 3}’ {Uz‘,ya Uj,yv vk,ya vl,y} = {gty (Z)a éty (])7 gty (k)a gty (l)}
o foreachm € {i, 7, k,l}, Ly, has feet &, (m), vm.2, V3

o L;NL; = c;Ljv;3 N cLjv 2 and is a path that does not contain ¢;, ¢;. Let vy, be the

vertex of this path that is closest to ¢y, for h € {i,(}

o L;N Ly = cjLjvjs N cpLiv,o and is an empty set or a path that does not contain

Cj» Ck
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° V(th N L}m) - V(Chthlvlu) — {chl,vhl} for all hl < {Z, l} and hg € {j, k}

o the paths &, (m) Ly, v, 2 forallm € {3, j, k, [} are disjoint and the paths &, () L, v, 3
for all m € {i, j, k, [} are disjoint.

See Figure 5.1(a).

We say that ty has property Ajfy, in 1 if to has property A}, with L; N L;, = (). We say
that to has property Ay in 1 if to has property AL, with L; N Ly, # 0.

If ¢y has one of the properties above, we say that ¢, has that property with ordered feet
if forall h € {i,j, k, 1}, Ly has feet &, (h), &, (h), &, (R).

We say that to has property A%, in 1 if there exist vertices v, , for all x € {i,7, k, 1},
y € {2,3}, and tripods L;, L, L; in G’ with centers c¢;, ¢, ¢; and disjoint paths L;, R; such

that:

e for each ) € {27 3}’ {'Ui,ya Uj,ya Uk,ya vl,y} = {fty (Z)a éty (])7 fty (k)a fty (l)}
o foreachm € {j, k, [}, L,, has feet &, (m), vm.2, Um 3

e [, has ends &, (i) and v; » and R; has v; 3 as one end and ¢; as the other end, where

C; - V(ClLﬂ)l,g) — {Cl}
e [L;isdisjoint from L; U L, U L; U R; and R; is internally disjoint from L; U L U L,

o LN Ly = c;Ljv;s N cplivgo and is an empty set or a path that does not contain

Cj, Ck

° V(Lh N Ll) - (cthvhB N V(ClLlCi» — {Ci, Ch, Cl} forall h € {], k)}
See Figure 5.1(b).

We say that tq has property A?jkl in 1 if there exist vertices v, , for all x € {1, j, k, [},
y € {2, 3}, and tripods L;, Ly, L; in G’ with centers ¢;, ¢, ¢; and disjoint paths L;, R; such
that:

i fOI' eaCh Yy € {27 3}’ {Ui,ya Uj,y: 'Uk,yv Ul,y} = {gty (Z), gty (])’ gty (k’), fty (l)}
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We say that t has property A

for each m € {j, k,l}, L,, has feet &, (m), vim.2, U3

L; has ends &;, (i) and v; » and R; has v; 3 as one end and ¢; as the other end, where

c; € V(CkLkUkQ) — {Ck}

L; is disjoint from L; U L, U L; U R; and R; is internally disjoint from L; U L U

6111 (Z)ngvs (l>

L; N Ly = cjLjvjs N ciLic; and is an empty set or a path that does not contain
Ci, Cj7 Ck
L; N L; = c;L;v;3 N cLjv 2 and is a path P; that does not contain c;j, ¢

R; N ¢ Ly, o 1s empty set or a path P, that does not contain ¢;, ¢

LN Ly = cpLyvgs N Ly 2 and is an empty set or a path P that does not contain

Ck; Ci

U2, P, Po, Ps, v 1, lie on vy o Ljv; 1 in that order.

See Figure 5.1(c).

4

iixt i m if there exist vertices v, , for all = € {4, 7, k, [},

y € {2, 3}, and tripods L;, Ly, L; in G’ with centers ¢;, ¢, ¢; and disjoint paths L;, R; such

that:

for each ) € {27 3}’ {Ui,ya Uj,ya vk,ya vl,y} = {gty (Z)a éty (])7 gty (k)a 5ty (l)}
for each m € {j, k,}, Ly, has feet &, (m), V.2, Um 3

L; has ends &, (i) and v; » and R; has v; 3 as one end and ¢; as the other end, where

c € V(CkLkUk72) — {Ck}
L; is disjoint from L; U L;; U L; U R; and R; is internally disjoint from L; U L, U L,
L; N Ly, = ¢;Ljvj3 N cpLic; and is a path that does not contain ¢;, ¢, ¢,
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[ ] LjﬂLIZQ

o LN L= ciLivks N e Liv o and is a path that does not contain ¢y, ¢;.

See Figure 5.1(d).

If to has property A7, A%, or A}, we say that t, has that property with ordered
left-feet if for all h € {j, k,1}, Ly, has feet &, (h) in X,,).
If ¢, has one of the properties above, we will denote the three tripods as L;(to), L;(to), Lk (to)

and their centers as ¢;(to), ¢;(to), cx(to) when we want to emphasize they are in the 7-torso

at the major vertex t.

(c) Property A7, (d) Property Ay,

Figure 5.1: Properties AZ-LM form € {1,2,3,4}.

Let A;, and By, be the confinement sets for 1 at t,. We say that ¢, has property B in n
if s is even, A;, and B;, are disjoint and both have size s/2, and there exist disjoint paths
Ri, Ry, ..., Rs,o in G, disjoint paths Y71,Y5, ..., Yo and Z1, Z, ..., Z,/o not in G’, and a

bijective function g from A, to By, in such a way that

e cach R; is a subpath of both the left specified ¢y-linkage and the right specified ¢-
linkage,

e fori € Ay, the path R; has ends &, (7) and &, (7),
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e fori € By, the path R; has ends &, (i) and &, (1),

e fori = s+ 1,5+ 2,...,3s/2 the path R; has one end &, (g(k)) and the other end
&, (k) for some k € Ay,

e fori € Ay, the path Y; has ends &, (7) and &, (g(¢)), and

e fori € Ay, the path Z; has ends &, (i) and &, (g(7)).

We say that to has property B;j;p, in 1) if there exist pairwise disjoint paths R;, ;, Ry,
Ry, R;j, Ry and a path R in G’ and disjoint paths Y, Yy, Z;, Z;, not in G’ such that

the ends of R, are &, (h) and &, (h) for h € {i, k}
e the ends of Ry, are &, (h) and &, (h) for h € {j,1}
e the ends of R;; are &, (j) and &, (7)

e the ends of Ry, are &, (1) and &, (k)

e the ends of Y] are &, (i) and &, (j)

e the ends of Y}, are &, (k) and &, ()

e the ends of Z; are &, (¢) and &, (j)

e the ends of Zj, are &, (k) and & ()

e [ is internally disjoint from the remaining paths and connects two of the three paths

Ri, Rj and Rz]

We will denote these paths as R;(to), R;(to), Ri(to), Ri(to), Rij(to), Rui(to), R(to), Yi(to)s
Yi(to), Zi(to), Zr(to) when we want to emphasize they are in the 7-torso at the major vertex
to.

1

We say that ¢y has property B, in 1 if there exist tripods L;, L; and disjoint paths

Ry, R, Ry in G’ such that
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o the ends of Ry, are &, (k) and &, (k)

o the ends of R; are &, (/) and &,({)

e the ends of Ry, are &, (1) and &, (k)

e the feet of Ly, are &, (h), &, (h), &, (h) for h € {i,j}

e Ry, is disjoint from L,, forall h € {3, j} and m € {k,[, kl}

o L;,NL;=c;Li&, (i) N¢;Li&,(j) and is a path that does not contain ¢;, ¢;, where ¢,

is the center of L;, for all h € {3, j}.

We will denote these paths and tripods as L; (o), L;(to), Ri(to), Ri(to), Rii(to) when we

want to emphasize they are in the 7-torso at the major vertex t.

Lemma 5.1.1. Let (T, X) be a tree-decomposition of a graph G. Letn : Ty — T be an

ordered cascade in (T, X)) with orderings & of height one and size s + |I|, where I is the

common intersection set. Let to be the major vertex in Ty, and let i, j,k,l € {1,2,...,s}
be distinct. If to has property A;j in 1, then to has property A7, in 1 for some m €

{0,1,2,3,4} and d', j' k', " such that {i’, ', K', '} = {i, j, k, l}.

Proof. Assume the trinity at ¢, is (t1,t2,t3). As in the definition of property Az, in
the n-torso at ¢, there exist disjoint paths L;, L;, Ly, L; such that L,, has ends &, (m) and
ym for all m € {i,7,k, 1} and there exist disjoint paths R;, R;, Ry, R; such that R,, has
ends &, (m) and z,, for all m € {4, j, k, I}, {yi, 45, Yo, i} = {0 (), € (1) &2 (), & (D},
and {z;, 2, 2, 21} = {&15(4), €15 (9), &5 (R), & (D) }. Let ayy, = &, (m) forallm € {4, 5, k,(}.
Among all the possible choices of such paths, choose the one such that M = ||, [E(Lm)U
E(R,,)]| is minimal. Assume from z;, z;, 2, 2, the paths R;, R;, Ry, R, first meet |, L,
at a, b, ¢, d, respectively. We will use the following two facts in the proof of a similar lemma

in the 3-connected case.
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Claim 5.1.1.1. Let m,n € {i,j,k,l}. Assume R,, meets L, at a vertex v. Then from v,

after departing from the path L,, v R,,x,, must meet Ly, before L,, for some h € {i,j, k,1}—

{n}.

