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SUMMARY

Graph-partitioning problems are a central topic of research in the study

of algorithms and complexity theory. They are of interest to theoreticians with

connections to error correcting codes, sampling algorithms, metric embeddings, among

others, and to practitioners, as algorithms for graph partitioning can be used as

fundamental building blocks in many applications. One of the central problems

studied in this field is the sparsest cut problem, where we want to compute the

cut which has the least ratio of number of edges cut to size of smaller side of the

cut. This ratio is known as the expansion of the cut. In spite of over 3 decades of

intensive research, the approximability of this parameter remains an open question.

The study of this optimization problem has lead to powerful techniques for both upper

bounds and lower bounds for various other problems [68, 12, 11, 31], and interesting

conjectures such as the SSE conjecture [86].

Cheeger’s Inequality, a central inequality in Spectral Graph Theory, establishes

a bound on expansion via the spectrum of the graph. This inequality and its many

(minor) variants have played a major role in the design of algorithms as well as in

understanding the limits of computation.

In this thesis we study three notions of expansion, namely edge expansion in graphs,

vertex expansion in graphs and hypergraph expansion. We define suitable notions

of spectra w.r.t. these notions of expansion. We show how the notion Cheeger’s

Inequality goes across these three problems. We study higher order variants of

these notions of expansion (i.e. notions of expansion corresponding to partitioning

the graph/hypergraph into more than two pieces, etc.) and relate them to higher

eigenvalues of graphs/hypergraphs. We also study approximation algorithms for these

ix



problems.

Unlike the case of graph eigenvalues, the eigenvalues corresponding to vertex

expansion and hypergraph expansion are intractable. We give optimal approximation

algorithms and computational lower bounds for computing them.
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CHAPTER I

INTRODUCTION

Graph partitioning refers broadly to the task of partitioning the vertex set of a graph

into two or more pieces. There are numerous ways to quantify the quality of a partition;

most of them are functions of the sizes of the various pieces, the fraction of the edges

that are cut by the partitioning and/or the number of vertices in the boundary of

the partition. Graph-partitioning problems are a central topic of research in the

study of algorithms and complexity theory. They are of interest to theoreticians with

connections to error correcting codes [97], sampling algorithms [95], metric embeddings

[68], among others, and to practitioners, as algorithms for graph partitioning can be

used as fundamental building blocks in many applications such as image segmentation

[94], clustering [37] , parallel computation [60] and VLSI placement and routing [4].

Some of the standard measures for quantifying the quality of a partition are k-

median [59], k-cut [91], minimum diameter [15], expansion etc. Kannan, Vempala and

Vetta [51] show that several of these measures fail to capture the natural clustering in

simple examples, and argue that expansion is one of the best objective functions for

measuring the quality of a cluster. Given an edge-weighted graph G = (V,E,w), the

expansion or edge-expansion or conductance of a subset S ⊂ V of vertices, denoted by

φG(S), is defined as the ratio the total weight of edges leaving it to the size of the set,

φG(S)
def
=

w(S, S̄)

min
{
w(S), w(S̄)

}
where by w(S) we denote the total weight of edges incident to vertices in S and

w(S, T ) is the total weight of edges between vertex subsets S and T . The expansion

of the graph G is defined as

φG
def
= min

S⊂V
φG(S) .
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Finding the optimal subset that minimizes expansion φG(S) is known as the Sparsest

Cut problem.

The expansion of a graph and the problem of approximating it have been highly

influential in the study of algorithms and complexity, and have exhibited deep connec-

tions to many other areas of mathematics. In particular, motivated by its applications

and the NP-hardness of the problem, the study of approximation algorithms for

sparsest cut has been a very fruitful area of research, leading, in particular, to the

theory of metric embeddings and more recently the Unique Games conjecture and the

Small-set Expansion hypothesis.

Building on the work of Cheeger [29], Alon and Milman [3, 1] proved the discrete

Cheeger Inequality, a central inequality in Spectral Graph Theory. This inequality

establishes a bound on expansion via the spectrum of the graph:

λ2

2
6 φG 6

√
2λ2

where λ2 is the second smallest eigenvalue of the normalized Laplacian1 matrix of

the graph. This theorem and its many (minor) variants have played a major role

in the design of algorithms as well as in understanding the limits of computation

[78, 96, 97, 43, 38, 13, 8]. We refer the reader to [46] for a comprehensive survey. The

proof of Cheeger’s inequality is algorithmic, using the eigenvector corresponding to λ2

to find a set S satisfying φ(S) 6
√

2λ2.

Some applications of graph partitioning require finding clusters in graphs/networks

which have a small number of nodes in the boundary of the parts. This is captured by

the Vertex Expansion of the graph, a notion of expansion similar to edge-expansion.

The vertex expansion of a set of vertices in a graph is defined as the ratio of the

number of vertices in the boundary of the set to the size of the set. As in the case of

1The normalized Laplacian matrix is defined as LG
def
= D−1/2(D − A)D−1/2 where A is the

adjacency matrix of the graph and D is the diagonal matrix whose (i, i)th entry is equal to the degree
of vertex i.
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edge expansion, the vertex expansion of the graph is defined as the minimum value

of vertex expansion over all sets of size at most half of the size of the graph. Vertex

Expansion has applications in image segmentation [94], parallel computation [60] and

VLSI placement and routing [5], among others and is a major primitive for many

graph algorithms, specifically for those that are based on the divide and conquer

paradigm [64].

There is an abundant spectral and approximation theory for edge expansion prob-

lems, but surprisingly little is known about their vertex expansion counterparts. An

approximation algorithm for vertex expansion implies one with the same approxima-

tion guarantee for edge expansion. However the converse is not known to be true,

which indicates that vertex expansion might be harder than edge expansion.

As in the case of edge expansion, the vertex expansion of a graph is also NP-hard

to compute. Therefore, one can only hope to compute an approximation in polynomial

time. The problem of approximating edge or vertex expansion can be studied at

various regimes of parameters of interest. Perhaps the simplest possible version of

the problem is to distinguish whether a given graph is an expander. For an absolute

constant δ0, a graph is a δ0-vertex (resp. edge) expander if its vertex (resp. edge)

expansion is at least δ0. The problem of recognizing a vertex (resp. edge) expander

can be stated as follows: Given a graph G, distinguish between the following two cases

(a) (Non-Expander) the expansion is < ε, and (b) (Expander) the expansion is > δ0

for some absolute constant δ0. Notice that if there is some sufficiently small absolute

constant ε (depending on δ0), for which the above problem is easy, then we could

argue that it is easy to “recognize” a vertex expander. For the edge case, Cheeger’s

inequality yields an algorithm to recognize an edge expander. In fact, it is possible to

distinguish a δ0 edge expander graph from a graph whose edge expansion is < δ2
0/2,

by just computing the second eigenvalue of the graph Laplacian. It is natural to ask if

there is an efficient algorithm with an analogous guarantee for vertex expansion. More

3



precisely, is there some sufficiently small ε (an arbitrary function of δ0), so that one

can efficiently distinguish between a graph with vertex expansion > δ0 from one with

vertex expansion < ε. Bobkov, Houdré and Tetali [21] proved a Cheeger like inequality

for Vertex Expansion in graphs, relating a Poincairé-type functional graph parameter

called λ∞ to vertex expansion. Unlike the case of edge expansion, this inequality

does not yield an algorithm to recognize vertex expanders, as the computation of λ∞

appears to be intractable.

While studying graphs has been a fruitful approach in modeling many practically

relevant problems, some problems require more general mathematical models. A

hypergraph is a generalization of a graph in which an edge can connect any number of

vertices. Formally, a hypergraph H is a pair H = (V,E) where V is a set of elements

called nodes or vertices, and E ⊆ 2V \ {∅} is a set of non-empty subsets of V called

hyperedges or edges. Hypergraph expansion can be defined in manner similar to

edge expansion in graphs, it is defined as the least among all cuts in the hypergraph

of the ratio of the number of the hyperedges cut to the size of the smaller side of

the cut. Hypergraph partitioning problems are of immense practical importance,

having applications in parallel and distributed computing [25], VLSI circuit design

and computer architecture [52, 42], scientific computing [36] and other areas. Inspite

of this, there hasn’t been much theoretical work on them. There is a rich spectral

theory of graphs, based on studying the eigenvalues and eigenvectors of the adjacency

matrix (and other related matrices) of graphs [3, 1, 2, 8] (we refer the reader to [33]

for a comprehensive survey on Spectral Graph Theory). However, it has remained

open to define a spectral model of hypergraphs, whose spectra can be used to estimate

hypergraph parameters à la Spectral Graph Theory. Spectral graph partitioning

algorithms are widely used in practice for their efficiency and the high quality of

solutions that they often provide [18, 44]. Besides being of natural theoretical interest,

a spectral theory of hypergraphs might also be relevant for practical applications.

4



In this thesis, we study these three notions of expansion, namely edge expansion in

graphs, vertex expansion in graphs and hypergraph expansion. We show how the notion

of Laplacian eigenvalues and Cheeger’s Inequality go across these three problems. We

study higher order notions of these notions of expansion (i.e. expansion corresponding

to partitioning the graph/hypergraph into more than two pieces, etc.) and relate

them to higher eigenvalues of graphs/hypergraphs.Unlike the case of graph eigenvalues,

the eigenvalues corresponding to vertex expansion and hypergraph expansion are

intractable. We give optimal approximation algorithms and computational lower

bounds for computing them (under a complexity theoretic assumption).

1.1 Contributions of this Thesis

1.1.1 Graph Partitioning and Higher Eigenvalues

The normalized Laplacian matrix of a graph G, denoted by LG is defined as LG
def
=

D−1/2(D − A)D−1/2 where A is the adjacency matrix of the graph and D is the

diagonal matrix whose (i, i)th entry is equal to the degree of vertex i. Let us denote

the eigenvalues of LG by 0 6 λ2 6 . . . 6 λn. A basic fact in spectral graph theory is

that a graph is disconnected if and only if λ2, the second smallest eigenvalue of its

normalized Laplacian matrix, is zero. Cheeger’s Inequality can be viewed as robust

version of this fact; qualitatively, it says that a graph has a “sparse” cut if and only if

λ2 is “small”. Similarly, it can be shown that the graph has k components if and only

if λk is zero. A natural question to ask is if a robust version of this fact can be proved.

We address this question in Chapter 3 in two ways. First, we show that a graph can

be partitioned into k pieces such that the total fraction of edges cut is O
(√

λk log k
)
.

This shows that if λk is “small”, then the graph can be partitioned in the k pieces

while cutting a “small” fraction of edges Next, our main result, is that there exists an

absolute constant c ∈ (0, 1) such that a graph can be partitioned into ck pieces such

that each piece has expansion O
(√

λk log k
)
. Complementing this, we show that any

5



k-partition of the vertex set of a graph will have at least one piece whose expansion

is at least λk/2. This shows a graph can be partitioned into roughly k pieces each

having “small” expansion if and only if λk is “small”. The latter result is the best

possible in terms of the eigenvalues up to constant factors.

The underlying problem of partitioning a graph in k pieces, say S1, . . . , Sk, while

minimizing φkG ({S1, . . . , Sk})
def
= maxi φ(Si) seems to be a natural clustering problem

in its own right, which can be used to model the existence of several well-formed

clusters in a graph. Our upper and lower bounds imply a bi-criteria O
(√

OPT log k
)

approximation bound for φkG. However, many practical applications require multi-

plicative approximation algorithms for graph expansion parameters. We present a

O
(√

log n log k
)
-approximation algorithm for computing φkG in Chapter 5.

The spectral bound on φkG implies that for any k, there is a subset S whose size

is at most a O (1/k) fraction of the graph and φ(S) = O
(√

λk log k
)
. This gives a

bound for the small-set expansion problem which, for a parameter k, asks to compute

a set of vertices of size 1/k fraction of the graph and having the least expansion.

This problem was posed by Raghavendra and Steurer [86], and was shown to be

intimately connected to the Unique Games problem. We describe the significance of

this problem in greater detail in Section 2.4.

1.1.2 Vertex Expansion in Graphs

Bobkov, Houdré and Tetali [21] proved a Cheeger like inequality for vertex expansion

in graphs, relating a Poincairé-type functional graph parameter called λ∞ to vertex

expansion (we formally define λ∞ in Chapter 6). λ∞ appears to be hard to compute

exactly. We study the computational aspects of λ∞ and of vertex expansion in

graphs. In Chapter 6 we give a natural SDP relaxation for λ∞; using a simple

random projection based rounding algorithm, we get a O (log d) approximation to

λ∞, where d is the largest vertex degree of the graph. We use this to construct an

6



algorithm to approximate vertex expansion to within O
(√

φV log d
)

. This improves

the O
(√

d · φV
)

approximation bound of Alon [1].

It is natural to ask if the approximation bound of O
(√

φV log d
)

for vertex

expansion is best that can be obtained in polynomial time, or in other words, is there

a matching lower bound of Ω
(√

φV log d
)

for the computation of vertex expansion?

Most known computational lower bounds for vertex expansion are those that follow

from the computational lower bounds for edge expansion. Since Cheeger’s inequality

yields a O
(√

OPT
)

approximation bound for edge expansion, any computational

lower bound for edge expansion can not be used to obtain an optimal computational

lower bound for vertex expansion. In this thesis, we show a reduction from SSE to

the problem of distinguishing between the case when vertex expansion of the graph is

at most ε and the case when the vertex expansion is at least Ω(
√
ε log d). We give the

formal definition of SSE in Chapter 2. This immediately implies that it is SSE-hard to

find a subset of vertex expansion less than C
√
φV log d for some constant C, thereby

implying that our approximation bound for vertex expansion is optimal (upto constant

factors). Moreover this implies for all constant ε > 0, it is SSE-hard to distinguish

whether the vertex expansion < ε or at least an absolute constant. (The analogous

threshold for edge expansion is
√
φ with no dependence on the degree). Thus our

results suggest that vertex expansion is harder to approximate than edge expansion.

In particular, while Cheegers Inequality can certify constant edge expansion, it is

SSE-hard to certify constant vertex expansion in graphs.

In Chapter 4, we give a factor-preserving reduction from vertex expansion in graphs

to hypergraph expansion. We show that λ∞ as defined by Bobkov et. al. coincides

with the second smallest eigenvalue of a certain Markov operator on the resulting

hypergraph.
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1.1.3 Hypergraph Expansion

Unlike graphs, hypergraphs do not have any canonical matrix structure that can be

studied. The canonical tensor forms of hypergraphs have been studied, but without

much success (see Section 4.1.1 for a brief survey); we show that the spectral properties

of such tensors are unrelated to the expansion properties of hypergraphs. We also

show that there can be no linear operator for hypergraphs whose spectra captures

hypergraph expansion in a Cheeger-like manner. Our main contribution is the definition

of a new hypergraph Markov operator M : Rn → Rn (generalizing the adjacency

matrix of graphs). We describe this operator in Chapter 4. The corresponding

Laplacian operator is defined as L
def
= I −M where I is the identity operator. As

in the case of graphs, the smallest eigenvalue of this Laplacian operator is zero and

the second smallest eigenvalue is zero if and only if the hypergraph is disconnected.

We show that eigenvalues of this Laplacian operator can be used to bound many

combinatorial properties of graphs. In particular, we prove a Cheeger-like inequality for

hypergraphs, relating the second smallest eigenvalue of this operator to the expansion

of the hypergraph. We bound other hypergraph expansion parameters, like small set

expansion, φk, etc, via higher eigenvalues of this operator. We give bounds on the

diameter of the hypergraph as a function of the second smallest eigenvalue of the

Laplacian operator. We also prove a hypergraph Expander Mixing Lemma showing

that hypergraph expanders behave like random hypergraphs.

Any Markov operator defines a canonical Markov process as follows. Starting

with an initial distribution on the vertices µ0 : V → R+, we can recursively define

µt+1 def
= M(µt). In this case, the Markov process can be viewed as a dispersion process

on the vertices of the hypergraph, and can be used to model rumour spreading in

networks, Brownian motion, etc., and might be of independent interest. We bound

the Mixing-time of this process as a function of the second smallest eigenvalue of the

Laplacian operator. All these results are generalizations of the corresponding results

8



for graphs.

Our Laplacian operator is non-linear and thus computing its eigenvalues exactly

appears to be intractable. For any k ∈ Z>0, we give a polynomial time approximation

algorithm to compute an approximation to the kth smallest eigenvalue of the operator.

We show that this approximation factor is optimal under the SSE hypothesis for

constant values of k.

We give approximation algorithms for hypergraph expansion and hypergraph

small-set expansion problems in Chapter 7.
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CHAPTER II

PRELIMINARIES

We will denote graphs by G = (V,E,w) where V is the set vertices, E ⊆ V 2 is the set

of edges and w : E → R+ gives the weights on the edges. We will denote hypergraphs

by H = (V,E,w) , where V is the set vertices, E ⊆ 2V \ {∅} is the set of hyperedges

(we will often refer to hyperedges as just edges) and w : E → R+ gives the weights on

the edges. For graphs and hypergraphs, we will use n
def
= |V | to denote the number

of vertices, m
def
= |E| to denote the number of edges and r

def
= maxe∈E |e| to denote

the size of the largest hyperedge. The (weighted) degree of a vertex v ∈ V is defined

as dv
def
=
∑

e∈E:v∈ew(e). The degrees of the vertices define a canonical probability

distribution on the vertices. We use µ∗ : V → [0, 1] to denote this probability

distribution, i.e.

µ∗(i)
def
=

di∑
i∈V di

.

We say that a graph/hypergraph is regular if all its vertices have the same degree. We

say that a hypergraph is uniform if all its hyperedges have the same cardinality. We

use D to denote the n× n diagonal matrix whose (i, i)th entry is di.

A list of edges e1, . . . , el such that ei ∩ ei+1 6= ∅ for i ∈ [l − 1] is referred as a

path. The length of a path is the number of edges in it. We say that a path e1, . . . , el

connects two vertices u, v ∈ V if u ∈ e1 and v ∈ el. We say that the graph/hypergraph

is connected if for each pair of vertices u, v ∈ V , there exists a path connecting them.

The diameter of a graph/hypergraph, denoted by diam(H), is the smallest value

l ∈ Z>0, such that each pair of vertices u, v ∈ V have a path of length at most l

connecting them.
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Matrices related to Graphs. For a graph G, we denote its weighted adjacency

matrix by AG, i.e. AG is the n× n matrix whose rows and columns are indexed by V

such that

A(i, j)
def
=


w ({i, j}) if {i, j} ∈ E

0 otherwise

.

The Laplacian matrix L of G is defined as

L
def
= D − A .

The normalized Laplacian matrix L of a graph G is defined as

L def
= D−

1
2 (D − A)D−

1
2 .

It is easy to see that both L and L as positive semidefinite.

Fact 2.0.1.

L � 0 .

Proof. Fix any X ∈ Rn. Let Y denote Y = D−
1
2X. Then we have

XTLX = Y TLY =
∑
i∈V

diY
2
i − 2

∑
i∼j

w ({i, j})YiYj =
∑
i∼j

w ({i, j}) (Yi − Yj)2 > 0 .

Eigenvalues of L. Since L � 0, all its eigenvalues are non-negative. An easy fact

to show is that the smallest eigenvalue of L is 0. This can be seen as follows. Let

1 ∈ Rn denote the vector which has 1 in every coordinate. Then

L1 = 0 .

Similarly, the smallest eigenvalue of L is also 0 as evidenced by the vector D
1
2 1. We

will denote the eigenvalues of L by 0 6 λ2 6 λ3 6 . . . 6 λn.
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Remark 2.0.2. A folklore result in linear algebra is that the matrices D−1A and

D−1/2AD−1/2 have the same set of eigenvalues. This can be seen as follows; let v be

an eigenvector of D−1A with eigenvalue λ, then for the vector
(
D1/2v

)
D−1/2AD−1/2

(
D1/2v

)
=
(
D1/2

)
·
(
D−1A

)
v =

(
D1/2

)
· (λ v) = λ

(
D1/2v

)
.

Hence, D1/2v will be an eigenvector of D−1/2AD−1/2 having the same eigenvalue λ.

2.1 Definitions of Problems

Since we will be studying many notions of expansion, to avoid ambiguity, we will refer

to the usual notion of expansion as Edge Expansion. We define it again formally.

Definition 2.1.1 (Edge Expansion in Graphs ). Given a graph G = (V,E,w),

we define the expansion of a set S ⊂ V as follows.

φG(S)
def
=

w(S, S̄)

min
{
w(S), w(S̄)

}
where w(S, T ) is the total weight of edges between vertex subsets S and T and w(S)

denotes the total weight of edges incident to vertices in S. We will also denote the

latter quantity of vol(S). We will drop the subscript G whenever the graph is clear

from the context.

The expansion of the graph G is defined as

φG
def
= min

S⊂V
φG(S) .

The problem of computing φG is also referred to as the Sparsest Cut problem.

Definition 2.1.2 (Vertex Expansion). Given a graph G = (V,E), the vertex

boundary of a set S ⊆ V of vertices is defined as

N(S)
def
=
{
v ∈ S̄

∣∣ ∃u ∈ S such that {u, v} ∈ E
}
.
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The vertex expansion of S, denoted by φV(S), is defined as the ratio of the size of the

vertex boundary of S to the size of S

φV
G(S)

def
= |V | · |N(S)|

|S|
∣∣S̄∣∣ .

We will drop the subscript G whenever the graph is clear from the context. The vertex

expansion of the graph G is defined as the least value of φV(S) over all sets S

φV
G

def
= min

S⊂V
φV(S) .

For our proofs, the notion of Symmetric Vertex Expansion is useful.

Definition 2.1.3 (Symmetric Vertex Expansion). Given a graph G = (V,E),

we define the the symmetric vertex expansion of a set S ⊂ V as follows.

ΦV
G(S)

def
= |V | ·

∣∣NG(S) ∪NG(S̄)
∣∣

|S|
∣∣S̄∣∣ .

Definition 2.1.4 (Balanced Vertex Expansion). Given a graph G and balance

parameter b, we define the b-balanced vertex expansion of G as follows.

φV,bal
b

def
= min

S:|S||S̄|>bn2

φV(S).

and

ΦV,bal
b

def
= min

S:|S||S̄|>bn2

ΦV(S).

We define φV,bal def
= φV,bal

1/100 and ΦV,bal def
= ΦV,bal

1/100.

Definition 2.1.5 (Hypergraph Expansion). Given a hypergraph H = (V,E,w),

and a set S ⊂ V , we denote by E(S, T ), the edges which have at least one end point

in S, and at least one end point in T , i.e.

E(S, T )
def
= {e ∈ E : e ∩ S 6= ∅ and e ∩ T 6= ∅} .

We define the expansion of S as

φH(S)
def
=

∑
e∈E(S,S̄) w(e)

min
{
w(S), w(S̄)

}
13



where w(S) =
∑

i∈S di as before. We will drop the subscript H whenever the hy-

pergraph is clear from the context. We define the expansion of the hypergraph H

as

φH
def
= min

S⊂V
φ(S) .

Problem 2.1.6 (Hypergraph Balanced Separator). Given a hypergraph H =

(V,E,w), and a balance parameter c ∈ (0, 1/2], a set S ⊂ V is said to be c-balanced

if cn 6 |S| 6 (1− c)n. The c-Hypergraph Balanced Separator problem asks

to compute the c-balanced set S ⊂ V which has the least sparsity sp(S) defined as

follows.

sp(S)
def
= n ·

w
(
E(S, S̄)

)
|S|
∣∣S̄∣∣ .

Small Set Expansion. We will be studying the “small set” versions of Edge

Expansion, Vertex Expansion, and Hypergraph Expansion. We define this as

follows.

Problem 2.1.7 (Small Set Expansion). Given a graph/hypergraph (V,E,w), and

a parameter δ ∈ (0, 1/2], its Small Set Expansion is defined as

αδ
def
= min

S:µ∗(S)6δ
α(S)

where α(·) denotes φ(·) in the case of edge expansion in graphs, φV(·) in the case of

vertex expansion in graphs and φ(·) in the case of hypergraph expansion.

2.2 Related Work

Approximation Algorithms. The approximability of the Sparsest Cut problem

has been studied extensively in the literature. The algorithmic proof of Cheeger’s

Inequality yields a O
(√

OPT
)

algorithmic bound for the Sparsest Cut problem.

The first multiplicative approximation algorithm for this problem was due to Leighton

and Rao [64], who gave a O (log n)-approximation algorithm. In a seminal work,
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Arora, Rao and Vazirani [13] gave a O
(√

log n
)
-approximation algorithm for this

problem. This is currently the best known approximation guarantee for the Sparsest

Cut problem.

General Sparsest Cut. A more general version of the Sparsest Cut problem,

referred to as the General Sparsest Cut problem, has also been extensively

explored in the literature. The problem is defined as follows. Let G = (V,E,w)

be a graph. Assume that we are given k pairs of vertices {s1, t1} , . . . , {sk, tk} and

corresponding demands D1, . . . , Dk > 1. The sparsity of a cut (S, S̄) for a set S ⊂ V

is defined as

Φ(S)
def
=

w(E(S, S̄))∑k
i=1Di |IS[si]− IS[ti]|

where IS[·] is the indicator function of S. The sparsest cut is the cut having least

sparsity among all cuts

ΦG
def
= min

S⊂V
Φ(S) .

The special case when all pairs of vertices are demand pairs, is closely related to graph

expansion. Auman and Rabani [14], and Linial, London and Rabinovich [68] showed

that the General Sparsest Cut problem (and the Sparsest Cut problem) is

closely related to metric embeddings, and used this connection to obtain a O (log k)-

approximation algorithm for this problem. Subsequently, Chawla, Gupta and Racke

[28] gave a O
(

log
3
4 k
)

-approximation algorithm, and Arora, Lee and Naor [11] gave

the currently best known approximation guarantee of O
(√

log k log log k
)
.

Computational Lowerbounds. The Sparsest Cut problem was shown to be

NP-hard by Matula and Shahrokhi [79]. Ambhul, Mastrolilli and Svensson [6], building

on the work of Khot [55], showed that this problem can not have a PTAS assuming the

Exponential Time Hypothesis (ETH). Raghavendra, Steurer and Tulsiani [88] showed

a lower bound of Ω
(√

OPT
)

for this problem assuming the Small-set Expansion
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Hypothesis (see Section 2.4 for a formal description of this hypothesis). Khot and

Vishnoi [56] showed that the General Sparsest Cut problem is can not be

approximated to within any constant factor assuming the Unique Games conjecture.

Integrality Gaps. The study of linear and semi-definite relaxations of problems

has been a fruitful approach towards designing approximation algorithms. The

approximation factor achieved is bounded by the ratio of the optimal solution of the

problem to the optimal solution of the relaxation. The O
(√

log n
)
-approximation

algorithm of Arora et. al. [13] is based on semi-definite programming. The standard

SDP relaxation for the Sparsest Cut problem has an intergrality gap of Ω(1/
√
λ2).

However, Arora et. al. [13] showed that adding triangle inequality constraints between

every triplet of vertices breaks the integrality gap and the resulting SDP solution

can be rounded to an integral solution that is at most O
(√

log n
)

times the cost of

the SDP solution. This leads one to speculate if a better approximation factor can

be obtained by a better rounding algorithm for this stronger SDP relaxation or by

strengthening the SDP for Sparsest Cut by adding more constraints.

In a break-through work, Khot and Vishnoi [56] showed that the SDP relaxation for

General Sparsest Cut with triangle inequality constraints, has an integrality gap

of at least Ω
(
(log log n)1/6−o(1)

)
. Following a series of works [80, 58], the current best

integrality gap known is (log n)Ω(1) due to Cheeger, Kleiner and Naor [30]. Building

on the work of Khot and Vishnoi [56], Devanur et. al. [35] showed that the SDP

relaxation for (uniform) Sparsest Cut with triangle inequality constraints, has an

integrality gap of at least Ω(log log n). In a recent work, Kane and Meka [50] gave a

family of instances having integrality gap at least eΩ(
√

log logn).

Vertex Expansion. The work of Alon [1] implies a polynomial time algorithm to

compute a set having vertex expansion at most O
(√

d · φV
)

, where d is the largest

vertex degree in the graph. Leighton and Rao [64] gave a O (log n)-approximation
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algorithm for computing the vertex expansion. Subsequently Feige, Hajiaghayi and

Lee [39], building on the work of [13], gave a O
(√

log n
)
-approximation algorithm for

this problem.

2.3 Cheeger’s Inequality

For the sake of completeness, we give a proof of the Cheeger’s Inequality.

Theorem 2.3.1 ([1, 3]). For any graph G = (V,E,w),

λ2

2
6 φG 6

√
2λ2

Towards proving this theorem, we first prove the following lemma. The proof of

this lemma can be found in [33].

Lemma 2.3.2. Let X ∈ (R+)n be a vector such that |supp(X)| 6 n/2 and∑
i∼j w ({i, j}) |Xi −Xj|∑

i diXi

6 ε .

Then one of the level sets of X, say S, satisfies φG(S) 6 ε.

Proof. W.l.o.g. we may assume that X1 > X2 > . . . > Xn > 0. Let Si denote the set

consisting of the first i vertices in this ordering (breaking ties arbitrarily). Then,

∑
i∼j w ({i, j}) |Xi −Xj|∑

i diXi

=

∑n
i=1

∑
j∼i
j>i

w ({i, j})
∑j−1

l=i Xl −Xl+1∑
i diXi

=

∑n
i=1(Xi −Xi+1)w(E(Si, S̄i))∑n

i=1(Xi −Xi+1)w(Si)

> min
i∈[n]

Xi−Xi+1>0

w(E(Si, S̄i))

w(Si)

= min
i∈[n]

Xi−Xi+1>0

φ(Si) .

Next, we show the following lemma.
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Lemma 2.3.3. Let X ∈ Rn be any vector. Then for some level set S ⊆ supp(X)

satisfies

φ(S) 6

√
2

∑
i∼j w ({i, j}) (Xi −Xj)

2∑
i diX

2
i

.

Proof.∑
i∼j w ({i, j})

∣∣X2
i −X2

j

∣∣∑
i diX

2
i

=

∑
i∼j w ({i, j}) |Xi −Xj| · |Xi +Xj|∑

i diX
2
i

6

√∑
i∼j w ({i, j}) (Xi −Xj)

2
√∑

i∼j w ({i, j}) (Xi +Xj)
2∑

i diX
2
i

(Cauchy-Schwarz)

6

√∑
i∼j w ({i, j}) (Xi −Xj)

2
√

2
∑

i diX
2
i∑

i diX
2
i

=

√
2

∑
i∼j w ({i, j}) (Xi −Xj)

2∑
i diX

2
i

.

Invoking Lemma 2.3.2 with the vector X2 finishes the proof of this lemma.

We are now ready to finish the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. 1. Let S ⊂ V be any set such that vol(S) 6 vol(V )/2,

and let X ∈ Rn be the indicator vector of S. Let Y be the component of X

orthogonal to µ∗. Then

λ2 6

∑
i∼j w ({i, j}) (Yi − Yj)2∑

i diY
2
i

=

∑
i∼j w ({i, j}) (Xi −Xj)

2∑
i diX

2
i − (

∑
i diXi)2/(

∑
i di)

=
w(E(S, S̄))

vol(S)− vol(S)2/vol(V )
=

φ(S)

1− vol(S)/vol(V )

6 2φ(S) .

Since the choice of the set S was arbitrary, we get

λ2

2
6 φG .
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2. By the definition of v2 we have(
D−

1
2AD−

1
2

)
v2 = (1− λ2)v2 .

W.l.o.g. we may assume that µ∗
(
supp(v+

2 )
)
6 µ∗

(
supp(v−2 )

)
. Since all the

entries of A are non-negative, we have(
D−

1
2AD−

1
2

)
v+

2 > (1− λ2)v+
2 (coordinate wise)

and hence (
I −D−

1
2AD−

1
2

)
v+

2 6 λ2v+
2 (coordinate wise) .

Therefore,

(v+
2 )TLv+

2

(v+
2 )T v+

2

6 λ2 and µ∗
(
supp(v+

2 )
)
6

1

2
.

Invoking Lemma 2.3.3 on v+
2 , we get a set S ⊆ supp(v+

2 ) having φ(S) 6
√

2λ2.

Therefore,

φG 6
√

2λ2 .

This finishes the proof of the theorem.

2.4 The Small Set Expansion Hypothesis

A more refined measure of the edge expansion of a graph is its expansion profile.

Specifically, for a graph G the expansion profile is given by the curve

φδ = min
µ∗(S)6δ

φ(S) ∀δ ∈ [0, 1/2] .

The problem of approximating the expansion profile has received much less attention,

and is seemingly far less tractable. In summary, the current state-of-the-art algorithms

for approximating the expansion profile of a graph are still far from satisfactory.

Specifically, the following hypothesis is consistent with the known algorithms for

approximating expansion profile.
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Hypothesis (Small-Set Expansion Hypothesis, [86]). For every constant η > 0, there

exists sufficiently small δ > 0 such that given a graph G it is NP-hard to distinguish

the cases,

Yes: there exists a vertex set S with volume µ(S) = δ and expansion φ(S) 6 η,

No: all vertex sets S with volume µ(S) = δ have expansion φ(S) > 1− η.

Apart from being a natural optimization problem, the Small Set Expansion

problem is closely tied to the Unique Games Conjecture. Recent work by Raghavendra

and Steurer [86] established a reduction from the Small Set Expansion problem in

graphs to the well known Unique Games problem, thereby showing that Small-Set

Expansion Hypothesis implies the Unique Games Conjecture. This result suggests

that the problem of approximating expansion of small sets lies at the combinatorial

heart of the Unique Games problem.

In a breakthrough work, Arora, Barak, and Steurer [8] showed that the problem

Small Set Expansion admits a subexponential time algorithm, namely an algo-

rithm that runs in time exp(nη/δ). However, such an algorithm does not refute the

hypothesis that the problem Small Set Expansion(η, δ) might be hard for every

constant η > 0 and sufficiently small δ > 0.

The Unique Games Conjecture is not known to imply hardness results for problems

closely tied to graph expansion such as Balanced Separator. The reason being

that the hard instances of these problems are required to have certain global structure

namely expansion. Gadget reductions from a unique games instance preserve the

global properties of the unique games instance such as lack of expansion. Therefore,

showing hardness for graph expansion problems often required a stronger version of

the Expanding Unique Games, where the instance is guaranteed to have good

expansion. To this end, several such variants of the conjecture for expanding graphs
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have been defined in literature, some of which turned out to be false [10]. The Small-

Set Expansion Hypothesis could possibly serve as a natural unified assumption that

yields all the implications of expanding unique games and, in addition, also hardness

results for other fundamental problems such as Balanced Separator. In fact,

Raghavendra, Steurer and Tulsiani [88] show that the the SSE hypothesis implies

that the Cheeger’s algorithm yields the best approximation for the Sparsest Cut

problem.

2.5 Probabilistic Inequalities

We collect here some standard probabilistic inequalities that we will make use of.

Fact 2.5.1 (One-sided Chebychev Inequality). For a random variable X with mean

µ and variance σ2 and any t > 0,

P [X < µ− tσ] 6
1

1 + t2
.

Fact 2.5.2 (Paley-Zygmund Inequality). For a random variable Z > 0 with finite

variance, and any t ∈ (0, 1),

P [Z > t E [Z]] > (1− t)2E [Z]2

E [Z2]
.

Fact 2.5.3 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables,

such that each Xi is bounded almost surely, i.e.

P [Xi ∈ [ai, bi]] = 1 for some ai, bi ∈ R .

Then the mean X̄
def
= (
∑

iXi) /n satisfies

P
[
X̄ − E

[
X̄
]
> t
]
6 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Properties of Gaussian Variables. The next few facts are folklore about

Gaussians. Let t1/k denote the (1/k)th cap of a standard normal variable, i.e., t1/k ∈ R

is the number such that for a standard normal random variable X, P
[
X > t1/k

]
= 1/k.
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Fact 2.5.4. For a standard normal random variable X and for every k > 100,

t1/k ≈
√

2 log k − log log k

Fact 2.5.5. Let X1, X2, . . . , Xk be k independent standard normal random variables.

Let Y be the random variable defined as Y
def
= max {Xi|i ∈ [k]}. Then

1. t1/k 6 E [Y ] 6 2
√

log k

2. E [Y 2] 6 4 log k

3. E [Y 4] 6 4e log2 k

Proof. For any Z1, . . . , Zk ∈ R+ and any p ∈ Z+, we have maxi Zi 6 (
∑

i Z
p
i )

1
p . Now

Y 4 = (maxiXi)
4 6 maxiX

4
i .

E
[
Y 4
]
6 E

(∑
i

X4p
i

) 1
p

 6 (E[∑
i

X4p
i

]) 1
p

( Jensen’s Inequality )

6

(∑
i

(E
[
X2
i

]
)

(4p)!

(2p)!22p

) 1
p

6 4p2k
1
p (using (4p)!/(2p)! 6 (4p)2p )

Picking p = log k gives E [Y 4] 6 4e log2 k.

Therefore E [Y 2] 6
√

E [Y 4] 6 4 log k and E [Y ] 6
√

E [Y 2] 6 2
√

log k.

The next lemma bounds the probability that a sum of standard normal random

variables is not too small.

Lemma 2.5.6. Suppose z1, . . . , zm are gaussian random variables (not necessarily

independent) such E[
∑

i z
2
i ] = 1 then

P

[∑
i

z2
i >

1

2

]
>

1

12
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Proof. We will bound the variance of the random variable R =
∑

i z
2
i as follows,

E[R2] =
∑
i,j

E[z2
i z

2
j ]

6
∑
i,j

(
E[z4

i ]
) 1

2
(
E[z4

j ]
) 1

2

=
∑
i,j

3E[z2
i ]E[z2

j ] (Using E[g4] = 3
(
E[g2]

)2
for gaussians )

= 3

(∑
i

E[z2
i ]

)2

= 3

By the Paley-Zygmund inequality (Fact 2.5.2),

P
[
R >

1

2
E[R]

]
>

(
1

2

)2
(E[R])2

E[R2]
>

1

12
.

Lemma 2.5.7 ([27]). Let X1, . . . , Xk and Y1, . . . , Yk be i.i.d. standard normal random

variables such that for all i ∈ [k], the covariance of Xi and Yi is at least 1− ε2. Then

P [argmaxiXi 6= argmaxiYi] 6 c1

(
ε
√

log k
)

for some absolute constant c1.

Lemma 2.5.8 ([71] ). Given r standard normal random variables g1, . . . , gr, with

pairwise covariance at least 1− ε2,

P
[
gi > t1/k and gj < t1/k for some i, j ∈ [r]

]
6 c1

min {r, k}
k

ε
√

log k log r .

2.6 Miscellaneous Inequalities

Next, we recall Weyl’s Inequality.

Lemma 2.6.1 (Weyl’s Inequality). Given a Hermitian matrix B with eigenvalues

λ1 6 λ2 6 . . . 6 λn, and a positive semidefinite matrix E, if λ′1 6 λ′2 6 . . . 6 λ′n

denote the eigenvalues of B′
def
= B − E, then λ′i 6 λi.
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Proof. The ith eigenvalue of B′ can be written as

λ′i = max
S:rank(S)=i

min
x∈S

xTB′x

xTx

= max
S:rank(S)=i

min
x∈S

xTBx− xTEx
xTx

6 max
S:rank(S)=i

min
x∈S

xTBx

xTx

= λi.

Proposition 2.6.2. For any two non zero vectors ui and uj, if ũi = ui/ ‖ui‖ and

ũj = uj/ ‖uj‖ then

‖ũi − ũj‖
√
‖ui‖2 + ‖uj‖2 6 2 ‖ui − uj‖

Proof. Note that 2 ‖ui‖ ‖uj‖ 6 ‖ui‖2 + ‖uj‖2. Hence,

‖ũi − ũj‖2 (‖ui‖2 + ‖uj‖2) = (2− 2 〈ũi, ũj〉)(‖ui‖2 + ‖uj‖2)

6 2(‖ui‖2 + ‖uj‖2 − (‖ui‖2 + ‖uj‖2) 〈ũi, ũj〉)

If 〈ũi, ũj〉 > 0, then

‖ũi − ũj‖2 (‖ui‖2 + ‖uj‖2) 6 2(‖ui‖2 + ‖uj‖2 − 2 ‖ui‖ ‖uj‖ 〈ũi, ũj〉) 6 2 ‖ui − uj‖2

Else if 〈ũi, ũj〉 < 0, then

‖ũi − ũj‖2 (‖ui‖2 + ‖uj‖2) 6 4(‖ui‖2 + ‖uj‖2 − 2 ‖ui‖ ‖uj‖ 〈ũi, ũj〉) 6 4 ‖ui − uj‖2

2.6.1 Notation

We use µ to denote a probability distribution on vertices of the graph/hypergraph. For

a set of vertices S, we define µ(S) =
∫
x∈S µ(x). We use µ|S to denote the distribution
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µ restricted to the set S ⊂ V (G). For the sake of simplicity, we sometimes say that

vertex v ∈ V (G) has weight w(v), in which case we define µ(v) = w(v)/
∑

u∈V w(u).

We denote the weight of a set S ⊆ V by w(S).

For an x ∈ R, we define x+ def
= max {x, 0} and x−

def
= max {−x, 0}. For a non-zero

vector u, we define ũ
def
= u/ ‖u‖. We use 1 ∈ Rn to denote the vector having 1 in

every coordinate. For a vector X ∈ Rn, we define its support as the set of coordinates

at which X is non-zero, i.e. supp(X)
def
= {i : X(i) 6= 0}. We use I [·] to denote the

indicator variable, i.e. I [x] is equal to 1 if event x occurs, and is equal to 0 otherwise.

We use χS to denote the indicator function of the set S ⊂ V , i.e.

χS(v) =


1 v ∈ S

0 otherwise

.

We denote the 2-norm of a vector by ‖·‖, and its 1 norm by ‖·‖1.