Claim 5.1.1.2. Let m,n, hy, hy € {i,7,k,l} where m # n. Let P, be a subpath of Ry,
with two ends vy, w, such that vi € V(L,,),w; € V(L,) and P, be a subpath of Ry,
with two ends vy, wy such that vy € V (L), ws € V(L,). Assume Py, P, are internally
disjoint from L; U L; U L, U L; and P, is disjoint from P,. Assume vy € V (V2 LY, ). Then

w1 - V(ngnyn)

Back to the proof of the lemma, if no two of a, b, ¢, d lie on the same path in L;, L;, Ly, Ly,

then it is clear that ¢ has property A?j i 1 7. So consider three cases:

Case 1: all of a, b, c,d lie on some path in L;, L;, Ly, L;. Without loss of generality,
assume they all lie on L; such that y;, a, b, ¢, d, x; lie on L; in that order. Assume from a, b, ¢
the paths aL;x;,0L;x;, cLyx), departs from L; at aq, by, ¢;, respectively. By Claim 5.1.1.1,
from aq, by, ¢, the paths aL;x;,bL;x;,cLyx) cannot meet L; again before L; U L; U L.
So assume from a;, by, ¢; the paths ayL;z;, by L;x;, c1 Lyx, meet L; U L; U Ly at ag, ba, co,
respectively. Without loss of generality assume co € V(Lg). If by € V(L) for some
h € {i, j}, then to has property AZ;;. So assume b, € V(L;). Then there must be a path P

with two ends z, y such that P is internally disjoint from [ J } Lm and z € V(L) for

me{i,j.k,l
some h € {i,j} andy € V(zLyyr Uz Lyy;). By Claim 5.1.1.2, y € V(coLryr U c1 Liy;).
If y € V(caLpyr) ory € V(e1Lia), then to has property Aj;,,. So assume y € V(aLyy).
Then t, has property A,

Case 2: three of a, b, ¢, d lie on some path in L;, L;, Lj, L;. Without loss of generality,
assume that a, b, ¢ lie on L; and d lies on L such that y;, a, b, ¢, x; lie on L; in that order.
Assume from a, b the paths aL;z;, bL;x; departs from L, at a;, by, respectively, and from

ai, by the paths ay L;x;, by L,z first meet L; U L; U Ly, at as, bo, respectively. If by € V(L;),

then ¢, has property A%,,. If by € V(L;), then t, has property AZ,,. If by € V(Ly),
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then there must be a path P with two ends x,y such that P is internally disjoint from
Ume{i7j7k7l} L, and z € V(L) for some h € {i,5} and y € V(xpLryr U 2;Ly;). By
Claim 5.1.1.2, y € V(bo Ly, U by Lyy;). If y € V(byLyyr), then ty has property A?jkz- If
y € V(b1 Lyyr). then to has property AY,,.

Case 3: two of a, b, ¢, d lie on some path in L;, L;, Lj, L;. Without loss of generality,
assume that a, b lie on L; such that y;, a, b, x; lie on L; in that order. If ¢, d do not lie
on the same path in L;, L;, Ly, L;, without loss of generality assume c lies on L and d
lies on L;. Then ¢, has property Afjkl. Therefore assume c, d lie on the same path Ly
such that y, c,d, xy lie on Lj in that order. Assume from a,c the paths al;x;, cLyxy
departs from L;, L at aq, ¢y, respectively, and from aq, ¢y the paths a;L;x;, ¢y Lyxy first
meet L; U L; U Ly, L; U Ly U L; at as, ¢y, respectively. If a; € V(L; U L;), then ¢, has
property A%, or A%, If ¢ € V/(L;ULy), then tg has property A7, or A%;,. Hence assume
as € V(Lg) and ¢y € V(L;). Without loss of generality, assume as € V(xLic) because
if as € V(cLiyx) then co € V(x;La) by Claim 5.1.1.2. There exists a path P with two

ends x,y such that P is internally disjoint from |J y Lim and @ € V(L) for some

me{i,j,k,l
h € {Z,]} and Yy € V(ZEkkak U :BlLlyl). By Claim 5.1.1.2, Y € V(aQkak U alLlyl). If
y € V(dLyy), then to has property A, or A%, If y € V(ayLyy), then to has property

A or A2y I ay € V(2 Lyd) and y € V(agLid), then tg has property A7, or A%, [

5.2 Main lemma

Lemma 5.2.1. Let s > 4 be an integer. Let (T, X) be a tree decomposition of a graph G
satisfying (W6), and let n : T; — T be a regular cascade in (T, X) of size |I| 4+ s with
specified linkages that are minimal, where I is the common intersection set of ). Then either
there exists a weak subcascade v : Ty — T of n of height one such that in 1 the unique
major vertex of Ty has property A;;i for some distinct integers i, j, k,l € {1,2,...,s} or

the major root of T has property B in n.

Proof. We will either construct a weakly monotone homeomorphic embedding v : 77 —
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T7 such that in 7 = 7 o 7 the major root of 77 will have property A;;;, for some distinct
integers i, 7, k € {1,2,..., s}, or establish that the major root of 7% has property B in 7.

Since 7 is regular, there exist sets A, B, C, D as in the definition of a regular cascade.
Let to be the unique major vertex of 73 and let (¢1, ¢, t3) be its trinity. Let ug be the major
root of 77 and let (vy, vy, v3) to be its trinity. Let uq, us be the major vertices of 77 of height
one such that u; is adjacent to vy and us is adjacent to vs. Let (vq, v4, v5) be the trinity at
uy and (vs, vg, v7) be the trinity at us. Let us, uy be the major vertices of 7 of height two
such that ug is adjacent to v, and uy is adjacent to vg. Let (v4, vs, v9) be the trinity at uz and
(v, V10, v11) be the trinity at uy.

Let us recall that for a major vertex u of 77 we denote the paths in the specified left u-
linkage by P;(u) and the paths in the specified right u-linkage by Q;(u). If there exist three
distinct integers 7, j,k,l € A N B, then the paths P, (ug) and Qp(ug) for h € {i,7,k, 1}
show that u, has property A;j;; in 7. Let v : 17 — 17 be the homeomorphic embedding
that maps to, t1, ta, t3 to ug, v1, v, v3, respectively. Then ' = 7 o y is as desired. We may
therefore assume that |A N B| < 3.

Fori € {1,2,...,s} — A the path P;(ug) exits and re-enters the 7)-torso at u, and it
does so through two distinct vertices of X, (,,) — I. But | X,y — I| = s, hence |A| > 5/2.
Similarly |B| > s/2. Let a be a major vertex with trinity (a1, as, az). The set C' includes
an element of the form (7, [, m), which means that the vertices &,, (1), &4, (1), €as (M), €ay (7)
appear on the path P;(a) in the order listed. Let [; := [, m; := m, z;(a) := &, (1), yi(a) :=
Eas(m), X;(a) := &, (1) Pi(a)z;(a) and Y;(a) := y;(a)P;(a)é., (7). Thus X;(a) and Y;(a)
are subpaths of the 7-torso at a. Similarly, the set D includes an element of the form
(2, n, ), which means that the vertices &,, (1), &, (1), £4,(7), &as (7) appear on the path Q;(a)
in the order listed. Let n; := n,r; = r, wi(a) = &,(n), zi(a) = &,(r), Wi(a) =
€ (1)Qi(a)wi(a) and Zi(a) = zi(a)Qi(a)€a, ().

For any minor vertex w in 7%, let S,, be the vertex set of the outer graph at w.

Claim 5.2.1.1. Assume |A N B| > 1. Let distinct a,b € {1,2, ..., s}. If w is a minor vertex
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of height at most three in Tr, then there exists a path P between &, (a) and &,(b) in G and

a descendant v of w such that v is a minor vertex of T; and internal vertices of P are in

Sw — Sy

To prove the claim let the child of w be z, and the trinity at z be (w, wy,ws). If a,b € A,
let v = wy and P be the union of M; and M, and a W6-path in the outer graph at w;
joining their ends, where M; = P,(z) and My = Py(2). If a,b € B, let v = w; and P be
the union of M; and M, and a W6-path in the outer graph at w, joining their ends, where
M, = Qu(z) and My = Qy(2). If one of a, b is not in A U B, without loss of generality,
assume a € AU B. If b ¢ AU B, then let v = wy and P be the union of M; and M, and a
W6-path in the outer graph at w; joining their ends, where M; = W, (z) and My = Wy (2).
If b € AU B, without loss of generality, assume b € A. Then let v = w, and P be the
union of M; and M, and a W6-path in the outer graph at w; joining their ends, where
M, = W,(z) and My = P,(z). Then remaining case is whena € A—Bandb € B— A, or
a € B—Aandbe A— B. Without loss of generality, assumea € A — Bandb € B — A.
Let z; be the child of w; and its trinity be (wy, w3, w,), and let z; be the child of w3 and
its trinity be (ws,ws,wg). Let j € AN B and let v = wg. Let M; = Py(2) U Xp(21),
My = Qj(z1) U Pj(21) U Pj(22) and M3 = P,(z) U P,(21) U P,(22). Let P’ be the union
of My, M,, Ms, a W6-path in the outer graph at w, joining the ends of M; and Ms, and a
W 6-path in the outer graph at wj; joining the ends of M, and M3 by Lemma 3.4.2. Let P

be a subpath with same ends as P’, then v and P are as desired.