We use Π(·) to denote projection operators. For a subspace S, we denote by

ΠS : Rn → Rn the projection operator that maps a vector to its projection on S. We

denote by Π⊥S : Rn → Rn the projection operator that maps a vector to its projection

orthogonal to S.
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THE COMPLEXITY OF EXPANSION PROBLEMS

PART I

Spectral Bounds



CHAPTER III

HIGHER ORDER CHEEGER INEQUALITIES FOR

GRAPHS

3.1 Introduction

In this chapter we study extensions of Edge Expansion in graphs to more than one

subset. We study multiple natural generalizations of Sparsest Cut problem. All

these generalizations are parametrized by a positive integer k, and reduce to the Edge

Expansion problem when restricted to the case k = 2. A natural question is whether

these problems are connected to higher eigenvalues of the graph. We obtain upper and

lower bounds for these generalizations of Sparsest Cut using higher eigenvalues. In

the rest of the section, we briefly describe each generalization and present our results.

Problem 3.1.1 (Min Sum k-partition). Given a weighted undirected graph G =

(V,E,w) and an integer k > 1, find the k-partition of V with the least sum-sparsity,

where the sum-sparsity of a k-partition P = {S1, . . . , Sk} is defined as the ratio of the

weight of edges between different parts to the sum of the weights of smallest k − 1

parts in P , i.e.,

φsum(P)
def
=

∑
i 6=j w(Vi, Vj)

minj∈[k]w(V \Vj)
.

Variants of the Min Sum k-partition have been considered in the literature.

Closer to this is the k-cut problem which asks to partition a graph into k pieces so as

to minimize the fraction of edges cut. Saran and Vazirani [91] gave a 2-approximation

algorithm for this problem.

It is easy to see that the lower bound in Cheeger’s inequality implies a lower bound

on φsum(·),

φsum(P) > λ2/2 ∀ partitions P .
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As it turns out, this lower bound cannot be strengthened for k > 2. To see this,

consider the following simple construction: construct a graph G by taking k−1 cliques

C1, C2, . . . , Ck−1 each on (n− 1)/(k − 1) vertices along with an additional vertex v.

Let the cliques C1, . . . , Ck−1 be connected to v by a single edge. Now, the graph G

will have k− 1 eigenvalues close to 1 because of the k− 1 cuts ({v} , Ci) for i ∈ [k− 1].

However, the kth eigenvalue will be close to 0, since any other cut which is not a linear

combination of these k− 1 cuts will have to cut through one of the cliques. Therefore,

λk is a constant smaller than 1/2. But minP φ
sum(P) = (k−1)/((k−2)(n/k)2) ≈ k2/n2.

Thus, λk � minP φ
sum(P) for small enough values of k.

Our main result is an upper bound on the Sparsest k-Partition via the higher

eigenvalues. Specifically, we show the following.

Theorem 3.1.2. For any edge-weighted graph G = (V,E,w), and any integer 1 6

k 6 n, there exists a k-partition S1, . . . , Sk of the vertices such that

φsum ({S1, . . . , Sk}) 6 8
√
λk log k .

Moreover, such a partition can be identified in polynomial time.

The proof of Theorem 3.1.5 is based on a simple recursive partitioning algorithm

that might be of independent interest.

The second problem we study is the following.

Problem 3.1.3 (k sparse-cuts). Given an edge weighted graph G = (V,E,w)

and an integer k > 1, find k disjoint non-empty subsets S1, . . . , Sk of V such that

maxi φG(Si) is minimized.

Note that the sets S1, . . . , Sk need not form a partition of the set of vertices, i.e.,

there could be vertices that do not belong to any of the sets. Therefore problem

models the existence of several well-formed clusters in a graph without the clusters

being required to form a partition.

27



Along the lines of lower bound in Cheeger’s inequality, it is not hard to show that

the kth smallest eigenvalue of the normalized Laplacian of the graph gives a lower

bound to the k sparse-cuts problem. Formally, we prove the following lower bound.

Proposition 3.1.4. For any edge-weighted graph G = (V,E,w), for any integer

1 6 k 6 n, and for any k disjoint subsets S1, . . . , Sk ⊂ V

max
i
φG(Si) >

λk
2

where λ1, . . . , λn are the eigenvalues of the normalized Laplacian of G.

Complementing the lower bound, we show the following upper bound on k sparse-

cuts problem in terms of λk.

Theorem 3.1.5. For absolute constants c, C, the following holds: For every edge-

weighted graph G = (V,E,w), and any integer 1 6 k 6 n, there exist ck disjoint

subsets S1, . . . , Sck of vertices such that

max
i
φG(Si) 6 C

√
λk log k

where λ1, . . . , λn are the eigenvalues of the normalized Laplacian of G. Moreover, the

sets S1, . . . , Sck satisfying the inequality can be identified in polynomial time.

The proof of Theorem 3.1.5 is algorithmic and is based on spectral projection.

Starting with the embedding given by the smallest k eigenvectors of the (normalized)

Laplacian of the graph, a simple randomized rounding procedure is used to produce k

vectors having disjoint support, and then a Cheeger cut is obtained from each of these

vectors. The running time is dominated by the time taken to compute the smallest k

eigenvectors of the normalized Laplacian.

In general, one can not prove an upper bound better than O(
√
λk log k) for k

sparse-cuts. This bound is matched by the family of Gaussian graphs. For a

constant ε ∈ (−1, 1), let Nk,ε denote the infinite graph over Rk where the weight of
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an edge (x, y) is the probability density that two standard Gaussian random vectors

X, Y with correlation 1 1 − ε equal x and y respectively. The first k eigenvalues of

the Laplacian of Nk,ε are at most ε ([88]). The following lemma bounds the expansion

of small sets in Nk,ε.

Lemma 3.1.6 ([23]). For any set S ⊂ Rk with Gaussian probability measure at most

1/k,

φNk,ε(S) = Ω
(√

ε log k
)
.

For any k disjoint subsets S1, . . . , Sk of the Gaussian graph Nk,ε, at least one of

the sets has measure smaller than 1
k
, thus implying

max
i
φNk,ε(Si) = Ω

(√
ε log k

)
= Ω

(√
λk log k

)
.

It is natural to wonder if the above bounds extend to the case when the k-sets are

required to form a partition. First, it is easy to see that Theorem 3.1.5 also implies an

upper bound of O(
√
λk log k) on maxi φ(Si) for the case when the sets are required to

form a partition of the vertex set.

Corollary 3.1.7. For any edge-weighted graph G = (V,E,w) and any integer 1 6

k 6 n, there exists a partition of the vertex set V into ck parts S1, . . . , Sck such that

max
i
φ(Si) 6 C

√
λk log k

for absolute constants c, C.

Complementing the above bound, we show that for a k-partition S1, S2, . . . , Sk,

the quantity maxi φG(Si) cannot be bounded by O(
√
λk polylogk) in general. We view

this as further evidence suggesting that the k sparse-cuts problem is the right

generalization of Sparsest Cut to multiple subsets.

1ε correlated Gaussians can be constructed as follows : X ∼ N (0, 1)k and Y ∼ (1−ε)X+
√

2ε− ε2Z
where Z ∼ N (0, 1)k.
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Theorem 3.1.8. There exists a family of graphs such that for any k-partition

{S1, . . . , Sk} of the vertex set

max
i
φG(Si) > C min

{
k2

√
n
, n

1
12

}√
λk.

We also recall the Small Set Expansion problem (Problem 2.1.7).

Problem 3.1.9 (Small Set Expansion). Given an edge weighted graph G =

(V,E,w) and k > 1, find a subset of vertices S such that w(S) 6 w(V )/k and φG(S)

is minimized.

As an immediate consequence of Theorem 3.1.5, we get the following optimal

bound on the small-set expansion problem.

Corollary 3.1.10. For any edge-weighted graph G = (V,E,w) and any integer

1 6 k 6 n, there is a subset S with w(S) = O(1/k)w(V ) and φG(S) 6 C
√
λk log k for

an absolute constant C.

3.1.1 Related work

The classic Sparsest Cut problem has been extensively studied, and is closely

connected to metric geometry [68, 14]. Leighton and Rao [64] gave an O(log n) factor

approximation algorithm via an LP relaxation. The same approximation factor can

also be achieved using using properties of embeddings of metrics into Euclidean

space [68, 14]. This was improved to O(
√

log n) via a semi-definite relaxation and

embeddings of special metrics by Arora, Rao and Vazirani [12]. In many contexts, and

in practice, the eigenvector approach is often preferred in spite of a higher worst-case

approximation factor.

Arora, Barak and Steurer [8] showed that the expansion of sets of size at most n/k

can be bounded by O(
√
λk100 logk n). Using a semidefinite programming relaxation,

Raghavendra, Steurer and Tetali [87] gave an algorithm that outputs a small set with

expansion at most
√

OPT log k where OPT is the sparsity of the optimal set of size
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at most n/k. Bansal et.al. [16] obtained an O(
√

log n log k) approximation algorithm

also using a semidefinite programming relaxation.

A problem closely related to the Min Sum k-partition problem is the k-cut

problem that asks for a k-partition which minimizes the fraction of edges cut. Saran

and Vazirani [91] gave a 2-approximation algorithm for this problem.

In an independent work, [63] have obtained results similar to Theorem 3.1.5 with

different techniques. They also studied a close variant of the problem we consider, and

show that every graph G has a k partition such that each part has expansion at most

O(k3
√
λk). Other generalizations of the sparsest cut problem have been considered

for special classes of graphs ([20, 53, 98]).

A randomized rounding step similar to the one in our algorithm was used previously

in the context of rounding semidefinite programs for unique games ([27]).

3.1.2 Notation

Recall that we use 0 = λ1 6 λ2 6 . . . λn to denote the eigenvalues of LG and use

v1, v2, . . . , vn to denote the corresponding eigenvectors. Let vi
def
= D−

1
2 vi for each i ∈ [n].

Then,

vTi LGvi =
∑
x∼y

w ({x, y}) (vi(x)− vj(y))2 .

Since ∀i 6= j 〈vi, vj〉 = 0,
∑

l dlvi(l)vj(l) = 0.

Given a k-partition P = {S1, . . . , Sk} we denote the sum of the weights of the

edges with endpoints in different pieces by E(P). More formally,

E(P)
def
=

1

2

∑
e∈E(Si,S̄i)

w(e)

Organization. We study the Min Sum k-partition problem and prove Theo-

rem 3.1.2 in Section 3.2. We prove our upper bound for k sparse-cuts (Theorem 3.1.5)

in Section 3.3 and we prove the lower bound for k sparse-cuts (Proposition 3.1.4)

in Section 3.4.
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3.2 Min Sum k-partition

3.2.1 Recursive partitioning algorithm

We propose the following recursive algorithm for finding a k-partitioning of G. Use

the second eigenvector of L to find a sparse cut (C, C̄). Let G′ = (V,E ′) be the graph

obtained by removing the edges in the cut (C, C̄) from G and adding self loops at

the endpoints of the edges removed. Let L′ be the normalized Laplacian of the graph

obtained. The matrix L′ is block-diagonal with two blocks for the two components

of G′. The spectrum of L′ (eigenvalues, eigenvectors) is the union of the spectra of

the two blocks. The first two eigenvalues of L′ are now 0 and we use the third largest

eigenvector of L′ to find a sparse cut in G′. This is the second eigenvector in one of

the two blocks and partitions that block. We repeat the above process till we have at

least k connected components. This can be viewed as a recursive algorithm, where

at each step one of the current components is partitioned into two; the component

partitioned is the one that has the lowest second eigenvalue among all the current

components. The precise algorithm appears in Algorithm 3.2.1.

3.2.2 Analysis

In this section, we analyze the recursive partitioning algorithm given in Algorithm 3.2.1.

Our analysis will also be a proof of Theorem 3.1.2. We begin with some monotonicity

properties of eigenvalues.

Monotonicity of Eigenvalues. We first prove a lemma about the monotonicity

of eigenvalues on removing edges from the graph.

Lemma 3.2.2. Let L be the normalized Laplacian matrix of the graph G. Let F be

any subset of edges of G. For every pair {i, j} ∈ F , remove the edge {i, j} from G

and add self loops at i and j to get the graph G′. Let L′ be the normalized Laplacian

matrix of G′. Let the eigenvalues of L be 0 6 λ2 6 . . . 6 λn and let the eigenvalues of
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Algorithm 3.2.1.
Input: Graph G = (V,E,w), k ∈ Z>0 such that 1 < k < n.
Initialize i := 2, and Gi = G, Li = normalized Laplacian matrix of Gi.

1. Find a sparse cut (Ci, C̄i) in Gi using the ith eigenvector of Li (the first i− 1
are all equal to 0).

2. Set V (Gi+1) = V and

E(Gi+1) :=
(
E(Gi) \ EGi(Ci, C̄i)

)
∪{

{v, v} | ∃ u such that {u, v} ∈ EGi(C, C̄)
}

with w({v, v}) =
∑
{u,v}∈EGi (C,C̄) w({u, v}).

3. If i = k then output the connected components of Gi+1 and End else

4. Let Li+1 be the normalized Laplacian matrix of Gi+1.

Figure 1: Recursive Algorithm for Min Sum k-partition

L′ be 0 6 λ′2 6 λ′3 6 . . . 6 λ′n. Then λ′i 6 λi ∀i ∈ [n].

Proof. Let C
def
= L − L′ is the matrix corresponding to the edge subset F . It has

non-negative entries along its diagonal and non-positive entries elsewhere such that

∀i cii = −
∑

j 6=i cij. C is symmetric and positive semi-definite as for any vector x of

appropriate dimension, we have

xTCx =
∑
ij

cijxixj = −1

2

∑
i 6=j

cij(xi − xj)2 > 0.

Using Lemma 2.6.1, we get that λ′i 6 λi ∀i ∈ [n].

Lemma 3.2.2 shows that the eigenvalues of Li are monotonically non-increasing

with i. This will show that φGi(Ci) 6
√

2λk. We are now ready to prove Theorem 3.1.2.

Proof of Theorem 3.1.2 . Let P be the partition output by the algorithm and let S(P)

denote the sum of weights of the smallest k − 1 pieces in P . Note that we need only
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the smaller side of a cut to bound the size of the cut:

w(EG(S, S̄)) 6 φG w(S) .

We define the notion of a cut− tree T = (V (T ), E(T )) as follows: V (T ) = {V } ∪

{Ci|i ∈ [k]} (For any cut (Ci, C̄i) we denote the part with the smaller weight by Ci

and the part with the larger weight by C̄i. We break ties arbitrarily). We put an edge

between S1, S2 ∈ V (T ) if 6 ∃S ∈ V (T ) such that S1 ( S ( S2 or S2 ( S ( S1, (one

can view S1 as a ‘top level’ cut of S2 in the former case).

Clearly, T is connected and is a tree. We call V the root of T . We define the level

of a node in T to be its depth from the root. We denote the level of node S ∈ V (T )

by L(S). The root is defined to be at level 0. Observe that S1 ∈ V (T ) is a descendant

of S2 ∈ V (T ) if and only if S1 ( S2. Now

E(P) = ∪iEGi(Ci, C̄i) = ∪i ∪j:L(Cj)=i EGj(Cj, C̄j) .

We make the following claim.

Claim 3.2.3.

w(∪j:L(Cj)=iE(Cj, C̄j)) 6 2
√
λk S(P)

Proof. By definition of level, if L(Ci) = L(Cj), i 6= j, then the node corresponding to

Ci in the T can not be an ancestor or a descendant of the node corresponding to Cj.

Hence, Ci ∩ Cj = φ. Therefore, all the sets of vertices in level i are pairwise disjoint.

Using Cheeger’s inequality we get that

E(Cj, C̄j) 6 2
√
λkw(Cj) .

Therefore

w(∪j:L(Cj)=iE(Cj, C̄j)) 6 2
√
λk

∑
j:L(Cj)=i

w(Cj) 6 2
√
λkS(P)
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This claim implies that φ(P) 6 2
√
λk height(T ).

The height of T might be as much as k. But we will show that we can assume

height(T ) to be log k. For any path in the tree v1, v2, . . . , vp−1, vp such that deg(v1) > 2,

deg(vi) = 2 (i.e. vi has only 1 child in T ) for 1 < i < k, we have w(Cvi+1
) 6 w(Cvi)/2,

as vi+1 being a child of vi in the T implies that Cvi+1
was obtained by cutting Cvi

using it’s second eigenvector. Thus

p∑
i=2

w(Cvi) 6 w(Cv1) .

Hence we can modify the T as follows : make the nodes v3, . . . , vp children of v2.

The nodes v3, . . . , vp−1 now become leaves whereas the subtree rooted at vp remains

unchanged. We also assign the level of each node as its new distance from the root.

In this process we might have destroyed the property that a node is obtained from by

cutting its parent, but we make the following claim.

Claim 3.2.4.

w(∪j:L(Cj)=iE(Cj, C̄j)) 6 4
√
λk S(P)

Proof. If the nodes in level i are unchanged by this process, then the claim clearly

holds. If any node vj in level i moved to a higher level, then the nodes replacing vj in

level i would be descendants of vj in the original T and hence would have weight at

most w(Cvj). If the descendants of some node vj got added to level i, then, as seen

above, their combined weight would be at most w(Cvj). Hence,

w(∪j:L(Cj)=iE(Cj, C̄j)) 6 2

2
√
λk

∑
j:L(Cj)=i

w(Cj)

 6 4
√
λk S(P)

.

Repeating this process we can ensure that no two adjacent nodes in the T have

degree 2. Hence, there are at most log k vertices along any path starting from the
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root which have exactly one child. Thus the height of the new cut− tree is at most

2 log k and hence

E(P) 6 8
√
λk log k S(P) and φsum 6

E(P)

S(P)
6 8
√
λk log k .

3.3 k sparse-cuts

3.3.1 Geometric Embeddings

Rayleigh Quotient. Recall that for a graph G = (V,E,w), and an embedding

f : V → R of G on to R, the Rayleigh quotient of f is given by

R (f) =
fTLGf
fTf

and if we let g = D−1/2f , then

R (f) =
gTLg

gTDg
=

∑
i∼j w ({i, j}) (gi − gj)2∑

i dig
2
i

.

We can generalize this definition to higher dimensional embeddings. Let f : V → Rd

be an embedding of the graph G in to d-dimensional Euclidean space Rd for some

positive integer d. We will often use fi to denote f(i). Again, we let gi = fi/
√
di.

Then

R (f)
def
=

∑
i∼j w ({i, j}) ‖g(i)− g(j)‖2

2∑
i di ‖g(i)‖2 .

It is clear that the Rayleigh quotient of an embedding f measures the ratio between

the averaged squared length of the edges to the average squared length of vectors in

the embedding.

Spectral Embedding. The eigenvectors of L v1, . . . vn form an orthonormal set of

vectors, i.e.,

〈va, vb〉 =


1 if a = b

0 otherwise

.
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By orthonormality of the vectors {va} we will have,∑
i∈V

diva(i)vb(i) = 〈va, vb〉 = δab .

Hence for each ` ∈ [n], the set of vectors v1, . . . v` yield an isotropic embedding of the

graph in to R`. For the sake of concreteness, we state this observation formally below.

Lemma 3.3.1. For k ∈ [n], the embedding u : V → Rk given by the top k-eigenvectors

v1, . . . , vk ,i.e.,

u(i) =
1√
di

(v1(i), . . . , vk(i))

is an isotropic embedding satisfying∑
i,j∈V

didj 〈u(i), u(j)〉2 = k
∑
i∈V

di ‖u(i)‖2 = k

and

RG(u) 6 λk .

Proof. It follows from the definition of u that∑
i

di ‖u(i)‖2 =
k∑
l=1

∑
i∈V

vl(i)
2 = k .

Next,

∑
i,j∈V

didj 〈u(i), u(j)〉2 =
∑
i,j∈V

(
k∑
l=1

vl(i)vl(j)

)2

=
∑
i,j∈V

∑
l1,l2∈[k]

vl1(i)vl1(j)vl2(i)vl2(j)

=
∑

l1,l2∈[k]

〈vl1 , vl2〉
2

= k .

Here the last equality follows from the fact that {vi : i ∈ [n]} is set of orthonormal

vectors.
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3.3.2 Gaussian Projection Algorithm

We now present the rounding algorithm that we will use to prove Theorem 3.1.5. At

a high level our algorithm can be viewed as follows. Given a graph G = (V,E,w), we

start with the spectral embedding u : V → Rk (Lemma 3.3.1). Next we pick k random

directions g1, . . . , gk (For technical reasons, we pick g1, . . . , gk to be independent

Gaussian vectors). We perform a preliminary partitioning of the vertices by assigning

a vertex i to the set represented by the direction gl along which u(i) has the largest

projection. We refine these sets using a standard local-search approach based on the

lengths of the vectors u(i) (Lemma 2.3.2). We show that with constant probability,

Ω(k) of the resulting sets have expansion at most O
(√
R (u) log k

)
.

Algorithm 3.3.2.
Input: Graph G = (V,E,w), parameter k and an isotropic embedding u : V → Rd.

1. Pick k independent Gaussian vectors g1, g2, . . . , gk ∼ N (0, 1)d. Construct
vectors h1, h2, . . . , hk ∈ Rn as follows:

hi(a) =

{
‖ua‖2 if i = argmaxi∈[k] {〈ua, gi〉}
0 otherwise.

2. For j = 1, . . . , k, sort the coordinates of hj according to their magnitude, and
pick the level set having the least expansion (Lemma 2.3.2).

3. Output all subsets with expansion smaller than C
√
R (u) log k for an appro-

priately chosen constant C.

Figure 2: The k sparse-cuts Algorithm

3.3.3 Analysis

In this section, we will present the analysis of the Random Projection algorithm

(Algorithm 3.3.2). We begin with an outline of the argument. We summarize the

analysis as follows.
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Theorem 3.3.3. For a graph G = (V,E,w), parameter k ∈ Z>0 and an embedding

u : V → Rd such that∑
i∈V

di ‖ui‖2 = k and
∑
i,j∈V

didj 〈ui, uj〉2 = k .

Then, with constant probability, Algorithm 3.3.2 outputs ck non-empty disjoint sets

each having expansion at most C
√
R (u) log k for some universal constants c, C > 0.

Theorem 3.1.5 follows directly from Theorem 3.3.3 and Lemma 3.3.1.

Theorem 3.1.5. Invoking Theorem 3.3.3 with the spectral embedding given by the top

k eigenvectors (Lemma 3.3.1) yields that G has ck non-empty disjoint subsets each

having expansion at most C
√
λk log k.

3.3.3.1 Proof Outline of Theorem 3.3.3

Notice that the vectors h1, h2, . . . , hk have disjoint support since for each coordinate

j, exactly one of the 〈uj, gi〉 is maximum. Therefore, the cuts obtained by the vectors

hi yield k disjoint sets. It is sufficient to show that a constant fraction of the sets so

produced have small expansion. We will show that for each i ∈ {1, . . . , k}, the vector

hi has a constant probability of yielding a cut with small expansion. The outline

of the proof is as follows. Let f denote the vector h1. The choice of the index 1 is

arbitrary and the same analysis is applicable to all other indices i ∈ [k]. We recall

Lemma 2.3.2.

Lemma 3.3.4 (Restatement of Lemma 2.3.2). Let X ∈ Rn be a vector such that

|supp(X)| 6 n/2 and ∑
i∼j w ({i, j}) |Xi −Xj|∑

i diXi

6 ε .

Then one of the level sets of X, say S, satisfies φG(S) 6 ε.

Applying Lemma 2.3.2, the expansion of the set retrieved from f = h1 is upper

bounded by, ∑
i∼j w ({i, j}) |fi − fj|∑

i difi
.
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Both the numerator and denominator are random variables depending on the choice

of random Gaussians g1, . . . , gk. It is a fairly straightforward calculation to bound the

expected value of the denominator.

Lemma 3.3.5.

E

[∑
i

difi

]
= 1 .

Bounding the expected value of the numerator is more subtle. We show the

following bound on the expected value of the numerator.

Lemma 3.3.6.

E

[∑
i∼j

w ({i, j}) |fi − fj|

]
6 O

(√
R (u) log k

)
.

Notice that the ratio of their expected values is O(
√
R (u) log k), as intended. To

control the ratio of the two quantities, the numerator is to be bounded from above,

and the denominator is to be bounded from below. A simple Markov inequality can

be used to upper bound the probability that the numerator is much larger than its

expectation. To control the denominator, we bound its variance. Specifically, we will

show the following bound on the variance of the denominator.

Lemma 3.3.7.

Var

[∑
i

difi

]
6 1 .

The above moment bounds are sufficient to conclude that with constant probability,

the ratio ∑
i∼j |fi − fj|∑

i difi
= O

(√
R (u) log k

)
.

Therefore, with constant probability over the choice of the Gaussians g1, . . . , gk, Ω(k)

of the vectors h1, . . . hk yield sets of expansion O(
√
R (u) log k).
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3.3.3.2 Main Proofs

Let f denote the vector h1. The choice of the index 1 is arbitrary and the same analysis

is applicable to all other indices i ∈ [k]. We first separately bound the expectations of

the numerator and denominator of the sparsity of each cut, and then the variance of

the denominator. The proofs of these bounds will follow their application in the proof

of our main theorem.

Expectation of the Denominator. Bounding the expectation of the denominator

is a straightforward calculation as shown below.

Lemma 3.3.8 (Restatement of Lemma 3.3.5).

E

[∑
i

difi

]
= 1 .

Proof of Lemma 3.3.5. For any i ∈ [n], recall that

fi =


‖ui‖2 if 〈ũi, g1〉 > 〈ũi, gj〉 ∀j ∈ [k]

0 otherwise

.

The first case happens with probability 1/k and so fi = 0 with the remaining

probability. Therefore

E

[∑
i

difi

]
=
∑
i

di
1

k
‖ui‖2 = 1 .

Expectation of the Numerator. For bounding the expectation of the numerator

we will need a lemma that is a direct consequence of Lemma 2.5.7 about the maximum

of k i.i.d normal random variables.

Corollary 3.3.9. For any i, j ∈ [n],

P [fi > 0 and fj = 0] 6 c1

(
‖ũi − ũj‖

√
log k

k

)
.
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The following lemma is the main technical lemma in bounding the expected value

of the numerator.

Lemma 3.3.10. For any indices i, j ∈ [n],

E [|fi − fj|] 6
(2c1 + 1)

√
log k

k
‖ui − uj‖ (‖ui‖+ ‖uj‖)

Proof.

E [|fi − fj|] = ‖ui‖2 P [fi > 0 and fj = 0] + ‖uj‖2 P [fj > 0 and fi = 0]

+
∣∣‖ui‖2 − ‖uj‖2

∣∣P [fi, fj > 0]

6 c1

(
‖ũi − ũj‖

√
log k

k

)(
‖ui‖2 + ‖uj‖2)+

∣∣‖ui‖2 − ‖uj‖2
∣∣ 1

k

(Using Corollary 3.3.9)

6
2c1

√
log k

k
‖ui − uj‖

√
‖ui‖2 + ‖uj‖2 +

1

k
|〈ui − uj, ui + uj〉|

(Using Proposition 2.6.2)

6
2c1

√
log k

k
‖ui − uj‖ (‖ui‖+ ‖uj‖) +

1

k
‖ui − uj‖ (‖ui‖+ ‖uj‖)

(Using the Cauchy-Schwarz inequality)

We are now ready to bound the expectation of the numerator, we restate the

lemma for the convenience of the reader.

Lemma 3.3.11. (Restatement of Lemma 3.3.6)

E

[∑
i∼j

w ({i, j}) |fi − fj|

]
6 2(2c1 + 1)

√
R (u) log k .

42



Proof of Lemma 3.3.6.

E

[∑
i∼j

w ({i, j}) |fi − fj|

]

6
(2c1 + 1)

√
log k

k

∑
i∼j

w ({i, j}) ‖ui − uj‖ (‖ui‖+ ‖uj‖) (Lemma 3.3.10)

6
(2c1 + 1)

√
log k

k

√∑
i∼j

w ({i, j}) ‖ui − uj‖2

√∑
i∼j

w ({i, j}) (‖ui‖+ ‖uj‖)2

(Using the Cauchy-Schwarz inequality)

6
(2c1 + 1)

√
log k

k

√√√√R (u) ·

(∑
i

di ‖ui‖2

)√∑
i∼j

w ({i, j}) 2
(
‖ui‖2 + ‖uj‖2)

6
2(2c1 + 1)

√
log k

k

√
R (u)

(∑
i

di ‖ui‖2

)

= 2(2c1 + 1)
√
R (u) log k (Using

∑
i

di ‖ui‖2 = k )

Variance of the Denominator. Here too we will need some groundwork. Let G

denote the Gaussian space. The Hermite polynomials {Hi}i∈Z>0
form an orthonormal

basis for real valued functions over the Gaussian space G, i.e., Eg∈G[Hi(g)Hj(g)] = 1

if i = j and 0 otherwise. The k-wise tensor product of the Hermite basis forms an

orthonormal basis for functions over Gk. Specifically, for each α ∈ Zk>0 define the

polynomial Hα as

Hα(x1, . . . , xk) =
k∏
i=1

Hαi(xi).

The functions {Hα}α∈Zk>0
form an orthonormal basis for functions over Gk. The degree

of the polynomial Hα(x) denote by |α| is |α| =
∑

i αi.

The Hermite polynomials form a complete eigenbasis for the noise operator on

the Gaussian space (Ornstein-Uhlenbeck operator). In particular, they are known

to satisfy the following property (see e.g. the book of Ledoux and Talagrand [62],

Section 3.2).
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Fact 3.3.12. Let (gi, hi)
k
i=1 be k independent samples from two ρ-correlated Gaussians,

i.e., E[g2
i ] = E[h2

i ] = 1, and E[gihi] = ρ. Then for all α ∈ Zk>0,

E[Hα(g1, . . . , gk)Hα′(h1, . . . , hk)] = ρ|α| if α = α′ and 0 otherwise

Let B : Gk −→ R be the function defined as follows,

B(x) =


1 if (x1 > xi ∀i ∈ [k]) or (x1 6 xi ∀i ∈ [k])

0 otherwise

.

Then

E[B] = E[B2] =
1

k
.

Lemma 3.3.13. Let u, v be unit vectors and g1, . . . , gk be i.i.d Gaussian vectors.

Then,

E[B(〈u, g1〉 , . . . , 〈u, gk〉)B(〈v, g1〉 , . . . , 〈v, gk〉)] 6
1

k2
+ 〈u, v〉2 1

k
.

Proof. The function B on the Gaussian space can be written in the Hermite expansion

B(x) =
∑

αBαHα(x) such that

∑
α

B2
α = E[B2] =

1

k
.

Using Fact 3.3.12, we can write

E[B(〈u, g1〉 , . . . , 〈u, gk〉)B(〈v, g1〉 , . . . , 〈v, gk〉)] = (E[B])2 +
∑

α∈Zk>0,|α|>0

B2
αρ
|α|

where ρ = 〈u, v〉. Since B is an even function, only the even degree coefficients are

non-zero, i.e., Bα = 0 for all |α| odd. Along with ρ 6 1, this implies that

E[B(〈u, g1〉 , . . . , 〈u, gk〉)B(〈v, g1〉 , . . . , 〈v, gk〉)] 6 (E[B])2 + ρ2

 ∑
α,|α|>2

B2
α


=

1

k2
+ 〈u, v〉2 1

k
.
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Next we bound the variance of the denominator.

Proof of Lemma 3.3.7.

E

[∑
i,j

didjfifj

]

=
∑
i,j

didj ‖ui‖2 ‖uj‖2 E

[
fi

‖ui‖2

fj

‖uj‖2

]

6
∑
i,j

didj ‖ui‖2 ‖uj‖2 E [B(〈ũi, g1〉 , . . . , 〈ũi, gk〉)B(〈ũj, g1〉 , . . . , 〈ũj, gk)〉)]

6
∑
i,j

didj ‖ui‖2 ‖uj‖2 ·
(

1

k2
+

1

k
〈ũi, ũj〉2

)
(Lemma 3.3.13)

=

1

k

∑
i,j

didj 〈ui, uj〉2 +
1

k2

(∑
i

di ‖ui‖2

)2


=

(
1

k
· k +

1

k2
· k2

)
(Using Lemma 3.3.1 )

6 2 .

Therefore

Var

[∑
i

difi

]
= E

[∑
i,j

didjfifj

]
−

(
E

[∑
i

difi

])2

6 1 .

Putting It Together

Proof of Theorem 3.3.3. For each l ∈ [k], from Lemma 3.3.5 and Lemma 3.3.7 we get

that

E

[∑
i

dihl(i)

]
= 1 and Var

[∑
i

dihl(i)

]
6 1 .

Therefore, from the One-sided Chebyshev inequality (Fact 2.5.1), we get

P

[∑
i

dihl(i) >
1

2

]
>

(
E[

∑
i dihl(i)]

2

)2

(
E[

∑
i dihl(i)]

2

)2

+ Var [
∑

i dihl(i)]

> c′ (1)
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where c′ is some absolute constant. Therefore, with constant probability, for Ω(k)

indices l ∈ [k],
∑

i dihl(i) > 1/2. Next, for each l, using Markov’s inequality

P

[∑
i∼j

w ({i, j}) |hl(i)− hl(j)| 6 2/c′ E

[∑
i∼j

w ({i, j}) |hl(i)− hl(j)|

]]
> 1− c′/2 .

(2)

Therefore, with constant probability, for a constant fraction, say c, of the indices

l ∈ [k], we have

∑
i∼j w ({i, j}) |hl(i)− hl(j)|∑

i dihl(i)
6

4

c′

E
[∑

i∼j w ({i, j}) |hl(i)− hl(j)|
]

E [
∑

i dihl(i)]

= C
√
R (u) log k

for some constant C. Applying Lemma 2.3.2 on the vectors with those indices will give

ck disjoint sets S1, . . . , Sck such that φG(Si) = C
√
λk log k ∀i ∈ [ck]. This completes

the proof of Theorem 3.3.3.

3.4 Lower bound for k Sparse-Cuts

In this section, we prove a lower bound for the k sparse-cuts in terms of higher

eigenvalues (Proposition 3.1.4) thereby generalizing the lower bound side of the

Cheeger’s inequality.

Proposition 3.4.1 (Restatement of Proposition 3.1.4). For any edge-weighted graph

G = (V,E), for any integer 1 6 k 6 n, and for any k disjoint subsets S1, . . . , Sk ⊂ V

max
i
φG(Si) >

λk
2
.

where λ1, . . . , λn are the eigenvalues of the normalized Laplacian of G.

Proof. Let α denote maxi φG(Si). Let T
def
= V \(∪iSi). Let G′ be the graph obtained

by shrinking each piece in the partition {T, Si : i ∈ [k]} of V to a single vertex. We

denote the vertex corresponding to Si by si ∀i and the vertex corresponding to T by
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t. Let L′ be the normalized Laplacian matrix corresponding to G′. Note that, by

construction, the expansion of every set in G′ not containing t is at most α.

Let U
def
=
{
D

1
2XSi : i ∈ [k]

}
. Here XS is the incidence vector of the set S ⊂ V .

Since all the vectors in U are orthogonal to each other, we have

λk = min
S:rank(S)=k

max
X∈S

XTLX
XTX

6 max
X∈span(U)

XTLX
XTX

= max
Y ∈Rk∗{0}

∑
i,j w

′ ({i, j}) (Yi − Yj)2∑
i d
′
iY

2
i

.

For any x ∈ R, let x+ def
= max {x, 0} and x−

def
= max {−x, 0}. Then it is easily

verified that for any Yi, Yj ∈ R,

(Yi − Yj)2 6 2((Y +
i − Y +

j )2 + (Y −i − Y −j )2) .

Therefore,∑
i

∑
j>i

w′ ({i, j}) (Yi − Yj)2

6 2

(∑
i

∑
j>i

w′ ({i, j}) (Y +
i − Y +

j )2 +
∑
i

∑
j>i

w′ ({i, j}) (Y −j − Y −i )2

)

6 2

(∑
i

∑
j>i

w′ ({i, j})
∣∣(Y +

i )2 − (Y +
j )2

∣∣+
∑
i

∑
j>i

w′ ({i, j})
∣∣(Y −j )2 − (Y −i )2

∣∣) .

Without loss of generality, we may assume that Y +
1 > Y +

2 > . . . > Y +
k > Yt = 0. Let

Ti = {s1, . . . , si} for each i ∈ [k]. Therefore, we have∑
i

∑
j>i

w′ ({i, j})
∣∣(Y +

i )2 − (Y +
j )2

∣∣ 6 k∑
i=1

((Y +
i )2 − (Y +

i+i)
2)w′(E(Ti, T̄i))

6 α

k∑
i=1

((Y +
i )2 − (Y +

i+i)
2)w′(Ti)

= α

k∑
i

d′i(Y
+
i )2 .

Here we are using the fact that w′(E(Ti, T̄i)) 6 αw′(Ti) which follows from the

definition of α and that w′(Ti+1)− w′(Ti) = d′i+1. Similiarly, we get that∑
i

∑
j>i

w′ ({i, j})
∣∣(Y −j )2 − (Y −i )2)

∣∣ 6 α
∑
i

d′i(Y
−
i )2 .
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Putting these two inequalities together we get that

∑
j>i

w′ ({i, j}) (Yi − Yj)2 6 2α
∑
i

d′iY
2
i .

Therefore, λk(L) 6 2 maxi φG(Si).

3.5 Gap examples

In this section, we present constructions of graphs that serve as lower-bounds against

natural classes of algorithms. We begin with a family of graphs on which the perfor-

mance of recursive partitioning algorithms is poor for the k-Sparse cuts problem.

3.5.1 Recursive Algorithms

Recursive algorithms are one of most commonly used techniques in practice for graph

multi-partitioning. However, we show that partitioning a graph into k pieces using a

simple recursive algorithm can yield as many k(1− o(1)) sets with expansion much

larger than O
(√

λk polylog k
)
. Thus this is not an effective method for finding many

sparse cuts.

The following construction (Figure 3) shows that partition of V obtained using

the recursive algorithm in Algorithm 3.2.1 can give as many as k(1− o(1)) sets have

expansion Ω(1) while λk 6 O(k2/n2).

Figure 3: Recursive algorithm can give many sets with very small expansion

48



In this graph, there are p
def
= kε sets Si for 1 6 i 6 kε. We will fix the value of ε later.

Each of the Si has k1−ε cliques {Sij : 1 6 j 6 k1−ε} of size n/k which are sparsely

connected to each other. The total weight of the edges from Sij to Si\Sij is equal to a

constant c. In addition to this, there are also k − kε vertices vi : 1 6 i 6 k − kε. The

weight of edges from Si to vj is equal to k−ε.

Claim 3.5.1. 1. φ(Sij) 6 (c+ 1)k2/n2 ∀i, j

2. φ(Si) 6 1/(c+ 1)φ(Sij) ∀i, j

3. λk = O(k2/n2)

Proof. 1.

φ(Sij) =
c+ (k−kε)k−ε

k1−ε

(n
k
)2 + c+ (k−kε)k−ε

k1−ε

6
(c+ 1)k2

n2

2. w(Si) =
∑

j w(Sij), but for each Sij only 1/(c+ 1) fraction of edges incident at

Sij are also incident at Si. Therefore, φ(Si) 6 1/(c+ 1)φ(Sij).

3. Follows from (1) and Proposition 3.1.4.

For appropriate values of ε and k, the partition output by the recursive algorithm

will be {Si : i ∈ [kε]}∪{vi : i ∈ [k − kε]}. Hence, k(1−o(1)) sets have expansion equal

to 1.

3.5.2 k-partition

In this section, we give a constructive proof of Theorem 3.1.8, i.e., we construct a

family of graphs such that for any k-partition {S1, . . . , Sk} of the graph, maxi φ(Si) >

Θ(k2
√

p
n
). We view this as further evidence suggesting that the k sparse-cuts

problem is the right generalization of sparsest cut.
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Figure 4: k-partition can have sparsity much larger than Ω(
√
λkpolylogk)

Lemma 3.5.2. For the graph G in Figure 4, and for any k-partition S1, . . . , Sk of its

vertex set,

maxi φG(Si)√
λk

= Θ

(
k2

√
p

n

)
.

Proof. In Figure 4, ∀i ∈ [k], Si is a clique of size (n− 1)/k (pick n so that k|(n− 1)).

There is an edge from central vertex v to every other vertex of weight pn. Here p is

some absolute constant. Let P ′ def
= {S1 ∪ {v} , S2, S3, . . . , Sk}. For n > k3, it is easily

verified that the optimum k-partition is isomorphic to P ′. For k < o(n
1
3 ), we have

max
Si∈P ′

φG(Si) = φG(S1 ∪ {v}) =
pnk(

n−1
k

)2
+ pnk

= Θ

(
pk3

n

)
Applying Proposition 3.1.4 to S1, . . . , Sk, we get that λk = O(pk2/n). Thus we have

the lemma.

3.6 Conclusion

We exhibited new connections between higher eigenvalues of the graph Laplacian and

higher order graph partitions à la Cheeger’s Inequality. Crucial to our proofs, is a new

bound on the covariance of two truncated Gaussian random variables (Lemma 3.3.13).
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A natural question to ask is if our bounds are optimal? We show that our bounds

for k sparse-cuts is tight upto constant factors in the number of sets, and our

bound for Small Set Expansion is tight upto constant factors in the size of the

set. We prove an upper bound of O
(√

λk log k
)

for Min Sum k-partition, however

we do not know if this is tight (the corresponding factor for the Gaussian graph is

Θ
(√

λk log k
)
). We leave these questions as open problems.

Problem 3.6.1. Does every graph G = (V,E), for every parameter k ∈ [n] have k

disjoint non-empty subsets, say S1, . . . , Sk, such that

max
i∈[k]

φ(Si) 6 O
(√

λk log k
)

?

Problem 3.6.2. Does every graph G = (V,E), for every parameter k ∈ [n] have a

k-partition, say S1, . . . , Sk, such that

φsum ({S1, . . . , Sk}) 6 O
(√

λk log k
)

?
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CHAPTER IV

SPECTRAL PROPERTIES OF HYPERGRAPHS

4.1 Introduction

There is a rich spectral theory of graphs, based on studying the eigenvalues and

eigenvectors of the adjacency matrix (and other related matrices) of graphs. Cheeger’s

Inequality and its many (minor) variants have played a major role in the design of

algorithms as well as in understanding the limits of computation [96, 97, 38, 13, 8].

We refer the reader to [46] for a comprehensive survey.

It has remained open to define a spectral model of hypergraphs, whose spectra can

be used to estimate hypergraph parameters à la Spectral Graph Theory. Hypergraph

expansion and related hypergraph partitioning problems are of immense practical

importance, having applications in parallel and distributed computing [25], VLSI circuit

design and computer architecture [52, 42], scientific computing [36] and other areas.

Inspite of this, there hasn’t been much theoretical work on them (see Section 4.1.1).

Spectral graph partitioning algorithms are widely used in practice for their efficiency

and the high quality of solutions that they often provide [18, 44]. Besides being of

natural theoretical interest, a spectral theory of hypergraphs might also be relevant

for practical applications.

The various spectral models for hypergraphs considered in the literature haven’t

been without shortcomings. An important reason for this is that there is no canonical

matrix representation of hypergraphs. For an r-uniform hypergraph H = (V,E,w) on

the vertex set V and having edge set E ⊆ V r, one can define the canonical r-tensor
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form A as follows.

A(i1,...,ir)
def
=


1 {i1, . . . , ir} ∈ E

0 otherwise

.

This tensor form and its minor variants have been explored in the literature (see

Section 4.1.1 for a brief survey), but have not been understood very well. Optimizing

over tensors is NP-hard [45]; even getting good approximations might be intractable

[24]. The spectral properties of tensors seem to be unrelated to combinatorial properties

of hypergraphs (See Section 4.8).

Another way to study a hypergraph, say H = (V,E,w), is to replace each hyperedge

e ∈ E by complete graph or a low degree expander on the vertices of e to obtain a

graph G = (V,E ′). If we let r denote the size of the largest hyperedge in E, then it is

easy to see that the combinatorial properties of G and H, like min-cut, sparsest-cut,

among others, could be separated by a factor of Ω(r). Therefore, this approach will

not be useful when r is large.

In general, one can not hope to have a linear operator for hypergraphs whose

spectra captures hypergraph expansion in a Cheeger-like manner. This is because the

existence of such an operator will imply the existence of a polynomial time algorithm

obtaining a O
(√

OPT
)

bound on hypergraph expansion, but we rule this out by

giving a lower bound of Ω(
√

OPT log r) for computing hypergraph expansion, where

r is the size of the largest hyperedge (Theorem 8.0.4).

In this chapter, we define a new Markov operator for hypergraphs, obtained by

generalizing the random-walk operator on graphs. Our operator is simple and does

not require the hypergraph to be uniform (i.e. does not require all the hyperedges to

have the same size). We describe this operator in Section 4.2 (See Definition 4.2.1).

We present our main results about this hypergraph operator in Section 4.2.1 and

Section 4.2.3. Most of our results are independent of r (the size of the hyperedges),

some of our bounds have a logarithmic dependence on r, and none of our bounds have
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a polynomial dependence on r. All our bounds are generalizations of the corresponding

bounds for graphs.

4.1.1 Related Work

Freidman and Wigderson [40] study the canonical tensors of hypergraphs. They bound

the second eigenvalue of such tensors for hypergraphs drawn randomly from various

distributions and show their connections to randomness dispersers. Rodriguez [90]

studies the eigenvalues of graph obtained by replacing each hyperedge by a clique

(Note that this step incurs a loss of O(r2), where r is the size of the hyperedge).

Cooper and Dutle [34] study the roots of the characteristic polynomial of hypergraphs

and relate it to its chromatic number. [47, 48] also study the canonical tensor form

of the hypergraph and relate its eigenvectors to some configured components of that

hypergraph. Lenz and Mubayi [65, 66, 67] relate the eigenvector corresponding to

the second largest eigenvalue of the canonical tensor to hypergraph quasi-randomness.

Chung [32] defines a notion of Laplacians for hypergraphs and studies the relationship

between its eigenvalues and a very different notion of hypergraph cuts and homologies.

[84, 99, 83, 82] study the relation of hypergraphs to rather different notion of Laplacian

forms and prove isoperimetric inequalities, study homologies and mixing times.

Peres et. al.[85] study a “tug of war” Laplacian operator on graphs that is similar

to our hypergraph Markov operator and use it to prove that every bounded real-valued

Lipschitz function F on a subset Y of a length space X admits a unique absolutely

minimal extension to X. Subsequently a variant of this operator was used to for

analyzing the rate of convergence of local dynamics in bargaining networks [26].

4.2 The Hypergraph Markov Operator

We now formally define the hypergraph Markov operator M : Rn → Rn (Defini-

tion 4.2.1). For a hypergraph H, we denote its Markov operator by MH . We drop

the subscript whenever the hypergraph is clear from the context. We note that unlike
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Definition 4.2.1 (The Hypergraph Markov Operator).
Given a vector X ∈ Rn, M(X) is computed as follows.

1. For each hyperedge e ∈ E, let (ie, je) := argmaxi,j∈e |Xi −Xj|, breaking ties
arbitrarily (See Remark 4.5.2).

2. We now construct the weighted graph GX on the vertex set V as follows. We
add edges {{ie, je} : e ∈ E} having weight w({ie, je}) := w(e) to GX . Next,
to each vertex v we add self-loops of sufficient weight such that its degree in
GX is equal to dv; more formally we add self-loops of weight

w({v, v}) := dv −
∑

e∈E:v∈{ie,je}

w(e) .

3. We define AX to be the random walk matrix of GX , i.e., AX is obtained from
the adjacency matrix of GX by dividing the entries of the ith row by the degree
of vertex i in GX .

Then,

M(X)
def
= AXX .

Figure 5: The hypergraph Marko Operator

most of spectral models for hypergraphs considered in the literature, our Markov

operator M does not require the hypergraph to be uniform (i.e. it does not require all

hyperedges to have the same number of vertices in them).

Remark 4.2.2. Let GX denote the adjacency matrix of the graph in Definition 4.2.1.

Then, by construction, AX = D−1GX , where D is the diagonal matrix whose (i, i)th

entry is di. We will often study D−1/2GXD
−1/2 in the place of studying D−1GX (see

Remark 2.0.2).

Definition 4.2.3 (Hypergraph Laplacian). Given a hypergraph H, we define its

Laplacian operator L as

L
def
= I −M .

Here, I is the identity operator and M is the hypergraph Markov operator. The action
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of L on a vector X is L(X)
def
= X −M(X). We define the matrix LX

def
= I − AX (See

Remark 4.2.2). We define the Rayleigh quotient R (·) of a vector X as

R (X)
def
=
XTL(X)

XTX
.

Our definition of M is inspired by the ∞-Harmonic functions studied by [85]. We

note that M is a generalization of the random-walk matrix for graphs to hypergraphs;

if all hyperedges had exactly two vertices, then {ie, je} = e for each hyperedge e and

M would be the random-walk matrix (i.e. the normalized adjacency matrix).

Let us consider the special case when the hypergraph H = (V,E,w) is d-regular.

We can also view the operator M as a collection of maps {fr : Rr → Rr}r∈Z>0
as

follows. We define the action of fr on a tuple (x1, . . . , xr) as follows. It picks the

coordinates i, j ∈ [r] which have the highest and the lowest values respectively. Then

it decreases the value at the ith coordinate by (xi − xj)/d and increases the value at

the jth coordinate by (xi − xj)/d, whereas all other coordinates remain unchanged.

For a vector X ∈ Rn, the computation of M(X) in Definition 4.2.1 can be viewed as

applying these maps to X, where for each hyperedge e ∈ E, f|e| is applied to the tuple

corresponding to the coordinates of X represented by the vertices in e.

Comparison to other operators. A natural question to ask is if any other set of

maps, say {gr : Rr → Rr}r∈Z>0
, used in this manner gives a ‘better’ Markov operator?

A natural set of maps that one would be tempted to try are the averaging maps which

map an r-tuple (x1, . . . , xr) to (
∑

i xi/r, . . . ,
∑

i xi/r).

If we consider the embedding of the vertices of a hypergraph H = (V,E,w)

on R, given by the vector X ∈ RV , then the length l(·) of a hyperedge e ∈ E

is l(e)
def
= maxi,j∈e |Xi −Xj|. We believe that l(e) is the most essential piece of

information about the hyperedge e. As a motivating example, consider the special case

56



when all the entries of X are in {0, 1}. In this case, the vector X defines a cut (S, S̄),

where S = supp(X), and the l(e) indicates whether e is cut by S or not. Building

on this idea, we can use the average length of edges to bound expansion of sets. We

will be studying the length of the hyperedges in the proofs of all the results in this

chapter. A well known fact from Statistical Information Theory is that moving in the

direction of ∇l will yield the most information about the function in question. We

refer the reader to [81, 19, 92] for the formal statement and proof of this fact, and for

a comprehensive discussion on this topic. Our set of maps move a tuple precisely in

the direction of ∇l, thereby achieving this goal.

For an hyperedge e ∈ E the averaging maps will yield information about the

function Ei,j∈e |Xi −Xj| and not about l(e). In particular, the averaging maps will

have a gap of factor Ω(r) between the hypergraph expansion1 and the square root

spectral gap2 of the operator. In general, if a set of maps changes r′ out of r coordinates,

it will have a gap of Ω(r′) between hypergraph expansion and the square root of the

spectral gap.

Our set of maps {fr}r∈Z>0
are the very natural greedy maps which bring the pair

of coordinates which are farthest apart slightly closer to each other. Let us consider

the continuous dispersion process where we repeatedly apply the markov operator

((1− dt)I + dtM) ( for an infinitesimally small value of dt) to an arbitrary starting

probability distribution on the vertices (see Definition 4.2.9). In the case when the

maximum value (resp. minimum value) in the r-tuple is much higher (resp. much

lower) than the second maximum value (resp. second minimum value), then these set

of greedy maps are essentially the best we can hope for, as they will lead to the greatest

decrease in variance of the values in the tuple. In the case when the maximum value

(resp. minimum value) in the tuple, located at some coordinate i1 ∈ [r] is close to the

1See Definition 2.1.5.
2The spectral gap of a Laplacian operator is defined as its second smallest eigenvalue. See

Definition 4.2.7 for the definition of eigenvalues of the Markov operator M .
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second maximum value (resp. second minimum value), located at some coordinate

i2 ∈ [r], the dispersion process is likely to decrease the value at coordinate i1 till it

equals the value at coordinate i2 after which these two coordinates will decrease at

the same rate (see Section 4.5 and Remark 4.5.2). Therefore, our set of greedy maps

addresses all cases satisfactorily.

4.2.1 Hypergraph Eigenvalues

As in the case of graphs, it is easy to see that the hypergraph Laplacian operator is

positive semidefinite.

Proposition 4.2.4. Given a hypergraph H and its Laplacian operator L,

XTL(X) > 0 ∀X ∈ Rn .

Proof. XTL(X) = XT (I − AX)X. Since AX is a random-walk matrix, I − AX � 0.

Hence, the proposition follows.

Stationary Distribution. A probability distribution µ on V is said to be stationary

if M(µ) = µ . We define the probability distribution µ∗ as follows.

µ∗(i) =
di∑
j∈V dj

for i ∈ V .

µ∗ is a stationary distribution of M , as it is an eigenvector with eigenvalue 1 of AX

∀X ∈ Rn.

Laplacian Eigenvalues. An operator L is said to have an eigenvalue λ ∈ R if for

some vector X ∈ Rn, L(X) = λX. It follows from the definition of L that λ is an

eigenvalue of L if and only if 1− λ is an eigenvalue of M . In the case of graphs, the

Laplacian Matrix and the adjacency matrix have n orthogonal eigenvectors. However

for hypergraphs, the Laplacian operator L (respectively M) is a highly non-linear

operator. In general non-linear operators can have a lot more more than n eigenvalues

or a lot fewer than n eigenvalues.
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From the definition of stationary distribution we get that µ∗ is an eigenvector of

M with eigenvalue 1. Therefore, µ∗ is an eigenvector of L with eigenvalue 0.

We start by showing that L has at least one non-trivial eigenvalue.

Theorem 4.2.5. Given a hypergraph H, there exists a vector v ∈ Rn and a λ ∈ R

such that 〈v, µ∗〉 = 0 and L(v) = λ v.

Given that a non-trivial eigenvector exists, we can define the second smallest

eigenvalue γ2 as the smallest eigenvalue from Theorem 4.2.5. We define v2 to be the

corresponding eigenvector.

It is not clear if L has any other eigenvalues. We again remind the reader that in

general, non-linear operators can have very few eigenvalues or sometimes even have

no eigenvalues at all. We leave as an open problem the task of investigating if other

eigenvalues exist. We study the eigenvalues of L when restricted to certain subspaces.

We prove the following theorem (see Theorem 4.5.6 for formal statement).

Theorem 4.2.6 (Informal Statement). Given a hypergraph H, for every subspace S

of Rn, the operator ΠSL has an eigenvector, i.e. there exists a vector v ∈ S and a

γ ∈ R such that

ΠSL(v) = γ v .

Given that L restricted to any subspace has an eigenvalue, we can now define

higher eigenvalues of L à la Principal Component Analysis (PCA).

Definition 4.2.7. Given a hypergraph H, we define its kth smallest eigenvalue γk

and the corresponding eigenvector vk recursively as follows. The basis of the recursion

is v1 = µ∗ and γ1 = 0. Now, let Sk := span ({vi : i ∈ [k]}). We define γk to be the

smallest non-trivial3 eigenvalue of Π⊥Sk−1
L and vk to be the corresponding eigenvector.

We will often use the following formulation of these eigenvalues.

3By non-trivial eigenvalue of Π⊥Sk−1
L, we mean vectors in Rn\Sk−1 as guaranteed by Theorem 4.2.6.
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Proposition 4.2.8. The eigenvalues defined in Definition 4.2.7 satisfy

γk = min
X

XTΠ⊥Sk−1
L(X)

XTΠ⊥Sk−1
X

= min
X⊥v1,...,vk−1

R (X) .

vk = argminX
XTΠ⊥Sk−1

L(X)

XTΠ⊥Sk−1
X

= argminX⊥v1,...,vk−1
R (X) .

4.2.2 Hypergraph Dispersion Processes

A Dispersion Process on a vertex set V starts with some distribution of mass on the

vertices, and moves mass around according to some predefined rule. Usually mass

moves from vertex having a higher concentration of mass to a vertex having a lower

concentration of mass. A random walk on a graph is a dispersion process, as it can

be viewed as a process moving probability-mass along the edges of the graph. We

define the canonical dispersion process based on the hypergraph Markov operator

(Definition 4.2.9). This dispersion process can be viewed as the hypergraph analogue

Definition 4.2.9 (Continuous Time Hypergraph Dispersion Process). Given
a hypergraph H = (V,E,w), a starting probability distribution µ0 on V , we
(recursively) define the probability distribution on the vertices at time t+ dt, for an
infinitesimal time duration dt, as a function of the distribution at time t as follows.

µt+dt = ((1− dt)I + dtM) ◦ µt .

Figure 6: Continuous Time Hypergraph Dispersion Process

of the random walk on graphs; indeed, when all hyperedges have cardinality 2 (i.e.

the hypergraph is a graph), the action of the hypergraph Markov operator M on a

vector X is equivalent to the action of the (normalized) adjacency matrix of the graph

on X. This process can be used as an algorithm to estimate size of a hypergraph

and for sampling vertices from it, in the same way as random walks are used to

accomplish these tasks in graphs. We further believe that this dispersion process
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will have numerous applications in counting/sampling problems on hypergraphs, in

the same way that random walks on graphs have applications in counting/sampling

problems on graphs.

A fundamental parameter associated with the dispersion processes is its Mixing

Time.

Definition 4.2.10 (Mixing Time). Given a hypergraph H = (V,E,w), a probability

distribution µ is said to be δ-mixed if

‖µ− µ∗‖1 6 δ .

Given a starting probability distribution µ0, we define its Mixing time tmix
δ (µ0) as the

smallest time t such that ∥∥µt − µ∗∥∥
1
6 δ

where the µt are as given by the hypergraph Dispersion Process (Definition 4.2.9).

We will show that in some hypergraphs on 2k vertices, the mixing time can be

O (poly(k)) (Theorem 4.2.17). We believe that this fact will have applications in

counting/sampling problems on hypergraphs à la MCMC (Markov chain monte carlo)

algorithms on graphs.

4.2.3 Summary of Results

We first show that the Laplacian operator L has eigenvalues (see Theorem 4.2.6 and

Proposition 4.2.8). We relate these eigenvalues to other properties of hypergraphs as

follows.

4.2.3.1 Spectral Gap of Hypergraphs

A basic fact in spectral graph theory is that a graph is disconnected if and only if λ2,

the second smallest eigenvalue of its normalized Laplacian matrix, is zero. Cheeger’s

Inequality is a fundamental inequality which can be viewed as robust version of this

fact.
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We prove a generalization of Cheeger’s Inequality to hypergraphs.

Theorem 4.2.11 (Hypergraph Cheeger Inequality). Given a hypergraph H,

γ2

2
6 φH 6

√
2γ2 .

Expander Mixing Lemma. The Expander Mixing Lemma [2] for graphs says that

expanders behave like random graphs, in respect to the number of edges that cross

any cut. More formally, given a graph G = (V,E,w), for any two non-empty sets

S, T ⊂ V ∣∣∣∣|E(S, T )| − d |S| |T |
n

∣∣∣∣ 6 (1− λ2)
√
|S| |T |

where λ2 is the second smallest eigenvalue of the graph Laplacian. We prove the

hypergraph version of this Lemma.

Theorem 4.2.12. Given a d-regular hypergraph H = (V,E,w), for any two non-empty

sets S, T ⊂ V ∣∣∣∣|E(S, T )| − d |S| |T |
n

∣∣∣∣ 6 (1− γ2)d
√
|S| |T | .

Hypergraph Diameter. A well known fact about graphs is that the diameter

of a graph G is at most O (log n/ (log(1/(1− λ2)))) where λ2 is the second smallest

eigenvalue of the graph Laplacian. Here we prove a generalization of this fact to

hypergraphs.

Theorem 4.2.13. Given a hypergraph H = (V,E,w) with all its edges having weight

1, its diameter is at most

diam(H) 6 O

(
log |V |
log 1

1−γ2

)
.

4.2.3.2 Higher Order Cheeger Inequalities.

A well known fact in spectral graph theory is that a graph has at least k components if

and only if λk, the kth smallest eigenvalue of its normalized Laplacian matrix, is zero.
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It is easy to see that the analogous fact for hypergraphs is also true. The following is

a robust version of this fact for graphs.

Theorem 4.2.14. [63, 70] For any graph G = (V,E,w) and any integer k < |V |,

there exists a k-partition of V into {S1, . . . , Sk} such that

max
i∈[k]

φ(Si) 6 O
(
k3
√
λk

)
.

Moreover, for any k disjoint non-empty sets S1, . . . , Sk ⊂ V

max
i∈[k]

φ(Si) >
λk
2
.

We prove a slightly weaker generalization to hypergraphs.

Theorem 4.2.15. For any hypergraph H = (V,E,w) and any integer k < |V |, there

exists a k-partition of V into {S1, . . . , Sk} such that

max
i∈[k]

φ(Si) 6 O
(
k4
√
γk log r

)
.

Moreover, for any k disjoint non-empty sets S1, . . . , Sk ⊂ V

max
i∈[k]

φ(Si) >
γk
2
.

Small-set Expansion. Recall that the Small Set Expansion problem (Prob-

lem 2.1.7) asks to compute the set of size at most |V | /k vertices having the least

expansion. Corollary 3.1.10 bounds small-set expansion in graphs via higher eigenval-

ues of the graph Laplacians as follows. It says that for a graph G and a parameter

k ∈ Z>0, there exists a set S ⊂ V of size O (n/k) such that

φ(S) 6 O
(√

λk log k
)
.

We prove a generalization of this bound to hypergraphs (see Theorem 4.6.1 for formal

statement).
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Theorem 4.2.16 (Informal Statement). Given hypergraph H = (V,E,w) and param-

eter k < |V |, there exists a set S ⊂ V such that |S| 6 O (|V | /k) satisfying

φ(S) 6 Õ (min {r, k}√γk)

where r is the size of the largest hyperedge in E.

4.2.3.3 Mixing Time Bounds

A well known fact in spectral graph theory is that a random walk on a graph mixes in

time at mostO (log n/λ2) where λ2 is the second smallest eigenvalue of graph Laplacian.

Moreover, every graph has some vertex such that a random walk starting from that

vertex takes at least Ω(1/λ2) time to mix, thereby proving that the dependence of the

mixing time on λ2 is optimal. We prove a generalization of the first fact to hypergraphs

and a slightly weaker generalization of the second fact to hypergraphs. Both of them

together show that dependence of the mixing time on γ2 is optimal. Further, we

believe that Theorem 4.2.17 will have applications in counting/sampling problems on

hypergraphs à la MCMC (Markov chain monte carlo) algorithms on graphs.

Theorem 4.2.17 (Upper bound on Mixing Time). Given a hypergraph H = (V,E,w),

for all starting probability distributions µ0 : V → [0, 1], the Hypergraph Dispersion

Process satisfies

tmix
δ

(
µ0
)
6

log(n/δ)

γ2

.

Theorem 4.2.18 (Lower bound on Mixing Time). Given a hypergraph H = (V,E,w),

there exists a probability distribution µ0 on V such that ‖µ0 − 1/n‖1 > 1/2 and

tmix
δ

(
µ0
)
>

log(1/δ)

16 γ2

.

We view the condition in Theorem 4.2.18 that the starting distribution µ0 satisfy

‖µ0 − 1/n‖1 > 1/2 as the analogue of a random walk in a graph starting from some

vertex (i.e. it is far from being mixed).
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4.2.3.4 Vertex Expansion in Graphs and Hypergraph Expansion

We present a factor preserving reduction from vertex expansion in graphs to hyper-

graph expansion. Recall that the notion of Vertex Expansion and Symmetric Vertex

Expansion are computationally equivalent up to constant factors (Theorem 8.3.1 and

Theorem 8.3.2).

Theorem 4.2.19. Given a graph G = (V,E) of maximum degree d and minimum

degree c1d (for some constant c1), there exists a polynomial time computable hypergraph

H = (V,E ′) on the same vertex set having the hyperedges of cardinality at most d+ 1

such that for all sets S ⊂ V ,

c1φH(S) 6
1

d
· ΦV(S) 6 φH(S) .

Remark 4.2.20. The dependence on the degree in Theorem 4.2.19 is only because

vertex expansion and hypergraph expansion are normalized differently : the vertex

expansion of a set S is defined as the number of vertices in the boundary of S divided

by the cardinality of S, whereas the hypergraph expansion of a set S is defined as the

number hyperedges crossing S divided by the sum of the degrees of the vertices in S.

Theorem 4.2.19 implies that all our results for hypergraphs directly extend to vertex

expansion in graphs. More formally, we have a Markov operator M and a Laplacian

operator L, whose eigenvalues satisfy the vertex expansion (in graphs) analogs of

Theorem 4.2.114, Theorem 4.2.12, Theorem 4.2.13, Theorem 4.2.15, Theorem 4.2.16,

Theorem 4.2.17, Theorem 4.2.18, and Theorem 6.1.5.

4.2.3.5 Discussion

We stress that none of our bounds have a polynomial dependence on r, the size of the

largest hyperedge (Theorem 4.2.16 has a dependence on min {r, k}) . In many of the

4A Cheeger-type Inequality for vertex expansion in graphs was also proven by [21].
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practical applications, the typical instances have r = Θ(nα) for some α = Ω(1); in

such cases, bounds of poly(r) would not be of any practical utility.

We also stress that all our results generalize the corresponding results for graphs.

4.2.4 Organization

We begin with an overview of the proofs in Section 4.3. We prove Theorem 4.2.6 (for-

mally Theorem 4.5.6) and Proposition 4.2.8 in Section 4.5. We prove Theorem 4.2.11,

Theorem 4.2.12 and Theorem 4.2.13 in Section 4.4.1. We prove Theorem 4.2.15 and

Theorem 4.2.16 in Section 4.6. We prove Theorem 4.2.17 and Theorem 4.2.18 in

Section 4.5. We prove Theorem 4.9.1 in Section 4.9. We prove Theorem 4.2.19 in

Section 4.7.

4.3 Overview of Proofs

Hypergraph Eigenvalues. To prove that hypergraph eigenvalues exist (Theo-

rem 4.2.6 and Proposition 4.2.8), we study the hypergraph dispersion process in

a more general setting (Definition 4.5.1). We start the dispersion process with an

arbitrary vector µ0 ∈ Rn. Our main tool here is to show that the Rayleigh quotient

(as a function of the time) monotonically decreases with time. More formally, we show

that the Rayleigh quotient of µt+dt, the vector at time t+ dt (for some infinitesimally

small dt), is not larger than the Rayleigh quotient of µt, the vector at time t. If the

under lying matrix Aµt did not change between times t and t+ dt, then this fact can

be shown using simple linear algebra. If the under lying matrix Aµt changes between

t and t + dt, then proof requires a lot more work. Our proof involves studying the

limits of the Rayleigh quotient in the neighborhoods of the time instants at which the

support matrix changes, and exploiting the continuity properties of the process.

To show that eigenvectors exist, we start with a candidate eigenvector, say X, that

satisfies the conditions of Proposition 4.2.8. We study a slight variant of hypergraph

dispersion process starting with this vector X. We use the monotonicity of the
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Rayleigh quotient to conclude that ∀t > 0, the vector at time t of this process, say

X t, also satisfies the conditions of Proposition 4.2.8. Then we use the fact that the

number of possible support matrices |{AY : Y ∈ Rn}| <∞ to argue that there exists

a time interval of positive Lebesgue measure during which the support matrix does

not change. We use this to conclude that the vectors X t during that time interval

must also not change (the proof of this uses the previous conclusion that all X t the

conditions of Proposition 4.2.8) and hence must be an eigenvector.

Mixing Time Bounds. To prove a lower bound on the mixing time of the Hy-

pergraph Dispersion process (Theorem 4.2.18), we need to exhibit a probability

distribution that is far from being mixed and takes a long time to mix. To show that a

distribution µ takes a long time to mix, it would suffice to show that µ−1/n is “close”

to v2, as we can then use our previous assertion about the monotonicity of the Rayleigh

quotient to prove a lower bound on the mixing time. As a first attempt at constructing

such a distribution, one might be tempted to consider the vector 1/n+ v2. But this

vector might not even be a probability distribution if v2(i) < −1/n for some coordinate

i. A simple fix for this would to consider the vector µ
def
= 1/n + v2/(n ‖v2‖∞). But

then ‖µ− 1/n‖1 = ‖v2/(n ‖v2‖∞)‖1 which could be very small depending on ‖v2‖∞.

Our proof involves starting with v2 and carefully “chopping” of the vector at some

points to control its infinity-norm while maintaining that its Rayleigh quotient is still

O (γ2).

The main idea used in proving the upper bound on the mixing time of (Theo-

rem 4.2.17) is that the support matrix at any time t has a spectral gap of at least

γ2. Therefore, after every unit of the time, the component of the vector µt that is

orthogonal to 1, decreases in `2-norm by a factor of at least 1 − γ2 (irrespective of

the fact that the support matrix might be changing infinitely many times during that

time interval).
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Hypergraph Diameter. Our proof strategy for Theorem 4.2.13 is as follows. Let

M ′ def
= I/2 + M/2 be a lazy version of M . Fix some vertex u ∈ V . Consider the

vector M ′(χu). This vector will have non-zero values at exactly those coordinates

which correspond to vertices that are at a distance of at most 1 from u. Building

on this idea, it follows that the vector M ′t(χu) will have non-zero values at exactly

those coordinates which correspond to vertices that are at a distance of at most t from

u. Therefore, the diameter of H is the smallest value t ∈ Z>0 such that the vectors

{M ′t(χu) : u ∈ V } have non-zero entries in all coordinates. We will upper bound the

value of such a t. The key insight in this step is that the support matrix AX of any

vector X ∈ Rn has a spectral gap of at least γ2, irrespective of what the vector X is.

Hypergraph Cheeger Inequality. We appeal to the formulation of eigenvalues

in Proposition 4.2.8 to prove Theorem 4.2.11.

γ2 = min
X⊥1

XTL(X)

XTX
=

∑
e∈E w(e) maxi,j∈E(Xi −Xj)

2

d
∑

iX
2
i

.

First, observe that if all the entries of the vector X were in {0, 1}, then the support

of this vector X, say S, will have expansion equal to R (X). Building on this idea,

we start with the vector v2, and use it to construct a line-embedding of the vertices

of the hypergraph, such that the average “distortion” of the hyperedges is at most

O
(√

γ2

)
. Next, we represent this average distortion as an average over cuts in the

hypergraph and conclude that at least one of these cuts must have expansion at most

this average value. Overall, we follow the strategy of proving Cheeger’s Inequality for

graphs. However, we need some new ideas to handle hyperedges.

Higher Order Cheeger Inequalities. Proving our bound for hypergraph small-

set expansion (Theorem 4.2.16) requires a lot more work. We start with the spectral

embeddings, the canonical embedding of the vertex set into Rk given by the top k

eigenvectors. As a first attempt, one might try to “round” this embedding using the
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rounding algorithms for small set expansion on graphs, namely the algorithms of [16]

or [87]. However, the rounding algorithm of [16] uses the fact that the vectors should

satisfy `2
2-triangle inequality and more crucially uses the fact that the inner product

between any two vectors is non-negative. Neither of these properties are satisfied by

the spectral embedding5. The rounding algorithm of [87] crucially uses the fact that

the Rayleigh quotient of the vector Xl obtained by picking the lth coordinate from

each vector of the spectral embedding be “small” for at least one coordinate l. It

is easy to show that this fact holds for graphs, but this is not true for hypergraphs

because of the “max” in the definition of the eigenvalues.

Our proof starts with the spectral embedding and uses a simple random projection

step to produce a vector X. This step is similar to the rounding algorithm of [70],

who studied a variant of small-set expansion in graphs. We then bound the length6

of the hyperedges. Here we deviate from [70], as hyperedges have more than two

vertices and can not be analyzed in the same way as edges in graphs. We handle the

hyperedges whose vertices have roughly equal lengths by bounding the variance of

their projections in the random projection step. We handle the hyperedges whose

vertices have very large disparity in lengths by showing that they must be having

a large contribution to the Rayleigh quotient. This suffices to bound the expansion

of the set obtained by our rounding algorithm (Algorithm 4.6.2). To show that the

set is small, we use a combination of the techniques studied in [73] and [70]. This

gives uses the desired bound for small-set expansion. To get a bound on hypergraph

multi-partitioning (Theorem 4.2.15), at a high level, we use a stronger form of our

hypergraph small-set expansion bound together with the framework of [70].

5If the vi’s are the spectral embedding vectors, then one could also try to round the vectors vi⊗ vi.
This will have the property 〈vi ⊗ vi, vj ⊗ vj〉 > 0. However, by rounding these vectors one can only
hope to prove a O

(√
γk2polylog k

)
(see [72]).

6Length of an edge e under X is defined as maxi,j∈e |Xi −Xj |.
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4.4 Spectral Gap of Hypergraphs

We define the Spectral Gap of a hypergraph to be γ2, the second smallest eigenvalue

of its Laplacian operator.

4.4.1 Hypergraph Cheeger Inequality

In this section we prove the hypergraph Cheeger Inequality Theorem 4.2.11.

Theorem 4.4.1 (Restatement of Theorem 4.2.11). Given a hypergraph H,

γ2

2
6 φH 6

√
2γ2 .

Towards proving this theorem, we first show that a good line-embedding of the

hypergraph suffices to upper bound the expansion.

Proposition 4.4.2. Let H = (V,E,w) be a hypergraph with edge weights w : E → R+

and let Y ∈ [0, 1]|V | . Then there exists a set S ⊆ supp(Y ) such that

φ(S) 6

∑
e∈E w(e) maxi,j∈e |Yi − Yj|∑

i diYi

Proof. We define a family of functions {Fr : [0, 1]→ {0, 1}}r∈[0,1] as follows.

Fr(x) =


1 x > r

0 otherwise

Let Sr denote the support of the vector Fr(Y ). For any a ∈ [0, 1] it is easy to see that∫ 1

0

Fr(a) dr = a . (3)

Now, observe that if a − b > 0, then Fr(a) − Fr(b) > 0 ∀r ∈ [0, 1] and similarly if

a− b 6 0 then Fr(a)− Fr(b) 6 0 ∀r ∈ [0, 1]. Therefore,∫ 1

0

|Fr(a)− Fr(b)| dr =

∣∣∣∣∫ 1

0

Fr(a)dr −
∫ 1

0

Fr(b)dr

∣∣∣∣ = |a− b| . (4)
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Also, for a hyperedge e = {ai : i ∈ [r]} if |a1 − a2| > |ai − aj| ∀ai, aj ∈ e, then

|Fr(a1)− Fr(a2)| > |Fr(ai)− Fr(aj)| ∀r ∈ [0, 1] and ∀ai, aj ∈ e . (5)

Therefore,∫ 1

0

∑
ew(e) maxi,j∈e |Fr(Yi)− Fr(Yj)| dr∫ 1

0

∑
i diFr(Yi)dr

>

∑
ew(e) maxi,j∈e

∫ 1

0
|Fr(Yi)− Fr(Yj)| dr∫ 1

0

∑
i diFr(Yi)dr

(Using (5))

=

∑
ew(e) maxi,j∈e

∣∣∣∫ 1

0
Fr(Yi)−

∫ 1

0
Fr(Yj)

∣∣∣ dr∑
i di
∫ 1

0
Fr(Yi)dr

(Using (4))

=

∑
ew(e) maxi,j∈e |Yi − Yj|∑

i diYi
(Using (3)) .

Therefore, ∃r′ ∈ [0, 1] such that∑
ew(e) maxi,j∈e |Fr′(Yi)− Fr′(Yj)|∑

i diFr′(Yi)
6

∑
ew(e) maxi,j∈e |Yi − Yj|∑

i diYi
.

Since Fr′(·) is a value in {0, 1}, we have∑
ew(e) maxi,j∈e |Fr′(Yi)− Fr′(Yj)|∑

i∈V diFr′(Yi)
=

∑
ew(e)I [e is cut by Sr′ ]∑

i∈Sr′
di

= φ(Sr′) .

Therefore,

φ(Sr′) 6

∑
ew(e) maxi,j∈e |Yi − Yj|∑

i diYi
and Sr′ ⊂ supp(Y ) .

Proposition 4.4.3. Given a hypergraph H = (V,E,w) and a vector Y ∈ R|V | such

that 〈Y, µ∗〉 = 0, there exists a set S ⊂ V such that

φ(S) 6
√

2R (Y ) .

Proof. Since 〈Y, µ∗〉 = 0, we have

R (Y ) =

∑
e∈E w(e) maxi,j∈e(Yi − Yj)2∑
i diY

2
i − (

∑
i diYi)

2/(
∑

i di)
=

∑
e∈E w(e) maxi,j∈e(Yi − Yj)2∑
i,j didj (Yi − Yj)2 /(

∑
i di)

.
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Let X = Y +c1 for an appropriate c ∈ R such that |supp(X+)| = |supp(X−)| = n/2.

Then we get

R (Y ) =

∑
e∈E w(e) maxi,j∈e(Xi −Xj)

2∑
i,j didj (Xi −Xj)

2 /(
∑

i di)
=

∑
e∈E w(e) maxi,j∈e(Xi −Xj)

2∑
i diX

2
i − (

∑
i diXi)2/(

∑
i di)
> R (X) .

For any a, b ∈ R, we have

(a+ − b+)2 + (a− − b−)2 6 (a− b)2

Therefore we have

R (Y ) > R (X) =

∑
e∈E w(e) maxi,j∈e(Xi −Xj)

2∑
i diX

2
i

>

(∑
e∈E w(e) maxi,j∈e(X

+
i −X+

j )2
)

+
(∑

e∈E w(e) maxi,j∈e(X
−
i −X−j )2

)∑
i di(X

+
i )2 +

∑
i di(X

−
i )2

> min

{∑
e∈E w(e) maxi,j∈e(X

+
i −X+

j )2∑
i di(X

+
i )2

,

∑
e∈E w(e) maxi,j∈e(X

−
i −X−j )2∑

i di(X
−
i )2

}

Let Z ∈ {X+, X−} be the vector corresponding the minimum in the previous inequal-

ity.

∑
e∈E

w(e) max
i,j∈e

∣∣Z2
i − Z2

j

∣∣ =
∑
e∈E

w(e) max
i,j∈e
|Zi − Zj| (Zi + Zj)

6

√∑
e∈E

w(e) max
i,j∈e

(Zi − Zj)2

√
2
∑
i

diZ2
i

Therefore, ∑
e∈E w(e) maxi,j∈e

∣∣Z2
i − Z2

j

∣∣∑
i diZ

2
i

6
√

2R (Z) 6
√

2R (Y ) .

Invoking Proposition 4.4.2 with vector Z, we get that there exists a set S ⊂ V such

that

φ(S) 6
√

2R (Y ) .
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We are now ready to prove Theorem 4.2.11.

Proof of Theorem 4.2.11.

1. Let S ⊂ V be any set such that vol(S) 6 vol(V )/2, and let X ∈ Rn be the

indicator vector of S. Let Y be the component of X orthogonal to µ∗. Then

γ2 6

∑
ew(e) maxi,j∈e(Yi − Yj)2∑

i diY
2
i

=

∑
ew(e) maxi,j∈e(Xi −Xj)

2∑
i diX

2
i − (

∑
i diXi)2/(

∑
i di)

=
w(E(S, S̄))

vol(S)− vol(S)2/vol(V )
=

φ(S)

1− vol(S)/vol(V )

6 2φ(S) .

Since the choice of the set S was arbitrary, we get

γ2

2
6 φH .

2. Invoking Proposition 4.4.3 with v2 we get that

φH 6
√

2R (v2) =
√

2 γ2 .

4.4.2 Hypergraph Expander Mixing Lemma

Theorem 4.4.4 (Restatement of Theorem 4.2.12). Given a d-regular hypergraph

H = (V,E,w), for any two non-empty sets S, T ⊂ V∣∣∣∣|E(S, T )| − d |S| |T |
n

∣∣∣∣ 6 (1− γ2)d
√
|S| |T | .

Proof. Fix non-empty sets S, T ⊂ V . We construct a graph G = (V,E ′, w) as follows.

For each hyperedge e ∈ E, we add an edge to E ′ as follows. If e ∈ E is cut by both S

and T , then we pick any one vertex from e ∩ S and any one vertex from e ∩ T . If e is

cut only by S (resp. T ), then we pick any one vertex from e ∩ S (resp. e ∩ T ) and

any one vertex from e ∩ S̄ (resp. e ∩ T̄ ). If e is cut neither by S nor by T , then we
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pick any pair of vertices. Next, we add sufficient self-loops at each vertex to make G

d-regular. We let A be the normalized adjacency matrix of G. By construction, it is

easily verified that

χTSAχT = 1
d
· |E(S, T )| (6)

χTS (I − A)χS = φ(S)χTSχS >
γ2

2
χTSχS (Using Theorem 4.2.11) (7)

χTT (I − A)χT = φ(T )χTTχT >
γ2

2
χTTχT (Using Theorem 4.2.11) (8)

Let YS be the component of χS orthogonal to 1, i.e.

YS
def
= χS −

〈
χS,1/

√
n
〉

1/
√
n = χS −

|S|
n

1 .

Then,

Y T
S AYS = Y T

S YS − Y T
S (I − A)YS = Y T

S YS − χTS (I − A)χS

6 (1− γ2/2)χTSχS (Using ‖YS‖ 6 ‖χS‖ and (7)) (9)

Similarly,

Y T
T AYT 6 (1− γ2/2)χTTχT (10)

Now,

1

d
· |E(S, T )| = χTSAχT =

(
|S|
n

1 + YS

)T
A

(
|T |
n

1 + YT

)
= |S| |T | · 1

n2
· 1TA1 +

|T |
n
Y T
S A1 +

|S|
n
Y T
T A1 + Y T

S AYT

= |S| |T | · 1

n2
· n+ 0 + 0 + Y T

S AYT (A1 = 1 and 〈YS,1〉 = 0)

Since A � 0 ,∣∣∣∣1d · |E(S, T )| − |S| |T |
n

∣∣∣∣ 6√Y T
S AYS

√
Y T
T AYT (Cauchy-Schwarz Inequality)

6 (1− γ2/2) ‖χS‖ ‖χT‖ (Using (9) and (10))

6 (1− γ2/2)
√
|S| |T | (‖χS‖ 6

√
|S|) .

This finishes the proof of the theorem.
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4.4.3 Hypergraph Diameter

In this section we prove Theorem 4.2.13.

Theorem 4.4.5 (Restatement of Theorem 4.2.13). Given a hypergraph H = (V,E,w)

with all its edges having weight 1, its diameter is at most

diam(H) 6 O

(
log n

log 1
1−γ2

)
.

Remark 4.4.6. A weaker bound on the diameter follows from Theorem 4.2.17

diam(H) 6 O
(

log n

γ2

)
.

We start by defining the notion of operator powering.

Definition 4.4.7 (Operator Powering). For a t ∈ Z>0, and an operator M : Rn → Rn,

for a vector X ∈ Rn we define M t(X) as follows

M t(X)
def
= M(M t−1(X)) and M1(X)

def
= M(X) .