Back to the main lemma, we distinguish four main cases.
Main case 1: |[AN B| = 3. Assume AN B = {i,5,l}. Assume B — A = (), then
B ={i,j,l}. Letk € {1,...,s} — B. Let v(to) = ug,y(t1) = v1.

Consider the following cases depending on ny and 7. If ng,r, € B (so they are also
in A), let y(t2) = vy, Ep, = Py(uy) for all h € {i,j,k, 1}, and let L be the union of
Wi(ug) U Qn, (u1) and @y, (u1) U Z(up) and a W6-path in the outer graph at v; joining

their ends by Lemma 3.4.2. If at least one of ny, 7 is not in B, let v(t3) = vs and E), =
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Qn(uy) forall b € {i, j, k,1}. If ny, . & B, let L be the union of W (uy) U W, (u;) and
W, (u1) U Zg(up) and a W6-path in the outer graph at v, joining their ends by Lemma
3.42.1fn, € Bandr, ¢ B, let L be the union of Wy, (ug) U P, (u1) and W, (u1) U Zg(uo)
and a W6-path in the outer graph at v, joining their ends by Lemma 3.4.2. If n;, ¢ B and
r, € B, let L be the union of Wy, (ug) U W, (u1) and Py, (u1) U Z(ug) and a W6-path in
the outer graph at v, joining their ends by Lemma 3.4.2.

If k € Athenweletv(t3) = vs, Fj, = O forallh € {i,j,k,1} and R = Py (ug). If k ¢ A
then we consider the following cases depending on [}, and my. If [, my. € B, lety(t3) = v,
F, = Py(ug) for all h € {i,j,k,l}, and let R be the union of Xj(up) U @y, (uz) and
Qm,, (u2)UY(up) and a W 6-path in the outer graph at v7 joining their ends by Lemma 3.4.2.
If at least one of [, my, is not in B, let y(t3) = v; and F), = Qp(uz) for all h € {i, j, k, [}
If I, my & B, let R be the union of X (ug) U Wy, (u2) and W, (ug) U Yi(up) and a W6-
path in the outer graph at vg joining their ends by Lemma 3.4.2. If [, € B and m; ¢ B,
let R be the union of Xy (ug) U B, (u2) and Wy, (u2) U Yy (ug) and a W6-path in the outer
graph at vg joining their ends by Lemma 3.4.2. If [, ¢ B and m;, € B, let R be the union
of Xy (uo) UW,, (uz2) and P,,, (u2) U Yy (up) and a W6-path in the outer graph at vg joining
their ends by Lemma 3.4.2.

Let L' be a subpath of L with the same ends and R’ be a subpath of R with the same
ends. Then the unique major vertex of 7} has property A;;x in y’ = o~ with the first triple
of disjoint paths being R’ U E}, and Py, (ug) U E}, for all h € {i, 7,1}, and the second triple
being L' U Fy, and Q,(ug) U Fy, for all h € {i,7,1}.

Now assume B — A # (). Select an element & € B — A. Let y(tg) = ug,y(t1) =
v1,7Y(t2) = vy. By Claim 5.2.1.1 for a = xx(ug),b = yr(up) and w = vs, there exist
a descendant v of v3 and a path P between a and b such that internal vertices of P are
in S,, — S,. Let y(t3) = v and F}, be the disjoint paths from &,,(h) to &,(h) for all
h € {i,j,k, 1} constructed by specified linkages. Then the unique major vertex of 7;

has property A;;, in 7 = 1 o y with the first triple of disjoint paths being P (u) for all
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h € {i, j, 1} and a path between &,, (k) and &,, (k) that is a subgraph of Xy (uo)UPUYj(uo),

and the second triple being @, (ug) U F}, for all h € {4, j, k, [}.

Main case 2: |[AN B| = 2. Assume AN B = {j,1}. First assume A — B = (), then
A={y,l} and s = 4. Let y(to) = uo,y(t1) = v;1. Letdistinct i, k € {1,...,s} — A.

If |B| = 4, let y(t3) = v, Fy, = Pyp(ug) for all h € {i,j,k,l}, and Ry, = @y, (u2) U
xp(ug) Pr(u2)yn(uz) U Qm, (ug) for h € {i,k}. If |B| = 3, let y(t3) = vio and F, =
Py (uz) U Py(uy) for all b € {4, j, k,l}. Without loss of generality, assume I; ¢ B. Let
R, = Qi (u2) U xp(u2) Py (ug)yr(uz) U Qm, (u2) and R; = Wi (ug) U P U Zj,(ug) U
xi(u2) Pi(ug)yi(ug) U Qm,(uz), where P is a walk that we are about to construct. If
ng,, 1, € B, let P be the union of ini and Qmi and a W6-path in the outer graph at vy join-
ing their ends. If exactly one of n;,, r;, is not in B, assume n;, ¢ B. Then n;, is also not in
Aandr;, € B. Then let P be the union of Xy, and Qmi and a W6-path in the outer graph at
v11 joining their ends. If | B| = 2, we consider two small cases. If there exist hy, ho € {3, k}
such that l5,, my, € B, then there exist hy € {i,k} — {h1}, hy € {i,k} — {hs} such that
Iy, mp, € B. In this case let y(t3) = vi, Fy, = Pr(ug) U Py(uy) forall h € {4, j, k, 1},
Ry, be the union of @, (u2) and @y, (u2) and a W6-path in the outer graph at v7 joining
their ends, and R, is the union of V[/lh3 U P and I/th4 U P, and a W6-path in the outer
graph at vy; joining their ends, where P, and P, are paths that we are about to construct. If
ny,, € B,let P, = inh3 (ug), else let P, = th3 (ug). If Ny, € B, let Py = Qnmh4 (ug),
else let P, = Xnmh4 (uyq). The remaining case is when [;, 1, € B or m;,my, € B. Then
Uth Wi (ug) U Uth Zp(ug) U Uth oy (uz) Pr(u2)yn(uz) U Upep @n(uz) is a left uyp-
linkage, a contradiction to the minimality of specified us-linkages.

If |B] = 4, let y(ty) = vy, By, = 0 forall h € {i,5,k, 1}, and L, = Qp(uyg) for
all h € {i,k}. If |B] = 3, assume i € Band k ¢ B. If n, € B, let P, = @y, (u1),
else let P, = X, (u1). If rpy € B, let P, = Q,, (uy), else let P» = X,, (uy). Then let
Y(t2) = vg, B = Pp(uy) for all h € {i,j,k, 1}, L; = Qi(up), and Lj be the union of

Wi(up) U Py and Zi(ug) U P, and a W6-path in the outer graph at v5 joining their ends. If
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| B| = 2, we consider two small cases. If there exist hy, hy € {i, k} such that ny, ,r,, € B,
then there exist hy € {i,k} — {h1}, hy € {i,k} — {ho} such that n,,,r,, ¢ B. In this
case let y(ta) = vs, By = Pyp(u1) U Py(us) for all b € {i,j,k, 1}, Ly, be the union of
Wi, (uo) U Qn,,, (u1) and Zp, U Qy,_ (u1) and a W6-path in the outer graph at v joining
their ends, and L, be the union of W, (ug) U W, U P and Zj, (up) U W,,, U P anda
W6-path in the outer graph at vy joining their ends, where P, and P, are paths that we are
about to construct. If n,, € B, let P, = anhs (us), else let P; = Xn"h3 (ug). If ne,, € B,
let P, = Qn% (us), else let P, = X”% (uz). The remaining case is when n;,n, € B or
7,7k € B. Then Uhng Xn(ur)U Uth Vi (ur)U UheB n (1) Qn (1) rn(un) UUpe g Pr(ur)
is a right u;-linkage, a contradiction to the minimality of specified u,-linkages.

Let L} be a subpath of L; with the same ends and R} be a subpath of R; with the
same ends for all h € {i,k}. Then the unique major vertex of 77 has property A,;jj; in
1’ = n o~ with the first 4-tuple of disjoint paths being Py (ug) U Ej, for all h € {j,(} and
Xn(ug) U Ry UYy(ug) U Ey, for all h € {i, k}, and the second 4-tuple being Qp,(ug) U F},
forall h € {j,1} and L) U F}, forall h € {i, k}.

Therefore we can assume A — B #0and B— A # (). Letic A— Bandk € B — A.
Let y(ty) = wug,y(t1) = vy. By Claim 5.2.1.1 for a = w;(ug),b = z;(up) and w = wvs,
there exist a descendant v of v, and a path P between a and b such that internal vertices
of Parein S,, — S,. Let y(t3) = v, L = P, and E}, be the disjoint paths from &,,(h) to
& (h) for all h € {i, 7, k,l} constructed by specified linkages. Also by Claim 5.2.1.1 for
a = xx(up), b = yr(up) and w = vs, there exist a descendant v’ of v3 and a path P’ between
a and b such that internal vertices of P’ are in S,, — S,.. Let y(t3) = v/, R = P’, and F},
be the disjoint paths from &,,(h) to &, (h) for all b € {i, j, k,l} constructed by specified
linkages. Then the unique major vertex of 7 has property A;;x; in ' = 7 o v with the first
4-tuple of disjoint paths being P, (ug)UE), forall h € {3, j, 1} and Xy (ug)URUY(ug)UEy,
and the second 4-tuple being Qy, (1) U Fy, forall h € {j, k, 1} and W;(ug) UL U Z;(ug) U F;.

Main case 3: |A N B| = 1. Let j be the unique element of A N B. Notice that A — B #
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. In fact, if A— B = (), then |[A| = 1. So 2(s — 1) < s and this means s < 2, a
contradiction. Similarly, B — A # (). Therefore, we canleti € A — Band k € B — A.
Letl € {1,2,...,s} — {i,j,k}. Let v(ty) = uo,y(t1) = v1. Let us be the child of v; and
let (vs, v12, v13) be its trinity.

If [ € B, by Claim 5.2.1.1 for a = w;(up),b = 2;(up) and w = vy, there exist a minor
vertex v and a path P between a and b such that internal vertices of P are in S,, — S,. Let
v(t2) = v, Ej, be the disjoint paths from &, (h) to &, (h) forall h € {i, j, k, 1}, Ly = Q;(uo),
and L; = W;(up) UPU Z;(ug). For the rest of this paragraph and the next three paragraphs,
assume [ ¢ B. Assume n;,1;, 0,1 € Aorn;,r;,n,r € B. Without loss of generality,
assume n;,r;,ny, 1 € A. Then let y(ty) = vs, By = Py(uy) for all h € {i, 5, k, 1}, and
Ly, = Wi(ug) U Py, (u1) Uwp (uq)Qn(ur) zp(ur) U Py, (ug) U Zy(up) for b € {i,1}. Assume
three of n;, r;, n;, r; are in A or in B. Without loss of generality, assume n;, ;,n; € B and
r; ¢ B. By Claim 5.2.1.1 for a = w,,(u1), b = 2, (u;) and w = vy, there exist a descendant
v of vy and a path P between a and b such that internal vertices of P are in S,, — S,. Then
let v(t2) = v, Ej, be the disjoint paths from &,,(h) to &,(h) for all b € {i,j, k,[}, and
Ly, = Wh(ug) U Qn, (u1) U Py, (us) U wp(us)Qn(us)zn(us) U Py, (us) U QU Zy(ug) for
all h € {i,1}, where Q, = Q,, (u1) if h = iand Qp, = W,, (uy) UP U Z,, (uy) if b = L.

See Figure 5.2.

Figure 5.2: n;,r;,n; € Bandr; ¢ B.

Now assume exactly two of n;,r;, n;, r; are in A or exactly two of n;, r;, n;, r; are in
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B. Without loss of generality, assume exactly two of n;, r;, n;, r; are in A. If n,, and ry,
are in A for some hy, hy € {i,1}, then there exist hy € {i,l} — {h1}, hy € {i,1} — {hs}
such that ny, and rp, are not in A. Then let y(t2) = vy, E, = Pp(uy) U Qn(us) for
all h € {i,j,k,1}, Ly, be the union of Wy, (ug) U P, (u1) U Py, (u3) and Zy, (ug) U
P, (up) U P, (u3) and a W6-path in the outer graph at vg joining their ends, and L, be
the union of Wy, (uo) U X, (u1) and Zy, (uo) U X, and a W6-path in the outer graph at
vs joining their ends. The remaining case is when n;, n; € A or n;, n; € B. Without loss of
generality, assume n;,n; € A and r;,r; ¢ A. Assume there exists a path M, in the n-torso
at uy that connects P, (u1) U Py, (uy) and P, (uy) U P, (u;) and is internally disjoint from
P,,(u1) U Py, (uy) U Py, (u1) U Py, (uy). Without loss of generality, assume M, connects
P,,(uy) and P,,(uy). By Claim 5.2.1.1 for a = &,,(n;), b = &,,(r;) and w = vy, there exist
a descendant v of v, and a path P between a and b such that internal vertices of P are in
Syy — Sy Let y(t2) = v, Ej, be the disjoint paths from &,, (h) to &,(h) forall h € {i, j, k, [},
and Ly, = Wy (uo) U Py, (u1) U P, U Py, (uy) U Zy(up) for all h € {i,1}, where B, = M,
when i =i and P, = P when h = [. See Figure 5.3.

Figure 5.3: M, connects P, (u;) and P, (uy).

Now assume there is no path in the 7-torso at u; between P, (u1) U P, (u1) and
P,,(u1) U P, (uy). By Lemma 3.4.2, without loss of generality, assume in the outer graph
at vs there exists a path M; from &, (j) to x,,(u1) Py, (u1)y,, (uy) that is disjoint from

xy, (u1) Py, (u1)yr, (u1), and assume in the outer graph at vg there exists a path Ay from
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s (J) to w;(us)Qi(us)zi(us) that is disjoint from wy(us)@Q;(us)z(us). If Q;(uy) is not
disjoint from P, (u;) U Py, (u1), then Q;(u;) is disjoint from P, (u1) U P, (uy). From
s (J), assume Q;(uy) meets P, (uy) U Py, (uy) first at a vertex z € V(BP,,(u1)). By
Claim 5.2.1.1 for a = &,,(n;),b = &,,(r;) and w = vy, there exist a descendant v of vy
and a path P between a and b such that internal vertices of P are in S,, — S,. Then let
v(t2) = v, E}, be the disjoint paths from &,,(h) to &,(h) for all h € {i,j, k, 1}, and L), =
Wi (ug)UP,, (u1)UP,UP,, (u1)UZy(uo) forall h € {i, 1}, where P, = M;UE,, (5)Q;(u1)x
when h =i and P, = P when h = [. See Figure 5.4.

Figure 5.4: j € {n;,n;}.

The remaining case is when Q) (v, ) is disjoint from P,,, (u1 )UP,, (u1 )UP,, (u1)UP,, (u1),
or Qj(uy) is disjoint from P, (u1) U P, (u;) and not disjoint from P, (u1) U Py, (uy). This
implies j & {n;,n;}. In the case Q;(uy) is disjoint from P,, (u1) U P, (u;) and not disjoint
from P, (u1) U Py, (u1), from &,,(j) assume Q;(u;) first meets P, (u1) U P, (uy) at y €
V(P,,(u1)). Then by Claim 5.2.1.1 for a = z,,(us),b = y,,(u3) and w = vy, there exist a
descendant v of vg and a path P between a and b such that internal vertices of P are in S, —
S,. Then let y(t2) = v, E}, be the disjoint paths from &, (k) to &,(h) for all h € {i, j, k, [},
and Ly, = Wy (ug) U P, (u1) U Py, (us) U wp,(ug)Qn(us)zn(us) U Py U Py, (u1) U Zp(uo)
for all h € {i,l}, where P, = M; U Q;(u1) U Pj(uy) U Pj(us) U My if Q;(uq) is disjoint
from P, (u1) U By, (u1) U Py, (u1) U Py (u1), P = yQ;(u1)&, (7) U Pj(u1) U Pj(uz) U Mo

if Q;(uy) is disjoint from P, (u1) U P, (u1) and not disjoint from P, (u;) U P,,(u), and
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P, =Y, (u3) U PU X, (us). See Figure 5.5.

() Qu)a(m) Xy

Figure 5.5: Q;(w) is disjoint from P,, (u1) U P, (u1) U Py, (u1) U By, (uq).

Similarly, repeat the argument above by replacing n;, n;, r;, 7 by Ui, lj, my, m;, we get
v(t3), Fy forall h € {i, 5, k,l}, and Ry, for h € {k, [} such that y(¢3) is a descendant of vs,
F}, are disjoint paths from &, (h) to &,«,)(h), and internal vertices of Rj, are not in .S,,).