Next, we state bound the norms of powered operators.

Lemma 4.4.8. For vector ω ∈ Rn, such that 〈ω,1〉 = 0,∥∥M t(ω)
∥∥ 6 (1− γ2)t/2 ‖ω‖ .

Proof. We prove this by induction on t. Let v1, . . . , vn be the eigenvectors of Aω and

let λ1, . . . , λn be the the corresponding eigenvalues. Let ω =
∑n

i=1 civi for appropriate

constants ci ∈ R. Then, for t = 1,

‖M(ω)‖
‖ω‖

=
‖Aω ω‖
‖ω‖

=

√∑
i c

2
iλ

2
i∑

i c
2
i

6

√∑
i c

2
iλi∑
i c

2
i

(Since each λi ∈ [0, 1], λ2
i 6 λi)

=

√
ωTM(ω)

ωTω
6
√

1− γ2 . (11)

Similarly, for t > 1.∥∥M t(ω)
∥∥ =

∥∥M(M t−1(ω))
∥∥ 6 (1− γ2)1/2

∥∥M t−1(ω)
∥∥ 6 (1− γ2)t/2 ‖ω‖

where the last inequality follows from the induction hypothesis.
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Proof of Theorem 4.2.13. For the sake of simplicity, we will assume that the hyper-

graph is regular. Our proof easily extends to the general case. We define the operator

M ′ def
= I/2 +M/2. Then the eigenvalues of M ′ are 1/2 + γi/2, and the corresponding

eigenvectors are vi, for i ∈ [n].

Our proof strategy is as follows. Fix some vertex u ∈ V . Consider the vector

M ′(χu). This vector will have non-zero values at exactly those coordinates which

correspond to vertices that are at a distance of at most 1 from u (see also Remark 4.5.2).

Building on this idea, it follows that the vector M ′t(χu) will have non-zero values at

exactly those coordinates which correspond to vertices that are at a distance of at

most t from u. Therefore, the diameter of H is the smallest value t ∈ Z>0 such that

the vectors {M ′t(χu) : u ∈ V } have non-zero entries in all coordinates. We will upper

bound the value of such a t.

Fix two vertices u, v ∈ V . Let χu, χv be their respective characteristic vectors and

let ωu, ωv be the components of χu, χv orthogonal to 1 respectively

ωu
def
= χu −

1

n
and ωv

def
= χv −

1

n
.

Then

‖ωu‖ =

√(
χu −

1

n

)T (
χu −

1

n

)
=

√
1− 1

n
− 1

n
+

n

n2
=

√
1− 1

n
. (12)

Since 1 is invariant under M ′ we get

χTuM
′t(χv) =

(
1

n
+ ωu

)T
M ′t

(
1

n
+ ωv

)
=

(
1

n
+ ωu

)T (
1

n
+M ′t(ωv)

)
=

1

n
+ 0 +

1

n
1TM ′t(ωv) + ωTuM

′t(ωv) .

Now since M ′ is a dispersion process, if 〈ωu,1〉 = 0, then 〈M ′(ωu),1〉 = 0 and hence

〈M ′t(ωu),1〉 = 0. Therefore,

χTuM
′tχv =

1

n
+ ωTuM

′t(ωv) . (13)
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Now,

∣∣ωTuM ′t(ωv)
∣∣ 6 ‖ωu‖ ∥∥M ′t(ωv)

∥∥ 6 (1− γ2

2

)t/2
‖ωu‖ ‖ωv‖ (Using Lemma 4.4.8).

Therefore, from (13) and (12),

χTuM
′tχv >

1

n
−
(

1− γ2

2

)t/2
‖ωu‖ ‖ωv‖ >

1

n
−
(

1− γ2

2

)t/2(
1− 1

n

)
. (14)

Therefore, for

t >
2 log(n/2)

log
(

2
1−γ2

) ,
we have χTuM

′tχv > 0. Therefore,

diam(H) 6
log n

log
(

1
1−γ2

) .

4.5 The Hypergraph Dispersion Process

In this section we will prove Theorem 4.2.6, Proposition 4.2.8, Theorem 4.2.17 and

Theorem 4.2.18. For the sake of simplicity, we assume that the hypergraph is regular.

All our proofs easily extend to the general case.

Definition 4.5.1 (Projected Continuous Time Hypergraph Dispersion Process).
Given a hypergraph H = (V,E,w), a projection operator ΠS : Rn → Rn for some

subspace S of Rn and a function ω0 : V → R such that ω0 ∈ S, we (recursively)
define the functions on the vertices at time t+ dt, for an infinitesimal time duration
dt, as a function of ωt as follows

ωt+dt def
= ΠS ((1− dt)I + dtM) ◦ ωt .

Figure 7: Projected Continuous Time Hypergraph Dispersion Process

Remark 4.5.2. We make a remark about the matrices AX for vectors X ∈ Rn in

Definition 4.2.1 when being used in the continuous time processes of Definition 4.2.9
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and Definition 4.5.1. For a hyperedge e ∈ E, we compute the pair of vertices

(ie, je) = argmaxi,j∈e (Xi −Xj)

and add an edge between them in the graph GX . If the pair is not unique, then we

define

Ste
def
=

{
i ∈ e : ωt(i) = max

j∈e
ωt(j)

}
and Rt

e
def
=

{
i ∈ e : ωt(i) = min

j∈e
ωt(j)

}
and add to GX a complete weighted bipartite graph on Ste×Rt

e with each edge having

weight w(e)/ (|St| |Rt|).

A natural thing one would try first is to pick a vertex, say i1, from Ste and a vertex,

say j1, from Rt
e and add an edge between {i1, j1}. However, in such a case, after 1

infinitesimal time unit, the pair (i1, j1) will no longer have the largest difference in

values of X among the pairs in e× e, and we will need to pick some other suitable

pair from Ste×Rt
e \ {(i1, j1)}. We will have to repeat this process of picking a different

pair of vertices after each infinitesimal time unit. Moreover, each of these infinitesimal

time units will have Lebesgue measure 0. Therefore, we avoid this difficulty by adding

a suitably weighted complete graph on Ste ×Rt
e without loss of generality.

Note that when ΠS = I, then Definition 4.5.1 is the same as Definition 4.2.9. We

need to study the Dispersion Process in this generality to prove Theorem 4.2.6 and

Proposition 4.2.8.

Lemma 4.5.3 (Main Technical Lemma). Given a hypergraph H = (V,E,w), and a

function ω0 : V → R, the Dispersion process in Definition 4.5.1 satisfies the following

properties.

1.

d ‖ωt‖2

dt
= −2R

(
ωt
) ∥∥ωt∥∥2 ∀t > 0 . (15)

2.

R
(
ωt+dt

)
6 R

(
ωt
)

∀t, dt > 0 . (16)
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Proof. Fix a time t > 0.

1. Let

A
def
= Aωt and A′ = (1− dt)I + dtA .

Then

∥∥ωt∥∥2 −
∥∥ωt+dt

∥∥2
=
〈
ωt − ωt+dt, ωt + ωt+dt

〉
= (ωt)T (I − ΠSA

′)(I + ΠSA
′)ωt

Now, limdt→0(I + ΠSA
′) = I + ΠS. By construction, we have ωt ∈ S. Therefore,

∥∥ωt∥∥2 −
∥∥ωt+dt

∥∥2
= 2dt (ωt)T (I − A)ωt .

Therefore

d ‖ωt‖2

dt
= −2R

(
ωt
) ∥∥ωt∥∥2

.

2. Let

A1
def
= Aωt , A′1

def
= (1− dt)I + dtA1, A2

def
= Aωt+dt .

Then

R
(
ωt
)

=
(ωt)T (I − A1)ωt

(ωt)T (ωt)
and R

(
ωt+dt

)
=

(ωt+dt)T (I − A2)ωt+dt

(ωt+dt)T (ωt+dt)
.

From the definition of the process, we have ωt+dt = ΠSA
′
1ω

t and therefore

R
(
ωt+dt

)
=

(ωt)TA′1ΠS(I − A2)ΠSA
′
1ω

t

(ωt)TA′1ΠSA′1(ωt)
.

If A1 = A2, then we can finish the proof of this lemma by using Proposition 4.5.5.

Thefore, we will assume that A1 6= A2.

We make the following claim.

Claim 4.5.4. For Ste, R
t
e as in Remark 4.5.2, fe(t) defined as follows.

fe(t)
def
=

w(e)

|Ste| |Rt
e|

∑
i∈Ste,j∈Rte

(
ωt(i)− ωt(j)

)2

is a continuous function of t ∀t > 0.
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Proof. This follows from the definition of process. The projection operator

ΠS, being a linear operator, is continuous. Being a projection operator, it has

operator norm at most 1. For a fixed edge e, and vertex v ∈ e, the rate of change

of mass at v due to edge e is at most ωt(v)/d (from Definition 4.5.1). Since,

v belongs to at most d edges, the total rate of change of mass at v is at most

ωt(v).

Therefore, for any fix any time t0 and for every ε > 0,

|fe(t)− fe(t0)| 6 ε ∀ |t− t0| <
ε

2d
.

We will construct a matrix A such that

R
(
ωt
)
>

(ωt)T (I − A)ωt

(ωt)T (ωt)

and

R
(
ωt+dt

)
6

(ωt)TA′ΠS(I − A)ΠSA
′ωt+dt

(ωt)TA′ΠSA′(ωt)

where A′ = (1 − dt)I + dtA. This will suffice to prove this lemma by using

Proposition 4.5.5.

We will start with an empty graph (i.e. no edges) G on the vertex set V and

add weighted edges to it. At the end we will let A be the normalized adjacency

matrix of G.

Recall from Remark 4.5.2 that

Ste
def
=

{
i ∈ e : ωt(i) = max

j∈e
ωt(j)

}
and Rt

e
def
=

{
i ∈ e : ωt(i) = min

j∈e
ωt(j)

}
.

The contribution of e to the numerator of R (ωt) is

w(e)

|Ste| |Rt
e|

∑
i∈Ste,j∈Rte

(
ωt(i)− ωt(j)

)2
.
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If Ste ⊆ St+dt
e and Rt

e ⊆ Rt+dt
e , then

w(e)

|St+dt
e | |Rt+dt

e |
∑

i∈St+dt
e ,j∈Rt+dt

e

(
ωt+dt(i)− ωt+dt(j)

)2

=
w(e)

|Ste| |Rt
e|

∑
i∈Ste,j∈Rte

(
ωt+dt(i)− ωt+dt(j)

)2
. (17)

In this case we add to G the complete weighted bipartite graph on Ste ×Rt
e with

each edge having weight w(e)/ (|Ste| |Rt
e|).

Next, we consider the case when Ste 6 ⊂St+dt
e for some e ∈ E (the case Rt 6 ⊂Rt+dt

can be handled in the same way). Let B ⊂ E be the set of all such edges. By

taking dt to be small enough and breaking ties arbitrarily we can assume that

St+dt
e ( Ste ∀e ∈ B. By making dt sufficiently small, we may assume that for

each e ∈ B, ∃v ∈ Ste \ St+dt
e such that v /∈ St+ε ∀ε ∈ (0, dt]. We define the

following limiting quantities.

f lim
e

def
= lim

ε→0+
fe(t+ ε), Slim

e
def
= ∩ε>0S

t+ε
e Rlim

e
def
= ∩ε>0R

t+ε
e .

Then, by construction,

Slim
e = St+dt

e and Rlim
e = Rt+dt

e . (18)

Then, from Claim 4.5.4, we get

fe(t) = f lim
e =

w(e)

|Slim
e | |Rlim

e |
∑

i∈Slim
e ,j∈Rlim

e

(
ωt(i)− ωt(j)

)2

=
w(e)

|St+dt
e | |Rt+dt

e |
∑

i∈St+dt
e ,j∈Rt+dt

e

(
ωt(i)− ωt(j)

)2
. (19)

In this case we add to G a complete weighted bipartite graph on Slim
e × Rlim

e

with each edge having weight w(e)/
(∣∣Slim

e

∣∣ ∣∣Rlim
e

∣∣).
We add self loops at each vertex of G to make this graph d-regular. And we let

A be the normalized adjacency matrix of G. Note that A is also the limit point
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of Aωt+ε (the limit is well defined as, Slim
e , Rlim

e are well defined as shown above):

A = lim
ε→0+

Aωt+ε (20)

and using (19)

(ωt)T (I − A)ωt =
∑
e∈B

f lim
e +

∑
e∈E\B

fe(t) = (ωt)T (I − A1)ωt . (21)

Therefore,

R
(
ωt+dt

)
=

(ωt)TA′1ΠS(I − A2)ΠSA
′
1(ωt)

(ωt)TA′1ΠSA′1(ωt)

=
(ωt)TA′1ΠS(I − A)ΠSA

′
1(ωt)

(ωt)TA′1ΠSA′1(ωt)
(By construction; using (17), (18))

=
(ωt)TA′ΠS(I − A)ΠSA

′(ωt)

(ωt)TA′ΠSA′(ωt)
(From (20))

By definition, we have ωt ∈ S and ΠSA
′ωt ∈ S. Using this and I−A′ = dt(I−A)

we get

(ωt)TA′ΠS(I − A)ΠSA
′(ωt)

(ωt)TA′ΠSA′(ωt)

=
1

dt
· (ωt)T (ΠSA

′ΠS)(I − (ΠSA
′ΠS))(ΠSA

′ΠS)(ωt)

(ωt)T (ΠSA′ΠS)(ΠSA′ΠS)(ωt)
.

Therefore,

R
(
ωt+dt

)
=

1

dt

(ωt)T (ΠSA
′ΠS)(I − (ΠSA

′ΠS))(ΠSA
′ΠS)(ωt)

(ωt)T (ΠSA′ΠS)(ΠSA′ΠS)(ωt)

6
1

dt

(ωt)T (I − ΠSA
′ΠS)(ωt)

(ωt)T (ωt)

(Using Proposition 4.5.5 with ΠSA
′ΠS )

=
(ωt)T (I − A)(ωt)

(ωt)T (ωt)
(Using 1− A′ = dt(I − A) and ωt ∈ S )

=
(ωt)T (I − A1)(ωt)

(ωt)T (ωt)
(Using (21))

= R
(
ωt
)
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Proposition 4.5.5. Let A be a symmetric n× n matrix with eigenvalues α1, . . . , αn

and corresponding eigenvectors v1, . . . , vn such that A � 0. Then, for any X ∈ Rn

XT (I − A)X

XTX
− XTAT (I − A)AX

XTATAX
= 2

∑
i,j c

2
i c

2
j(αi − αj)2(αi + αj)∑
i c

2
i

∑
i c

2
iα

2
i

> 0

where X =
∑

i civi.

Proof. We first note that the eigenvectors of I − A are also v1, . . . , vn with 1 −

α1, . . . , 1− αn being the corresponding eigenvalues.

XT (I − A)X

XTX
− XTAT (I − A)AX

XTATAX

=

∑
i c

2
i (1− αi)∑
i c

2
i

−
∑

i c
2
iα

2
i (1− αi)∑
i c

2
iα

2
i

= 2

∑
i 6=j c

2
i c

2
j

(
(1− αi)α2

j + (1− αj)α2
i − (1− αi)α2

i − (1− αj)α2
j

)∑
i c

2
i

∑
i c

2
iα

2
i

= 2

∑
i,j c

2
i c

2
j(αi − αj)2(αi + αj)∑
i c

2
i

∑
i c

2
iα

2
i

4.5.1 Eigenvalues in Subspaces

Theorem 4.5.6 (Formal statement of of Theorem 4.2.6). Given a hypergraph H, for

every subspace S of Rn, the operator ΠSL has a eigenvector, i.e. there exists a vector

v ∈ S and a γ ∈ R such that

ΠSL(v) = γ v and γ = min
X∈S

XTΠSL(X)

XTX
.

Proof. Fix a subspace S of Rn. Then γ is also fixed as above. We define the set of

vectors Uγ as follows.

Uγ
def
=
{
X ∈ S : XTX = 1 and XTΠSL(X) = γ

}
. (22)

From the definition of γ, we get that Uγ is non-empty. Now, the set Uγ could

potentially have many vectors. We will show that at least one of them will be an

83



eigenvector. As a warm up, let us first consider the case when |Uγ| = 1. Let v denote

the unique vector in Uγ. We will show that v is an eigenvector of ΠSL. To see this,

we define the unit vector v′ as follows.

v′
def
=

ΠSM(v)

‖ΠSM(v)‖
.

Since v is the vector in S having the smallest value of R (·), we get

R (v) 6 R (v′) .

But from Lemma 4.5.3(2), we get the R (·) is a monotonic function, i.e. R (v′) 6 R (v)

. Therefore

R (v) = R (v′) .

Therefore, v′ also belongs to Uγ . But we assumed that |Uγ| = 1. Therefore, v′ = v, or

in other words v is an eigenvector of ΠSL.

ΠSL(v) = (1− ‖ΠSM(v)‖) v = γ v .

The general case when |Uγ| > 1 requires more work, as the operator L is non-linear.

We follow the general idea of the case when |Uγ| = 1. We let ω0 def
= v for any v ∈ Uγ.

We define the set of unit vectors {ωt}t∈[0,1] recursively as follows (for an infinitesimally

small dt).

ωt+dt def
=

((1− dt)I + dt ΠSM) ◦ ωt

‖((1− dt)I + dt ΠSM) ◦ ωt‖
. (23)

As before, we get that

ωt ∈ Uγ ∀t > 0 . (24)

If for any t, ωt = ωt
′ ∀t′ ∈ [t, t+ dt], then ωt = ωt

′ ∀t′ > t, and we have that ωt is

an eigenvector of ΠSM , and hence also of ΠSL (of eigenvalue γ). Therefore, let us

assume that ωt 6= ωt+dt ∀t > 0.

Let Aω be the set of support matrices of {ωt}t>0, i.e.

Aω
def
= {Aωt : t > 0} .
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Note that unlike the set {ωt}t>0 which could potentially be of uncountably infinite

cardinality, the Aω is of finite size. A matrix AX is only determined by the subsets of

maximal and minimal vertices (under X) in each hyperedge. Therefore,

|Aω| 6
(
22r
)m

<∞ .

Now, since |Aω| is finite, (using Lemma 4.5.7) there exists p, q ∈ [0, 1], p < q such that

Aωt = Aωp ∀t ∈ [p, q] .

For the sake of brevity let A
def
= Aωp denote this matrix.

We now show that ωp is an eigenvector of ΠSL. From (24), we get that for

infinitesimally small dt (in fact anything smaller than q − p will suffice),

R (ωp)−R
(
ωp+dt

)
= 0 .

Let α1, . . . , αn be the eigenvalues of A′
def
= ((1− dt)I + dtA) and let v1, . . . , vn be the

corresponding eigenvectors. Since A is a stochastic matrix,

A � (1− 2dt)I � 1

2
I or αi >

1

2
∀i . (25)

Let c1, . . . , cn ∈ R be appropriate constants such that

ωp =
∑
i

civi .

Then using Proposition 4.5.5, we get that

0 = R (ωp)−R
(
ωp+dt

)
=

1

dt
·
(

(ωp)T (I − ΠSA
′)ωp

(ωp)Tωp
− (ωp)TA′ΠS(I − ΠSA

′)ΠSA
′ωp

(ωp)TA′ΠSA′ωp

)
=

1

dt
2

∑
i,j c

2
i c

2
j(αi − αj)2(αi + αj)∑
i c

2
i

∑
i c

2
iα

2
i

.

Since, all αi > 1/2 (from (25)), the last term can be zero if and only if for some

eigenvalue α ∈ {αi : i ∈ [n]},

ci 6= 0 if and only if αi = α .

85



Or equivalently, ωp is an eigenvector of A, and ωt = ωp ∀t ∈ [p, q]. Hence, by recursion

ωt = ωp ∀t > p .

Therefore,

ΠSL(ωp) =

(
1− α

dt

)
ωp

Since we have already established that R (ωp) = γ, this finishes the proof of the

theorem.

Proposition 4.2.8 follows from Theorem 4.5.6 as a corollary.

Proof of Proposition 4.2.8 . We will prove this by induction on k. The proposition is

trivially true of k = 1. Let us assume that the proposition holds for k − 1. We will

show that it holds for k. Recall that vk is defined as

vk = argminX
XTΠ⊥Sk−1

L(X)

XTΠ⊥Sk−1
X

.

Then from Theorem 4.5.6, we get that vk is indeed an eigenvector of Π⊥Sk−1
L with

eigenvalue

γk = min
X

XTΠ⊥Sk−1
L(X)

XTΠ⊥Sk−1
X

.

Lemma 4.5.7. Let f : [0, 1] → {1, 2, . . . , k} be any discrete function. Then there

exists an interval (a, b) ⊂ [0, 1], a 6= b, such that for some α ∈ {1, 2, . . . , k}

f(x) = α ∀x ∈ (a, b) .

Proof. Let υ(·) denote the standard Lebesgue measure on the real line. Then since f

is a discrete function on [0, 1] we have

k∑
i=1

υ
(
f−1(i)

)
= 1 .
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Then, for some α ∈ {1, 2, . . . , k}

υ
(
f−1(α)

)
>

1

k
.

Therefore, there is some interval (a, b) ⊂ f−1(α) such that

υ ((a, b)) > 0 .

This finishes the proof of the lemma.

4.5.2 Upper bounds on the Mixing Time

Theorem 4.5.8 (Restatement of Theorem 4.2.17). Given a hypergraph H = (V,E,w),

for all starting probability distributions µ0 : V → [0, 1], the Hypergraph Dispersion

Process (Definition 4.2.9) satisfies

tmix
δ

(
µ0
)
6

log(n/δ)

γ2

.

Proof. Fix a distribution µ0 on V . For the sake of brevity, let At denote Aµt and let

A′t denote ((1− dt)I + dtAµt). We first note that

A′t � (1− 2dt)I+ � 0 ∀t . (26)

This follows from the fact that At being a stochastic matrix, satisfies I � At � −I.

Let 1 > α2 > . . . > αn be the eigenvalues of At and let 1/
√
n, v2, . . . , vn be the

corresponding eigenvectors. Let α′i
def
= (1 − dt) + dtαi for i ∈ [n] be the eigenvalues

of A′t. Writing µt in this eigen-basis, let c1, . . . , cn ∈ R be appropriate constants such

that µt =
∑

i civi. Since µt is a probability distribution on V , its component along

the first eigenvector v1 = 1/
√
n is

c1v1 =

〈
µt,

1√
n

〉
1√
n

=
1

n
.

Then, using the fact that α′1 = (1− dt) + dt · 1 = 1.

µt+dt = A′t µ
t =

n∑
i=1

α′icivi =
1

n
+

n∑
i=2

α′icivi . (27)
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Note that at all times t > 0, the component of µt along 1 (i.e. c1v1) remains unchanged.

Since for regular hypergraphs µ∗ = 1/n,

∥∥µt+dt − µ∗
∥∥ =

∥∥µt+dt − 1/n
∥∥ =

∥∥∥∥∥
n∑
i=2

α′icivi

∥∥∥∥∥ =

√√√√ n∑
i=2

α′2i c
2
i . (28)

Since all the α′i > 0 (using (26)) and α2 > αi ∀i > 2, α′22 > α′2i ∀i > 2. Therefore,

from (28) ∥∥µt+dt − 1/n
∥∥ 6 α′2

√√√√ n∑
i=2

c2
i = α′2

∥∥µt − 1/n
∥∥ . (29)

We defined γ2 to the second smallest eigenvalue of L. Therefore, from the definition

of L, it follows that (1− γ2) is the second largest eigenvalue of M . In this context,

this implies that

α2 6 1− γ2 .

Therefore, from the definition of α′2

α′2 = (1− dt) + dtα2 6 (1− dt) + dt (1− γ2) = 1− dt γ2 .

Therefore, from (29),∥∥µt+dt − 1/n
∥∥ 6 (1− dt γ2)

∥∥µt − 1/n
∥∥ 6 e−dt γ2

∥∥µt − 1/n
∥∥ .

Integrating with respect to time, from time 0 to t,∥∥µt − 1/n
∥∥ 6 e−γ2t

∥∥µ0 − 1/n
∥∥ 6 2e−γ2t .

Therefore, for t > log(n/δ)/γ2,∥∥µt − 1/n
∥∥ 6 δ√

n
and

∥∥µt − 1/n
∥∥

1
6
√
n ·
∥∥µt − 1/n

∥∥ 6 δ .

Therefore,

tmix
δ

(
µ0
)
6

log(n/δ)

γ2

.

Remark 4.5.9. Theorem 4.2.17 can also be proved directly by using Lemma 4.5.3,

but we believe that this proof is more intuitive.
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4.5.3 Lower bounds on Mixing Time

Next we prove Theorem 4.2.18

Theorem 4.5.10 (Restatement of Theorem 4.2.18). Given hypergraph H = (V,E,w),

there exists a probability distribution µ0 on V such that ‖µ0 − 1/n‖1 > 1/2 and

tmix
δ

(
µ0
)
>

log(1/δ)

16 γ2

.

In an attempt to motivate why Theorem 4.2.18 is true, we first prove the following

(weaker) lower bound.

Theorem 4.5.11. Given a hypergraph H = (V,E,w), there exists a probability

distribution µ0 on V such that ‖µ0 − 1/n‖1 > 1/2 and

tmix
δ

(
µ0
)
>

log(1/δ)

φH
.

Proof Sketch. Let S ⊂ V be the set which has the least value of φH(S). Let µ0 : V →

[0, 1] be the probability distribution supported on S that is stationary on S, i.e.

µ0(i) =


1
|S| i ∈ S

0 i /∈ S

Then, for an infinitesimal time duration dt, only the edges in E(S, S̄) will be active

in the dispersion process, and for each edge e ∈ E(S, S̄), the vertices in e ∩ S will be

sending 1/d fraction of their mass to the vertices in e ∩ S̄. Therefore,

µ0(S)− µdt(S) =
∑

e∈E(S,S̄)

1

d
· 1

|S|
dt =

∣∣E(S, S̄)
∣∣

d |S|
dt = φH dt .

In other words, mass escapes from S at the rate of φH initially. It is easy to

show that the rate at which mass escapes from S is a non-increasing function of time.

Therefore, it will take at least Ω(1/φH) units of time to remove 1/2 of the mass from

the S. Thus the lower bound follows.
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Now, we will work towards proving Theorem 4.2.18.

Lemma 4.5.12. For any hypergraph H = (V,E,w) and any probability distribution

µ0 on V , let α = ‖µ0 − 1/n‖2
. Then

tmix
δ

(
µ0
)
>

log(α/δ)

4R (µ0 − 1/n)
.

Proof. For a probability distribution µt on V , let ωt be its component orthogonal to

µ∗ = 1/
√
n

ωt
def
= µt −

〈
µt,

1√
n

〉
1√
n

= µt − 1

n
.

As we saw before (in (27)), only ωt, the component of µt orthogonal to 1, changes

with time; the component of µt along 1 does not change with time. For the sake of

brevity, let λ = R (µ0 − 1/n). Then, using Lemma 4.5.3(2) and the definition of ω,

we get that

R
(
ωt
)
6 R

(
ω0
)

= λ ∀t > 0 .

Now, using this and Lemma 4.5.3(1) we get

d ‖ωt‖2

‖ωt‖2 = −2R
(
ωt
)

dt > −2λ dt .

Integrating with respect to time from 0 to t, we get

log
∥∥ωt∥∥2 − log

∥∥ω0
∥∥2
> −2λ t .

Therefore

e−2λt 6
‖ωt‖2

‖ω0‖2 =
‖µt − 1/n‖2

‖µ0 − 1/n‖2 =
‖µt − 1/n‖2

α
∀t > 0 .

Hence ∥∥µt − 1/n
∥∥

1
>
∥∥µt − 1/n

∥∥ > 2δ for t 6
log(α/δ)

4λ
.

Thus

tmix
δ

(
µ0
)
>

log(α/δ)

4R (µ0 − 1/n)
.
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Lemma 4.5.13. Given a hypergraph H = (X,E) and a vector X ∈ RV , there exists

a polynomial time algorithm to compute a probability distribution µ on V satisfying

‖µ− 1/n‖1 >
1

2
and R (µ− 1/n) 6 4R (X − 〈X,1〉1/n) .

Proof. For the sake of building intuition, let us consider the case when 〈X,1〉 = 0. As

a first attempt, one might be tempted to consider the vector 1/n+X. This vector

might not be a probability distribution if X(i) < −1/n for some coordinate i. A

simple fix for this would to consider the vector µ′
def
= 1/n + X/(n ‖X‖∞). This is

clearly a probability distribution on the vertices, but∥∥∥∥µ′ − 1

n

∥∥∥∥
1

=

∥∥∥∥ X

n ‖X‖∞

∥∥∥∥
1

=
‖X‖1

n ‖X‖∞

and ‖X‖1 /(n ‖X‖∞) � 1/2 depending on X, for e.g. when X is very sparse.

Therefore, we must proceed differently.

Since we only care about R (X − 〈X,1〉1/n), w.l.o.g. we may assume that

|supp(X+)| = |supp(X−)| by simply setting X := X+c1 for some appropriate constant

c. W.l.o.g. we may also assume that ‖X+‖ > ‖X−‖. Let ω be the component of X+

orthogonal to 1

ω
def
= X+ − 〈X

+,1〉
n

1 = X+ − ‖X
+‖1

n
1 .

By definition, we get that 〈ω,1〉 = 0. Now,

‖ω‖1 >
∑

i∈supp(ω−)

|ω(i)| >
∑

i∈supp(X−)

|ω(i)| > n

2

‖X+‖1

n
>
‖X+‖1

2
. (30)

We now define the probability distribution µ on V as follows.

µ
def
=

1

n
+

ω

2 ‖ω‖1

.

We now verify that µ is indeed a probability distribution, i.e. µ(i) > 0 ∀i ∈ V . If

vertex i ∈ supp(X+), then clearly µ(i) > 0. Lets consider an i ∈ supp(X−).

ω(i)

2 ‖ω‖1

=
− |X+| /n

2 ‖ω‖1

> − 1

n
(Using (30)) .
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Therefore, µ(i) = 1/n+ω(i)/(2 ‖ω‖1) > 0 in this case as well. Thus, µ is a probability

distribution on V . Next, we work towards bounding R (µ− 1/n).

∑
e

w(e) max
i,j∈e

(µ(i)− µ(j))2 =
1

4 ‖ω‖2
1

·
∑
e

w(e) max
i,j∈e

(ω(i)− ω(j))2

6
1

4 ‖ω‖2
1

·
∑
e

w(e) max
i,j∈e

(X(i)−X(j))2 . (31)

We now bound ‖ω‖2.

‖ω‖2
2 =

∥∥X+ −
〈
X+,1

〉
1/n

∥∥2
=
∥∥X+

∥∥2 − 〈X
+,1〉2

n
=
∥∥X+

∥∥2 − ‖X
+‖2

1

n
. (32)

Since |supp(X+)| 6 n/2, ∥∥X+
∥∥2

1
6
n

2

∥∥X+
∥∥2

.

Combining this with (32), and using our assumption that ‖X+‖ > ‖X−‖, we get

‖ω‖2
2 =

∥∥X+
∥∥2 − ‖X

+‖2
1

n
>
‖X+‖2

2
>
‖X‖2

4
.

Therefore,

‖µ− 1/n‖2 =
‖ω‖2

4 ‖ω‖2
1

>
1

4 ‖ω‖2
1

· ‖X‖
2

4
>

1

4 ‖ω‖2
1

· ‖X − 〈X,1〉1/n‖
2

4
. (33)

Therefore, using (31) and (33), we get

R (µ− 1/n) 6 4R (X − 〈X,1〉1/n)

and by construction

‖µ− 1/n‖1 =

∥∥∥∥ ω

2 ‖ω‖1

∥∥∥∥
1

=
1

2

We are now ready to prove Theorem 4.2.18.

Proof of Theorem 4.2.18.

Let X = v2. Using Lemma 4.5.13, there exists a probability distribution µ on V

such that

‖µ− 1/n‖1 >
1

2
and R (µ− 1/n) 6 4γ2
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and for this distribution µ, using Lemma 4.5.12, we get

tmix
δ (µ) >

log(1/δ)

16 γ2

.

Remark 4.5.14. The distribution in Theorem 4.2.18 is not known to be computable

in polynomial time. We can compute a probability distribution µ in polynomial time

such

‖µ− 1/n‖1 >
1

2
and tmix

δ (µ) >
log(1/δ)

cγ2 log r

for some absolute constant c. Using Theorem 6.1.5, we get a vector X ∈ Rn such that

R (X) 6 c1γ2 log r for some absolute constant c1. Using Lemma 4.5.13, we compute a

probability distribution ν on V such that

‖ν − 1/n‖1 >
1

2
and R (ν − 1/n) 6 4c1γ2 log r .

and for this distribution ν, using Lemma 4.5.12, we get

tmix
δ (ν) >

log(1/δ)

4c1γ2 log r
.

4.6 Higher Eigenvalues and Hypergraph Expansion

In this section we will prove Theorem 4.2.16 and Theorem 4.2.15.

4.6.1 Small Set Expansion

Theorem 4.6.1 (Formal Statement of Theorem 4.2.16). There exists an absolute

constant C such that every hypergraph H = (V,E,w) and parameter k < |V |, there

exists a set S ⊂ V such that |S| 6 16 |V | /k satisfying

φ(S) 6 C min
{√

r log k, k log k log log k
√

log r
}√

γk

where r is the size of the largest hyperedge in E.
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Our proof will be via a simple randomized polynomial time algorithm (Algo-

rithm 4.6.2) to compute a set S satisfying the conditions of the theorem. Let t1/k

denote the (1/k)th cap of the standard normal random variables, i.e., t1/k ∈ R is the

number such that for a standard normal random variable X, P
[
X > t1/k

]
= 1/k.

Algorithm 4.6.2.

1. Spectral Embedding. We first construct a mapping of the vertices in Rk

using the first k eigenvectors. We map a vertex i ∈ V to the vector ui defined
as follows.

ui(l) =
1√
di

vl(i) .

In other words, we map the vertex i to the vector formed by taking the ith

coordinate from the first k eigenvectors.

2. Random Projection. We sample a random Gaussian vector g ∼ N (0, 1)k

and define the vector X ∈ Rn as follows.

X(i)
def
=

{
‖ui‖2 if 〈ũi, g〉 > t1/k

0 otherwise
.

3. Sweep Cut. Sort the entries of the vector X in decreasing order and output
the level set having the least expansion (See Proposition 4.4.2).

Figure 8: Rounding Algorithm for Hypergraph Small set Expansion

We prove some basic facts about the Spectral Embedding (Lemma 4.6.3). The

analogous facts for graphs are well known (folklore).

Lemma 4.6.3 (Spectral embedding).

1. ∑
e∈E maxi,j∈ew(e) ‖ui − uj‖2∑

i di ‖ui‖
2 6 γk .

2. ∑
i∈V

di ‖ui‖2 = k .
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3. ∑
i,j∈V

didj 〈ui, uj〉2 = k .

Proof. The proof of this is identical to the proof of Lemma 3.3.1.

We will use the following variant of Lemma 3.3.13.

Lemma 4.6.4. Given two unit vectors ũi, ũj ∈ Rn,

P
g∼N (0,1)n

[
〈ũi, g〉 > t1/k and 〈ũj, g〉 > t1/k

]
6

1

k
〈ũi, ũj〉2 +

1

k2
.

Main Analysis. To prove that Algorithm 4.6.2 outputs a set which meets the

requirements of Theorem 4.6.1, we will show that the vector X meets the requirements

of Proposition 4.4.3. We will need an upper bound on the numerator of cut-value of

the vector X (Lemma 4.6.5), and a lower bound on the denominator of the cut-value

of the vector X (Lemma 4.6.6).

Lemma 4.6.5.

E

[∑
e∈E

w(e) max
i,j∈e
|Xi −Xj|

]
6 Õ

(
k
√
γk log r

)
.

Proof. For an edge e ∈ E we have

E
[
max
i,j∈e
|Xi −Xj|

]
6 max

i,j∈e

∣∣‖ui‖2 − ‖uj‖2
∣∣ P
g∼N (0,1)k

[
〈ũi, g〉 > t1/k ∀i ∈ e

]
+ max

i∈e
‖ui‖2 P

g∼N (0,1)n

[
〈ũi, g〉 > t1/k and 〈ũj, g〉 < t1/k for some i, j ∈ [r]

]
(34)

The first term can be bounded by

1

k
max
i,j∈e

∣∣‖ui‖2 − ‖uj‖2
∣∣ 6 1

k
max
i,j∈e
‖ui − uj‖ · ‖ui + uj‖ 6

2
1

k
max
i,j∈e
‖ui − uj‖max

i∈e
‖ui‖ . (35)
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Now for a hyperedge e ∈ E, using Lemma 2.5.8,

P
g∼N (0,1)n

[
〈ũi, g〉 > t1/k and 〈ũj, g〉 < t1/k for some i, j ∈ e

]
6 c1

k log k log log k

k
max
i,j∈e
‖ũi − ũj‖

√
log r . (36)

To bound the second term in (34), we will divide the edge set E into two parts E1

and E2 as follows.

E1
def
=

{
e ∈ E : max

i,j∈e

‖ui‖2

‖uj‖2 6 2

}
and E2

def
=

{
e ∈ E : max

i,j∈e

‖ui‖2

‖uj‖2 > 2

}
.

E1 is the set of those edges whose vertices have roughly equal lengths and E2 is the

set of those edges whose vertices have large disparity in lengths. For a hyperedge

e ∈ E1, using Proposition 2.6.2 and (36), the second term in (34) can be bounded by

2c1k log k log log k

k
max
l∈e
‖ul‖2 max

i,j∈e

‖ui − uj‖√
‖ui‖2 + ‖uj‖2

√
log r

6
2c1k log k log log k

k
max
l∈e
‖ul‖max

i,j∈e
‖ui − uj‖

√
log r . (37)

Let us analyze the edges in E2. Fix any e ∈ E2. Let e = {u1, . . . , ur} such that

‖u1‖ > ‖u2‖ > . . . > ‖ur‖. Then from the definition of E2 we have that

‖u1‖2

‖ur‖2 > 2 .

Rearranging, we get

‖u1‖2 6 2
(
‖u1‖2 − ‖ur‖2) = 2 〈u1 − ur, u1 + ur〉 6 2 ‖u1 + ur‖ ‖u1 − ur‖

6 2
√

2 max
i∈e
‖ui‖max

i,j∈e
‖ui − uj‖ .

Therefore for an edge e ∈ E2, using this and (36), the second term in (34) can be

bounded by

4

k
max
i∈e
‖ui‖max

i,j∈e
‖ui − uj‖ . (38)

Using (34), (35), (37) and(38) we get

E
[
max
i,j∈e
|Xi −Xj|

]
6

8c1k log k log log k

k
max
l∈e
‖ul‖max

i,j∈e
‖ui − uj‖

√
log r . (39)
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E

[∑
e∈E

w(e) max
i,j∈e
|Xi −Xj|

]

6
8c1k log k log log k

√
log r

k

∑
e∈E

w(e) max
i∈e
‖ui‖max

i,j∈e
‖ui − uj‖

6
8c1k log k log log k

√
log r

k

√∑
e∈E

w(e) max
i∈e
‖ui‖2

√∑
e∈E

w(e) max
i,j∈e
‖ui − uj‖2

6
8c1k log k log log k

√
log r

k

√∑
i∈V

di ‖ui‖2

√∑
e∈E

w(e) max
i,j∈e
‖ui − uj‖2

6 8c1k log k log log k
√
γk log r (Using Lemma 4.6.3)

Lemma 4.6.6.

P

[∑
i∈V

diXi >
1

2

]
>

1

8
.

Proof. For the sake of brevity, we define D
def
=
∑

i∈V diXi. We first bound E [D] as

follows.

E [D] =
∑
i∈V

di ‖ui‖2 P
g∼N (0,1)k

[
〈ũi, g〉 > t1/k

]
=
∑
i∈V

di ‖ui‖2 · 1

k
(From the definition of t1/k)

= k · 1

k
= 1 (Using Lemma 4.6.3) .

Next we bound the variance of D.

E
[
D2
]

=
∑
i,j

didj ‖ui‖2 ‖uj‖2 P
[
〈ũi, g〉 > t1/k and 〈ũi, g〉 > t1/k

]
6
∑
i,j

didj ‖ui‖2 ‖uj‖2

(
1

k
〈ũi, ũj〉2 +

1

k2

)
(Using Lemma 4.6.4 )

=
1

k

∑
i,j

didj 〈ui, uj〉2 +
1

k2

(∑
i

di ‖ui‖2

)2

=
1

k
· k +

1

k2
· k2 = 2 (Using Lemma 4.6.3) .
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Since D is a non-negative random variable, we get using the Paley-Zygmund

inequality (Fact 2.5.2) that

P
[
D >

1

2
E [D]

]
>

(
1

2

)2 E [D]2

E [D2]
=

1

4
· 1

2
=

1

8
.

This finishes the proof of the lemma.

We are now ready finish the proof of Theorem 4.6.1.

Proof of Theorem 4.6.1. By definition of Algorithm 4.6.2,

E [|supp(X)|] =
n

k
.

Therefore, by Markov’s inequality,

P
[
|supp(X)| 6 16

n

k

]
> 1− 1

16
. (40)

Using Markov’s inequality and Lemma 4.6.5,

P

[∑
e∈E

max
i,j∈e
|Xi −Xj| 6 256c1k log k log log k

√
γk log r

]
> 1− 1

32
. (41)

Therefore, using a union bound over (40), (41) and Lemma 4.6.5, we get that

P
[∑

e∈E w(e) maxi,j∈e |Xi −Xj|∑
i diXi

6 Õ
(
k
√
γk log r

)
and |supp(X)| 6 16

n

k

]
>

1

32
.

Invoking Proposition 4.4.3 on this vector X, we get that with probability at least

1/32, Algorithm 4.6.2 outputs a set S such that

φ(S) 6 Õ
(
k
√
γk log r

)
and |S| 6 16

n

k
. (42)

This finishes the proof of the theorem.
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4.6.2 Hypergraph Multi-partition

In this section we only give a sketch of the proof of Theorem 4.2.15, as this theorem

can be proven by essentially using Theorem 4.6.1 and some ideas studied in [70, 73].

Theorem 4.6.7 (Restatement of Theorem 4.2.15). For any hypergraph H = (V,E,w)

and any integer k < |V |, there exists a k-partition of V into {S1, . . . , Sk} such that

max
i∈[k]

φ(Si) 6 O
(
k4
√
γk log r

)
.

Moreover, for any k disjoint non-empty sets S1, . . . , Sk ⊂ V

max
i∈[k]

φ(Si) >
γk
2
.

Proof Sketch. The first part of the theorem can be proved in a manner similar to

Theorem 4.6.1, additionally using techniques from [70]. As before, we will start with

the spectral embedding and then round it to get k-partition where each piece has

small expansion (Algorithm 4.6.8). Note that Algorithm 4.6.8 can be viewed as a

recursive application of Algorithm 4.6.2; the algorithm computes a “small” set having

small expansion, removes it and recurses on the remaining graph.

Note that step 3a of Algorithm 4.6.8 is somewhat different from step 2 of Algo-

rithm 4.6.2. Nevertheless, with some more work, we can bound the expansion of the

set obtained at the end of step 3b by O
(
k3
√
γk log r

)
. The proof of this bound on

expansion follows from stronger forms of Lemma 4.6.5 and Lemma 4.6.6.

Once we have this, we can finish the proof of this theorem in a manner similar to

[70]. [70] studied k-partitions in graphs and gave an alternate proof of the graph version

of this theorem (Theorem 4.2.14). They implicitly show how to use an algorithm for

computing small-set expansion to compute a k-partition in graphs where each piece

has small expansion. A similar analysis can be used for hypergraphs as well, but

incurs an additional factor of O (min {r, k}) in the bound on the expansion of the sets.
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4.7 Reduction from Vertex Expansion in Graphs to Hyper-
graph Expansion

Theorem 4.7.1 (Restatement of Theorem 4.2.19). Given a graph G = (V,E) of

maximum degree d and minimum degree c1d (for some constant c1), there exists a

polynomial time computable hypergraph H = (V,E ′) on the same vertex set having the

hyperedges of cardinality at most d+ 1 such that for all sets S ⊂ V ,

c1φH(S) 6
1

d
· ΦV(S) 6 φH(S) .

Proof. We present the reduction as follows (Figure 10).

By construction, all hyperedges in E ′ have cardinality at most d + 1. Fix an

arbitrary set S ⊂ V .

We first show that ΦV(S) 6 dφH(S). Consider the vertices N in(S). Each vertex in

v ∈ N in(S) has a neighbor, say u, in S̄. Therefore the hyperedge {v} ∪Nout({v}) is

cut by S in H. Similarly, for each vertex v ∈ Nout(S), the hyperedge {v} ∪Nout({v})

is cut by S in H. By construction it follows that all these hyperedges are disjoint.

Therefore,

ΦV(S) =

∣∣N in(S)
∣∣+ |Nout(S)|
|S|

6 d ·
∣∣EH(S, S̄)

∣∣
d |S|

6 dφH(S) .

Now we verify that φH(S) 6 ΦV(S)/(c1d). For any hyperedge ({v} ∪Nout({v})) ∈

EH(S, S̄), the vertex v has to belong to either N in(S) or Nout(S). Therefore,

φH(S) 6

∣∣EH(S, S̄)
∣∣

c1d |S|
6

∣∣N in(S)
∣∣+ |Nout(S)|
c1d |S|

=
1

c1d
ΦV(S) .

4.8 Hypergraph Tensor Forms

Let A be an r-tensor. For any suitable norm ‖·‖�, e.g. ‖.‖2
2, ‖.‖

r
r, we define tensor

eigenvalues as follows.
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Definition 4.8.1. We define λ1, the largest eigenvalue of a tensor A as follows.

λ1
def
= max

X∈Rn

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖�

v1
def
= argmaxX∈Rn

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖�
We inductively define successive eigenvalues λ2 > λ3 > . . . as follows.

λk
def
= max

X⊥{v1,...,vk−1}

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖�

vk
def
= argmaxx⊥{v1,...,vk−1}

∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖�

Informally, the Cheeger’s Inequality states that a graph has a sparse cut if and

only if the gap between the two largest eigenvalues of the adjacency matrix is small;

in particular, a graph is disconnected if any only if its top two eigenvalues are equal.

In the case of the hypergraph tensors, we show that there exist hypergraphs having

no gap between many top eigenvalues while still being connected. This shows that

the tensor eigenvalues are not related to expansion in a Cheeger-like manner.

Proposition 4.8.2. For any k ∈ Z>0, there exist connected hypergraphs such that

λ1 = . . . = λk.

Proof. Let r = 2w for some w ∈ Z+. Let H1 be a large enough complete r-uniform

hypergraph. We construct H2 from two copies of H1, say A and B, as follows. Let

a ∈ E(A) and b ∈ E(B) be any two hyperedges. Let a1 ⊂ a (resp. b1 ⊂ b) be a set of

any r/2 vertices. We are now ready to define H2.

H2
def
= (V (A) ∪ V (B), (E(A) \ {a}) ∪ (E(B) \ {b}) ∪ {(a1 ∪ b1), (a2 ∪ b2)})

Similarly, one can recursively define Hi by joining two copies of Hi−1 (this can be

done as long as r > 22i). The construction of Hk can be viewed as a hypercube of

hypergraphs.
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Let AH be the tensor form of hypergraph H. For H2, it is easily verified that v1 = 1.

Let X be the vector which has +1 on the vertices corresponding to A and the −1 on

the vertices corresponding to B. By construction, for any hyperedge {i1, . . . , ir} ∈ E

Xi1 . . . Xir = 1

and therefore, ∑
i1,i2,...,ir

Ai1i2...irXi1Xi2 . . . Xir

‖X‖�
= λ1 .

Since 〈X,1〉 = 0, we get λ2 = λ1 and v2 = X. Similarly, one can show that

λ1 = . . . = λk for Hk. This is in sharp contrast to the fact that Hk is, by construction,

a connected hypergraph.

4.9 An Exponential Time Algorithm for computing Eigen-
values

Theorem 4.9.1. Given a hypergraph H = (V,E,w), there exists an algorithm running

in time Õ (2rm) which outputs all eigenvalues and eigenvectors of M .

Proof. Let X be an eigenvector M with eigenvalue γ. Then

γ X = M(X) = AXX .

Therefore, X is also an eigenvector of AX . Therefore, the set of eigenvalues of M is

a subset of the set of eigenvalues of all the support matrices {AX : X ∈ Rn}. Note

that a support matrix AX is only determined by the subsets of maximal and minimal

vertices (under X) in each hyperedge. Therefore,

|{AX : X ∈ Rn}| 6 (2r)m .

Therefore, we can compute all the eigenvalues and eigenvectors of M by enumerating

over all 2rm matrices.
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4.10 Conclusion

We introduced a new hypergraph Markov operator generalizing the random-walk

operator on graphs. We studied the eigenvalues of this operator, and showed that

we can prove numerous relations between them and the combinatorial properties of

graphs. All such relations generalize the corresponding relations for graphs. However,

many open problems remain. In short, we ask what properties of graphs and random

walks generalize to hypergraphs and this Markov operator? We pose here two concrete

open problems.

Problem 4.10.1 (k sparse-cuts). Does every hypergraph H = (V,E), for every

parameter k ∈ [n] have k disjoint non-empty subsets, say S1, . . . , Sk, such that

max
i∈[k]

φ(Si) 6 O
(√

γk log k
)

?

Problem 4.10.2 (Small Set Expansion). Does every hypergraph H = (V,E), for

every parameter k ∈ [n] have a set, say S, of size at most n/kΩ(1) and

φ(S) 6 O
(√

γk logk n
)

?

The results in this chapter appear in [69].
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Algorithm 4.6.8. Define k′
def
= k2.

1. Initialize t := 1 and Vt := V and C := φ.

2. Spectral Embedding. We first construct a mapping of the vertices in Rk

using the first k eigenvectors. We map a vertex i ∈ V to the vector ui defined
as follows.

ui(l) =
1√
di

vl(i) .

3. While l 6 100k3

(a) Random Projection. We sample a random Gaussian vector g ∼
N (0, 1)k and define the vector X ∈ Rn as follows.

X(i)
def
=

{
‖ui‖2 if 〈ũi, g〉 > t1/k′ and i ∈ Vl
0 otherwise

.

(b) Sweep Cut. Sort the entries of the vector X in decreasing order and
compute the set S having the least expansion (See Proposition 4.4.2). If∑

i∈S

‖ui‖2 > 1 +
1

2k
or φ(S) > 105k3

√
γk log r

then discard S, else C ← C ∪ {S} and Vl+1 ← Vl \ S .
(c) l← l + 1 and repeat.

4. Output C.

Figure 9: Rounding Algorithm for Many Sparse Cuts

Input: Graph G = (V,E) having maximum degree d.
We construct hypergraph H = (V,E ′) as follows. For every vertex v ∈ V , we add
the hyperedge {v} ∪Nout({v}) to E ′.

Figure 10: Reduction from Vertex Expansion in graphs to Hypergraph Expansion
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THE COMPLEXITY OF EXPANSION PROBLEMS

PART II

Approximation Algorithms



CHAPTER V

APPROXIMATION ALGORITHM FOR SPARSEST

K-PARTITION

5.1 Introduction

In this chapter, we present approximation algorithms for the Sparsest k-partition

problem in graphs. We define the problem formally as follows.

Problem 5.1.1 (Sparsest k-partition ). Given a graph G = (V,E,w) and a

parameter k, compute a partition {P1, . . . , Pk} of V into k non-empty pieces so as to

minimize

φkG({P1, . . . , Pk})
def
= max

i
φG(Pi).

The optimal value is called the k-sparsity of G and is denoted by φkG.

This problem is very similar to the k sparse-cuts problem studied in Chapter 3.

It differs from k sparse-cuts only in requiring that the sets form a partition of

the vertex set. Recall that Theorem 3.1.8 shows that φkG can not be bounded by

O
(√

λk polylog k
)
. Therefore, we study this problem with the view of obtaining

approximation algorithms for it.

Since we are not trying to relate φkG(G) to the graph spectra, we can afford to

work with a more general notion of expansion. Given a graph G = (V,E,w), where

w : V ∪ E → R+, we define the expansion of a set S ⊂ V as

φ(S)
def
=
w(E(S, S̄))∑

u∈V w(u)
.

Note that this definition of expansion coincides with our previous definition of expansion

when w(u) = du for each u ∈ V . The main results of this chapter are as follows.
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Theorem 5.1.2. There exists a randomized polynomial-time algorithm that given an

undirected graph G = (V,E,w) and parameters k ∈ Z+ (k > 2), ε > 0, w.h.p. outputs

a k′ > (1−ε)k partition such that each set has expansion at most Oε
(√

log n log k φkG
)
.

Theorem 5.1.3. There exists a randomized polynomial-time algorithm that given

an undirected graph G = (V,E,w) with vertex weights wu = du (du is the degree of

the vertex u) and parameters k ∈ N (k > 2), ε > 0, w.h.p. outputs a k′ > (1 − ε)k

partition such that each set has expansion at most Oε
(√

φkG log k
)

.

Note that for k = 2, Theorem 5.1.2 gives the same guarantee as that of Arora, Rao

and Vazirani [12] for Edge Expansion and Theorem 5.1.3 gives the same guarantee

as that of Cheeger’s inequality for Edge Expansion. A direct corollary of the work

of Raghavendra, Steurer and Tulsiani [88] is that Theorem 5.1.3 is optimal under the

SSE hypothesis.

SDP Relaxation. The proofs of our main theorems go via an SDP relaxation of φkG

and a rounding algorithm for it. As a first attempt, one would try an assignment

SDP à la Unique Games (as used in [54, 102, 27, 31]), but such relaxations have a

large integrality gap (see Section 5.6). The main difficulty in constructing an integer

programming formulation of Sparsest k-partition is that we do not know the sizes

of the sets in the optimal partition. We use a novel SDP relaxation which gets around

this obstacle. In this SDP , we manage to encode a partitioning of the graph as well

as a special measure on the vertices. This measure tells us how large every set must

be. Roughly speaking, we expect that in the solution obtained by the algorithm, the

measure of every set is approximately 1, irrespective of its size. We give a formal

description of the SDP in Section 5.2.1.

A natural assignment SDP relaxation has a large integrality gap (see Section 5.6).

To round our new SDP (see Section 5.2.1), one can try to adopt the rounding algorithms

of Lee et al. [63] and Algorithm 3.3.2. (Both [63] and the proof of Algorithm 3.3.2
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construct an embedding of the graph into Rk as a first step. The proofs of their main

theorems can be viewed as an algorithm to round these vectors into sets) . However,

these algorithms could only possibly give an approximation guarantee of the form

O(
√

OPT log k). To get rid of the square root, we need to embed the SDP solution

from `2
2 to `2. This step distorts the vectors, so that they no longer satisfy SDP

constraints and no longer have properties required by these algorithms.

5.1.1 Extensions

Our SDP formulation and rounding algorithm can be used to solve other problems as

well. Consider the balanced version of Sparsest k-Partition.

Problem 5.1.4 (Balanced Sparsest k-Partitioning Problem). Given a graph G =

(V,E,w) and a parameter k, compute a partition {P1, . . . , Pk} of V into k non-empty

pieces each of weight w(G)/k so as to minimize maxi φG(Pi).

Using our techniques, we can prove the following theorems.

Theorem 5.1.5. There exists a randomized polynomial-time algorithm that given an

undirected graph G = (V,E,w) and parameters k ∈ N (k > 2), ε > 0, w.h.p. outputs

k′ > (1− ε)k disjoint sets (not necessarily a partition) such that the weight of each set

is in the range [w(G)/(2k), (1 + ε)w(G)/k], and the expansion of each set is at most

Oε
(√

log n log k OPT
)
.

Theorem 5.1.6. There exists a randomized polynomial-time algorithm that given

an undirected graph G = (V,E,w) with vertex weights wu = du (du is the degree of

the vertex u) and parameters k ∈ N (k > 2), ε > 0, w.h.p. outputs k′ > (1 − ε)k

disjoint sets (not necessarily a partition) such that the weight of each set is in the range

[w(G)/(2k), (1+ε)w(G)/k], and the expansion of each set is at most Oε
(√

OPT log k
)
.

Note that the algorithms above return k′ disjoint sets that do not have to cover all

vertices. The proofs of these theorems are similar to the proofs of our main results
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– Theorem 5.1.2 and Theorem 5.1.3. We refer the reader to Section 5.2.6 for more

details. In fact, the assumption that all sets in the optimal solution have the same size

makes the balanced problem much simpler. Theorem 5.1.5 also follows (possibly with

slightly worse guarantees) from the result of Krauthgamer, Naor, and Schwartz [57],

who gave a bi-criteria O(
√

log n log k) approximation algorithm for the k-Balanced

Partitioning Problem (with the “min-sum” objective).

Organization. We prove Theorem 5.1.2 in Section 5.2.4. We present the SDP

relaxation of Sparsest k-partition in Section 5.2.1 and the main rounding algorithm

in Section 5.2.4. We prove Theorem 5.1.3 in Appendix 5.4.

5.2 Main Algorithm

We first prove a slightly weaker result. We give an algorithm that finds at least (1−ε)k

disjoint sets each with expansion at most Oε
(√

log n log k φkG
)
. Note that we do not

require that these sets cover all vertices in V .

Theorem 5.2.1. There exists a randomized polynomial-time algorithm that given an

undirected graph G and parameters k ∈ N (k > 2), ε > 0, outputs k′ > (1 − ε)k

disjoint sets P1, . . . , Pk′ such that

E
[
max
i
φ(Si)

]
6 Oε

(√
log n log k φkG

)
.

Then, in Section 5.3, we show how using k′ > (1 − ε)k such sets, we can find a

partitioning of V into k′′ > (1 − 2ε)k sets with each set having expansion at most

Oε
(√

log n log k φkG
)
.

Our algorithm works in several phases. First, it solves the SDP relaxation, which

we present in Section 5.2.1. Then it transforms all vectors to unit vectors and defines

a measure µ(·) on vertices of the graph. We give the details of this transformation

in Section 5.2.2. Succeeding this, in the main phase, the algorithm samples many

independent orthogonal separators S1, . . . , ST and then extracts k′ > (1− ε)k disjoint
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subsets from them. We describe this phase in Section 5.2.4. Finally, the algorithm

merges some of these sets with the left over vertices to obtain a k′′ > (1−ε)k′ partition.

We describe this phase in Section 5.2.6.

5.2.1 SDP Relaxation

We employ a novel SDP relaxation for the Sparsest k-partition problem. The main

challenge in writing an SDP relaxation is that we do not know the sizes of the sets in

advance, so we cannot write standard spreading constraints or spreading constraints

used in the paper of Bansal et. al.[16]. For each vertex u, we introduce a vector ū. In

the integral solution corresponding to the optimal partitioning P1, . . . , Pk, each vector

ū has k coordinates, one for every set Pi:

ū(i) =


1√
w(Pi)

if u ∈ Pi;

0 otherwise.

Observe, that the integral solution satisfies two crucial properties: for each set Pi,

∑
u∈Pi

wu‖ū‖2 =
∑
u∈Pi

wu
w(Pi)

= 1, (43)

and for every vertex u ∈ Pi,

∑
v∈V

wv 〈ū, v̄〉 =
∑
v∈Pi

wv
w(Pi)

+
∑
v/∈Pi

0 = 1. (44)

(43) gives us a way to measure sets. Given a set of vectors {ū}, we define a measure

µ(·) on vertices as follows

µ(S) =
∑
u∈S

wu‖ū‖2. (45)

For the intended solution, we have µ(Pi) = 1, and hence µ(V ) = k. This is the first

constraint we add to the SDP :

µ(V ) ≡
∑
u∈V

wu‖ū‖2 = k.
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From (44), we get a spreading constraint:

∑
v∈V

wv 〈ū, v̄〉 = 1.

We also add `2
2 triangle inequalities to the SDP . It is easy to check that they are

satisfied in the intended solution (since they are satisfied for each coordinate).

Finally, we need to write the objective function that measures the expansion of the

sets. In the intended solution, if u, v ∈ Pi (for some i), then ū = v̄, and ‖ū− v̄‖2 = 0.

If u ∈ Pi and v ∈ Pj (for i 6= j), then

‖ū− v̄‖2 = ‖ū‖2 + ‖v̄‖2 = 1/w(Pi) + 1/w(Pj) .

Hence,

1

k

∑
{u,v}∈E

w ({u, v}) ‖ū− v̄‖2 =
1

k

∑
i<j

∑
{u,v}∈E
u∈Pi
v∈Pj

( 1

w(Pi)
+

1

w(Pj)

)
w ({u, v})

=
1

k

∑
i

w (E(Pi, V \ Pi))
w(Pi)

=
1

k

∑
i

φG(Pi) 6 φkG . (46)

We get the following SDP relaxation for the problem.

SDP 5.2.2.

min
1

k

∑
{u,v}∈E

w ({u, v}) ‖ū− v̄‖2 .

∑
u∈V

wu‖ū‖2 = k∑
v∈V

wv 〈ū, v̄〉 = 1 ∀u ∈ V

‖ū− x̄‖2 + ‖x̄− v̄‖2 > ‖ū− v̄‖2 ∀u, v, x ∈ V
0 6 〈ū, v̄〉 6 ‖ū‖2 ∀u, v ∈ V

Figure 11: SDP Relaxation for Sparsest k-Partition
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5.2.2 Normalization

After the algorithm solves the SDP 5.2.2, we define the measure µ using (45), and “nor-

malize” all vectors using a transformation ψ from the paper of Chlamtac, Makarychev

and Makarychev [31]. The transformation ψ defines the inner products between ψ(ū)

and ψ(v̄) as follows (all vectors ū are nonzero in our SDP relaxation):

〈ψ(ū), ψ(v̄)〉 =
〈ū, v̄〉

max{‖ū‖2 , ‖v̄‖2}
.

This uniquely defines vectors ψ(ū) (up to an isometry of `2). Chlamtac, Makarychev

and Makarychev showed that the image ψ(X) of any `2
2 space X is an `2

2 space, and

the following condtions hold.

• For all non-zero vectors ū ∈ X, ‖ψ(ū)‖2 = 1.

• For all non-zero vectors u, v ∈ X,

‖ψ(ū)− ψ(v̄)‖2 6
2 ‖ū− v̄‖2

max
{
‖ū‖2 , ‖v̄‖2} .

5.2.3 Orthogonal Separators

Our algorithm uses the notion of orthogonal separators introduced by Chlamtac,

Makarychev, and Makarychev [31]. Let X be an `2
2 space. We say that a distribution

over subsets of X is a k-orthogonal separator of X with distortion D, probability scale

α > 0 and separation threshold β < 1, if the following conditions hold for S ⊂ X

chosen according to this distribution:

1. For all ū ∈ X, P [ū ∈ S] = α ‖ū‖2.

2. For all ū, v̄ ∈ X with 〈ū, v̄〉 6 βmax
{
‖ū‖2 , ‖v̄‖2},

P [ū ∈ S and v̄ ∈ S] 6
αmin

{
‖ū‖2 , ‖v̄‖2}
k

.
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3. For all u, v ∈ X

P [IS(ū) 6= IS(v̄)] 6 αD ‖ū− v̄‖2 .

Here IS is the indicator function of the set S.

Theorem 5.2.3 ([31, 16]). There exists a polynomial-time randomized algorithm that

given a set of vectors X, a parameter k, and β < 1 generates a k-orthogonal separator

with distortion D = Oβ
(√

log |X| log k
)

and scale α > 1/p(|X|) for some polynomial

p.

In the algorithm, we sample orthogonal separators from the set of normalized

vectors {ψ(ū) : u ∈ V }. For simplicity of exposition we assume that an orthogonal

separator S contains not vectors ū, but the corresponding vertices. That is, for an

orthogonal separator S̃, we consider the set of vertices S = {u ∈ V : ψ(ū) ∈ S̃}.

5.2.4 Algorithm

We give an algorithm for generating k′ > (1− ε)k disjoint sets Pi in Figure 12.

5.2.5 Properties of Sets S ′′i

We prove that (a) the edge boundaries of the sets S ′′i are small; and (b) the sets S ′′i

form a partition of V w.h.p. The following lemma makes these statements precise.

Lemma 5.2.5. For a set S ⊂ V , define

ν(S)
def
=

∑
{u,v}∈E(S,V \S)

u∈S,v /∈S

w ({u, v}) ‖ū‖2 +
∑
{u,v}∈E
u,v∈S

w ({u, v})
∣∣‖ū‖2 − ‖v̄‖2

∣∣ . (47)

Then, sets S ′′i satisfy the following conditions:

1.

E

[∑
i

ν(S ′′i )

]
6 (8D + 1)k · SDPval,

where D = Oε(
√

log n log k) is the distortion of (12k/ε)-orthogonal separator,

and SDPval is the value of the SDP solution.
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Algorithm 5.2.4.

1. Solve SDP 5.2.2 and obtain vectors {ū}.

2. Compute normalized vectors ψ(ū), and define the measure µ(·) (see Section 5.2.2
and Eq. (45)).

3. Sample T = 2n/α independent (12k/ε)-orthogonal separators S1, . . . , ST for
vectors ψ(ū) (u ∈ V )
with separation threshold β = 1− ε/4.

4. For each i, define S ′i as follows:

S ′i
def
=

{
Si if µ(Si) 6 1 + ε/2;

∅ otherwise.

5. For each i, let S ′′i = S ′i \
(
∪i−1
t S ′t

)
be the set of yet uncovered vertices in S ′i.

6. For each i, set Pi = {u ∈ S ′′i : ‖ū‖2 > ri}, where the parameter ri is chosen to
minimize the expansion φG(Pi) of the set Pi.

7. Output (1− ε)k non-empty sets Pi with the smallest expansion φG(Pi).

Figure 12: Algorithm for generating k′ > (1− ε)k disjoint sets Pi.

2. All sets S ′′i are disjoint; and

P [µ(∪S ′′i ) = k] > 1− ne−n .

Proof. (a) Let Ecut be the set of edges cut by the partitioning S ′′1 , . . . , S
′′
T , V \ (∪S ′′i ).

Observe, that each cut edge {u, v} contributes ‖ū‖2 + ‖v̄‖2 to the sum
∑
ν(S ′′i ), and

each uncut edge contributes either |‖ū‖2 − ‖v̄‖2|, or 0. Hence,

E

[∑
i

ν(S ′′i )

]
6 E

 ∑
{u,v}∈Ecut

w ({u, v}) (‖ū‖2 + ‖v̄‖2)


+

∑
{u,v}∈E

w ({u, v})
∣∣‖ū‖2 − ‖v̄‖2

∣∣ .
The second term is bounded by∑

{u,v}∈E

w ({u, v}) ‖ū− v̄‖2 = k · SDPval,
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since

‖ū‖2 − ‖v̄‖2 = ‖ū− v̄‖2 − 2(‖v̄‖2 − 〈ū, v̄〉) 6 ‖ū− v̄‖2.

The inequality follows from the SDP constraint ‖v̄‖2 > 〈ū, v̄〉. We now bound the first

term. To do so we need the following lemma.

Lemma 5.2.6. For every vertex u ∈ V and i ∈ {1, . . . , T}, we have P [u ∈ S ′i] > α/2.

We give the proof of Lemma 5.2.6 after we finish the proof of Lemma 5.2.5. Let

us estimate the probability that an edge {u, v} is cut. Let Ut = ∪i6tS ′i be the set of

vertices covered by the first t sets S ′i. Note, that S ′′i = S ′i \Ui−1. We say that the edge

{u, v} is cut by the set S ′t, if S ′t is the first set containing u or v, and it contains only

one of these vertices. Then,

P [{u, v} ∈ Ecut] =
T∑
i=1

P [{u, v} is cut by S ′i ]

=
T∑
i=1

P
[
u, v /∈ Ui−1 and IS′i(u) 6= IS′i(v)

]
6

T∑
i=1

P [u /∈ Ui−1 and ISi(u) 6= ISi(v)]

=
T∑
i=1

P [u /∈ Ui−1]P [ISi(u) 6= ISi(v)] .

Now, by Lemma 5.2.6, P [u /∈ Ui−1] 6 (1− α/2)i−1, and, by Property 3 of orthogonal

separators,

P [ISi(u) 6= ISi(v)] 6 αD‖ψ(u)− ψ(v)‖2

6
2αD‖ū− v̄‖2

max{‖ū‖2, ‖v̄‖2}
.

Thus (using
∑

i(1− α/2)i 6 2/α),

P [{u, v} ∈ Ecut] 6
4D ‖ū− v̄‖2

max{‖ū‖2, ‖v̄‖2}
.
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We are almost done,

E

 ∑
{u,v}∈Ecut

w ({u, v}) (‖ū‖2 + ‖v̄‖2)


=

∑
{u,v}∈E

w ({u, v})P [{u, v} ∈ Ecut] (‖ū‖2 + ‖v̄‖2)

6
∑
{u,v}∈E

w ({u, v}) 4D ‖ū− v̄‖2

max{‖ū‖2, ‖v̄‖2}
· (‖ū‖2 + ‖v̄‖2)

6
∑
{u,v}∈E

8Dw ({u, v}) ‖ū− v̄‖2

= 8kD · SDPval .

Thus we get that

E

[∑
i

ν(S ′′i )

]
6 (8D + 1)k · SDPval .

(b) The sets S ′′i are disjoint by definition. By Lemma 5.2.6, the probability that

a vertex is not covered by any set Si is (1− α/2)T = (1− α/2)2n/α < e−n. So with

probability at least 1− ne−n all vertices are covered.

It remains to prove Lemma 5.2.6.

Proof of Lemma 5.2.6. We adopt a slightly modified argument from the paper of

Bansal et al. [16] (Theorem 2.1, arXiv). If u ∈ Si, then u ∈ S ′i unless µ(Si) > 1 + ε/2,

hence

P [u ∈ S ′i ] = P [u ∈ Si] (1− P [µ(Si) > 1 + ε/2 | u ∈ Si])

= α(1− P [µ(Si) > 1 + ε/2 | u ∈ Si]).

Here, we used that P [u ∈ Si] = α‖ψ(ū)‖2 = α (see Property 1 of orthogonal separators).

We need to show that P [µ(Si) > 1 + ε/2 | u ∈ Si] 6 1/2. Let us define the sets Au

and Bu as follows.

Au = {v ∈ V : 〈ψ(ū), ψ(v̄)〉 > β}
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and

Bu = {v ∈ V : 〈ψ(ū), ψ(v̄)〉 < β} .

Now,

µ(Au) =
∑
v∈Au

wv ‖v̄‖2 6
1

β

∑
v∈V

wv ‖v̄‖2 〈ψ(ū), ψ(v̄)〉

=
1

β

∑
v∈V

wv ‖v̄‖2 〈ū, v̄〉
max

{
‖v̄‖2 , ‖v̄‖2}

6
1

β

∑
v∈V

wv 〈ū, v̄〉
�
=

1

β
6 1 +

ε

3
.

Equality “�” follows from the SDP constraint
∑

v∈V wv 〈ū, v̄〉 = 1. For any v ∈ Bu, we

have 〈ψ(ū), ψ(v̄)〉 < β. Hence, by Property 2 of orthogonal separators,

P [v ∈ Si | u ∈ Si] 6
ε

12k

Therefore,

E [µ(Si ∩Bu) | u ∈ Si] 6
εµ(Bu)

12k
6
εµ(V )

12k
=

ε

12
.

By Markov’s inequality, P [µ(Si ∩Bu) > ε/6 | u ∈ Si] 6 1/2. Since µ(Si) = µ(Si ∩

Au) + µ(Si ∩Bu), we get P [µ(Si) > 1 + ε/2 | u ∈ Si] 6 1/2.

5.2.6 End of Proof

We are ready to finish the analysis of Algorithm 5.2.4 and prove Theorem 5.2.1 and

Theorem 5.1.5.

Proofs of Theorem 5.2.1 and Theorem 5.1.5. We first prove Theorem 5.2.1, then we

slightly modify Algorithm 5.2.4 and prove Theorem 5.1.5.

I. We show that Algorithm 5.2.4 outputs sets satisfying conditions of Theorem 5.2.1.

The sets S ′′i are disjoint (see Lemma 5.2.5), thus sets Pi are also disjoint. We now

need to prove that among sets Pi obtained at Step 6 of the algorithm, there are at

least (1− ε)k sets with expansion less than Oε(
√

log n log k OPT ) (in expectation).
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Let Z = 1
k

∑
i ν(S ′′i ). By Lemma 5.2.5 we have,

E [Z] 6 (8D + 1)OPT

and S ′′i form a partition1 of V . We throw away all empty sets S ′′i , and set σi = µ(S ′′i )/k.

Then
∑

i σi = 1, and

Z =
1

k

∑
i

ν(S ′′i ) =
∑
i

σi ·
ν(S ′′i )

µ(S ′′i )
.

Define I def
= {i : ν(S ′′i )/µ(S ′′i ) 6 3Z/ε}. By Markov’s inequality (we can think of σi as

the weight of i), ∑
i∈I

σi > 1− ε/2 . (48)

Since each σi satisfies

σi = µ(S ′′i )/k 6 (1 + ε/2)/k

the set I has at least (1− ε/2)k/(1 + ε/2) > (1− ε)k elements.

Now for any S ⊂ V , let us define a vector XS ∈ Rn as follows.

XS(u)
def
=


‖ū‖2 if u ∈ S

0 otherwise

.

Then for each i ∈ I, using Lemma 2.3.2, we get that a set Pi ⊂ S ′′i such that

φ(Pi) 6

∑
u∼v w {(u, v)} |Xu −Xv|∑

w wuXu

=
ν(S ′′i )

µ(S ′′i )
6

3Z

ε
.

Therefore, we showed that there are at least |I| > (1− ε)k sets Pi with expansion at

most 3Z/ε. Therefore, the expansion of the sets returned by the algorithm is at most

3Z/ε. This finishes the proof, since E [3Z/ε] = Oε(
√

log n log k) φkG.

II. To prove Theorem 5.1.5, we need to modify the algorithm. For simplicity, we

rescale all weights wu and assume that w(G) = k. Then our goal is to find k′ disjoint

sets Pi of weight in the range [1/2, 1 + ε] each. Since all sets in the optimal solution

1With an exponentially small probability the sets S′′i do not cover all the vertices. In this unlikely
event, the algorithm may output an arbitrary partition.
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to the k-Balanced Sparsest Partitioning Problem have weight 1, we add the SDP

constraint that all vectors ū have length 1 (see Section 5.2.1): for all u ∈ V :

‖ū‖2 = 1.

The intended solution satisfies this constraint.

For a random r ∈ (0, R) and Lr
def
= {u ∈ S ′′i : ‖ū‖2 > r}, we have

E
r
[w(Lr)] = µ(S ′′i ) (49)

as each u belongs to Lr with probability ‖ū‖2 and

E
r
[w (E(Lr, V \ Lr))] = ν(S ′′i )

(since an edge in S ′′i × S ′′i is cut with probability |‖ū‖2 − ‖v̄‖2|; and an edge {u, v}

with u ∈ S ′′i and v /∈ S ′′i is cut with probability ‖ū‖2 — if and only if u ∈ Lr; compare

with Definition 47). Therefore,

E
r
[w (E(Lr, V \ Lr))] =

ν(S ′′i )

R
6

3Z

ε
· µ(S ′′i )

R
=

3Z

ε
· E
r
[w(Lr)] .

We also change the way the algorithm picks the parameters ri. The algorithm

chooses ri so as to minimize the expansion φG(Pi) subject to an additional constraint

µ(Pi) > (1− ε/2)µ(S ′′i ). Finally, once the algorithm obtains sets Pi, it greedily merges

sets of weight at most 1/2. The rest of the algorithm is the same as Algorithm 5.2.4.

From (49) and (50), we get

E
r
[w(Lr)] >

ε2

6Z
E
r
[w (E(Lr, V \ Lr))] +

(1− ε/2)µ(S ′′i )

R

> max

{
ε2

6Z
E
r
[w (E(Lr, V \ Lr))],

(1− ε/2)µ(S ′′i )

R

}
.

Since ‖ū‖2 = 1 for all u ∈ V , we have R = 1 and µ(Lr) = w(Lr). Therefore,

E
r
[w(Lr)] > max

{
ε2

6Z
E
r
[w (E(Lr, V \ Lr))],

(
1− ε

2

)
µ(S ′′i )

}
,
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and for some r∗,

w(Lr∗) >
ε2

6Z
E
r
[w (E(Lr∗ , V \ Lr∗))];

µ(Lr∗) > (1− ε

2
)µ(S ′′i ).

Consequently, we get

φG(Pi) 6 φG(Lr∗) 6
6Z

ε2
.

Now, recall, that by (48),
∑

i∈I σi > 1− ε/2. Hence,

∑
i∈I

w(Pi) =
∑
i∈I

µ(Pi) > (1− ε/2)
∑
i∈I

µ(S ′′i ) = (1− ε/2)
∑
i∈I

kσi

> (1− ε)k.

We showed that the algorithm gets sets Pi satisfying the following properties:

1. the expansion

φG(Pi) 6
6Z

ε2
.

2. w(Pi) 6 (1 + ε/2) and

3.
∑

iw(Pi) > (1− ε)k.

To get sets of weight in the range [1/2, 1 + ε] the algorithm greedily merges sets Pi of

weight at most 1/2 and obtains a collection of new sets, which we denote by Qi. The

algorithm outputs all sets Qi with weight at least 1/2.

Note that for any two disjoint sets A and B,

φG(A ∪B) 6 max {φG(A), φG(B)} .

So

φG(Qi) 6 max
j
φG(Pj) 6

6Z

ε2
.

All sets Qi but possibly one have weight at least 1/2. So the weight of sets Qi output

by the algorithm is at least (1− ε)k− 1/2. The maximum weight of sets Qi is 1 + ε/2,
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so the number of sets Qi is at least⌈
(1− ε)k − 1/2

1− ε/2

⌉
> d(1− 2ε)k − 1/2e > d(1− 4ε)ke .

To verify the last inequality check two cases: if 2εk > 1/2, then

(1− 2ε)k − 1/2 > (1− 4ε)k;

if 2εk < 1/2, then

d(1− 2ε)k − 1/2e = k .

This finishes the proof.

5.3 From Disjoint Sets to Partitioning

We now show how given k′ > (1− ε) sets P1, . . . , Pk′ , we can obtain a true partitioning

P ′1, . . . , P
′
k′′ of V .

Proof of Theorem 5.1.2. To get the desired partitioning, we first run Algorithm 5.2.4

several times (say, n) to obtain disjoint non-empty sets P1, . . . , Pk′ that satisfy

maxi φG(Pi) 6 Oε(
√

log n log k) φkG w.h.p. Let Z = maxi φG(Pi). We sort sets Pi by

weight w(Pi). We output the smallest k′′ = b(1− ε)k′c sets Pi, and the compliment

set P ′ = V \ (∪16i6k′′Pi).

Since sets Pi are disjoint and non-empty, the first k′′ sets Pi and the set P ′ are

also disjoint and non-empty. Moreover, φG(Pi) 6 Z, so we only need to show that

φG(P ′) 6 Oε(Z). Note, that w(P ′) > εw(V ), since P ′ contains vertices in the dεke

largest sets Pi and all vertices not covered by sets Pi. Then,

E(P ′, V \ P ′) = ∪i6k′′E(P ′, Pi) ⊂ ∪i6k′′E(Pi, V \ Pi) .
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So

φG(P ′) =
w (E(P ′, V \ P ′))

w(P ′)
6

∑k′′

i=1w (E(Pi, V \ Pi))
w(P ′)

=

∑k′′

i=1w(Pi)φG(Pi)

εw(V )
6

∑k′′

i=1w(Pi)Z

εw(V )

6
Zw(V )

εw(V )
=
Z

ε
.

This concludes the proof.

5.4 Proof of Theorem 5.1.3

The proof of Theorem 5.1.3 is almost the same as the proof of Theorem 5.1.2. The

only difference is that we need to replace orthogonal separators with a slightly different

variant of orthogonal separators (implicitly defined in [31]).

Orthogonal Separators with `2 distortion. Let X be a set of unit vectors in

`2. We say that a distribution over subsets of X is a k-orthogonal separator of X

with `2 distortion D, probability scale α > 0 and separation threshold β < 1, if the

following conditions hold for S ⊂ X chosen according to this distribution:

1. For all ū ∈ X, P [ū ∈ S] = α.

2. For all ū, v̄ ∈ X with 〈ū, v̄〉 6 βmax
{
‖ū‖2 , ‖v̄‖2},

P [ū ∈ S and v̄ ∈ S] 6
α

k
.

3. For all u, v ∈ X,

P [IS(ū) 6= IS(v̄)] 6 αD‖ū− v̄‖.

Theorem 5.4.1 ([31]). There exists a polynomial-time randomized algorithm that

given a set of unit vectors X, a parameter k, and β < 1 generates a k-orthogonal

separator with `2 distortion D = Oβ
(√

log k
)

and scale α > 1/n.
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For completeness we sketch the proof of this lemma in Section 5.5. Algorithm 5.2.4′

is the same as Algorithm 5.2.4 except that at Step 3, it samples orthogonal separators

with `2 distortion Oε(
√

log k) using Theorem 5.4.1. The proof of Theorem 5.1.2 goes

through for the new algorithm essentially as is. The only statement we need to take

care of is Lemma 5.2.5 (a). We prove the following bound on E [
∑

i ν(S ′′i )].

Lemma 5.4.2. The sets S ′′i satisfy the following condition: E [
∑

i ν(S ′′i )] 6 (8D+1)k ·
√

SDPval, where D = Oε(
√

log k) is the `2 distortion of (12k/ε)-orthogonal separator,

and SDPval is the value of the SDP solution.

Proof. Let Ecut be the set of edges cut by the partitioning S ′′1 , . . . , S
′′
T , V \ (∪S ′′i ). As

before (in Lemma 5.2.5), we have

E

[∑
i

ν(S ′′i )

]
6 E

 ∑
{u,v}∈Ecut

w ({u, v}) (‖ū‖2 + ‖v̄‖2)


+
∑
{u,v}∈E

w ({u, v}) |‖ū‖2 − ‖v̄‖2|

6 E

 ∑
{u,v}∈Ecut

w ({u, v}) (‖ū‖2 + ‖v̄‖2)

+ k SDPval .

We now bound the first term. Estimate the probability that an edge {u, v} is cut.

Let Ut = ∪i6tS ′i be the set of vertices covered by the first t sets S ′i. Note, that

S ′′i = S ′i \ Ui−1. We say that the edge {u, v} is cut by the set S ′t, if S ′t is the first set

containing u or v, and it contains only one of these vertices. Then,

P [{u, v} ∈ Ecut] =
∑
i

P [{u, v} is cut by S ′i ]

=
∑
i

P
[
u, v /∈ Ui−1 and IS′i(u) 6= IS′i(v)

]
6

∑
i

P [u /∈ Ui−1 and ISi(u) 6= ISi(v)]

=
∑
i

P [u /∈ Ui−1]P [ISi(u) 6= ISi(v)] .

Now, by Lemma 5.2.6, P [u /∈ Ui−1] 6 (1−α/2)i−1, and, by Property 3 of `2 orthogonal
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separators,

P [ISi(u) 6= ISi(v)] 6 αD ‖ψ(u)− ψ(v)‖ 6 αD

√
2 ‖ū− v̄‖

max {‖ū‖ , ‖v̄‖}
.