Let L} be a subpath of L; with the same ends for all h € {i,[} and R} be a subpath of
Ry, with the same ends for all h € {k,[}. Then the unique major vertex of 7} has property
A;j in ' = no~y with the first 4-tuple of disjoint paths being P, (1) U Ej, forall h € {i, j}
and R U E}, for all h € {k, [}, and the second 4-tuple being Qp,(uo) U F}, for all h € {7, k}
and L}, U Fy, for all h € {i,[}.

Main case 4: AN B = {). It follows that s is even and |A| = |B| = s/2. Assume as a case
that for some integer ¢ € B either [;, m; € Aorl;, m; € B and forsome k € A, ng, 1, € A
or ng, 7, € B. But the integers [;, m; are pairwise distinct, and so if [;, m; € A, then there
exists j € B such that [;, m; € B, and similarly if [;, m; € B. If ny,r;, € A, then there
exists | € A suchthatn;,r; € B, and similarly if ny, 7, € B. We may therefore assume that
there exist k,l € Aand i, j € B such that ng, ry, l;, m; € Aandny, 1, l;, m; € B. Welety
map to, t1, t, t3 to up, v1, Vg, V11, respectively, and we will prove that ¢, has property A;;

in 7", To that end we need to construct two 4-tuples of disjoint paths. The first two paths of
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the first 4-tuple are @;(uo) U P;(ug) UQ;(uq) and Q;(uo) U Pj(u2) U Q) (uy). The third path
of the first 4-tuple is the union of Wy (ug) U Py, (u1) U P, (u3) and P,, (u3) U Py, (uy) U
Zy(ug) U Py (us) U Qg (uy) and a suitable W6-path in the outer graph at vg joining their ends
by Lemma 3.4.2. The fourth path of the first 4-tuple is the union of W;(uo) U X, (u1) and
Xy, (u1) U Zy(ug) U Py(u2) U Q;(uy) and a suitable W6-path in the outer graph at v; joining
their ends by Lemma 3.4.2. The first two paths of the second 4-tuple is Py (ug) U Py (u1) U
Qr(us) and Py(ug) U B(uy) U Q;(us). The third path of the second 4-tuple is the union of
Xi(uo) U Py, (ug) U Py, (uy) and Q;(us) U P;(uy) UY;(ug) U P, (ug) U Py, (uy) and a suitable
W6-path in the outer graph at vy joining their ends by Lemma 3.4.2. The fourth path of the
second 4-tuple is the union of X;(ug) U Xj, (u2) and Q;(us) U Pj(u1) U Yj(ug) U X, (u2)
and a suitable W6-path in the outer a graph at v; joining their ends by Lemma 3.4.2. This
completes the case that for some integer i € B either [;, m; € A orl;, m; € B and for some
integer k € A either ng,rp € Aorng,rp € B.

We may therefore assume that for every ¢ € B one of [;, m; belongs to A and the other
belongs to B, or for every k € A one of ng,r; belongs to A and the other belongs to
B. Without loss of generality, assume that for every i € B one of [;, m; belongs to A
and the other belongs to B. For every ¢ € B a subpath of P;(ug) joins &,,(;) to &, (m;)
in the outer graph at v3 and is disjoint from the 7-torso at wug, except for its ends. Let J
be the union of these subpaths; then J is a linkage from {&,,(i) : i € A} to {&,(7) :
i € B}. Fori € B the path Q;(ug) is a subgraph of the n-torso at uy. It follows that
JUiep Qi(uo) U;ea Zi(uo) U;e 4 Wiuo) is a linkage from X, to Xj(,,), and so by the
minimality of the specified ug-linkages it is equal to the specified left uy-linkage. It follows

that uq has property B in 7). [

5.3 Reduced properties

Similarly to the 2-connected case, we have the following result:

Lemma 5.3.1. Let (T, X) be a tree-decomposition of a graph G, let n : T, < T be an
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ordered cascade in (T, X) with orderings &, specified linkages and common intersection
set I, let v : Ty, — T}, be a monotone homeomorphic embedding, and let f == n o~ :

Ty — T be a subcascade of n of height h'. Then for every major vertex ty € V(Tj/)
(i) 7' is an ordered cascade with orderings &) and common intersection set I,

(i) if the vertex v(to) has property AT, (or Byju, Bl,,, resp.) inn, then ty has property
15kl J igkl

A (or Bijii, By, resp.) in 1.
Furthermore, the specified linkages for /' may be chosen in such a way that
(iii) (Aty; Bio, Cios D) = (As(to)s Ba(to)> Coto)s Dryito)):
(iv) the vertex ty has property B in 1 if and only if v(to) has property B in n, and

(v) if the specified linkages for n are minimal, then the specified linkages for 1 are

minimal.

Lemma 5.3.2. There exists a positive integer h such that the following holds. Let s > 4
be an integer and let (T, X) be a tree-decomposition of a graph G. Letn : T, — T be
an ordered cascade in (T, X) of height h and size |I| + s with orderings & and common
intersection set I such that there exist some distinct i,7,k,l € {1,2,...,s} and m €
{0,1,2,3,4} such that every major vertex of T, has property Al- Then there exists a
weak subcascade 1 : Ty — T of n of height one such that the unique major vertex of
T1 has property A?}kl with ordered feet in 1/ if m € {0,1} or Ty has property Ag?kl with
ordered left-feet in n' if m € {2,3,4}.

Proof. Let h(a, k) be the function of Lemma 3.3.2. Let h = h(4, (4!)?). Assume v is an
arbitrary major vertex of 7}, and its trinity is (vq, v2, v3). Assume the feet of L;, L;, Ly, L,
in X, ,,) are x1, T2, v3, r4 and the feet of L;, L;, L, L; in X, ,,) are x5, xg, T7, v3. Then
for every major vertex u of T}, consider the tuple (x1, 29, x3, x4, T5, g, L7, T3) as its color.

By Lemma 3.3.2, there exists a monotone homeomorphic embedding v : 7y — 7}, such
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that v(¢) has the same tuple of eight feet for every major vertex t € V(7). Let n, =
no~:Ty— T. By Lemma 5.3.1, 1 is still an ordered cascade where every major vertex
t € V(T}) has property Al Also, T has the same tuple of eight feet for every major vertex
t e V(Ty).

Assume tq is a major root of 7} and its trinity is (1, t,t3). Let uo be the major root
of T} and its trinity be (v, vy, w;). Let u be a major vertex in 7 and let (v;, vo, v3) be its
trinity.

First assume m € {2,3,4}. Let z;,z;, x%, 2; be the end of L;(u) and the feet of
Lj(u), Ly(u), Ly(u) in X, (), respectively. Let f be the function such that f(x) are
the feet of Ly (u) in X, ) for all h € {j, k,1} and f,, is the other end of L;(u). Define
folw) = F(2) and () = f(fur(2)) forn > 1.

Let v1(to) = ug,v1(t1) = v, and 71 (t3) = w;. For h € {1, 2}, let uy, be the child of vy,
and v be the left child of u;,. Let z;, z;, xj, x; be the feet of L;(ug), L;(uo), Li(uo), Li(uo)
in X,,). Then there exists hy € {1,2,3} such that f;, (z) = « forall x € {x;,x;, x), 21}

Let 4 (t2) = vp, and ' =y oyy. For h € {i, 5, k, [}, let

Ly = Ly (up) U ( U fn(xh)Lh(“n)an(xh))

1<n<hq

. Then these paths and tripods and R;(ug) show that 7/’ is as desired.

Therefore assume m € {0,1} . Letz;, x;, x, x; be the feet of L;(u), L;(u), Li(u), Li(u)
in X, (»,), respectively. Let f, g be functions such that f(z}) are the feet of L, (u) in X, (1)
and g(xy,) are the feet of Lj,(u) in X, () for all b € {3, j, k,1}. Define fy(x) = f(x) and
fo(x) = f(fn1(z)) forn > 1, and go(z) = g(x) and g, (x) = g(gn_1(z)) forn > 1.

Assume t, is a major root of 7} and its trinity is (t1, t,t3). Let ug be the major root
of T}, and its trinity be (v, vy, wq). Let v1(tg) = ug and y1(t1) = v. For h € {1,2}, let uy,
be the child of v, and v, be the left child of uy, and let r, be the child of wy and w1

be the right child of 7. Let x;, z;, x4, z; be the feet of L;(ug), L;(uo), Li(uo), Li(ug) in
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Xv)- Then there exists hy, ho € {1,2,3} such that f, () = x and g,(x) = « for all
x € {z;,xj, xp, 1 }. Let v1(ta) = vp,,71(ts) = wpy, and ' =1y 0 y1. For h € {i,7,k, 1},

let

Ly =Lu(uo) U (| J falen)Ln(un) fora(@n)) U (| gn(@n)La(ra)gnsa(an)),

1<n<hy 1<n<hag
Then these tripods show that 7’ is as desired. [

Lemma 5.3.3. Let s > 4 be an integer and let (T, X) be a tree-decomposition of a graph
G satisfying (W6). Let n : T3 — T be an ordered cascade in (T, X) of height two and
size |I| + s with orderings & and common intersection set I such that there exist distinct

i,7,k, 1 €{1,2,...,s} such that
e cevery major vertex of I3 has property A?jkl with ordered left-feet, or

e every major vertex of T’ has property Afjkl with ordered left-feet, or

e every major vertex of 'I's has property Af-‘jkl with ordered left-feet.

Then there exists a weak subcascade ' : T < T of n of height one such that the unique
major vertex of 11 has property A},j,k,l, inn', where (¢, 7', k', lI') = (i, 7, k,l) for the first

and third cases and (i, j', k', ') = (j, i, k, 1) for the second case.

Proof. Assume that the major root of T3 is g and its trinity is (vq, vo, v3). Let u; be the
major vertex at height one that is adjacent to vy and let its trinity be (vq, vy, v5). Let the
major root of 77 be ty and its trinity be (¢1,t,13). Let z}, be the foot of Ly (uy) in X, ().
Let v(tg) = ug, y(t1) = v1, Y(t2) = vs, Y(t3) = v3. Then ' = n o~y is as desired.

In fact, assume every major vertex of 75 has property A?jkz with ordered left-feet.
For h € {j,k, l}, let Lh = Lh(UQ) U fvz(h)Lh(ul):Eh. Let Ll = Ll(UQ) U Ll(ul) U P
U, (1) Ly(u1)&u, (1) U Ri(u1) U ¢;(ug) Ly (ug)&w, (1) U R;(ug), where P is a W6-path in the
outer graph at v, joining &,,(¢) and &,, (). Then these tripods show that ¢, has property
Ajjp in
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Assume every major vertex of 75 has property A;”jk, with ordered left-feet. For h €
{j, k, 1}, let L, = Lp(uo)UE&,, (h)Ly(uq)zy. Let Ly = Li(uo)UL;(u )UP UE,, (k) Li(u1)&y, (k)U
Ri(uq)Uci(ug) Li(ug)€w, (k)UR; (ug), where P is a W6-path in the outer graph at v, joining
£, (i) and &, (k). Then these tripods show that #, has property A, in 7.

Therefore assume every major vertex of T3 has property A}, with ordered left-feet.
Let Lj = Li(uo) U &, (1) Ly(ur)z;. Assume yj is the foot of Ly (ug) in X, ., for all h €
{i,7,k}. Let z; be the vertex on L;(ug) N Ly(up) that is closest to y;. Then let L, =
vy (k) Ly (u0) &y (k) Uy, (k) Ly (uq)x Uz1 L (uo)y;. Let 29 be the vertex on L, (uq) N Ly (uy)
that is closest to ¢;(u1). Then let L; = &,,(J)L;(10)&w, (J) U &uy (5) L (ur)x; U Ri(ug) U
;i L (u0)&y, (k) U &y, (k) Ly (uq) 2. Let z3 be the vertex on Ly, (ug) N Ly (ug) that is closest to
Yi- Thenlet L; = &, (i) Li(uo)&u, (1) U, (1) Li(ur)xi UPL Uy, (k) Li(u)c;(ur) U Ry (ur) U
YL (uo)z3 U 23 Ly (o) &p, (1) U &uy (1) Ly (u1)&y, (1) U Py, where Py is a W6-path in the outer
graph at v, joining &, () and &,, (k) and P; is a W6-path in the outer graph at v, joining P

and &,, (7). Then these tripods show that Z, has property Ajj,, in 7', O

Lemma 5.3.4. There exists a positive integer h such that the following holds. Let s > 4 be
an integer and let (T, X) be a tree-decomposition of a graph G satisfying (W6) and (W7).
Letn : T, — T be a regular cascade in (T, X) of height h and size |I|+ s with orderings &
and common intersection set I such that every major vertex of Ty, has property B. Then there
exists a weak subcascade 1/ : Ty — T of n) of height one and distinct i, j, k,l € {1,2, ..., s}

such that the unique major vertex of Ty has property B;ji in 1’

Proof. Let h be as in Lemma 3.3.2 applied to a = 4 and k = (s/2)? + 2(s/2)3. Let the
common confinement sets for n be A, B, C, D. Let the major root of 7} be t; and its trinity
be (t1,ta,t3). Let the major root of T}y be ug and its trinity be (wy, we, w3). Let two major
vertices at height one of 7); be u; and uy. Assume the trinity at u; is (wsq, w4, ws5) and the
trinity at us is (ws, we, wr). Let the child of wg be uz and the child of w; be uy.

For a major vertex w € V/(7},) with trinity (v, vq, v3) there are disjoint paths in the

n-torso at w as in the definition of property B. Fora € A and b € B let R,(w) denote the
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path with ends &,, (a) and &,,(a), let R,(w) denote the path with ends &, (b) and &,,(b), let
Ra(w) denote the path with ends &,,(b) and &,,(a), let Y, (w) denote the path with ends
&, (a) and &,,(g(a)), and let Z,(w) denote the path with ends &,,(a) and &,,(g(a)), where
g is the bijective function between A and B as in the definition of property B. Let g, be the
functions as in the definition of property B at major vertex uy, for all h € {0, 1,2, 3,4}.

Let I be the common intersection set of 7. Then 7(vy), n(vy), n(vs) is a triad in T" with
center n(w) and for all ¢ € {1,2,3} we have X, ;) N Xyyw) = 1 = X01) N Xiyw) N Xip(vg)s
and hence the triad is not X -separable. By (W7) there is a path R(w) connecting two of
the three sets of disjoint paths in the n-torso at w.

If R(w) goes from R,(w) to Ry(w) fora € A and b € B, we say it w has color (a,b).
If R(w) goes from R,(w) to Ry, fora € Aora € Bandb € B, c € A, we say w has color
(a,cb). By Lemma 3.3.2, there exists a monotone homeomorphic embedding v : Ty — T},
and a € A,b € B such that () has color (a, b) in 1 for every major vertex t € V (T}), or
there exists a monotone homeomorphic embedding v : Ty < T}, anda € Aora € B and
b € B,c € A such that (¢) has color (a, cb) in i) for every major vertex t € V(T}).

Assume there exists a monotone homeomorphic embedding v : 7} — 1} and a €
A,b € B such that y(t) has color (a,b) in n for every major vertex ¢t € V(T},). Let
71 = 1 o 7y, then by Lemma 5.3.1, ¢ has property B in 7, for every major vertex ¢t € V (T})
and one end of R(¢) is in the path R,(t) and the other end is in Ry(t). Let v1(¢y) =
ug, Y1(t1) = w1, v1(t2) = we, and 71 (t3) = wy. Lety’ = ny o y1. Let 1 € A be such that
go(z1) = b. If 21 = a then ¢, has property By in 7/ for some ¢ € A —{a} and d = gy(c).
Therefore assume 1 # a. Let d = go(a), x2 = go(a) and ¢ such that go(c¢) = b. Then argue

similarly we also have a # c.

Claim 5.3.4.1. Let w be a minor vertex of Ty of height at most two. Then in the outer
graph at w there are two disjoint paths from ,(a) to &,(b) and from &,,(a’) to &, (') for
anyd € A—{a} andl € B — {b}.

In fact, let u be the child of w and let the trinity at u be (w,w’,w”). Let M; =
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Ew(a)Ro(u)xr U R(u) U yRy(w)&,(b), where x and y are the ends of R(u), and My =
Ry (u) U Py U Rynp(u) U Py U Ry (u), where 0 has b as the image in the function in the
definition of property B at u, P; is a W6-path in the outer graph at w’ between ,/(a’) and
& (b) and P is a W6-path in the outer graph at w” between &, (") and &, (V). Then M,
and M5 are two disjoint paths needed.

Denote the two paths in Claim 5.3.4.1 as M, (u) and M,y (u). Back to the lemma, let
Ry, = Ry(up) forall h € {a,c} and Ry, = Rp(uo) U Ry (uz) forall h € {b,d}. Let Ry =
Ryp(uo)UR,, (ug) UMy, oy (us)UR s, (u2) and Req = Raq(uo)UR, (ue) UMgp(ug)UR (usg).
Let Y, = My(u1), Yo = Meg(uy), Z, = Myp(usg), and Z. = Mq(uy). Then these paths
show that ¢y has property Bj.q in 7'

Therefore we can assume there exists a monotone homeomorphic embedding v : T, —
Tpanda € Aora € Bandb € B,c € A such that y(¢) has color (a, cb) in 7 for every
major vertex ¢t € V(Ty). Without loss of generality, assume a € A. Let ; = 1 o, then by
Lemma 5.3.1, ¢ has property B in 7, for every major vertex ¢t € V(7)) and one end of R(t)

is in the path R,(t) and the other end is in R(t).

Claim 5.3.4.2. Let w be a minor vertex of Ty of height at most two. Then in the outer
graph at w there are two disjoint paths from ,(a) to &,(b) and from &,,(a’) to &, (V') for
anyd € A—{a} and € B — {b}.