Thus,

P [{u, v} ∈ Ecut] 6
2
√

2D ‖ū− v̄‖
max{‖ū‖, ‖v̄‖}

.

Now, the proof deviates from the proof of Lemma 5.2.5:

E

 ∑
{u,v}∈Ecut

w ({u, v}) (‖ū‖2 + ‖v̄‖2)


=

∑
{u,v}∈E

w ({u, v})P [{u, v} ∈ Ecut] (‖ū‖2 + ‖v̄‖2)

6
∑
{u,v}∈E

w ({u, v}) 2
√

2D ‖ū− v̄‖
max{‖ū‖, ‖v̄‖}

· (‖ū‖2 + ‖v̄‖2)

6 2
√

2D
∑
{u,v}∈E

w ({u, v}) ‖ū− v̄‖ · (‖ū‖+ ‖v̄‖) .

By Cauchy–Schwarz,

2
√

2D
∑
{u,v}∈E

w ({u, v}) ‖ū− v̄‖ · (‖ū‖+ ‖v̄‖)

6 2
√

2D

 ∑
{u,v}∈E

w ({u, v}) ‖ū− v̄‖2

1/2 ∑
{u,v}∈E

w ({u, v}) (‖ū‖+ ‖v̄‖)2

1/2

6 4D

 ∑
{u,v}∈E

w ({u, v}) ‖ū− v̄‖2

1/2 ∑
{u,v}∈E

w ({u, v}) ‖ū‖2 + ‖v̄‖2

1/2

= 4D (k SDPval)1/2

 ∑
{u,v}∈E

du‖ū‖2

1/2

.

Recall, that in Theorem 5.1.3, we assume that the weight of every vertex wu equals

its degree du. Hence,
∑
{u,v}∈E du‖ū‖2 = µ(V ) = k. We get,

E

 ∑
{u,v}∈Ecut

w ({u, v}) (‖ū‖2 + ‖v̄‖2)

 6 4Dk
√

SDPval.
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Since SDPval 6 φkG 6 1 (here we use that du = wu), SDPval 6
√

SDPval, and

E

[∑
i

ν(S ′′i )

]
6 8Dk

√
SDPval + k SDPval 6 (8D + 1)k

√
SDPval.

This concludes the proof.

5.5 Orthogonal Separators with `2 Distortion

In this section, we sketch the proof of Theorem 5.4.1 which is proven in [31] as part of

Lemma 4.9. Let us fix some notation. Let Φ̄(t) be the probability that the standard

N (0, 1) Gaussian variable is greater than t. We will use the following easy lemma

from [77].

Lemma 5.5.1 (Lemma 2.1. in [77]). For every t > 0 and β ∈ (0, 1], we have

Φ̄(βt) 6 Φ̄(t)β
2

.

We now describe an algorithm for m-orthogonal separators with `2 distortion (see

Appendix 5.4). Let β < 1 be the separation threshold. Assume w.l.o.g. that all

vectors ū lie in Rn. Fix m′ = m
1+β
1−β and t = Φ̄−1(1/m′) (i.e., t such that Φ̄(t) = 1/m′).

Sample a random Gaussian n dimensional vector γ in Rn. Return the set

S = {ū : 〈ū, γ〉 > t}.

We claim that S is an m-orthogonal separator with `2 distortion O(
√

logm) and

scale α = 1/m′. We now verify the conditions of orthogonal separators with `2

distortion.

1. For every ū,

P [ū ∈ S] = P [〈ū, γ〉 > t] = 1/m′ ≡ α.

Here we used that 〈ū, γ〉 is distributed as N (0, 1), since ū is a unit vector.

2. For every ū and v̄ with 〈ū, v̄〉 6 β,

P [ū, v̄ ∈ S] = P [〈ū, γ〉 > t and 〈v̄, γ〉 > t]

6 P [〈ū+ v̄, γ〉 > 2t] .
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Note that ‖ū+ v̄‖ =
√

2 + 2 〈ū, v̄〉, hence (ū+ v̄)/
√

2 + 2 〈ū, v̄〉 is a unit vector. We

have

P [ū, v̄ ∈ S] 6 P
[〈 ū+ v̄√

2 + 2 〈ū, v̄〉
, γ

〉
>

2t√
2 + 2 〈ū, v̄〉

]
= Φ̄

( √
2t√

1 + 〈ū, v̄〉

)
6 Φ̄

( √2t√
1 + β

)
6 Φ̄(t)

2
1+β

=
( 1

m′

) 2
1+β

=
1

m′
·
( 1

m′

) 1−β
1+β

=
α

m
.

3. The third property directly follows from Lemma A.2. in [31].

We note that this proof gives probability scale α = m−
1+β
1−β . So, for some β, we

may get α� 1/n. However, it is easy to sample γ in such a way that P [〈ū, γ〉 > 1/n]

for every vector ū in our set. To do so, we order vectors {ū} in an arbitrary way:

ū1, . . . , ūn. Then, we pick a random index ι ∈ {1, . . . , n}, and sample a random

Gaussian vector γ′ conditional on 〈ūι, γ′〉 > t. We set S ′ = {ū : 〈ū, γ′〉 > t} as in the

algorithm above. Note that ūι always belongs to S ′. We output S ′′ = S ′ if S ′ does

not contain vectors ū1, . . . , ūι−1; and we output S ′′ = ∅ otherwise. It is easy to verify

that P [ū ∈ S ′′] = 1/n for every ū, and, furthermore, for every non-empty set S∗ 6= ∅,

P [S ′′ = S∗] =
1

αn
P [S = S∗] ,

where S is the orthogonal separator from the proof above. So all properties of

orthogonal separators hold for S ′′ with α′ = α/(αn) = 1/n.

5.6 Integrality Gap for the Assignment SDP

In this Section, we show that the standard Assignment SDP has high integrality gap.

Proposition 5.6.1. SDP 13 has an unbounded integrality gap.

Proof. Consider the following infinite family of graphs G = {Gn : n > 0}. Gn consists

of the two disjoint cliques of size C1 = Kbn/2c and C2 = Kdn/2e. It is easy to see that

for φk(Gn) = Ω(1) for k > 2.
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minα∑
{u,v}∈E

‖ūi − v̄i‖2 6 α
∑
u∈V

wu ‖ūi‖2 ∀i ∈ [k]

∑
i∈[k]

‖ūi‖2 = 1

〈ūi, ūj〉 = 0 ∀i 6= j and ∀u ∈ V〈∑
i

ūi, I

〉
= 1

‖I‖2 = 1

Figure 13: Assignment SDP

For the sake of simplicity, let us assume that k is a multiple of 2. Let e1, . . . , ek/2

be the standard basis vectors. Consider the following vector solution to SDP 13.

ūi =



√
2
k
ei if u ∈ C1 and i 6 k/2√

2
k
e(i−k/2) if u ∈ C2 and i > k/2

0 otherwise

and

I =

√
2

k

k/2∑
i=1

ei .

It is easy to verify that this is a feasible solution with α = 0. Therefore, SDP 13 has

an unbounded integrality gap.

5.7 Conclusion

In this chapter we studied the Sparsest k-partition problem. Note that this differs

from the k sparse-cuts problem (studied in Chapter 3) only in requiring that the

k sets form a partition of the vertex set. Theorem 3.1.8 shows that φkG can not be
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bounded by O
(√

λkpolylogk
)
. In this chapter, we give an approximation algorithm

for φkG via a rounding algorithm for a novel SDP relaxation of φkG. Our approximation

algorithm is a bicriteria approximation algorithm. We leave it as an open problem to

get a true O
(√

log n log k
)
-approximation for φkG.

Problem 5.7.1. Is there a randomized polynomial time algorithm that for every

graph G = (V,E,w), and for every parameter k ∈ [n], outputs a k-partition, say

S1, . . . , Sk, such that

max
i
φ(Si) 6 O

(√
log n log k φkG

)
?

Acknowledgements. The results in this chapter were obtained in joint work with

Konstantin Makarychev [70].
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CHAPTER VI

APPROXIMATION ALGORITHMS FOR VERTEX

EXPANSION AND HYPERGRAPH EXPANSION

6.1 Introduction

The problem of approximating Edge Expansion or Vertex Expansion, or Hy-

pergraph Expansion can be studied at various regimes of parameters of interest.

Perhaps the simplest possible version of the problem is to distinguish whether a given

graph is an expander. Fix an absolute constant δ0. A graph is a δ0-vertex (edge)

expander if its vertex (edge) expansion is at least δ0. The problem of recognizing a

vertex expander can be stated as follows:

Problem 6.1.1. Given a graph G, distinguish between the following two cases

(Non-Expander) the vertex expansion is < ε

(Expander) the vertex expansion is > δ0 for some absolute constant δ0.

Similarly, one can define the problem of recognizing an edge expander graph.

For the edge case, the Cheeger’s inequality yields an algorithm to recognize an

edge expander. In fact, it is possible to distinguish a δ0 edge expander graph, from a

graph whose edge expansion is < δ2
0/2, by just computing the second eigenvalue of

the graph Laplacian.

It is natural to ask if there is an efficient algorithm with an analogous guarantee

for vertex expansion. More precisely, is there some sufficiently small ε (an arbitrary

function of δ0), so that one can efficiently distinguish between a graph with vertex

expansion > δ0 from one with vertex expansion < ε. Bobkov et. al.[21] define a
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functional graph constant λ∞ as follows.

λ∞
def
= min

X∈Rn

∑
i maxj∼i(Xi −Xj)

2∑
iX

2
i − 1

n
(
∑

iXi)2
.

They also prove the following theorem relating λ∞ to ΦV in a Cheeger-like manner.

Theorem 6.1.2 ([21]). For any unweighted, undirected graph G, we have

λ∞
2
6 ΦV 6

√
2λ∞

We note that our definition of γ2 for the hypergraph Laplacian Operator is very

similar to the definition of λ∞, and Theorem 6.1.2 is very similar to Theorem 4.2.11.

While Theorem 6.1.2 and Theorem 4.2.11 seem to suggest that vertex expanders

and hypergraph expanders can be identified by computation of λ∞ and γ2 respectively,

in the same way as edge expanders can be identified by computing λ2, the computation

of λ∞ and γ2 seems intractable. In Chapter 8, we show a hardness result suggesting

that there is no efficient algorithm to recognize vertex expanders. More precisely, we

prove a hardness result for the problem of approximating λ∞ in graphs of bounded

degree d. The hardness result shows that the approximability of vertex expansion

degrades with the degree, and therefore the problem of recognizing expanders is hard

for sufficiently large degree. We get similar hardness results for γ2 and hypergraph

expansion via the reduction from Vertex Expansion to Hypergraph Expansion

(Theorem 4.2.19).

In this chapter we present approximation algorithms for λ∞ and the Hypergraph

Eigenvalues whose guarantee matches the hardness result up to constant factors. We

use this to obtain approximation algorithms for Vertex Expansion and Hyper-

graph Expansion. We state our results formally in Section 6.1.1.

6.1.1 Formal Statement of Results.

Vertex Expansion. Our first result is a simple polynomial-time algorithm to obtain

a O (log d) approximation to λ∞ in graphs having largest degree d. Via our algorithmic
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proof of Theorem 6.1.2, this directly implies an algorithm to obtain a subset of vertices

S whose vertex expansion is at most O
(√

ΦV log d
)

.

Theorem 6.1.3. There exists a polynomial time algorithm which given a graph

G = (V,E) having vertex degrees at most d, outputs a vector X ∈ Rn such that∑
i∈V maxj∼i(Xi −Xj)

2∑
iX

2
i − 1

n
(
∑

iXi)2
6 O (λ∞ log d)

and outputs a set S ⊂ V , such that ΦV(S) = O
(√

ΦV
G log d

)
.

In Chapter 8 we will show that Vertex Expansion and Symmetric Vertex

Expansion are computationally equivalent upto constant factors (Theorem 8.3.1

and Theorem 8.3.2). Using this we get an approximation algorithm for Vertex

Expansion as well.

Corollary 6.1.4 (Corollary to Theorem 6.1.3 and Theorem 8.3.2). There exists a

polynomial time algorithm which given a graph G = (V,E) having vertex degrees at

most d, outputs a set S ⊂ V , such that φV(S) = O
(√

φV
G log d

)
.

Hypergraph Expansion. Computing the eigenvalues of the hypergraph Markov

operator (Definition 4.2.1) is intractable, as the operator is non-linear. We gave an

exponential time algorithm to compute all the eigenvalues and eigenvectors of M and

L (Theorem 4.9.1). We give a polynomial time O (k log r)-approximation algorithm

to compute the kth smallest eigenvalue, where r is the size of the largest hyperedge.

Theorem 6.1.5. There exists a randomized polynomial time algorithm that given a

hypergraph H = (V,E,w) and a parameter k < |V |, outputs k orthonormal vectors

u1, . . . , uk such that for each i ∈ [k],

R (ui) 6 O (i log r γi)

where r is the size of the largest hyperedge.
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Theorem 4.2.11 gives a bound on φH in terms of γ2. Obtaining a O (log r)-

approximation to γ2 from Theorem 6.1.5 gives us the following result directly.

Corollary 6.1.6 (Corollary to Theorem 4.2.11 and Theorem 6.1.5). There exists a

randomized polynomial time algorithm that given a hypergraph H = (V,E,w), outputs

a set S ⊂ V such that

φ(S) 6 O
(√

φH log r
)

where r is the size of the largest hyperedge in E.

Hypergraph Balanced Separator. We recall Hypergraph Balanced Sepa-

rator problem (Problem 2.1.6).

Problem 6.1.7 (Hypergraph Balanced Separator). Given a hypergraph H =

(V,E,w), and a balance parameter c ∈ (0, 1/2], a set S ⊂ V is said to be c-balanced

if cn 6 |S| 6 (1− c)n. The c-Hypergraph Balanced Separator problem asks

to compute the c-balanced set S ⊂ V which has the least sparsity sp(S) defined as

follows.

sp(S)
def
= n ·

w
(
E(S, S̄)

)
|S|
∣∣S̄∣∣ .

In a seminal work, Arora, Rao and Vazirani [13] gave a O
(√

log n
)

approximation

algorithm for the Balanced Separator problem in graphs. We present an analog

of this result for hypergraphs.

Theorem 6.1.8. There exists a randomized polynomial time algorithm that given

H = (V,E,w), an instance of the c-Hypergraph Balanced Separator problem,

outputs a c′-balanced set S ⊂ V such that sp(S) = O
(√

log n
)

OPT, where OPT is

the least sparsity of a c-balanced set and c′ > c/100.

Our algorithm for Hypergraph Balanced Separator is a bi-criteria algorithm

in that it outputs a set of size at least c′n instead of a set of size at least cn (c > c′).
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We note that this is similar to algorithm for Arora, Rao and Vazirani [13] which also

finds a set of size at least c′n instead of a set of size at least cn .

Balanced Vertex Separator. Our techniques can also be used to obtain an approx-

imation algorithm for Balanced Vertex Expansion in graphs (Definition 2.1.4).

Theorem 6.1.9 (Corollary to Theorem 6.1.8 and Theorem 7.1.5). There is a ran-

domized polynomial-time algorithm that given a graph G = (V,E), an instance of the

c-Balanced Vertex Expansion problem, outputs a c′-balanced set S ⊂ V such

that sp(S) = O
(√

log n
)

OPT. Here c′ > c/100.

6.1.2 Proof Overview

We give a O (k log r)-approximation algorithm for γk (Theorem 6.1.5). Our algorithm

proceeds inductively. We assume that we have computed k − 1 orthonormal vectors

u1, . . . , uk−1 such that R (ui) 6 O (i log r γi), and show how to compute γk. Our

main idea is to show that there exists a unit vector X ∈ span {v1, . . . , vk} which is

orthogonal to span {u1, . . . , uk−1} and has small Rayleigh quotient. Note that unlike

the case of matrices, for an X ∈ span {v1, . . . , vk}, we can not bound XTL(X) by

maxi∈[k] vTi L(vi). The operator L is non-linear, and there is no reason to believe that

something like the celebrated Courant-Fischer Theorem for matrices holds for this

operator. In general, for an X ∈ span {v1, . . . , vk}, the Rayleigh quotient can be much

larger than γk. We will show that for such an X, R (X) 6 k γk. However, we still

do not have a way to compute such a vector X. We given an SDP relaxation and a

rounding algorithm to compute an “approximate” X.

Hypergraph Balanced Separator To prove Theorem 6.1.8, we start with an SDP

relaxation of the Rayleigh quotient together with `2
2-triangle inequality constraints.

We use the framework of Arora et. al.[13], to find two well separated sets in the SDP
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solution. We use these sets as “guides” and find a set with small sparsity in the same

way as we do in the proof of the Hypergraph Cheeger’s Inequality.

6.1.3 Organization

We give our approximation algorithm for λ∞ and Vertex Expansion in Section 6.2.

We present our approximation algorithms for hypergraph eigenvalues in Section 6.3.

We prove Theorem 6.1.8 in Section 6.4.

6.2 An Optimal Algorithm for Vertex Expansion

In this section we give a simple polynomial time algorithm which outputs a set S

whose vertex expansion is at most O
(√

ΦV log d
)

. We restate Theorem 6.1.3.

Theorem 6.2.1 (Restatement of Theorem 6.1.3). There exists a polynomial time

algorithm which given a graph G = (V,E) having vertex degrees at most d, outputs a

vector X ∈ Rn such that∑
i∈V maxj∼i(Xi −Xj)

2∑
iX

2
i − 1

n
(
∑

iXi)2
6 O (λ∞ log d)

and outputs a set S ⊂ V , such that ΦV(S) = O
(√

ΦV
G log d

)
.

Consider the following SDP relaxation of λ∞ (SDP 6.2.2).

SDP 6.2.2.

SDPval
def
= min

∑
i∈

αi

subject to:

‖vj − vi‖2 6 αi ∀i ∈ V and ∀j ∼ i∑
i

‖vi‖2 − 1

n

∥∥∥∥∥∑
i

vi

∥∥∥∥∥
2

= 1

Figure 14: SDP Relaxation for λ∞.
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It’s easy to see that this is a relaxation for λ∞. We present a simple randomized

rounding of this SDP which, with constant probability, outputs a set with vertex

expansion at most C
√
φV log d for some absolute constant C.

Algorithm 6.2.3.

• Input : A graph G = (V,E)

• Output : A set S with vertex expansion at most 576
√

SDPval log d (with
constant probability).

1. Solve SDP 6.2.2 for graph G.

2. Pick a random Gaussian vector g ∼ N(0, 1)n. For each i ∈ [n], define

xi
def
= 〈vi, g〉 .

3. Sort the xi’s in decreasing order xi1 > xi2 > . . . xin . Let Sj denote the
set of the first j vertices appearing in the sorted order. Let l be the
index such that

l = argmin16j6n/2ΦV(Sj) .

Figure 15: Rounding Algorithm

We first prove a technical lemma which shows that we can a recover a set with

small vertex expansion from a good line-embedding (Step 5 in Algorithm 6.2.3).

Lemma 6.2.4. Let Y ∈ (R+)n be any vector. Then ∃S ⊆ supp(Y ) such that

ΦV(S) 6

∑
i maxj∼i |Yj − Yi|∑

i Yi
.

Moreover, such a set can be computed in polynomial time.

The proof of this lemma follows from Proposition 4.4.2. We prove it here again for

completeness.

Proof of Lemma 6.2.4. W.l.o.g we may assume that Y1 > Y2 > . . . > Yn > 0. Let α

denote

α
def
=

∑
i maxj∼i |Yj − Yi|∑

i Yi
.
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Let imax
def
= argmaxi Yi > 0, i.e. imax be the largest index such that Yimax > 0. Let

Si
def
= {Y1, . . . , Yi}. Let us consider the following case

∣∣NV (Si) ∪NV (S̄i)
∣∣ > α |Si| ∀i < imax .

Then,

α =

∑
i maxj∼i(Yj − Yi)∑

i Yi
>

∑
i maxj∼i

∑l=i−1
l=j (Yl − Yl+1)∑
i Yi

=

∑
i(Yi − Yi+1)

∣∣NV (Si) ∪NV (S̄i)
∣∣∑

i Yi

> α

∑
i(Yi − Yi+1) |Si|∑

i Yi

= α

Thus we get α > α which is a contradition. Therefore, ∃i 6 imax such that ΦV(Si) 6

α.

Next we show a λ∞-like bound for the xi’s.

Lemma 6.2.5. Let x1, . . . , xn be as defined in Algorithm 6.2.3. Then, with constant

probability, we have

∑
i maxj∼i(xi − xj)2∑
i x

2
i − 1

n
(
∑

i xi)
2 6 96 SDPval log d.

Proof. Using Fact 2.5.5 we get,

E
[
max
j∼i

(xj − xj)2

]
= E

[
max
j∼i
〈vi − vj, g〉2

]
6 2 max

j∼i
‖vj − vi‖2 log d .

Therefore, E [
∑

i maxj∼i(xj − xj)2] 6 2 SDPval log d. Using Markov’s Inequality

we get

P

[∑
i

max
j∼i

(xj − xj)2 > 48 SDPval log d

]
6

1

24
(50)

For the denominator, using linearity of expectation, we get
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E

∑
i

x2
i −

1

n

(∑
i

xi

)2
 =

∑
i

‖vi‖2 − 1

n

∥∥∥∥∥∑
i

vi

∥∥∥∥∥
2

.

Also recall that the denominator can be re-written as

∑
i

x2
i −

1

n

(∑
i

xi

)2

=
1

n

∑
i,j

(xi − xj)2 ,

which is a sum of squares of Gaussian random variables. Now applying Lemma 2.5.6

to the denominator we conclude

P

∑
i

x2
i −

1

n

(∑
i

xi

)2

>
1

2

 > 1

12
. (51)

Using (50) and (51) we get that

P

[∑
i maxj∼i(xi − xj)2∑
i x

2
i − 1

n
(
∑

i xi)
2 6 96 SDPval log d

]
>

1

24
.

We will use the following fact from [21]. For the sake of completeness, we prove it

here again.

Lemma 6.2.6 ([21]). Let z1, . . . , zn ∈ R. Then there exists x ∈ Rn such that∑
i maxj∼i

∣∣x2
i − x2

j

∣∣∑
i x

2
i − 1

n
(
∑

i xi)
2 6 6

√∑
i maxj∼i(zi − zj)2∑
i z

2
i − 1

n
(
∑

i zi)
2 .

Proof. W.l.o.g we may assume that |supp(Z+)| = |supp(Z−)| = dn/2e and that

z1 > z2 > . . . > zn.

Note that for any i ∈ [n], we have

max
j∼i, j<i

(z+
j − z+

i )2 + max
j∼i, j>i

(z−j − z−i )2 6 2 max
j∼i

(zj − zi)2 .
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Therefore,∑
i maxj∼i(zj − zi)2∑

i z
2
i

>

∑
i maxj∼i, j<i(z

+
j − z+

i )2 +
∑

i maxj∼i, j>i(z
−
j − z−i )2

2
(∑

i∈supp(Z+) z
2
i +

∑
i∈supp(Z−) z

2
i

)
> min

{∑
i maxj∼i, j<i(z

+
j − z+

i )2

2
∑

i∈supp(Z+) z
2
i

,

∑
i maxj∼i, j>i(z

−
j − z−i )2

2
∑

i∈supp(Z−) z
2
i

}

W.l.o.g we may assume that∑
i maxj∼i, j<i(z

+
j − z+

i )2∑
i∈supp(Z+) z

2
i

6

∑
i maxj∼i, j>i(z

−
j − z−i )2∑

i∈supp(Z−) z
2
i

Let x
def
= z+. Then we get,∑

i maxj∼i(xj − xi)2∑
i x

2
i

6 2

∑
i maxj∼i(zj − zi)2∑

i z
2
i

We have

∑
i

max
j∼i, j<i

(x2
j − x2

i ) =
∑
i

max
j∼i, j<i

(xj − xi)(xj + xi)

6
∑
i

max
j∼i, j<i

(
(xj − xi)2 + 2xi(xj − xi)

)
6

∑
i

max
j∼i, j<i

(xj − xi)2 + 2
∑
i

xi max
j∼i, j<i

(xj − xi)

6
∑
i

max
j∼i, j<i

(xj − xi)2 + 2

√∑
i

x2
i

√
max
j∼i,j<i

(xj − xi)2

(Using the Cauchy-Schwarz inequality )

6 λ∞
∑
i

x2
i + 2

√
λ∞
∑
i

x2
i

Thus we have∑
i maxj∼i,j<i(x

2
j − x2

i )∑
i x

2
i

6 6

√∑
i maxj∼i(zj − zi)2∑

i z
2
i
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We are now ready to complete the proof of Theorem 6.1.3.

Proof of Theorem 6.1.3. Let the xi’s be as defined in Algorithm 6.2.3. W.l.o.g, we

may assume that |supp(x+)| < |supp(x−)|. For each i ∈ [n], we define yi = x+
i . Using

Lemma 6.2.6, we get∑
i maxj∼i

∣∣y2
i − y2

j

∣∣∑
i y

2
i − 1

n
(
∑

i yi)
2 6 6

√∑
i maxj∼i(xi − xj)2∑
i x

2
i − 1

n
(
∑

i xi)
2 .

Using Lemma 6.2.5, we get∑
i maxj∼i

∣∣y2
i − y2

j

∣∣∑
i y

2
i − 1

n
(
∑

i yi)
2 6 576

√
SDPval log d.

From Lemma 6.2.4 we get that the set output in Step 3 of Algorithm 6.2.3 has vertex

expansion at most 576
√

SDPval log d.

6.3 Approximation Algorithms for Hypergraph Eigenvalues

Since L is a non-linear operator, computing its eigenvalues exactly is intractable. In

this section we give a O (k log r)-approximation algorithm for γk.

Theorem 6.3.1 (Restatement of Theorem 6.1.5). There exists a randomized polyno-

mial time algorithm that, given a hypergraph H = (V,E,w) and a parameter k < |V |,

outputs k orthonormal vectors u1, . . . , uk such that for each i ∈ [k]

R (ui) 6 O (i log r γi) .

We will prove this theorem inductively. We already know that γ1 = 0 and

v1 = 1/
√
n. Now, we assume that we have computed k − 1 orthonormal vectors

u1, . . . , uk−1 such that R (ui) 6 O (i log r γi). We will now show how to compute uk.

Our main idea is to show that there exists a unit vector X ∈ span {v1, . . . , vk} which

is orthogonal to span {u1, . . . , uk−1}. We will show that for such an X, R (X) 6 k γk

(Proposition 6.3.2). Then we give an SDP relaxation (SDP 6.3.3) and a rounding

algorithm (Algorithm 6.3.4, Lemma 6.3.5) to compute an “approximate” X ′.
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Proposition 6.3.2. Let u1, . . . , uk−1 be arbitrary orthonormal vectors. Then

min
X⊥u1,...,uk−1

R (X) 6 k γk .

Proof. Consider subspaces S1
def
= span {u1, . . . , uk−1} and S2

def
= span {v1, . . . , vk}. Since

rank(S2) > rank(S1), there exists X ∈ S2 such that X ⊥ S1. We will now show that

this X satisfies R (X) 6 O (k γk), which will finish this proof. Let X = c1v1 +. . .+ckvk

for scalars ci ∈ R such that
∑

i c
2
i = 1.

Recall that γk is defined as

γk
def
= min

Y⊥v1,...,vk−1

Y TLY Y

Y TY
.

We can restate the definition of γk as follows,

γk = min
Y⊥v1,...,vk−1

max
Z∈Rn

Y TLZY

Y TY
.

Therefore,

γk = vTkLvkvk > vTkLXvk . (52)

The Laplacian matrix LX , being positive semi-definite, has a Cholesky Decomposi-

tion into matrices BX such that LX = BXB
T
X .

R (X) = XTLXX =
∑
i,j∈[k]

cicjv
T
i BXB

T
Xvj (Cholesky Decomposition of LX )

6
∑
i,j∈[k]

|cicj| ‖BXvi‖ · ‖BXvi‖ (Cauchy-Schwarz inequality)

=
∑
i,j∈[k]

|cicj|
√

vTi LXvi

√
vTj LXvj 6

∑
i,j∈[k]

|cicj|
√
γ1γj (Using (52))

6

(∑
i

|ci|

)2

max
i,j

√
γiγj 6 k γk .
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Next we present an SDP relaxation (SDP 6.3.3) to compute the vector orthogonal

u1, . . . , uk−1 having the least Rayleigh quotient. The vector Ȳi is the relaxation of the

ith coordinate of the vector uk that we are trying to compute. The objective function

of the SDP and (53) seek to minimize the Rayleigh quotient; Proposition 6.3.2 shows

that the objective value of this SDP is at most k γk. (54) demands the solution be

orthogonal to u1, . . . , uk−1.

SDP 6.3.3.
SDPval

def
= min

∑
e∈E

w(e) max
i,j∈e

∥∥Ȳi − Ȳj∥∥2
.

subject to ∑
i∈V

∥∥Ȳi∥∥2
= 1 (53)

∑
i∈V

ul(i) Ȳi = 0 ∀l ∈ [k − 1] (54)

Figure 16: SDP Relaxation for for γk.

Algorithm 6.3.4 (Rounding Algorithm for Computing Eigenvalues).

1. Solve SDP 6.3.3 on the input hypergraph H with the previously computed
k − 1 vectors u1, . . . , uk−1.

2. Sample a random Gaussian vector g ∼ N (0, 1)n. Set Xi
def
=
〈
Ȳi, g

〉
.

3. Output X/ ‖X‖.

Figure 17: Rounding Algorithm for γk.

Lemma 6.3.5. With constant probability Algorithm 6.3.4 outputs a vector uk such

that

1. uk ⊥ ul ∀l ∈ [k − 1].
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2. R (uk) 6 192 SDPval log r.

Proof. We first verify condition (1). For any l ∈ [k − 1], we using (54)

〈X, ul〉 =
∑
i∈V

〈
Ȳi, g

〉
ul(i) =

〈∑
i∈V

ul(i) Ȳi, g

〉
= 0 .

We now prove condition (2). To bound R (X) we need an upper bound on the

numerator and a lower bound on the denominator of the R (·) expression. For the

sake of brevity let L denote LX . Then Using Fact 2.5.5

E
[
XTLX

]
6
∑
e∈E

w(e)E
[
max
i,j∈e

(Xi −Xj)
2

]
6 4 log r

∑
e∈E

w(e) max
i,j∈e

∥∥Ȳi − Ȳj∥∥2

= 4 SDPval log r .

Therefore, by Markov’s Inequality,

P
[
XTLX 6 96 SDPval log r

]
> 1− 1

24
. (55)

For the denominator, using linearity of expectation, we get

E

[∑
i∈V

X2
i

]
=
∑
i

E
[〈
Ȳi, g

〉2
]

=
∑
i

∥∥Ȳi∥∥2
= 1 (Using (53)) .

Now applying Lemma 2.5.6 to the denominator we conclude

P

[∑
i

X2
i >

1

2

]
>

1

12
. (56)

Using Union-bound on (55) and (56) we get that

P [R (X) 6 192 SDPval log r] >
1

24
.

We now have all the ingredients to prove Theorem 6.1.5.
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Proof of Theorem 6.1.5. We will prove this theorem inductively. For the basis of

induction, we have the first eigenvector u1 = v1 = 1/
√
n. We assume that we have

computed u1, . . . , uk−1 satisfying R (ui) 6 O (i log r γi). We now show how to compute

uk.

Proposition 6.3.2 implies that for SDP 6.3.3,

SDPval 6 k γk .

Therefore, from Lemma 6.3.5, we get that Algorithm 6.3.4 will output a unit vector

which is orthogonal to all ui for i ∈ [k − 1] and

R (uk) 6 192 k log r γk .

6.4 Algorithm for Hypergraph Balanced Separator

In this section we prove Theorem 6.1.8.

Theorem 6.4.1 (Restatement of Theorem 6.1.8). There exists a randomized poly-

nomial time algorithm that given H = (V,E,w), an instance of the c-Hypergraph

Balanced Separator problem, outputs a c′-balanced set S ⊂ V such that sp(S) =

O
(√

log n
)

OPT, where OPT is the least sparsity of a c-balanced set and c′ > c/100.

Proof of Theorem 6.1.8. We prove this theorem by giving an SDP relaxation for this

problem (SDP 6.4.2) and a rounding algorithm for it (Algorithm 6.4.4). Firstly,

we need a suitable objective function for the relaxation that captures hypergraph

expansion. Motivated by Theorem 4.2.11, we can have objective function to be a

relaxation of

XTL(X) =
∑
e∈E

max
i,j∈e

(Xi −Xj)
2 .

We relax the scalar Xu to be a vector ū. Ideally, we would want all Xu to be in the

set {−1, 1} so that we can identify the cut. Therefore, we add the constraint that all
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vectors ū have length 1 (57). Since we want the integral solution to be c-balanced,

we add the corresponding constraint for vectors (58) . Finally, we add `2
2 triangle

inequality constraints between all triplets of vertices (59), as all integral solutions of

the relaxation will trivially satisfy this.

SDP 6.4.2.
min

∑
e∈E

max
u,v∈e
‖ū− v̄‖2

subject to
‖ū‖2 = 1 ∀u ∈ V (57)∑

u,v

‖ū− v̄‖2 > 4c(1− c) |V |2 (58)

‖ū− v̄‖2 + ‖v̄ − w̄‖2 > ‖ū− w̄‖2 ∀u, v, w ∈ V (59)

Figure 18: SDP Relaxation for for Hypergraph Balanced Separator.

Our main ingredient is the following theorem due to [13].

Theorem 6.4.3 ([13]). There exists a randomized polynomial time algorithm that

given an `2
2-space on X = {ū} satisfying

∑
u,v ‖ū− v̄‖

2 > 4c(1 − c)n2, outputs two

sets S, T ⊂ X such that |S| , |T | > c′n and

min
u∈S,v∈T

‖ū− v̄‖2 >
1

C
√

log n
.

Here c′, C are functions only of c.

By definition Xu, Xv and using (59), it follows that

|Xu −Xv| 6 ‖ū− v̄‖2 ∀u, v ∈ V .

Next, using Theorem 6.4.3,

∑
u,v

|Xu −Xv| >
∑

u∈S,v∈T

|Xu −Xv| > c′2n2 1

C
√

log n
.
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Algorithm 6.4.4.

1. Solve SDP 6.4.2.

2. Compute sets S, T using Theorem 6.4.3.

3. For each u ∈ V , define Xu
def
= minv∈S ‖ū− v̄‖2. Sort the {Xu : u ∈ V } in

increasing order and output the set A ⊂ V having the least sparsity in this
ordering (See Proposition 4.4.2).

Figure 19: Rounding Algorithm for Hypergraph Balanced Separator

Therefore, ∑
e∈E maxu,v∈e |Xu −Xv|∑

u,v |Xu −Xv|
6
C
√

log n

c′2
·
∑

e∈E maxu,v∈e ‖ū− v̄‖2

n2

6
C
√

log n

c′2
·
∑

e∈E maxu,v∈e ‖ū− v̄‖2∑
u,v ‖ū− v̄‖

2(
Since

∑
u,v

‖ū− v̄‖2 6 n2

)

6
C
√

log n

c′2
OPT .

Invoking Proposition 4.4.2, we get that the set A output by Algorithm 6.4.4 satisfies

|A| ∈ [c′n, (1− c′)n] and

sp(A) 6
C
√

log n

c′2
OPT .

This finishes the proof of the theorem.

6.5 Conclusion

In this chapter we gave optimal approximation algorithms for vertex expansion

and hypergraph expansion via approximation algorithms for λ∞ and the hypergraph

eigenvalues. The approximation factors for λ∞ and γ2 are optimal (upto constant

factors) under SSE. We get a O (k log r)-approximation algorithm for γk, but we do

not know of any hardness result for γk other than what follows from the hardness for
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γ2. Closing the gap between the approximation upper bounds and the computational

lower bounds for γ2 is left as an open problem.

Acknowledgements. The results in Section 6.2 were obtained in joint work with

Prasad Raghavendra and Santosh Vempala [75].
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CHAPTER VII

APPROXIMATION ALGORITHMS FOR SMALL SET

EXPANSION PROBLEMS

7.1 Introduction

In this chapter, we study the “small set” versions of the Hypergraph Expansion

problem and the Vertex Expansion problem. As in Chapter 5, we can again afford

to work with a more general definition of expansion. Given a hypergraph H = (V,E,w)

where weight function w : V ∪ E → R+, the expansion of a set S ⊂ V is defined as

φ(S)
def
=

∑
e∈E(S,S̄) w(e)∑
u∈V w(u)

.

We recall the Hypergraph Small Set Expansion (Problem 2.1.7).

Problem 7.1.1 (Hypergraph Small Set Expansion). Given a hypergraph

H = (V,E,w) and a parameter δ ∈ (0, 1/2], the Hypergraph Small Set Expansion

problem (H-SSE) is to find a set S ⊂ V of size at most δn that minimizes φ(S). The

value of the optimal solution to H-SSE is called the small set expansion of H. That is,

for δ ∈ (0, 1/2], the small set expansion φH,δ of a hypergraph H = (V,E,w) is defined

as

φH,δ = min
S⊂V

0<|S|6δn

φ(S).

Note that for δ = 1/2, the Hypergraph Small Set Expansion problem is the

Hypergraph Expansion problem.

7.1.1 Summary of Results

Raghavendra, Steurer and Tetali [87] gave an algorithm for Small Set Expansion

in graphs that finds a set of size O(δn) with expansion O(
√

OPT log(1/δ)) (where
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OPT is the expansion of the optimal solution). Later Bansal et. al.[16] gave a

O(
√

log n log(1/δ)) approximation algorithm for the problem. We present analogs of

the results of Bansal et. al.[16] and Raghavendra et. al.[87] for hypergraphs.

Theorem 7.1.2. There is a randomized polynomial-time approximation algorithm

for the Hypergraph Small Set Expansion problem that given a hypergraph

H = (V,E,w), and parameters ε ∈ (0, 1) and δ ∈ (0, 1/2), finds a set S ⊂ V of size

at most (1 + ε)δn such that

φ(S) 6 Oε
(
δ−1 log δ−1 log log δ−1 ·

√
log n · φH,δ

)
= Õε

(
δ−1
√

log nφH,δ

)
,

(where the constant in the O notation depends polynomially on 1/ε). That is, the

algorithm gives O(
√

log n) approximation when δ and ε are fixed.

We state our second result, Theorem 7.1.3, for r-uniform hypergraphs. We present

and prove a more general Theorem 7.5.3 that applies to any hypergraph in Section 7.5.

Theorem 7.1.3 (Informal Statement). There is a randomized polynomial-time algo-

rithm that given an r–uniform hypergraph H = (V,E,w) with vertex weights w(v) = dv,

and parameters ε ∈ (0, 1) and δ ∈ (0, 1/2) finds a set S ⊂ V of size at most (1 + ε)δn

such that

φ(S) 6 Õε

(
δ−1

(√
log r

r
φH,δ + φH,δ

))
.

Our algorithms for H-SSE are bi-criteria approximation algorithms in that they

output a set S of size at most (1 + ε)δn. We note that this is similar to the algorithm

of Bansal et. al.[16] for SSE, which also finds a set of size at most (1 + ε)δn rather

than a set of size at most δn. The algorithm of [87] finds a set of size O(δn). The

approximation factor of our first algorithm does not depend on the size of hyperedges

in the input hypergraph. It has the same dependence on n as the algorithm of Bansal

et. al.[16] for SSE. However, the dependence on 1/δ is quasi-linear; whereas it is

logarithmic in the algorithm of Bansal et. al.[16]. In fact, we show that the integrality
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gap of the standard SDP relaxation for H-SSE is at least linear in 1/δ (Theorem 7.6.1).

The approximation guarantee of our second algorithm is analogous to that of the

algorithm of [87].

Small Set Vertex Expansion. Our techniques can also be used to obtain an

approximation algorithm for Small Set Vertex Expansion (SSVE) in graphs

(Problem 2.1.7).

Problem 7.1.4 (Small Set Vertex Expansion). Given graph G = (V,E) and a

parameter δ ∈ (0, 1/2], the Small Set Vertex Expansion (SSVE) is to find a set

S ⊂ V of size at most δn that minimizes φV(S). The value of the optimal solution to

SSVE is called the small set vertex expansion of G and is denoted by φV
G,δ. That is,

for δ ∈ (0, 1/2], the small set expansion φV
G,δ of a graph G = (V,E) is defined as

φV
G,δ = min

S⊂V
0<|S|6δn

φV(S).

The Small Set Vertex Expansion recently gained interest due to its con-

nection to obtaining subexponential time, constant factor approximation algorithms

for many combinatorial problems like Sparsest Cut and Graph Coloring ([9, 74]).

Using a reduction from Vertex Expansion in graphs to Hypergraph Expansion

(Theorem 7.1.5, similar to Theorem 4.2.19), we can get an approximation algorithm

for SSVE having the same approximation guarantee as that for H-SSE.

Theorem 7.1.5 (Extension of Theorem 4.2.19). There exist absolute constants

c1, c2 ∈ R+ such that for every graph G = (V,E), of maximum degree d, there

exists a polynomial time computable hypergraph H = (V ′, E ′) having the hyperedges of

cardinality at most d+ 1 such that

c1φH,δ 6 φV
G,δ 6 c2φH,δ.

Also, ηHmax 6 log2(dmax + 1), where dmax is the maximum degree of G (where ηHmax is

defined in Definition 7.5.1).
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From this theorem, Theorem 7.1.2 and Theorem 7.5.3 we immediately get algo-

rithms for SSVE.

Theorem 7.1.6 (Corollary to Theorem 7.1.2 and Theorem 7.1.5). There is a ran-

domized polynomial-time approximation algorithm for the Small Set Vertex Ex-

pansion that given a graph G = (V,E), and parameters ε ∈ (0, 1) and δ ∈ (0, 1/2))

finds a set S ⊂ V of size at most (1 + ε)δn such that

φV(S) 6 Oε
(√

log n δ−1 log δ−1 log log δ−1 · φV
G,δ

)
.

Theorem 7.1.7 (Corollary to Theorem 7.5.3 and Theorem 7.1.5). There is a ran-

domized polynomial-time algorithm for the Small Set Vertex Expansion that

given a graph G = (V,E) of maximum degree d, parameters ε ∈ (0, 1) and δ ∈ (0, 1/2)

finds a set S ⊂ V of size at most (1 + ε)δn such that

φV(S) 6 Oε
(√

φV
G,δ log d · δ−1 log δ−1 log log δ−1

)
= Õε

(
δ−1
√
φV
G,δ log d

)
.

We note that the Small Set Vertex Expansion for δ = 1/2 is just the Vertex

Expansion. In that case, Theorem 7.1.7 gives the same approximation guarantee as

the algorithm of Theorem 6.1.3.

7.1.2 Proof Overview

Our general approach to solving H-SSE is similar to the approach of Bansal et. al.[16].

We recall how the algorithm of Bansal et. al.[16] for (graph) SSEworks. The algorithm

solves a semidefinite programming relaxation for SSE and gets an SDP solution. The

SDP solution assigns a vector ū to each vertex u. Then the algorithm generates an

orthogonal separator. An orthogonal separator S (introduced by [31]) with distortion

D is a distribution over random subset of vertices such that
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(a) If ū and v̄ are close to each other then the probability that u and v are separated

by S is small; namely, it is at most αD‖ū − v̄‖2, where α is a normalization

factor such that P [u ∈ S] = α‖ū‖2.

(b) If the angle between ū and v̄ is larger than a certain threshold, then the

probability that both u and v are in S is much smaller than the probability that

one of them is in S.

Bansal et. al.[16] showed that condition (b) together with SDP constraints implies

that S is of size at most (1 + ε)δn with sufficiently high probability. Then condition

(a) implies that the expected number of cut edges is at most D times the SDP value.

That means that S is a D–approximate solution to SSE.

We start with an SDP relaxation of the Rayleigh quotient of the hypergraph

R (X) =
XTL(X)

XTX
=

∑
e∈E w(e) maxi,j∈e(Xi −Xj)

2

d
∑

iX
2
i

together with the “small-set” constraints of Bansal et. al.[16]. If we run this algorithm

on an instance of H-SSE, we will still find a set of size at most (1 + ε)δn, but the

cost of the solution might be very high. Indeed, consider a hyperedge e. Even though

every two vertices u and v in e are unlikely to be separated by S, at least one pair out

of
(|e|

2

)
pairs of vertices is quite likely to be separated by S; hence, e is quite likely to

be cut by S. To deal with this problem, we develop hypergraph orthogonal separators.

In the definition of a hypergraph orthogonal separator, we strengthen condition (a)

by requiring that a hyperedge e is cut by S with small probability if all vertices in e

are close to each other. Specifically, we require that

P [e is cut by S] 6 αDmax
u,v∈e
‖ū− v̄‖2. (60)

We show that there is a hypergraph orthogonal separator with distortion proportional

to
√

log n (the distortion also depends on parameters of the orthogonal separator).

Plugging this hypergraph orthogonal separator in the algortihm of Bansal et. al.[16],
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we get Theorem 7.1.2. We also develop another variant of hypergraph orthogonal

separators, `2–`
2
2 orthogonal separators. An `2–`

2
2 orthogonal separator with `2–

distortion D`2(r) and `2
2–distortion D`22

satisfies the following condition1

P [e is cut by S] 6 αD`2(|e|) ·min
w∈E
‖w̄‖ ·max

u,v∈e
‖ū− v̄‖+ αD`22

·max
u,v∈e
‖ū− v̄‖2 . (61)

We show that there is an `2-`
2
2 hypergraph orthogonal separator whose `2 and `2

2

distortions do not depend on n (in contrast, there is no hypergraph orthogonal

separator whose distortion does not depend on n). This result yields Theorem 7.1.3.

We now give a brief conceptual overview of our construction of hypergraph or-

thogonal separators. We use the framework developed in [31] for (graph) orthogonal

separators. For simplicity, we ignore vector normalization steps in this overview; let us

assume that all the vectors are unit vectors. (Note, however, that these normalization

steps are crucial). We first design a procedure that partitions the hypergraph into

two pieces (the procedure labels every vertex with either 0 or 1). In a sense, each

set S in the partition is a “very weak” hypergraph orthogonal separator. It satis-

fies property (60) with D0 ∼
√

log n log log(1/δ) and α0 = 1/2 and a weak variant

of property (b): if the angle between vectors ū and v̄ is larger than the threshold

then events u ∈ S and v ∈ S are “almost” independent. We repeat the procedure

l = log2(1/δ) +O(1) times and obtain a partition of graph into 2l = O(1/δ) pieces.

Then we randomly choose one set S among them; this set S is our hypergraph or-

thogonal separator. Note that by running the procedure many times we decrease

exponentially in l the probability that two vertices, as in condition (b), belong to

S. So condition (b) holds for S. Also, we affect the distortion in (60) in two ways.

First, the probability that the edge is cut increases by a factor of l. That is, we

get P [e is cut by S] 6 l × α0D0 maxu,v∈e ‖ū − v̄‖2. Second, the probability that we

1It may look strange that we have two terms in the bound. One may expect that we can either have
only term D`22

maxu,v∈e ‖ū− v̄‖2 (as in the previous definition) or only term D`2(|e|) ·minw∈E ‖w̄‖ ·
maxu,v∈e ‖ū− v̄‖. However, the latter is not possible — there is no `2–`22 separator with D`22

= 0.
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choose a vertex u goes down from ‖ū‖2/2 to Ω(δ)‖ū‖2 since, roughly speaking, we

choose one set S among O(1/δ) possible sets. That is, the parameter α of S is

Ω(δ). Therefore, P [e is cut by S] 6 α(α0lD0/α) maxu,v∈e ‖ū − v̄‖2. That is, we get

a hypergraph orthogonal separator with distortion (α0lD0/α) ∼ Õ(δ−1
√

log n). The

construction of `2
2 orthogonal separators is similar but a bit more technical.

Organization. We present our SDP relaxation and introduce our main technique,

hypergraph orthogonal separators, in Section 7.2. We describe our first algorithm for

H-SSE in Section 7.2.3, and then describe an algorithm that generates hypergraph

orthogonal separators in Section 7.3. We define `2–`2
2 hypergraph orthogonal separators,

give an algorithm that generates them, and then present our second algorithm for

H-SSE in Section 7.4 and Section 7.5. Finally, we show a simple SDP integrality gap

for H-SSE in Section 7.6. This integrality gap also gives a lower bound on the quality

of m-orthogonal separators. We give a proof of Theorem 7.1.5 in Section 7.7.

7.2 Algorithm for Hypergraph Small Set Expansion

7.2.1 SDP Relaxation for Hypergraph Small Set Expansion

We use the SDP relaxation for H-SSE shown in SDP 7.2.1. There is an SDP variable

ū for every vertex u ∈ V . Every combinatorial solution S (with |S| 6 δn) defines the

corresponding (intended) SDP solution:

ū =


e√
w(S)

if u ∈ S

0 otherwise

.

where e is a fixed unit vector. It is easy to see that this solution satisfies all SDP

constraints. Note that maxu,v∈e ‖ū − v̄‖2 is equal to 1/w(S), if e is cut, and to 0,

otherwise. Therefore, the objective function equals∑
e∈E

w(e) max
u,v∈e
‖ū− v̄‖2 =

∑
e∈E(S,S̄)

w(e)
1

w(S)
=

∣∣E(S, S̄)
∣∣

w(S)
= φ(S).

Thus our SDP for H-SSE is indeed a relaxation.

152



SDP 7.2.1.
SDPval

def
= min

∑
e∈E

w(e) max
u,v∈e
‖ū− v̄‖2

subject to ∑
v∈V

〈ū, v̄〉 6 δn · ‖ū‖2 ∀u ∈ V (62)∑
u∈V

w(u) ‖ū‖2 = 1 (63)

‖ū− v̄‖2 + ‖v̄ − w̄‖2 > ‖ū− w̄‖2 for every u, v, w ∈ V (64)

0 6 〈ū, v̄〉 6 ‖ū‖2 for every u, v ∈ V. (65)

Figure 20: SDP relaxation for H-SSE

7.2.2 Hypergraph Orthogonal Separators

The main technical tool for proving Theorem 7.1.2 is hypergraph orthogonal separators.

In this chapter, we extend the technique of orthogonal separators to hypergraphs

thereby introducing hypergraph orthogonal separators. We then use hypergraph

orthogonal separators to solve H-SSE. In Section 7.4, we introduce another version of

hypergraph orthogonal separators, namely the `2–`2
2 hypergraph orthogonal separators,

and then use them to prove Theorem 7.1.3 and Theorem 7.5.3.

Definition 7.2.2 (Hypergraph Orthogonal Separators). Let {ū : u ∈ V } be a set of

vectors in the unit ball that satisfy `2
2–triangle inequalities (64) and (65). We say

that a random set S ⊂ V is a hypergraph m-orthogonal separator with distortion D,

probability scale α > 0, and separation threshold β ∈ (0, 1) if it satisfies the following

properties.

1. For every u ∈ V ,

P [u ∈ S] = α‖ū‖2.
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2. For every u and v such that ‖ū− v̄‖2 > βmin {‖ū‖2, ‖v̄‖2}

P [u ∈ S and v ∈ S] 6 α
min {‖ū‖2, ‖v̄‖2}

m
.

3. For every e ⊂ V ,

P [e is cut by S] 6 αDmax
u,v∈e
‖ū− v̄‖2 .

The definition of a hypergraph m-orthogonal separator is similar to that of a

(graph) m-orthogonal separator: a random set S is an m-orthogonal separator if it

satisfies properties 1, 2, and property 3′, which is property 3 restricted to edges e of

size 2.

3′. For every {u, v},

P [e is cut by S] 6 αD‖ū− v̄‖2 .

We design an algorithm that generates a hypergraph m-orthogonal separator with dis-

tortion Oβ(
√

log n ·m logm log logm). We note that the distortion of any hypergraph

orthogonal separator must depend on m at least linearly (see Section 7.6). We remark

that there are two constructions of (graph) orthogonal separators, “orthogonal separa-

tors via `1” and “orthogonal separators via `2”, with distortions, Oβ(
√

log n logm) and

Oβ(
√

log n logm), respectively (presented in [31]). Our construction of hypergraph

orthogonal separators uses the framework of orthogonal separators via `1. We prove

the following theorem in Section 7.3.

Theorem 7.2.3. There is a polynomial-time randomized algorithm that given a set

of vertices V , a set of vectors {ū} satisfying `2
2–triangle inequalities (64) and (65),

parameters m > 2 and β ∈ (0, 1), generates a hypergraph m-orthogonal separator with

probability scale α > 1/n and distortion D = O
(
β−1m logm log logm×

√
log n

)
.
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7.2.3 Rounding Algorithm

In this section, we present our algorithm for Hypergraph Small Set Expansion. Our

algorithm uses hypergraph orthogonal separators that we describe in Section 7.3. We

use the approach of Bansal et. al.[16]. Suppose that we are given a polynomial-time

algorithm that generates hypergraph m-orthogonal separators with distortion D(m,β)

(with probability scale α > 1/poly(n)). We show how to get a D∗
def
= 4D(4/(εδ), ε/4)

approximation for H-SSE.

Theorem 7.2.4. There is a randomized polynomial-time approximation algorithm for

the Hypergraph Small Set Expansion that given a hypergraph H = (V,E), and

parameters ε ∈ (0, 1) and δ ∈ (0, 1/2) finds a set S ⊂ V of size at most (1 + ε)δn such

that

φ(S) 6 4D(4/(εδ), ε/4) · φH,δ.

Proof. We solve the SDP relaxation for H-SSE and obtain an SDP solution {ū}.

Denote the SDP value by SDPval. Consider a hypergraph orthogonal separator S with

m = 4/(εδ) and β = ε/4. Define a set S ′:

S ′ =


S if |S| 6 (1 + ε)δn

∅ otherwise

.

Clearly, |S ′| 6 (1 + ε)δn. Bansal et. al.[16] showed that

P [u ∈ S ′] ∈
[α

2
‖ū‖2, α‖ū‖2

]
for every u ∈ V .

Note that

P [S ′ cuts edge e] 6 P [S cuts edge e] 6 αD∗max
u,v∈e
‖ū− v̄‖2.

where D∗ = D(4/(εδ), ε/4) for the sake of brevity. Let

Z
def
= w(S ′)−

∑
e∈E(S′,S̄′)w(e)

4D∗ · SDPval
.
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We have,

E [Z] = E [w(S ′)]−
E
[∑

e∈E(S′,S̄′) w(e)
]

4D∗ · SDPval

>
∑
u∈V

(α
2
· ‖ū‖2

)
w(u)−

∑
e∈E (αD∗maxu,v∈e ‖ū− v̄‖2)w(e)

4D∗ · SDPval

=
α

2
− 1

4D∗ · SDPval
× αD∗SDPval =

α

4
.

Since Z 6 w(S ′) < n (always), by Markov’s inequality, we have P [Z > 0] > α/(4n)

and hence

P [φ(S) < 4D∗ · SDPval] > α/(4n) .

We sample S independently 4n/α times and return the first set S ′ such that φ(S) <

4D∗ · SDPval. This gives a set S ′ such that |S ′| 6 (1 + ε)δn, and φ(S ′) 6 4D∗φH,δ.

The algorithm succeeds (finds such a set S ′) with a constant probability. By repeating

the algorithm n times, we can make the success probability exponentially close to

1.

In Section 7.3, we describe how to generate an m-hypergraph orthogonal separator

with distortion D = O
(√

log n× β−1m logm log logm
)
. That gives us an algorithm

for H-SSE with approximation factor Oε
(
δ−1 log δ−1 log log δ−1 ×

√
log n

)
.

7.3 Generating Hypergraph Orthogonal Separators

In this section, we present an algorithm that generates a hypergraph m-orthogonal

separator. At the high level, the algorithm is similar to the algorithm for generating

orthogonal separators by Chlamtac et. al.[31]. We use a different procedure for

generating words W (u) (see below) and set parameters differently; also the analysis of

our algorithm is different.

In our algorithm, we use a “normalization” map ψ from [31]. Map ψ maps a

set {ū} of vectors satisfying `2
2–triangle inequalities (64) and (65) to Rn. It has the

following properties.
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1. For all vertices u, v, w,

‖ψ(ū)− ψ(v̄)‖2
2 + ‖ψ(v̄)− ψ(w̄)‖2

2 > ‖ψ(ū)− ψ(w̄)‖2
2 .

2. For all vertices u and v,

〈ψ(ū), ψ(v̄)〉 =
〈ū, v̄〉

max {‖ū‖2, ‖v̄‖2}
.

In particular, for every ū 6= 0, ‖ψ(ū)‖2
2 = 〈ψ(ū), ψ(ū)〉 = 1. Also, ψ(0) = 0.

3. For all non-zero vectors ū and v̄,

‖ψ(ū)− ψ(v̄)‖2
2 6

2 ‖ū− v̄‖2

max {‖ū‖2, ‖v̄‖2}
.

We also use the following theorem of Arora, Lee and Naor [11] (See also [12]).

Theorem 7.3.1 ([11]). There exist constants C > 1 and p ∈ (0, 1/4) such that for

every n unit vectors xu (u ∈ V ), satisfying `2
2–triangle inequalities (64), and every

∆ > 0, the following holds. There exists a polynomial time algorithm to sample a

random subset U of V such that for every u, v ∈ V with ‖xu − xv‖2 > ∆,

P
[
u ∈ U and d(v, U) >

∆

C
√

log n

]
> p,

where d(v, U) = minu∈U ‖xu − xv‖2.

First we describe an algorithm that randomly assigns each vertex u a symbol,

either 0 or 1. Then we use this algorithm to generate an orthogonal separator.

Lemma 7.3.2. There is a randomized polynomial-time algorithm that given a finite

set V , unit vectors ψ(ū) for u ∈ V satisfying `2
2-triangle inequalities and a parameter

β ∈ (0, 1), returns a random assignment ω : V → {0, 1} that satisfies the following

properties.
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• For every u and v such that ‖ψ(ū)− ψ(v̄)‖2 > β,

P [ω(u) 6= ω(v)] > 2p,

where p > 0 is the constant from Theorem 7.3.1.

• For every set e ⊂ V of size at least 2,

P [ω(u) 6= ω(v) for some u, v ∈ e] 6 O
(
β−1
√

log nmax
u,v∈e
‖ψ(ū)− ψ(v̄)‖2

)
.

Proof. Let U be the random set from Theorem 7.3.1 for vectors xu = ψ(ū) and ∆ = β.

Choose t ∼ (0, β/(C
√

log n)) uniformly at random. Let

ω(u) =


0 if d(u, Ui) 6 t

1 otherwise

.

Consider first vertices u and v such that ‖ψ(ū)− ψ(v̄)‖2 > β. By Theorem 7.3.1,

P
[
u ∈ U and d(v, U) >

∆

C
√

log n

]
> p

and

P
[
v ∈ U and d(u, U) >

∆

C
√

log n

]
> p .

Note that in the former case, when u ∈ U and d(v, U) > ∆
C
√

logn
, we have ω(u) = 0

and ω(v) = 1; in the latter case, when v ∈ U and d(u, U) > ∆
C
√

logn
, we have ω(v) = 0

and ω(u) = 1. Therefore, the probability that ω(u) 6= ω(v) is at least 2p.

Now consider a set e ⊂ V of size at least 2. Let

τm = min
w∈e

d(U, ψ(w̄)) and τM = max
w∈e

d(U, ψ(w̄)).

We have, τM − τm 6 maxu,v∈e ‖ψ(ū)− ψ(v̄)‖2. Note that if t < τm then ω(u) = 1 for

all u ∈ e; if t > τM then ω(u) = 0 for all u ∈ e. Thus ω(u) 6= ω(v) for some u, v ∈ e

only if t ∈ [τm, τM). Since the probability density of the random variable t is at most
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C
√

log n, we get,

P [∃u, v ∈ e : ω(u) 6= ω(v)] 6 P [t ∈ [τm, τM)]

6
C
√

log n

∆
(τM − τm) 6

C
√

log n

β
max
u,v∈e
‖ū− v̄‖2. (66)

We now amplify the result of Lemma 7.3.2.

Lemma 7.3.3. There is a randomized polynomial time algorithm that given V , vectors

ψ(ū) and β ∈ (0, 1) as in Lemma 7.3.2, and a parameter m > 2, returns a random

assignment ω : V → {0, 1} such that:

• For every u and v such that ‖ψ(ū)− ψ(v̄)‖2 > β,

P [ω̃(u) 6= ω̃(v)] >
1

2
− 1

log2m
.

• For every set e ⊂ V of size at least 2,

P [ω̃(u) 6= ω̃(v) for some u, v ∈ e]

6 O
(
β−1
√

log n · log logm ·max
u,v∈e
‖ψ(ū)− ψ(v̄)‖2

)
.

Proof. Let K = max
(⌈

log2 log2 m
− log2(1−4p)

⌉
, 1
)

. We independently sample K assignments

ω1, . . . , ωK . Let

ω̃(u) = ω1(u)⊕ · · · ⊕ ωK(u),

where ⊕ denotes addition modulo 2. Consider u and v such that ‖ψ(ū)− ψ(v̄)‖2 > β.

Let

p̃ = P [ωi(u) 6= ωi(v)] > 2p for i ∈ {1, . . . , K}

(the expression does not depend on the value of i since all ωi are identically distributed).

Note that ω̃(u) 6= ω̃(v) if and only if ωi(u) 6= ωi(v) for an odd number of values i.
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Therefore,

P [ω(u) 6= ω(v)] =
∑

06k6K/2

(
K

2k + 1

)
p̃2k+1(1− p̃)K−2k−1 =

1− (1− 2p̃)K

2

>
1− (1− 4p)K

2
>

1

2
− 1

log2m
.

Now let e ⊂ V be a subset of size at least 2. We have,

P [ω̃(u) 6= ω̃(v)] 6 P [ωi(u) 6= ωi(v) for some i]

6 O
(
Kβ−1

√
log nmax

u,v∈e
‖ψ(ū)− ψ(v̄)‖2

)
.

We are now ready to present our algorithm for the hypergraph orthogonal separator

(Algorithm 7.3.4).

Algorithm 7.3.4 (Hypergraph Orthgonal Separator).

1. Set l = dlog2m/(1− log2(1 + 2/ log2m))e = log2m+O(1).

2. Sample l independent assignments ω̃1, . . . , ω̃l using Lemma 7.3.3.

3. For every vertex u, define word W (u) = ω̃1(u) . . . ω̃l(u) ∈ {0, 1}l.

4. If n > 2l, pick a word W ∈ {0, 1}l uniformly at random. If n < 2l, pick a
random word W ∈ {0, 1}l so that PW [W = W (u)] = 1/n for every u ∈ V .
This is possible since the number of distinct words constructed in step 3 is at
most n (we may pick a word W not equal to any W (u)).

5. Pick r ∼ (0, 1) uniformly at random.

6. Let S = {u ∈ V : ‖ū‖2 > r and W (u) = W}.

Figure 21: Hypergraph Orthogonal Separator

Theorem 7.3.5. Random set S output by Algorithm 7.3.4 is a hypergraph orthogonal

separator with distortion

D = O
(√

log n× m logm log logm

β

)
,
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probability scale α > 1/n and separation threshold β.

Proof. We verify that S satisfies properties 1–3 in the definition of a hypergraph

m-orthogonal separator with α = max
{

1/2l, 1/n
}

.

Property 1. We compute the probability that u ∈ S. Observe that u ∈ S if and

only if W (u) = W and r 6 ‖ū‖2 (these two events are independent). If n > 2l, the

probability that W = W (u) is 1/2l since we choose W uniformly at random from

{0, 1}l; if n < 2l the probability is 1/n. That is,

P [W = W (u)] = max
{

1/2l, 1/n
}

= α

and

P
[
r 6 ‖ū‖2

]
= ‖ū‖2 .

We conclude that property 1 holds.

Property 2. Consider two vertices u and v such that ‖ū− v̄‖2 > βmin {‖ū‖2, ‖v̄‖2}.

Assume without loss of generality that ‖ū‖2 6 ‖v̄‖2. Note that u, v ∈ S if and only

if r 6 ‖ū‖2 and W = W (u) = W (v). We first upper bound the probability that

W (u) = W (v). We have,

2 〈ū, v̄〉 = ‖ū‖2 + ‖v̄‖2 − ‖ū− v̄‖2 6 (1− β)‖ū‖2 + ‖v̄‖2 6 (2− β)‖v̄‖2 .

Therefore, 2 〈ū, v̄〉 /‖v̄‖2 6 2− β. Hence,

‖ψ(ū)− ψ(v̄)‖2 = 2− 2 〈ψ(ū), ψ(v̄)〉 = 2− 2 〈ū, v̄〉
max {‖ū‖2, ‖v̄‖2}

> β = ∆ .

From Lemma 7.3.3 we get that

P [ω̃i(u) 6= ω̃i(v)] >
1

2
− 1

log2m
for every i .
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The probability that W (u) = W (v) is at most (1
2

+ 1
log2m

)l 6 1/m. We have,

P [u ∈ S, v ∈ S] = P
[
r 6 min

{
‖ū‖2, ‖v̄‖2

}]
× P [W (u) = W (v)]

× P [W = W (u) = W (v) | W (u) = W (v)]

6 min
{
‖ū‖2, ‖v̄‖2

}
× α× 1

m
,

as required.

Property 3. Let e be an arbitrary subset of V , |e| > 2. Let

ρm = min
w∈e
‖w̄‖2 and ρM = max

w∈e
‖w̄‖2.

Note that

ρM − ρm = ‖w̄1‖2 − ‖w̄2‖2 6 ‖w̄1 − w̄2‖2 6 max
u,v∈e
‖ū− v̄‖2,

for some w1, w2 ∈ e. Here we used that SDP constraint (65) implies that ‖w̄1‖2 −

‖w̄2‖2 6 ‖w̄1 − w̄2‖2.

Let A = {u ∈ e : ‖ū‖2 > r}. Note that S ∩ e = {u ∈ A : W (u) = W}. Therefore,

if e is cut by S then one of the following events happens.

• Event E1: A 6= e and S ∩ e 6= ∅.

• Event E2: A = e and A ∩ S 6= ∅, A ∩ S 6= A.

If E1 happens then r ∈ [ρm, ρM ] since A 6= e and A 6= ∅. We have,

P [E1] 6 P [r ∈ (ρm, ρM ]] 6 |ρM − ρm| 6 max
u,v∈e
‖ū− v̄‖2.

If E2 happens then (1) r 6 ρm (since A = e) and (2) W (u) 6= W (v) for some u, v ∈ e.

The probability that r 6 ρm is ρm. We now upper bound the probability that
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W (u) 6= W (v) for some u, v ∈ e. For each i ∈ {1, . . . , l},

P [ω̃i(u) 6= ω̃i(v) for some u, v ∈ e]

6 O
(
β−1
√

log n · log logm
)

max
u,v∈e
‖ψ(ū)− ψ(v̄)‖2

6 O
(
β−1
√

log n · log logm
)

max
u,v∈e

2‖ū− v̄‖2

min {‖ū‖2, ‖v̄‖2}

6 O
(
β−1
√

log n · log logm
)
× ρ−1

m ×max
u,v∈e
‖ū− v̄‖2 .

By the union bound over i ∈ {1, . . . , l}, the probability that W (u) 6= W (v) for some

u, v ∈ e is at most O
(
l × β−1

√
log n · log logm

)
× ρ−1

m ×maxu,v∈e ‖ū− v̄‖2. Therefore,

P [E2] 6 ρm ×O
(
l × β−1

√
log n log logm

)
× ρ−1

m ×max
u,v∈e
‖ū− v̄‖2

6 O
(
β−1
√

log n logm log logm
)
×max

u,v∈e
‖ū− v̄‖2.

We get that the probability that e is cut by S is at most

P [E1] + P [E2] 6 O
(
β−1
√

log n logm log logm
)
×max

u,v∈e
‖ū− v̄‖2.

For D = O
(
β−1
√

log n logm log logm
)
/α we get

P [e is cut by S] 6 αDmax
u,v∈e
‖ū− v̄‖2.

Note that α > 1/2l > Ω(1/m). Thus

D 6 O
(
β−1
√

log nm logm log logm
)
.

7.4 `2–`
2
2 Hypergraph Orthogonal Separators

In this section, we present another variant of hypergraph orthogonal separators, which

we call `2–`2
2 hypergraph orthogonal separators. The advantage of `2–`2

2 hypergraph

orthogonal separators is that their distortions do not depend on n (the number of

vertices). Then in Section 7.5, we use `2–`2
2 hypergraph orthogonal separators to prove

Theorem 7.5.3 (which, in turn, implies Theorem 7.1.3).

163



Definition 7.4.1 (`2–`
2
2 Hypergraph Orthogonal Separator). Let {ū : u ∈ V } be a

set of vectors in the unit ball. We say that a random set S ⊂ V is a `2–`2
2 hypergraph

m-orthogonal separator with `2–distortion D`2 : N→ R, `2
2–distortion D`22

, probability

scale α > 0, and separation threshold β ∈ (0, 1) if it satisfies the following properties.

1. For every u ∈ V ,

P [u ∈ S] = α‖ū‖2.

2. For every u and v such that ‖ū− v̄‖2 > βmin {‖ū‖2, ‖v̄‖2}

P [u ∈ S and v ∈ S] 6 α
min {‖ū‖2, ‖v̄‖2}

m
.

3. For every e ⊂ V ,

P [e is cut by S] 6 αD`22
·max
u,v∈e
‖ū− v̄‖2 + αD`2(|e|) ·min

w∈e
‖w̄‖ ·max

u,v∈e
‖ū− v̄‖.

(This definition differs from Definition 7.2.2 only in item 3.)

Theorem 7.4.2. There is a polynomial-time randomized algorithm that given a set

of vertices V , a set of vectors {ū} satisfying `2
2–triangle inequalities, and parameters

m and β generates an `2–`2
2 hypergraph m-orthogonal separator with probability scale

α > 1/n and distortions:

D`22
= O(m),

D`2(r) = O
(
β−1/2

√
log rm logm log logm

)
.

Note that distortions D`22
and D`2 do not depend on n.

The algorithm and its analysis are very similar to those in the proof of Theorem 7.2.3.

The only difference is that we use another procedure to generate random assignments

ω : V → {0, 1}. The following lemma is an analog of Lemma 7.3.2.
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Lemma 7.4.3. There is a randomized polynomial time algorithm that given a finite

set V , vectors ψ(ū) for u ∈ V , satisfying `2
2 triangle inequalities, and a parameter

β ∈ (0, 1), returns a random assignment ω : V → {0, 1} that satisfies the following

properties.

• For every set e ⊂ V of size at least 2,

P [ω(u) 6= ω(v) for some u, v ∈ e] 6 O
(
β−1/2

√
log |e|

)
×max

u,v∈e
‖ψ(ū)− ψ(v̄)‖.

• For every u and v such that ‖ψ(ū)− ψ(v̄)‖2 > β,

P [ω(u) 6= ω(v)] > 0.3.

Proof. We sample a random Gaussian vector g ∼ N (0, In) (each component gi of g is

distributed as N (0, 1), all random variables gi are mutually independent). Let N be a

Poisson process on R with rate 1/
√
β. Let

ω(u) =


1 if N(〈g, ψ(ū)〉) is even

0 if N(〈g, ψ(ū)〉) is odd

.

Note that ω(u) = ω(v) if and only if N(〈g, ψ(ū)〉)−N(〈g, ψ(v̄)〉) is even.

Consider a set e ⊂ V of size at least 2. Denote diam(e) = maxu,v∈e ‖ψ(ū)− ψ(v̄)‖.

Let τm = minw∈e 〈g, ψ(w̄)〉 and τM = maxw∈e 〈g, ψ(w̄)〉. Note that

N(τm) = min
w∈e

N(〈g, ψ(w̄)〉),

N(τM) = max
w∈e

N(〈g, ψ(w̄)〉).

If all numbers N(〈g, ψ(ū)〉) are equal then ω(u) = ω(v) for all u, v ∈ e. Thus if

ω(u) 6= ω(v) for some u, v ∈ e then N(〈g, ψ(ū)〉) 6= N(〈g, ψ(v̄)〉) for some u, v ∈ e. In

particular, then N(τM)−N(τm) > 0. Given g, N(τM)−N(τm) is a Poisson random

variable with rate (τM − τm)/
√
β. We have,

P [ω(u) 6= ω(v) for some u, v ∈ e | g] 6 P [N(τM)−N(τm) > 0 | g]

= 1− e−(τM−τm)/
√
β 6 β−1/2(τM − τm).

165



Let ξuv = 〈g, ψ(ū)〉−〈g, ψ(v̄)〉 for u, v ∈ e (u 6= v). Note that ξuv are Gaussian random

variables with mean 0, and

Var [ξuv] = Var [〈g, ψ(ū)〉 − 〈g, ψ(v̄)〉] = ‖ψ(ū)− ψ(v̄)‖2 6 diam(e)2

Note that the expectation of the maximum of (not necessarily independent) r Gaussian

random variables with standard deviation bounded by σ is O
(√

log rσ
)

(Fact 2.5.5).

We have,

E [τM − τm] = E
[
max
u,v∈e

(ξuv)

]
= O

(√
log |e|diam(e)

)
since the total number of random variables ξuv is |e|(|e| − 1). Therefore,

P [ω(u) 6= ω(v) for some u, v ∈ e] 6 β−1/2 E [τM − τm]

= O
(
β−1/2

√
log |e| max

u,v∈e
‖ψ(ū)− ψ(v̄)‖

)
. (67)

We proved that ω satisfies the first property. Now we verify that ω satisfies the second

condition. Consider two vertices u and v with ‖ψ(ū) − ψ(v̄)‖2 > β. Given g, the

random variable Z = N(〈g, ψ(ū)〉)−N(〈g, ψ(v̄)〉) has Poisson distribution with rate

λ = | 〈g, ψ(ū)〉)− 〈g, ψ(v̄)〉 |/
√
β. We have,

P [Z is even | g] =
∞∑
k=0

P [Z = 2k | g] =
∞∑
k=0

e−λλ2k

(2k)!
=

1 + e−2λ

2
.

Note that λ is the absolute value of a Gaussian random variable with mean 0 and

standard deviation σ = ‖ψ(ū)− ψ(v̄)‖/
√
β > 1. Thus

P [Z is even] = E
[

1 + e−2σ|γ|

2

]
,

where γ is a standard Gaussian random variable, γ ∼ N (0, 1). We have,

P [ω(u) 6= ω(v)] = E
[

1− e−2σ|γ|

2

]
> E

[
1− e−2|γ|

2

]
> 0.3.

166



Now we use Algorithm 7.3.4 to obtain `2–`
2
2 hypergraph orthogonal separators.

The only difference is that we use the procedure from Lemma 7.4.3 rather than from

Lemma 7.3.2 to generate assignments ω. We obtain a `2–`
2
2 hypergraph orthogonal

separator.

Theorem 7.4.4. Random set S obtained from Algorithm 7.3.4 using the procedure

from Lemma 7.4.3 (instead of Lemma 7.3.2) is a hypergraph m-orthogonal separator

with distortion

D`22
= O(m),

D`2(r) = O
(
β−1/2

√
log rm logm log logm

)
,

probability scale α > 1/n and separation threshold β ∈ (0, 1).

Proof. The proof of the theorem is almost identical to that of Theorem 7.3.5. We first

check conditions 1 and 2 of `2–`2
2 hypergraph orthogonal separators in the same way as

we checked conditions 1 and 2 of hypergraph orthogonal separators in Theorem 7.3.5.

When we verify that property 3 holds, we use bounds from Lemma 7.4.3. The only

difference is how we upper bound the probability of the event E2.

If E2 happens then (1) r 6 ρm (since A = e) and (2) W (u) 6= W (v) for some

u, v ∈ e. The probability that r 6 ρm is ρm. We upper bound the probability that

W (u) 6= W (v) for some u, v ∈ e. For each i ∈ {1, . . . , l},

P [ω̃i(u) 6= ω̃i(v) for some u, v ∈ e]

6 O
(
β−1/2

√
log |e| log logm

)
max
u,v∈e
‖ψ(ū)− ψ(v̄)‖

6 O
(
β−1/2

√
log |e| log logm

)
max
u,v∈e

‖ū− v̄‖
min {‖ū‖, ‖v̄‖}

6 O
(
β−1/2

√
log |e| log logm

)
× ρ−1/2

m ×max
u,v∈e
‖ū− v̄‖ .

By the union bound over i ∈ {1, . . . , l}, the probability that W (u) 6= W (v) for

some u, v ∈ e is at most O
(
l × β−1/2

√
log |e| log logm

)
× ρ−1/2

m ×maxu,v∈e ‖ū − v̄‖.
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Therefore,

P [E2] 6 ρm ×O
(
l × β−1/2

√
log |e| log logm

)
× ρ−1/2

m ×max
u,v∈e
‖ū− v̄‖

6 O
(
l × β−1/2

√
log |e| log logm

)
× ρ1/2

m ×max
u,v∈e
‖ū− v̄‖.

We get that the probability that e is cut by S is at most

P [E1] + P [E2] 6 max
u,v∈e
‖ū− v̄‖2 +O

(
l × β−1/2

√
log |e| log logm

)
× ρ1/2

m ×max
u,v∈e
‖ū− v̄‖

6 max
u,v∈e
‖ū− v̄‖2 +O

(
l × β−1/2

√
log |e| log logm

)
×min

w∈e
‖w̄‖ ×max

u,v∈e
‖ū− v̄‖.

For D`22
= 1/α and D`2(r) = O

(
β−1/2

√
log r logm log logm

)
/α, we get

P [e is cut by S] 6 αD`22
·max
u,v∈e
‖ū− v̄‖2 + αD`2(|e|) ·min

w∈e
‖w̄‖ ·max

u,v∈e
‖ū− v̄‖.

Note that α > 1/2l > Ω(1/m). Thus

D`22
= O(m),

D`2(r) = O
(
β−1/2

√
log rm logm log logm

)
.

7.5 Algorithm for Hypergraph Small Set Expansion via `2–
`2

2 Hypergraph Orthogonal Separators

In this section, we present another algorithm for Hypergraph Small Set Expansion.

The algorithm finds a set with expansion proportional to
√
φG,δ. The proportionality

constant depends on degrees of vertices and hyperedge size but not on the graph

size. Here, we present our result for arbitrary hypergraphs. The result for uniform

hypergraphs (Theorem 7.1.3) stated in the introduction follows from our general result.

In order to state our result for arbitrary graphs, we need the following definition.
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Definition 7.5.1. Consider a hypergraph H = (V,E). Suppose that for every edge e

we are given a non-empty subset e◦ ⊆ e.Let

η(u) =
∑
e:u∈e◦

log2 |e|
|e◦|

,

ηmax = max
u∈V

η(u).

Finally, let ηHmax be the minimum of ηmax over all possible choices of subsets e◦.

Claim 7.5.2. 1. ηHmax 6 maxu∈V
∑

e:u∈e(log2 |e|)/|e|.

2. If H is a r-uniform graph with maximum degree dmax then ηHmax 6 (dmax log2 r)/r.

3. Suppose that we can choose one vertex in every edge so that no vertex is chosen

more than once. Then ηHmax 6 log2 rmax, where rmax is the size of the largest

hyperedge in H.

Proof.

1. Let e◦ = e for every e ∈ E. We have, ηHmax 6 maxu∈V
∑

e:u∈e(log2 |e|)/|e|.

2. By item 1,

ηHmax 6 max
u∈V

∑
e:u∈e

(log2 |e|)/|e| = max
u∈V

∑
e:u∈e

(log2 r)/r = (dmax log2 r)/r.

3. For every edge e ∈ E, let e◦ be the set that contains the vertex chosen for e.

Then |e◦| = 1 and |{e : u ∈ e◦}| 6 1 for every u. We have,

ηHmax 6 max
u∈V

∑
e:u∈e◦

log2 |e|
|e◦|

6 max
u∈V

∑
e:u∈e◦

log2 rmax

1
= log2 rmax.

Theorem 7.5.3. There is a randomized polynomial-time algorithm that given a

hypergraph H = (V,E) with vertex weights w(v) = dv, and parameters ε ∈ (0, 1) and
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δ ∈ (0, 1/2], finds a set S ⊂ V of size at most (1 + ε)δn such that

φ(S) 6 Oε
(
δ−1 log δ−1 log log δ−1

√
ηHmax · φH,δ + δ−1φH,δ

)
= Õε

(
δ−1

(√
ηHmaxφH,δ + φH,δ

))
,

In particular, if H is an r-uniform hypergraph then we have,

φ(S) 6 Õε

(
δ−1

(√
log2 r

r
φH,δ + φH,δ

))
Proof. The proof is similar to that of Theorem 7.2.4. We solve the SDP relaxation for

H-SSE and obtain an SDP solution {ū}. Denote the SDP value by SDPval. Consider

an `2–`2
2 hypergraph orthogonal separator S with m = 4/(εδ) and β = ε/4. Define a

set S ′:

S ′ =


S if |S| 6 (1 + ε)δn

∅ otherwise

.

Clearly, |S ′| 6 (1 + ε)δn. As in the proof of Theorem 7.2.4,

P [u ∈ S ′] ∈
[α

2
‖ū‖2, α‖ū‖2

]
.

Note that

P [S ′ cuts edge e] 6 P [S cuts edge e]

6 αD`2 max
u,v∈e
‖ū− v̄‖2 + αD`2(r) min

w∈e
‖w̄‖max

u,v∈e
‖ū− v̄‖ .

Let

C = α−1 E

 ∑
e∈E(S′,S̄′)

w(e)

 and Z = w(S ′)−
∑

e∈E(S′,S̄′) w(e)

4C
.

We have,

E [Z] = E [w(S ′)]− E

[∑
e∈E(S′,S̄′) w(e)

4C

]

>
∑
u∈V

(α
2
· ‖ū‖2

)
w(u)− α

4
=
α

2
− α

4
=
α

4
.
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Now we upper bound C.

C = α−1 E

 ∑
e∈E(S′,S̄′)

w(e)

 6 α−1
∑
e∈E

w(e)P [e is cut by S]

6 D`22

∑
e∈E

w(e) max ‖ū− v̄‖2 +
∑
e∈E

w(e)D`2(|e|) min
w∈e
‖w̄‖max

u,v∈e
‖ū− v̄‖

6 D`22
· SDPval +

√∑
e∈E

w(e)D`2(|e|)2 min
w∈e
‖w̄‖2

√∑
e∈E

w(e) max
u,v∈e
‖ū− v̄‖2

6 D`22
· SDPval +

√∑
e∈E

∑
w∈e

D`2(|e|)2

|e|
‖w̄‖2

√
SDPval

For every vertex w,∑
e:w∈e

D`2(|e|)2

|e|
6 Oβ(m logm log logm)2

∑
e:w∈e

log2 |e|
|e|

6 Oβ(m logm log logm)2×ηHmax.

and
∑

w∈V du‖w̄‖2 =
∑

w∈V wu‖w̄‖2 = 1. Therefore,

C 6 Oβ
(
mSDPval +m logm log logm

√
ηHmax · SDPval

)
.

By the argument from Theorem 7.2.4, we get that if we sample S ′ sufficiently many

times (i.e., (4n2/α) times), we will find a set S ′ such that

φ(S ′) 6 4C 6 Oβ
(
δ−1 log δ−1 log log δ−1

√
ηHmax · SDPval + δ−1SDPval

)
with probability exponentially close to 1.

7.6 SDP Intgrality Gap

In this section, we present an integrality gap for the SDP relaxation for H-SSE. We

also give a lower bound on the distortion of a hypergraph m-orthogonal separator.