In fact, let u be the child of w and let the trinity at u be (w,w’,w"”). Let N} =
Ew(a)Ry(u)x U R(u) U yRea(w)&yr(c) U Z.(u) U Ry(u), where x and y are the ends of
R(u). Let Ny = Ry (u) U P U Ry (u) U Zyr U Ry (u), where b” has O as the image in
the function in the definition of property B at u and P is a W6-path in the outer graph at w’
between &, (a’) and &,/ (b"). Then Ny and N, are two disjoint paths needed.

Now denote the two paths in Claim 5.3.4.2 as Ny, (u) and Ny (u). Back to the lemma,
Let vi(to) = uo,m(t1) = wi,7(t2) = wo, and %i(t3) = wr. Letn' = m oy If
¢ = a then ty has property Bygpeq in 7' for some e € A — {a} and d = gy(e). Therefore

assume ¢ # a. Let d = go(a) and 1 = go(a). Let Ry, = Rp(ug) for all h € {a,c} and
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Ry, = Rp(ug) U Rp,(ug) forall h € {b,d}. Let Ry, = Rep(ug) U Re(ug) U P U Ry, (us),
where P is a W6-path in the outer graph at wg between &, (c¢) and &, (1), and R.q =
Roa(ug) U, (a)Re(uz)x U R(us) UyRep(uz2)éy, (¢), where x and y are the ends of R(ug).
Let Y, = Na(u1), Yo = Neg(u1), Zo = Nap(uy), and Z, = N.4(uy). Then these paths

show that ¢, has property Bp.q in 7' O

Lemma 5.3.5. Let s > 4 be an integer and let (T, X) be a tree-decomposition of a graph G
satisfying (W6). Let ) : T5 — T be a regular cascade in (T, X) of size |I|+s with orderings
& and common intersection set I such that there exist distinct i, j,k,l € {1,2, ..., s} such
that every major vertex of I3 has property B;ji. Then there exists a weak subcascade
n Ty < T of n of height one such that the unique major vertex of T\ has property B}jkl

inn.

Proof. Assume that three major vertices at height zero and one of T3 are ug, uy, us. Let
the trinity at uy be (v, ve,v3), the trinity at u; be (vq, v4,vs), and the trinity at us be
(v3,vg,v7). Assume the major vertex of 77 is to, and its trinity is (t1,%o,%3). For a
major vertex w € V(T3) let R;(to), Rj(to), Ri(to), Ri(to), Rij(to), Ri(to), R(to), Yi(to)s
Yi(to), Zi(to), Zk(to) be as in the definition of property B; .

We need to find a weakly monotone homeomorphic embedding v : 7} — 75 such
that 7’ = n o  satisfies the requirement. Set y(¢y) = up and 7(¢;) = v;. Our choice for
7v(t2) will be vy or vs, depending on which two of the three paths R;(u1), R;(u1), Ri;j(u1)
in the n-torso at u; the path R(u,) is connecting. If R(u;) is between R;(u;) and R;(u,),
then choose either vy or vs for (t3). If R(uq) is between R;(u;) and R;j(u;), then set
Y(t2) = vy, and if it is between R;(u1) and R;;(u, ), then set y(t2) = vs. Do this similarly
for v(t3). Then 1’ = n o y will satisfy the requirement. In fact, we will prove this for the
case when R(u;) is between R;(u1) and R;;(u;) and R(us) is between R;(uz) and R;;j(us).
The other cases are similar.

In this case, our choice is Y(tg) = wug, Y(t1) = vi,y(t2) = v4,¥(t3) = v7. Assume the
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end of R(uy) in R;;(uq) is « and the end of R(uy) in R;;(ug) is y. Now let

P =2 R;j(u1)&u; (1) U Zi(u1) U Rj(u1) U Rij(uo) U R(u2) U Yi(uz) U &y, (5) Rij(u2)y,

L; = Ri(up) U R;(u1) U R(uy) U P UyR;;(ug)éw, (1),
L; = R;(uo) U Rj(uz) U R(ug) U P UzR;;j(u1)&,(5),
Ry = Ry(up) U Ry(w),

Ry = Ry(up) U Ry(uy),

and
Rkl = Rkl(ul) U Zk(u1) U Rl(ul) U Rkl(uo) U Rk(u2) U Yk(UQ) U Rkl(UQ).
Then the paths and tripods show that the major vertex of ¥’ = no~ : T} — T has

property Bjj;. O

Lemma 5.3.6. For every positive integers h' and w > 4 there exists a positive integer
h = h(h',w) such that the following holds. Let s be a positive integer such that 4 < s < w.
Let (T, X) be a tree-decomposition of a graph G of width less than w and satisfying (W6)-
(W7). Assume there exists a regular cascade n : Ty, — T of size |I| + s with specified
linkages that are minimal, where [ is its common intersection set. Then there exist distinct
integers i, j, k,l € {1,2,..., s} and a weak subcascade 1 : Ty, — T of n of height h/ such

that
e every major vertex of Iy has property A%kl with ordered feet in 1/, or
e every major vertex of Iy, has property A}sz with ordered feet in 7/

e cevery major vertex of Iy, has property Biljkl inn
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Proof. Let h(a, k) be the function of Lemma 3.3.2. Let iy be h in Lemma 5.3.2 and hs be h
in Lemma 5.3.4. Let a; = h(h/,2),ay = max{3as, h(h',2)}, a3 = max{3ay, hias}, ag =
h(as,5.41(%)), a1 = max{7as, hoas} and h = h(ay,2). Consider having property B or not
having property B as colors, then by Lemma 3.3.2 there exists a monotone homeomorphic
embedding v : T,, < T}, such that either y(¢) has property B in 7 for every major vertex
t € V(T,,) or v(t) does not have property B in 7 for every major vertex ¢t € V (7,,). By
Lemma 5.3.1 ny = no~y : T,, — T is still a regular cascade with specified linkages that
are minimal. Also, either ¢ has property B in 7); for every major vertex ¢t € V' (7,,) or t does
not have property B in 7, for every major vertex t € V(Ty,).

If ¢ has property B in 7; for every major vertex ¢ € V(7,,), then by Lemma 5.3.4
there exists a weak subcascade 7, of 1; of height a, such that every major vertex of 7,
has property B;jj; in 7, for some distinct 7, j, k,! € {1,2, ..., s}. Consider each choice of
tuple (4, 7, k, 1) as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic
embedding ~; : T,, < T,, such that for some distinct i, j, k,l € {1,2,...,s}, 71(¢) has
property Bj; in 7, for every major vertex t € V(T,,). Let n3 = 12 o 7;. Then by
Lemma 5.3.1 this implies ¢ has property B;;j; in 73 for every major vertex ¢t € V(1,,). By
Lemma 5.3.5 there exists a weak subcascade 7, of 13 of height a, such that every major
vertex of 7, has property B}j w10 1)4. Hence 7, is as desired.

If ¢ does not have property B in 1), for every major vertex t € V' (71y, ), then by Lemma 5.2.1
there exists a weak subcascade 7, of 7; of height a, such that every major vertex of
T,, has property A;;i; for some distinct i, j,k,0 € {1,2,...,s}. By Lemma 5.1.1, ev-
ery major vertex of 7, has property A7, for some distinct i, j, k, [ € {1,2,...,s} and
m € {0,1,2,3,4}. Consider each property Al as a color; then by Lemma 3.3.2 there
exists a monotone homeomorphic embedding ~; : 1, < 1,, such that for some distinct
i,,k, 1 €{1,2,...,s} andm € {0, 1,2, 3,4}, v, (t) has property A7, in 7, for every major
vertex t € V/(Ty;). Let 3 = 1y 0 71, then ¢ has property A7, in 03 for every major vertex

t € V(T,,) by Lemma 5.3.1.
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If m € {0,1}, by Lemma 5.3.2, there exists a weak subcascade 74 of 73 of height a4
such that every major vertex of 7y, has property Af;; with ordered feet. If m = 0 then
74 1s as desired. If m = 1, then by Lemma 3.3.2 there exists a monotone homeomorphic
embedding 7, : Tjy < T,, such that either 15 (¢) has property A}J@kl in 74 for every major
vertex t € V/(T}) or 7,(t) has property A}’ in n, for every major vertex t € V(Tj).
Let 5 = 74 0 72, then by Lemma 5.3.1 ¢ has property Ag;,d in 7); for every major vertex
t € V(T}) or t has property A}fkl in 5 for every major vertex ¢t € V' (T},). If ¢ has property
A}l then it also has property Bj;, so 75 is as desired.

If m € {2,3,4}, by Lemma 5.3.2, there exists a weak subcascade 7, of 13 of height a4
such that every major vertex of T, has property A, with ordered left-feet. By Lemma 5.3.3,
there exists a weak subcascade 75 of 7, of height a5 and distinct 7', j', k', " € {1,2, ..., s}
such that every major vertex of 7, has property A}, iy With ordered feet. By Lemma 3.3.2
there exists a monotone homeomorphic embedding -, : T}, < T,. such that either vo(?)
la

i 10 15 for every major vertex ¢ € V(T}) or ~»(t) has property A

1
ijkt 10

has property A
ns for every major vertex t € V(T},). Let ng = 15 o 72, then by Lemma 5.3.1 ¢ has prop-
erty Ajf, in ng for every major vertex t € V(Tj) or t has property A, in 7 for every

1

major vertex t € V(T},). If ¢ has property Ajjr then it also has property B;kﬂ, SO 7)g 1S as

desired. O]

5.4 Proof of Theorem 1.1.6

Lemma 5.4.1. If a graph H has three distinct vertices u,v,w such that H\{u,v,w} is a

forest, then there exists an integer n such that H is isomorphic to a minor of P).

Proof. Letu,v,w € V(H) be such that T := H\{u, v, w} is a forest. We may assume, by
replacing H by a graph with an A minor, that 7" is isomorphic to C'T; for some ¢, and that
each of u, v, w is adjacent to every vertex of 7'. It follows that / is isomorphic to a minor

of Py, as desired. O

109



Lemma 5.4.2. Let H be a graph with two distinct vertices u, v such that H\{u,v} is an

outerplanar graph. Then there exists an integer n such that H is isomorphic to a minor of
Q//'

Proof. By Lemma 3.1.4, there exists an integer ¢ such that H\{u, v} is isomorphic to a
minor of Q;. We may assume, by replacing H by a graph with an H minor, that H\{u, v}

is isomorphic to Q; for some ¢, and that each of u, v is adjacent to every vertex of Q,. It

follows that H is isomorphic to a minor of Qy . ]

Lemma 5.4.3. Let H be a tree plus a cycle going through its leaves in order from the
leftmost leaf to the rightmost leaf and a vertex v adjacent to the leaves of the tree. Then

there exists an integer n such that H is isomorphic to a minor of R..

Proof. Let T be the tree in H\{v} and C be the cycle going through its leaves. We may
assume, by replacing H\{v} by a graph with an H\{v} minor, that 7" is isomorphic to CT;
for some ¢, that C' goes through its leaves in order from the leftmost leaf to the rightmost
leaf, and that v is adjacent to every leaf of 7'. It follows that H is isomorphic to a minor of

R}, as desired. O]

Lemma 5.4.4. Let H be a planar graph that consists of an outerplanar graph with a
cycle going through its degree-2 vertices. Then there exists an integer n such that H is

isomorphic to a minor of S”.
n

Proof. Let () be the outerplanar graph and C' be the cycle going through its degree-2 ver-
tices in H. By Lemma 3.1.4, there exists an integer ¢ such that () is isomorphic to a minor
of O,. We may assume, by replacing H by a planar graph with an H minor, that () is
isomorphic to Q; for some ¢, and that C' goes through the leaves of Q;. It follows that H is

isomorphic to S;'. O

By Lemmas 5.4.1, 5.4.4, 5.4.3 and 5.4.2 Theorem 1.1.6 is equivalent to the following

theorem.
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Theorem 5.4.5. For every positive integer n, there exists a number p = p(n) such that

every 4-connected graph with path-width at least p has P/, Q"' 'R or S as a minor.

Lemma 5.4.6. Let n and w be positive integers. There exists a number p = p(n,w) such
that for every 4-connected graph G, if G has tree-width less than w and path-width at least

p, then G has a minor isomorphic to P!/, Q" R" or S/.

Proof. Let hy be as in Lemma 3.5.3 applied to £ = n and w. Let hs be as in Lemma 4.4.5.
Let h3 be the number as in Lemma 5.3.6 applied to 4n+1 and w. Let h = max{hy, hs, h3, 2n+
1}. Let p be as in Theorem 3.3.5 applied to a = h and w. By Theorem 3.3.5, there exists a

tree-decomposition (7, X') of G such that:
e (7', X) has width less than w,
e (T, X) satisfies (W1)—(W7), and

e for some s, where 4 < s < w, there exists a regular cascade n : T, — T' of height
h and size s in (T, X) with specified t,-linkages that are minimal for every major

vertex to € V(T).

Let I be the common intersection set of 7, let {; be the orderings, and let s; = s — |I|. Then
s1 > 1 by the definition of injective cascade.

Assume that s; = 1. Since s > 4, it follows that || > 3. Let x,y,z € I. Let R be
the union of the left and right specified ¢-linkage with respect to 7, over all major vertices
t € V(T}) at height at most h — 2. The minimality of the specified linkages implies that R
is isomorphic to a subdivision of 7Tj,_;. Let ¢t be a minor vertex of 7}, at height h — 1. By
Lemma 3.4.2 there exist three W6-paths with one end & (1) and the other end x, y, or z in
the outer graph at ¢. The union of R and these W6-paths shows that G has a P minor, as
desired.

Assume that s; = 2. Since s > 4, it follows that |/| > 2. By Lemma 3.5.3(iii), G has a

P! minor or a Q! minor, as desired.
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Assume that s; = 3. Since s > 4, it follows that I # (). By Lemma 4.4.5(ii), G has a
P! or R!! minor, as desired.

We may therefore assume that s; > 4. Let A’ = 4n + 1. By Lemma 5.3.6 there exist
distinct integers i, 7, k,l € {1,2,...,s} and a subcascade 1’ : T}, — T of n of height A’

such that
e cvery major vertex of 7}, has property A?j , With ordered feet in 7/, or
e every major vertex of 7j, has property A%]‘-Ikl with ordered feet in 7/

e cvery major vertex of 7}, has property Bilj w in

Assume that every major vertex of 7}, has property A?j . With ordered feet in 77/, and let R
be the union of the corresponding tripods, over all major vertices t € V' (T},) at height at
most i’ — 2. It follows that R is the union of four disjoint trees, each containing a subtree
isomorphic to a subdivision of 7{;/_1)/;. Let ¢ be a minor vertex of T} at height h — 1.
By Lemma 3.4.2 there exist W6-paths with ends & (h) and (1) for all h € {4, j, k} in the
outer graph at ¢. By contracting the tree that contains & (h) for all h € {i,j, k}, and by
considering these W6-paths we deduce that G has a P/ minor, as desired.

Assume next that every major vertex of 7}, has property A}j‘-‘kl with ordered feet in 7.
Let the major root of 7}, be ug and its left child be v. For every major vertex u that is a de-
scendant of v, let L;(u), Lj(u), Ly(u), L;(u) be the four tripods in the 1’-torso at  as in the

definition of property A}, and let a(u), b(u) be the two ends of the path L;(u) N L;(u). Let

Ry = [ J (€0 (1) Li() €0, (i) U &, (1) Li(w)o (DU

U &, (1) Lu(u)a(u) U alu) Li(u)b(u) U b(u) Li(u)&us (1)),

Ry = L(w),

112



and

Ry =) Li(u),

where the unions are taken over all major vertices u at height at most A’ — 2 that are
descendants of v and (vq, v2, v3) here is the trinity at u. Then Ry, Ry, R3 are disjoint and
Ry or Rj3 is a tree isomorphic to a subdivision of 7},_5. Let ¢ be a minor vertex of T},
at height h’ — 1. By Lemma 3.4.2 there exist W6-paths with ends & (h) and & (k) for all
h € {i,7,1} in the outer graph at t. By Lemma 3.4.2, there exists a W6-path with ends
&»(1) and &,(1) in the subgraph of G induced by |J X, — I, where the union is taken over
all r in the component containing 7’ (ug) of ' — 1/ (v). By contracting R, to one vertex and
considering that vertex and R, R3 and these W6-paths we deduce that G has a R/’ minor,
as desired.

We may therefore assume that every major vertex of 7}, has property B}j w in 7. For
every major vertex w in Tj/, let L;(u), L;(u) and Ry (u), R;(u), Ry (w) be as in the definition

of property B;ji;. Let the major root of T} be ug and its left child be v. Let

Ry = (R(w) U Ri(u) U Rig(u)) and Ry = ] (Li(u) U L;(w),

u u

where the unions are taken over all major vertices u at height at most ' — 2 that are
descendants of v. Then R; is disjoint from R,, which contains a subgraph isomorphic to
a subdivision of Qj/_3 by Lemma 3.5.2. By considering R;, R, and W6-paths as in the

above case, we deduce that G has a S7,_, minor, as desired. O]

Proof of Theorem 5.4.5. Let a positive integer n be given. By Theorem 1.1.1 there exists
an integer w such that every graph of tree-width at least w has a minor isomorphic to S’.
Let p = p(n,w) be as in Lemma 5.4.6. We claim that p satisfies the conclusion of the
theorem. Indeed, let G be a 4-connected graph of path-width at least p. By Theorem 1.1.1,
if G has tree-width at least w, then G has a minor isomorphic to S;/, as desired. We may

therefore assume that the tree-width of G is less than w. By Lemma 5.4.6 G has a minor
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isomorphic to P, Q" R or S, as desired.
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