Theorem 7.6.1. For δ = 1/r, the integrality gap of the SDP for H-SSE is at least

1/(2δ) = r/2.

Proof. Consider a hypergraph H = (V,E) on n = r vertices with one hyperedge e = V

(e contains all vertices). Note that the expansion of every set of size δn = 1 is 1. Thus

φH,δ = 1.
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Consider an SDP solution that assigns vertices mutually orthogonal vectors of length

1/
√
r. It is easy to see this is a feasible SDP solution. Its value is maxu,v∈e ‖ū− v̄‖2 =

2/r. Therefore, the SDP integrality gap is at least r/2.

Now we give a lower bound on the distortion of hypergraph m-orthogonal separa-

tors.

Lemma 7.6.2. For every m > 4, there is an SDP solution such that every hypergraph

m-orthogonal separator with separation threshold β > 0 has distortion at least dme/4.

Proof. Consider the SDP solution from Theorem 7.6.1 for n = r = dme. Consider a

hypergraph m-orthogonal separator S for this solution. Let D be its distortion. Note

that condition (2) from the definition of hypergraph orthogonal separators applies to

any pair of distinct vertices (u, v) since 〈ū, v̄〉 = 0.

By the inclusion–exclusion principle, we have,

P [|S| = 1] >
∑
u∈S

P [u ∈ S]− 1

2

∑
u,v∈S,u6=v

P [u ∈ S, v ∈ S]

>
∑
u∈S

α‖ū‖2 − 1

2

∑
u,v∈S,u6=v

αmin {‖ū‖2, ‖v̄‖2}
m

= α− αn(n− 1)

2mr
= α

(
1− (n− 1)

2m

)
> α/2.

On the other hand, if |S| = 1 then S cuts e. We have,

P [|S| = 1] 6 P [S cuts e] 6 αDmax
u,v∈e
‖ū− v̄‖2 = 2αD/r.

We get that α/2 6 2αD/r and thus D > r/4 = dme/4.

7.7 Reduction from Vertex Expansion to Hypergraph Ex-
pansion

Theorem 7.7.1 (Restatement of Theorem 7.1.5). There exist absolute constants

c′1, c
′
2 ∈ R+ such that for every graph G = (V,E), of maximum degree d, there exists
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a polynomial time computable hypergraph H = (V ′, E ′) having the hyperedges of

cardinality at most d+ 1 such that

c′1φH,δ 6 φV
G,δ 6 c′2φH,δ,

and ηHmax 6 log2 dmax.

Proof. Starting with graph G, we use Theorem 8.3.2 to obtain a graph G′ = (V ′, E ′)

such that

c1φ
V
G,δ 6 ΦV

G′,δ 6 c2φ
V
G,δ. (68)

Next we construct hypergraph H = (V ′, E ′′) using the reduction in Theorem 4.2.19.

We get that

φH(S) = ΦV(S) for every S ′ ⊂ V ,

and hence

φH,δ = ΦV
G′,δ

We get from (68),

c1φ
V
G,δ 6 φH,δ 6 c2φ

V
G,δ.

Finally, we upper bound ηHmax. We use part 3 of Claim 7.5.2. We choose vertex

v in the hyperedge {v} ∪ Nout({v}). By Claim 7.5.2, ηHmax 6 log2 rmax, where rmax

is the size of the largest hyperedge. Note that | {v} ∪ Nout({v})| = dv + 1. Thus

ηHmax 6 log2 rmax 6 log2(dmax + 1)

7.8 Conclusion

The Small Set Vertex Expansion recently gained interest due to its connection

to obtaining sub-exponential-time, constant factor approximation algorithms for

many combinatorial problems like Sparsest Cut and Graph Coloring ([9, 74]). To

the best of our knowledge, our algorithms are the first approximation algorithms
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for these problems. Our approximation guarantees are not strong enough to have

any implications in obtaining sub-exponential-time, constant factor approximation

algorithms for Sparsest Cut and Graph Coloring, etc ([9, 74]).

We do not know of any computational lower bounds for these problems, expect

those that follow from computational lower bounds for Small Set Expansion

in graphs
(

Ω
(√

OPT log 1/δ
))

, and for Vertex Expansion
(
Ω
(√

OPT log d
))

and Hypergraph Expansion
(
Ω
(√

OPT log r
))

. Closing the gap between the

approximation upper bounds and the computational lower bounds is left as an open

problem.

Acknowledgements. The results in this chapter were obtained in joint work with

Yury Makarychev [71].
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THE COMPLEXITY OF EXPANSION PROBLEMS

PART III

Computational Lower bounds



CHAPTER VIII

HARDNESS OF VERTEX EXPANSION PARAMETERS

In this chapter, we show a hardness result suggesting that there is no efficient algorithm

to recognize vertex expanders. More precisely, our main result is a hardness for the

problem of approximating λ∞ in graphs of bounded degree d. The hardness result

shows that the approximability of vertex expansion degrades with the degree, and

therefore the problem of recognizing expanders is hard for sufficiently large degree.

Furthermore, we exhibit an approximation algorithm for λ∞ (and hence also for vertex

expansion) whose guarantee matches the hardness result up to constant factors.

Formal Statement of Results. Most known hardness results for Vertex Ex-

pansion follow from the corresponding hardness results for Edge Expansion. It is

natural to ask if one can prove better inapproximability results for Vertex Expan-

sion than those that follow from the inapproximability results for Edge Expansion.

Indeed, the best one could hope for would be a lower bound matching the upper bound

in Theorem 6.1.3
(
O
(√

OPT log d
))

. Our main result is a reduction from SSE to

the problem of distinguishing between the case when vertex expansion of the graph

is at most ε and the case when the vertex expansion is at least Ω(
√
ε log d). This

immediately implies that it is SSE-hard to find a subset of vertex expansion less than

C
√
φV log d for some constant C. To the best of our knowledge, our work is the first

evidence that vertex expansion might be harder to approximate than edge expansion.

More formally, we state our main theorem below.

Theorem 8.0.1. For every η > 0, there exists an absolute constant C such that

∀ε > 0 it is SSE-hard to distinguish between the following two cases for a given graph
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G = (V,E) with maximum degree d > 100/ε.

Yes : There exists a set S ⊂ V of size |S| 6 |V | /2 such that

φV(S) 6 ε .

No : For all sets S ⊂ V ,

φV(S) > min
{

10−10, C
√
ε log d

}
− η .

This immediately implies a lower bound for the computation of λ∞

Theorem 8.0.2 (Corollary to Theorem 8.0.1 and Theorem 6.1.2). For every η > 0,

there exists an absolute constant C such that ∀ε > 0 it is SSE-hard to distinguish

between the following two cases for a given graph G = (V,E) with maximum degree

d > 100/ε.

Yes : There exists a vector X ∈ Rn such that∑
i∈V maxj∼i(Xi −Xj)

2∑
iX

2
i − 1

n
(
∑

iXi)2
6 ε

No : For all vectors X ∈ Rn,∑
i∈V maxj∼i(Xi −Xj)

2∑
iX

2
i − 1

n
(
∑

iXi)2
> min

{
10−10, C

√
ε log d

}
− η

By a suitable choice of parameters in Theorem 8.0.1, we obtain the following.

Theorem 8.0.3. There exists an absolute constant δ0 > 0 such that for every constant

ε > 0 the following holds: Given a graph G = (V,E), it is SSE-hard to distinguish

between the following two cases:

Yes : There exists a set S ⊂ V of size |S| 6 |V | /2 such that

φV(S) 6 ε
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No : (G is a vertex expander with constant expansion) For all sets S ⊂ V ,

φV(S) > δ0

In particular, the above result implies that it is SSE-hard to certify that a graph is

a vertex expander with constant expansion. This is in contrast to the case of edge

expansion, where the Cheeger’s inequality can be used to certify that a graph has

constant edge expansion.

At a high level, the proof is as follows. We introduce the notion of Balanced

Analytic Vertex Expansion for Markov chains. This quantity can be thought

of as a CSP on (d + 1)-tuples of vertices. We show a reduction from Balanced

Analytic Vertex Expansion of a Markov chain, say H, to vertex expansion of a

graph, say H1 (Section 8.7). Our reduction is generic and works for any Markov chain

H. Surprisingly, the CSP-like nature of Balanced Analytic Vertex Expansion

makes it amenable to a reduction from Small Set Expansion (Section 8.6). We

construct a gadget for this reduction and study its embedding into the Gaussian graph

to analyze its soundness (Section 8.4 and Section 8.5). The gadget involves a sampling

procedure to generate a bounded-degree graph.

Hypergraph Expansion Using the reduction from Vertex Expansion to Hy-

pergraph Expansion (Theorem 4.2.19), we get the following hardness results for

Hypergraph Expansion and γ2.

Theorem 8.0.4 (Corollary to Theorem 4.2.19 and Theorem 8.0.1). For every η > 0,

there exists an absolute constant C such that ∀ε > 0 it is SSE-hard to distinguish

between the following two cases for a given hypergraph H = (V,E,w) with maximum

hyperedge size r > 100/ε.

Yes : There exists a set S ⊂ V such that

φH(S) 6 ε
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No : For all sets S ⊂ V ,

φH(S) > min
{

10−10, C
√
ε log r

}
− η

Theorem 8.0.5 (Corollary to Theorem 4.2.19 and Theorem 8.0.2). For every η > 0,

there exists an absolute constant C such that ∀ε > 0 it is SSE-hard to distinguish

between the following two cases for a given hypergraph H = (V,E,w) with maximum

hyperedge size r > 100/ε.

Yes : There exists an X ∈ Rn such that 〈X,µ∗〉 = 0 and

R (X) 6 ε

No : For all X ∈ Rn such that 〈X,µ∗〉 = 0,

R (X) > min
{

10−10, Cε log r
}
− η

Related Work. An O (log n) approximation algorithm for φ was obtained by

Leighton and Rao [64]. The current best approximation factor for φV is O
(√

log n
)

obtained using a convex relaxation by Feige, Lee and Hajiaghayi [39]. Beyond this,

the situation is much less clear for the approximability of vertex expansion. Applying

Cheeger’s method leads to a bound of O
(√

dOPT
)

[1] where d is the maximum degree

of the input graph. Ambühl, Mastrolilli and Svensson [7] showed that φV and φ have

no PTAS assuming that SAT does not have sub-exponential time algorithms.

8.1 Proof Overview

Balanced Analytic Vertex Expansion. To exhibit a hardness result, we begin by

defining a combinatorial optimization problem related to the problem of approximating

vertex expansion in graphs having largest degree d. This problem referred to as

Balanced Analytic Vertex Expansion can be motivated as follows.
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Figure 22: Reduction from SSE to Vertex Expansion
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Fix a graph G = (V,E) and a subset of vertices S ⊂ V . For any vertex v ∈ V ,

v is on the boundary of the set S if and only if maxu∈N(v) |IS [u]− IS [v]| = 1, where

N(v) denotes the neighbourhood of vertex v. In particular, the fraction of vertices

on the boundary of S is given by Ev maxu∈N(v) |IS [u]− IS [v]|. The symmetric vertex

expansion of the set S ⊆ V is given by,

n · |N(S) ∪N(V \S)|
|S| |V \S|

=
Ev maxu∈N(v) |IS [u]− IS [v]|

Eu,v |IS [u]− IS [v]|
.

Note that for a degree d graph, each of the terms in the numerator is maximization

over the d edges incident at the vertex. The formal definition of Balanced Analytic

Vertex Expansion is as follows.

Definition 8.1.1. An instance of Balanced Analytic Vertex Expansion,

denoted by (V,P), consists of a set of variables V and a probability distribution P

over (d+ 1)-tuples in V d+1. The probability distribution P satisfies the condition that

all its d+ 1 marginal distributions are the same (denoted by µ). The goal is to solve

the following optimization problem

Φ(V,P)
def
= min

F :V→{0,1}|EX,Y∼µ|F (X)−F (Y )|> 1
100

E(X,Y1,...,Yd)∼P maxi |F (Yi)− F (X)|
EX,Y∼µ |F (X)− F (Y )|

For constant d, this could be thought of as a constraint satisfaction problem (CSP)

of arity d + 1. Every d-regular graph G has an associated instance of Balanced

Analytic Vertex Expansion whose value corresponds to the vertex expansion of G.

Conversely, we exhibit a reduction from Balanced Analytic Vertex Expansion

to problem of approximating vertex expansion in a graph of degree poly(d) (Section 8.7

for details).

Dictatorship Testing Gadget. As with most hardness results obtained via the

label cover or the unique games problem, central to our reduction is an appropriate

dictatorship testing gadget. Simply put, a dictatorship testing gadget for Balanced

Analytic Vertex Expansion is an instance HR of the problem such that, on
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one hand there exists the so-called dictator assignments with value ε, while every

assignment far from every dictator incurs a cost of at least Ω(
√
ε log d).

The construction of the dictatorship testing gadget is as follows. Let H be a Markov

chain on vertices {s, t, t′, s′} connected to form a path of length three. The transition

probabilities of the Markov chain H are so chosen to ensure that if µH is the stationary

distribution of H then µH(t) = µH(t′) = ε/2 and µH(s) = µH(s′) = (1 − ε)/2.

In particular, H has a vertex separator {t, t′} whose weight under the stationary

distribution is only ε.

The dictatorship testing gadget is over the product Markov chain HR for some

large constant R. The constraints P of the dictatorship testing gadget HR are given

by the following sampling procedure,

• Sample x ∈ HR from the stationary distribution of the chain.

• Sample d-neighbours y1, . . . , yd ∈ HR of x independently from the transition

probabilities of the chain HR. Output the tuple (x, y1, . . . , yd).

For every i ∈ [R], the ith dictator solution to the above described gadget is given

by the following function,

F (x) =


1 if xi ∈ {s, t}

0 otherwise

It is easy to see that for each constraint (x, y1, . . . , yd) ∼ P , maxj |F (x)− F (yj)| = 0

unless xi = t or xi = t′. Since x is sampled from the stationary distribution for µH ,

xi ∈ {t, t′} happens with probability ε. Therefore the expected cost incurred by the

ith dictator assignment is at most ε.

Soundness Analysis of the Gadget. The soundness property desired of the

dictatorship testing gadget can be stated in terms of influences. Specifically, given an
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assignment F : V (H)R → [0, 1], the influence of the ith coordinate is given by

Inf i[F] = E
x[R]\i

Var
xi

[F(x)],

i.e., the expected variance of the function after fixing all but the ith coordinate

randomly. Henceforth, we will refer to a function F : HR → [0, 1] as far from every

dictator if the influence of all of its coordinates are small (say < τ).

We show that the dictatorship testing gadget HR described above satisfies the

following soundness – for every function F that is far from every dictator, the cost of F

is at least Ω(
√
ε log d). To this end, we appeal to the invariance principle to translate

the cost incurred to a corresponding isoperimetric problem on the Gaussian space.

More precisely, given a function F : HR → [0, 1], we express it as a polynomial in the

eigenfunctions over H. We carefully construct a Gaussian ensemble with the same

moments up to order two, as the eigenfunctions at the query points (x, y1, . . . , yd) ∈ P .

By appealing to the invariance principle for low degree polynomials, this translates in

to the following isoperimetric question over Gaussian space G.,

Suppose we have a subset S ⊆ G of the n-dimensional Gaussian space. Consider

the following experiment:

• Sample a point z ∈ G the Gaussian space.

• Pick d independent perturbations z′1, z
′
2, . . . , z

′
d of the point z by ε-noise.

• Output 1 if at least one of the edges (z, z′i) crosses the cut (S, S̄) of the Gaussian

space.

Among all subsets S of the Gaussian space with a given volume, which set has the

least expected output in the above experiment? The answer to this isoperimetric

question corresponds to the soundness of the dictatorship test. A halfspace of volume

1
2

has an expected output of
√
ε log d in the above experiment. We show that among

all subsets of constant volume, halfspaces achieve the least expected output value.
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This isoperimetric theorem proven in Section 8.4 yields the desired Ω(
√
ε log d)

bound for the soundness of the dictatorship test constructed via the Markov chain H.

Here the noise rate of ε arises from the fact that all the eigenfunctions of the Markov

chain H have an eigenvalue smaller than 1− ε. The details of the argument based on

invariance principle is presented in Section 8.5

We show a Ω(
√
ε log d) lower bound for the isoperimetric problem on the Gaussian

space. The proof of this isoperimetric inequality is included in Section 8.4

We would like to point out here that the traditional noisy cube gadget does not

suffice for our application. This is because in the noisy cube gadget while the dictator

solutions have an edge expansion of ε they have a vertex expansion of εd, yielding a

much worse value than the soundness.

Reduction from Small Set Expansion problem. Gadget reductions from the

Unique Games problem cannot be used towards proving a hardness result for edge

or vertex expansion problems. This is because if the underlying instance of Unique

Games has a small vertex separator, then the graph produced via a gadget reduction

would also have small vertex expansion. Therefore, we appeal to a reduction from the

Small Set Expansion problem (Section 8.6 for details).

Raghavendra, Steurer and Tulsiani [88] show optimal inapproximability results for

the Balanced separator problem using a reduction from the Small Set Expansion

problem. While the overall approach of our reduction is similar to theirs, the details are

subtle. Unlike hardness reductions from unique games, the reductions for expansion-

type problems starting from Small Set Expansion are not very well understood.

For instance, the work of Raghavendra and Tan [89] gives a dictatorship testing gadget

for the Max-Bisection problem, but a Small Set Expansion based hardness for

Max-Bisection still remains open.
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8.1.1 Organization

We begin with some definitions and the statements of the SSE hypotheses in Sec-

tion 8.2. In Section 8.3, we show that the computation of Vertex Expansion and

Symmetric Vertex Expansion is equivalent up to constant factors. We prove

a new Gaussian isoperimetry results in Section 8.4 that we use in our soundness

analysis. In Section 8.5 we show the construction of our main gadget and analyze its

soundness and completeness using Balanced Analytic Vertex Expansion as

the test function. We show a reduction from a reduction from Balanced Analytic

Vertex Expansion to vertex expansion in Section 8.7. In Section 8.6, we use this

gadget to show a reduction SSE to Balanced Analytic Vertex Expansion.

Finally, in Section 8.8, we show how to put all the reductions together to get optimal

SSE-hardness for vertex expansion.

8.2 Preliminaries

Analytic Vertex Expansion Our reduction from SSE to vertex expansion goes via

an intermediate problem that we call d-Balanced Analytic Vertex Expansion.

We recall the definition of d-Balanced Analytic Vertex Expansion here.

Definition 8.2.1. An instance of d-Balanced Analytic Vertex Expansion,

denoted by (V,P), consists of a set of variables V and a probability distribution P

over (d+ 1)-tuples in V d+1. The probability distribution P satisfies the condition that

all its d+ 1 marginal distributions are the same (denoted by µ). The d-Balanced

Analytic Vertex Expansion under a function F : V → {0, 1} is defined as

Φ(V,P)(F )
def
=

E(X,Y1,...,Yd)∼P maxi |F (Yi)− F (X)|
EX,Y∼µ |F (X)− F (Y )|

.

The d-Balanced Analytic Vertex Expansion of (V,P) is defined as

Φ(V,P)
def
= min

F :V→{0,1}|EX,Y∼µ|F (X)−F (Y )|> 1
100

Φ(V,P)(F ).

We drop the degree d from the notation, when it is clear from the context.
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For an instance (V,P) of Balanced Analytic Vertex Expansion and an

assignment F : V → {0, 1} define

VALP(F ) = E
(X,Y1,...,Yd)∼P

max
i
|F (Yi)− F (X)| .

Gaussian Graph. Recall that two standard normal random variables X, Y are said

to be α-correlated if there exists an independent standard normal random variable Z

such that Y = αX +
√

1− α2Z.

Definition 8.2.2. The Gaussian Graph GΛ,Σ is a complete weighted graph on the

vertex set V (GΛ,Σ) = Rn. The weight of the edge between two vertices u, v ∈ V (GΛ,Σ)

is given by

w({u, v}) = P [X = u and Y = v]

where Y ∼ N (ΛX,Σ), where Λ is a diagonal matrix such that ‖Λ‖ 6 1 and Σ � εI is

a diagonal matrix.

Remark 8.2.3. Note that for any two non-empty disjoint sets S1, S2 ⊂ V (GΛ,Σ), the

total weight of the edges between S1 and S2 can be non-zero even though every single

edge in the GΛ,Σ has weight zero.

Definition 8.2.4. We say that a family of graphs Gd is Θ(d)-regular, if there exist

absolute constants c1, c2 ∈ R+ such that for every G ∈ Gd, all vertices i ∈ V (G) have

c1d 6 di 6 c2d.

We now formalize our notion of hardness.

Definition 8.2.5. A constrained minimization problem A with its optimal value

denoted by VAL(A) is said to be c-vs-s hard if it is SSE-hard to distinguish between

the following two cases.

Yes:

VAL(A) 6 c .
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No:

VAL(A) > s .

Variance. For a random variable X, define the variance and `1-variance as follows,

Var [X] = E
X1,X2

[(X1 −X2)2]

Var
1

[X] = E
X1,X2

[|X1 −X2|]

where X1, X2 are two independent samples of X.

Small-Set Expansion Hypothesis We recall the definition of Small-Set Expansion

Hypothesis.

Problem 8.2.6 (Small Set Expansion (γ, δ)). Given a regular graph G = (V,E),

distinguish between the following two cases:

Yes: There exists a non-expanding set S ⊂ V with

µ(S) = δ and ΦG(S) 6 γ .

No: All sets S ⊂ V with µ(S) = δ are highly expanding having

ΦG(S) > 1− γ .

Hypothesis 8.2.7 (Hardness of approximating Small Set Expansion). For all

γ > 0, there exists δ > 0 such that the promise problem Small Set Expansion

(γ, δ) is NP-hard.

For the proofs, we will use the following version of the Small Set Expansion

problem, in which we high expansion is guaranteed not only for sets of measure δ, but

also within an arbitrary multiplicative factor of δ.

Problem 8.2.8 (Small Set Expansion (γ, δ,M)). Given a regular graph G =

(V,E), distinguish between the following two cases:
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Yes: There exists a non-expanding set S ⊂ V with

µ(S) = δ and ΦG(S) 6 γ .

No: All sets S ⊂ V with µ(S) ∈
(
δ
M
,Mδ

)
have

ΦG(S) > 1− γ .

The following stronger hypothesis was shown to be equivalent to Small-Set Expan-

sion Hypothesis in [88].

Hypothesis 8.2.9 (Hardness of approximating Small Set Expansion). For all

γ > 0 and M > 1, there exists δ > 0 such that the promise problem Small Set

Expansion (γ, δ,M) is NP-hard.

8.3 Reduction between Vertex Expansion and Symmetric
Vertex Expansion

In this section we show that the computation of the Vertex Expansion is essentially

equivalent to the computation of Symmetric Vertex Expansion. Formally, we

prove the following theorems.

Theorem 8.3.1. Given a graph G = (V,E), there exists a graph H such that

maxi∈V (H) di 6
(
maxi∈V (G) di

)2
+ maxi∈V (G) di

ΦV(G) 6 φV(H) 6
ΦV(G)

1− ΦV(G)
.

Proof. Let G2 denote the graph on V (G) that corresponds to two hops in the graph

G. Formally,

{u, v} ∈ E(G2) ⇐⇒ ∃w ∈ V (G), (u,w) ∈ E(G) and (w, v) ∈ E(G) .

Let H = G ∪G2, i.e., V (H) = V (G) and E(H) = E(G) ∪ E(G2).
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Let S ⊂ V (G) be a set with small symmetric vertex expansion ΦV(S) = ε. Let

S ′ = S − NG(S̄) be the set of vertices obtained from S by deleting it’s internal

boundary. It is easy to see that

NH(S ′) = NG(S) ∪NG(S̄) .

Moreover, since NG(S̄) 6 ΦV(S)w(S) we have w(S ′) > w(S)(1− ΦV
G(S)). Hence the

vertex expansion of the set S ′ is upper-bounded by,

φV
H(S ′) 6

ΦV
G(S)

1− ΦV
G(S)

.

Conversely, suppose T ⊂ V (H) be a set with small vertex expansion φV
H(T ) = ε.

Consider the set T ′ = T ∪NG(T ). Observe that the internal boundary of T ′ in the

graph G is given by NG(T̄ ′) = NG(T ). Further the external boundary of T ′ is given

by NG(T ′) = NG(NG(T )) = NG2(T ). Therefore, we have

NG(T ′) ∪NG(T̄ ′) = NG(T ) ∪NG2(T ) = NH(T ) .

Further since w(T ′) > w(T ), we have ΦV
G(T ′) 6 φV

H(T ).

This completes the proof of the Theorem.

Theorem 8.3.2. Given a graph G, there exists a graph G′ such that

max
i∈V (G)

di = max
i∈V (G′)

di and φV(G) = Θ(ΦV(G′)) .

Moreover, such a G′ can be computed in time polynomial in the size of G.

Proof. Given graph G, we construct G′ as follows. We start with V (G′) = V (G)∪E(G),

i.e., G′ has a vertex for each vertex in G and for each edge in G. For each edge {u, v} ∈

E(G), we add edges {u, {u, v}} and {v, {u, v}} in G′. For a vertex i ∈ V (G) ∩ V (G′),

we set its weight to be w(i). For a vertex {u, v} ∈ E(G) ∩ V (G′), we set its weight to

be min {w(u)/du, w(v)/dv}.
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It is easy to see that G′ can be computed in time polynomial in the size of G, and

that maxi∈V (G) di = maxi∈V (G′) di.

We first show that φV(G) > ΦV(G′)/2. Let S ⊂ V (G) be the set having the least

vertex expansion in G. Let

S ′ = S ∪ {{u, v} | {u, v} ∈ E(G) and u ∈ S or v ∈ S} .

By construction, we have w(S) 6 w(S ′), NG(S) = NG′(S
′) and

w(NG′(S̄
′)) 6

∑
u∈NG′ (S′)

du
w(u)

du
6 w(NG′(S

′)) .

Therefore,

ΦV(G′) 6 ΦV
G′(S

′) =
w(NG′(S

′)) + w(NG′(S̄
′))

w(S ′)
6

2w(NG(S))

w(S)
= 2φV

G(S) = 2φV(G) .

Now, let S ′ ⊂ V (G′) be the set having the least value of ΦV
G′(S

′) and let ε = ΦV
G′(S

′).

We construct the set S as follows. We let S1 = S ′\NG′(S̄
′), i.e. we obtain S1 from S ′

by deleting it’s internal boundary. Next we set S = S1 ∩ V (G). More formally, we let

S be the following set.

S =
{
v ∈ S ′ ∩ V (G)|v /∈ NG′(S̄

′)
}
.

By construction, we get that NG(S) ⊆ NG′(S
′)∪NG′(S̄

′). Now, the internal boundary

of S ′ has weight at most εw(S ′). Therefore, we have

w(S1) > (1− ε)w(S ′) .

We need a lower bound on the weight of the set S we constructed. To this end, we

make the following observation. For each vertex {u, v} ∈ S1 ∩ E(G), u or v also has

to be in S1 (If not, then deleting {u, v} from S ′ will result in a decrease in the vertex

expansion thereby contradicting the optimality of the choice of the set S ′). Therefore,

we have the following∑
{u,v}∈S1∩E(G)

w({u, v}) =
∑

{u,v}∈S1∩E(G)

min

{
w(u)

du
,
w(u)

du

}
6

∑
u∈S1∩V (G)

w(u) = w(S) .
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Therefore,

w(S) >
w(S1)

2
> (1− ε)w(S ′)

2

Therefore, we have

φV(G) 6 φV
G(S) =

w(NG(S))

w(S)
6
w(NG′(S

′) ∪NG′(S̄
′)

(1− ε)w(S ′)/2
= 4ΦV

G′(S
′) = 4ΦV(G′) .

Putting these two together, we have

φV(G)

2
6 ΦV(G′) 6 4φV(G) .

8.4 Isoperimetry of the Gaussian Graph

In this section we bound the Balanced Analytic Vertex Expansion of the

Gaussian graph. For the Gaussian Graph, we define the canonical probability distri-

bution on V d+1 as follows. The marginal distribution along any component X or Yi is

the standard Gaussian distribution in Rn, denoted here by µ = N (0, 1)n.

PGΛ,Σ
(X, Y1, . . . , Yd) =

Πd
i=1w(X, Yi)

µ(X)d−1
= µ(X)Πd

i=1 P [Y = Yi] .

Here, random variable Y is sampled from N (ΛX,Σ).

Theorem 8.4.1. For any closed set S ⊂ ofV (GΛ,Σ) with Λ a diagonal matrix satisfying

‖Λ‖ 6 1, and Σ a diagonal matrix satisfying Σ � εI, we have

E(X,Y1,...,Yd)∼PGΛ,Σ
maxi |IS [X]− IS [Yi]|

EX,Y∼µ |IS [X]− IS [Y ]|

=
EX∼µ EY1,...Yd∼N (ΛX,Σ) maxi |IS [X]− IS [Yi]|

EX,Y∼µ |IS [X]− IS [Y ]|
> c
√
ε log d

for some absolute constant c.

Lemma 8.4.2. Let u, v ∈ Rn satisfy |u− v| 6
√
ε log d. Let Λ be a diagonal matrix

satisfying ‖Λ‖ 6 1, and let Σ a diagonal matrix satisfying Σ � εI. Let Pu, Pv be the

distributions N (Λu,Σ) and N (Λv,Σ) respectively. Then,

dTV(Pu, Pv) 6 1− 1

d
.
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Proof. First, we note that that for the purpose of estimating their total variation

distance, we can view Pu, Pv as one-dimensional Gaussian random variables along the

line Λu− Λv. Since ‖Λ‖ 6 1,

‖Λu− Λv‖ 6 ‖u− v‖ 6
√
ε log d .

W.l.o.g., we may take Λu = 0 and Λv =
√
ε log d. Next, by the definition of total

variation distance,

dTV(Pu, Pv) =

∫
x:Pv(x)>Pu(x)

|Pv(x)− Pu(x)|dx

=

∫ ∞
Λv/2

(Pv(x)− Pu(x))dx

=
1√
2πε

∫ ∞
Λv/2

e−
‖x−Λv‖2

2ε dx− 1√
2πε

∫ ∞
Λv/2

e−
‖x‖2

2ε dx

=
1√
2πε

∫ Λv/2

−Λv/2

e−
‖x‖2

2ε dx

=
1√
2π

∫ √log d/2

−
√

log d/2

e−
‖x‖2

2 dx

= 1− 2 · 1√
2π

∫ ∞
√

log d/2

e−
‖x‖2

2 dx

< 1− 1

d
.

where the last step uses a standard bound on the Gaussian tail.

Proof of Theorem 8.4.1. Let µX denote the Gaussian distribution N (ΛX,Σ). Then

the LHS is:∫
Rn\S

(
1− (1− µX(S))d

)
dµ(X) +

∫
S

(
1− (1− µX(Rn \ S))d

)
dµ(X).

To bound this, we will restrict ourselves to points X for which the µX measure of the

complementary set is at least 1/d. Roughly speaking, these will be points near the

boundary of S. Define:

S1 =

{
x ∈ S : µX(Rn \ S) <

1

2d

}
, S2 =

{
x ∈ Rn \ S : µX(S) <

1

2d

}
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and

S3 = Rn \ S1 \ S2.

For u ∈ Rn, let Pu be the distribution N (Λu,Σ). For any u ∈ S1, v ∈ S2, we have

dTV(Pu, Pv) > 1− 1

2d
− 1

2d
= 1− 1

d
.

Therefore, by Lemma 8.4.2, ‖u − v‖ >
√
ε log d, i.e., d(S1, S2) >

√
ε log d. Next

we bound the measure of S3. We can assume w.l.o.g. that µ(S) 6 µ(Rn \ S) and

µ(S1) > µ(S)/2 (else µ(S3) > µ(S)/2 and we are done). Applying the isoperimetric

inequality for Gaussian space [22, 100], for subsets at this distance,

µ(S3) >

√
2

π

√
ε log d · µ(S1)µ(S2) >

√
ε log d

2π
· µ(S)µ(Rn \ S).

We are now ready to complete the proof.

1

2

(∫
Rn\S

(1− (1− µX(S))d) dµ(X) +

∫
S

(1− (1− µX(Rn \ S)) dµ(X)

)
>

1

2

(∫
X∈Rn\S,µX(S)>1/d

(1− (1− µX(S))d) dµ(X)

+

∫
X∈S,µX(Rn\S)>1/d

(1− (1− µX(Rn \ S)) dµ(X)

)
>

e− 1

2e

(∫
X∈Rn\S,µX(S)>1/d

dµ(X) +

∫
X∈S,µX(Rn\X)>1/d

dµ(X)

)
>

e− 1

2e
µ(S3)

> c
√
ε log d · µ(S)µ(Rn \ S).

We prove the following Theorem which helps us to bound the isoperimetry of the

Gaussian graph for over all functions over the range [0, 1].

Theorem 8.4.3. Given an instance (V,P) and a function F : V → [0, 1], there exists

a function F ′ : V → {0, 1}, such that

E(X,Y1,...,Yd)∼P maxi |F (X)− F (Yi)|
EX,Y∼µ |F (X)− F (Y )|

>
E(X,Y1,...,Yd)∼P maxi |F ′(X)− F ′(Yi)|

EX,Y∼µ |F ′(X)− F ′(Y )|
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Proof. For every r ∈ [0, 1], we define Fr : V → {0, 1} as follows.

Fr(X) =


1 F (X) > r

0 F (X) < r

Clearly,

F (X) =

∫ 1

0

Fr(X)dr .

Now, observe that if F (X) − F (Y ) > 0 then Fr(X) − Fr(Y ) > 0 ∀r ∈ [0, 1] and

similarly, if F (X)− F (Y ) < 0 then Fr(X)− Fr(Y ) 6 0 ∀r ∈ [0, 1]. Therefore,

|F (X)− F (Y )| =
∣∣∣∣∫ 1

0

(Fr(X)− Fr(Y )) dr

∣∣∣∣ =

∫ 1

0

|Fr(X)− Fr(Y )| dr .

Also, observe that if |F (X)− F (Y1)| > |F (Yi)− F (X)| then

|Fr(X)− Fr(Y1)| > |Fr(Yi)− Fr(X)| ∀r ∈ [0, 1]

Therefore,

E(X,Y1,...,Yd)∼P maxi |F (X)− F (Yi)|
EX,Y∼µ |F (X)− F (Y )|

=
E(X,Y1,...,Yd)∼P maxi

∫ 1

0
|Fr(X)− Fr(Yi)| dr

EX,Y∼µ
∫ 1

0
|Fr(X)− Fr(Y )| dr

=

∫ 1

0

(
E(X,Y1,...,Yd)∼P maxi |Fr(X)− Fr(Yi)|

)
dr∫ 1

0
(EX,Y∼µ |Fr(X)− Fr(Y )|) dr

> min
r∈[0,1]

E(X,Y1,...,Yd)∼P maxi |Fr(X)− Fr(Yi)|
EX,Y∼µ |Fr(X)− Fr(Y )|

Let r′ be the value of r which minimizes the expression above. Taking F ′ to be Fr′

finishes the proof.

Corollary 8.4.4 (Corollary to Theorem 8.4.1 and Theorem 8.4.3). Let F : V (GΛ,Σ)→

[0, 1] be any function. Then, for some absolute constant c,

E(X,Y1,...,Yd)∼PGΛ,Σ
maxi |F (X)− F (Yi)|

EX,Y∼µ |F (X)− F (Y )|
> c
√
ε log d .
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8.5 Dictatorship Testing Gadget

In this section we initiate the construction of the dictatorship testing gadget for

reduction from SSE.

The dictatorship testing gadget is obtained by picking an appropriately chosen

constant sized Markov-chain H, and considering the product Markov chain HR. Given

a Markov chain H, define an instance of Balanced Analytic Vertex Expansion

with vertices as VH and the constraints given by the following canonical probability

distribution over V d+1
H .

• Sample X ∼ µH , the stationary distribution of the Markov chain VH .

• Sample Y1, . . . , Yd independently from the neighbours of X in VH

Figure 23: Gadget for the reduction

For our application, we use a specific Markov chain H on four vertices. Define a

Markov chain H on VH = {s, t, t′, s′} as follows (Figure 23),p(s|s) = p(s′|s′) = 1− ε
1−2ε

,

p(t|s) = p(t′|s′) = ε
1−2ε

, p(s|t) = p(s′|t′) = 1
2

and p(t′|t) = p(t|t′) = 1
2
. It is easy to see

that the stationary distribution of the Markov chain H over VH is given by,

µH(s) = µH(s′) =
1

2
− ε µH(t) = µH(t′) = ε

From this Markov chain, construct a dictatorship testing gadget (V R
H ,PRH) as described

above. We begin by showing that this dictatorship testing gadget has small vertex

separators corresponding to dictator functions.
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Proposition 8.5.1 (Completeness). For each i ∈ [R], the ith-dictator set defined as

F (x) = 1 if xi ∈ {s, t} and 0 otherwise satisfies,

Var
1

[F ] =
1

2
and VALP

HR
(F ) 6 2ε

Proof. Clearly,

E
X,Y∼µH

|F (X)− F (Y )| = 1

2

Observe that for any choice of (X, Y1, . . . , Yd) ∼ PHR , maxi |F (X)− F (Yi)| is non-zero

if and only if either xi = t or xi = t′. Therefore we have,

E
(X,Y1,...,Yd)∼PH

max
i
|F (X)− F (Yi)| 6 P

[
[x]i ∈ {t, t

′}]) = 2ε ,

which concludes the proof.

8.5.1 Soundness

We will show a general soundness claim that holds for the dictatorship testing gadgets(
V (HR),PHR

)
constructed out of arbitrary Markov chains H with a given spectral

gap. Towards formally stating the soundness claim, we recall some background and

notation about polynomials over the product Markov chain HR.

8.5.2 Polynomials over HR

In this section, we recall how functions over the product Markov chain HR can be

written as multi-linear polynomials over the eigenfunctions of H.

Let e0, e1, . . . , en : V (H)→ R be an orthonormal basis of eigenvectors of H and

let λ0, . . . , λn be the corresponding eigenvalues. Here e0 = 1 is the constant function

whose eigenvalue λ0 = 1. Clearly e0, . . . , en form an orthonormal basis for the vector

space of functions from V (H) to R.

It is easy to see that the eigenvectors of the product chain HR are given by products

of e0, . . . , en. Specifically, the eigenvectors of HR are indexed by σ ∈ [n]R as follows,

eσ(x) =
R∏
i=1

eσi(xi)
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Every function f : HR → R can be written in this orthonormal basis f(x) =∑
σ∈[n]R f̂σeσ(x). For a multi-index σ ∈ [n]R, the function eσ is a monomial of degree

|σ| = |{i|σi 6= 0}|.

For a polynomial Q =
∑

σ Q̂σeσ, the polynomial Q>p denotes the projection on

to degrees higher than p, i.e., Q>p =
∑

σ,|σ|>p Q̂σeσ. The influences of a polynomial

Q =
∑

σ Q̂σ are defined as,

Inf i(Q) =
∑
σ:σi 6=0

Q̂2
σ

The above notions can be naturally extended to vectors of multi-linear polynomials

Q = (Q0, Q1, . . . , Qd).

Note that every real-valued function on the vertices V (H) of a Markov chain H

can be thought of as a random variable. For each i > 0, the random variable ei(x) has

mean zero and variance 1. The same holds for all eσ(x) for all |σ| 6= 0. For a function

Q : V (HR)→ R (or equivalently a polynomial), Var [Q] denotes the variance of the

random variable Q(x) for a random x from stationary distribution of HR. It is an

easy computation to check that this is given by,

Var [Q] =
∑
σ:|σ|6=0

Q̂2
σ

We will make use of the following Invariance Principle due to Isaksson and Mossel

[49].

Theorem 8.5.2 ([49]). Let X = (X1, . . . , Xn) be an independent sequence of en-

sembles, such that P [Xi = x] > α > 0,∀i, x. Let Q be a d-dimensional multi-linear

polynomial such that

Var [Qj(X)] 6 1 Var
[
Q>p
j

]
6 (1− εη)2p and Inf i(Qj) 6 τ

where p = 1
18

log(1/τ)/ log(1/α). Finally, let ψ : Rk → R be Lipschitz continuous.

Then,

|E [ψ(Q(X))]− E [ψ(Q(Z))]| = O
(
τ
εη
18
/ log 1

α

)
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where Z is an independent sequence of Gaussian ensembles with the same covariance

structure as X.

8.5.3 Noise Operator

We define a noise operator Γ1−η on functions on the Markov chain H as follows :

Γ1−ηF (X)
def
= (1− η)F (X) + η E

Y∼X
F (Y )

for every function F : H → R. Similarly, one can define the noise operator Γ1−η on

functions over HR.

Applying the noise operator Γ1−η on a function F , smoothens the function or

makes it closer to a low-degree polynomial. This resulting function Γ1−ηF is close to

a low-degree polynomial, and therefore is amenable to applying an invariance principle.

Formally, one can show the following decay of coefficients of high degree for Γ1−ηF .

Lemma 8.5.3. (Decay of High degree Coefficients) Let Qj be the multi-linear polyno-

mial representation of Γ1−ηF (X), and let ε be the spectral gap of the Markov chain H.

Then,

Var
[
Q>p
j

]
6 (1− εη)2p

Proof. The Fourier expansion of the function F is F =
∑

σ f̂σeσ where {eσ} is the set

of eigenvectors of Hk. It is easy to see that

eσ = eσ1 ⊗ . . .⊗ eσk ,

where the {eσi} are the eigenvectors of H.

Γ1−ηF (X) = (1− η)F (X) + η E
Y∼X

F (Y )

=
∑
σ

f̂σ E
[
eσ(X) + E

Y∼X
F (Y )

]
=

∑
σ

f̂σΠi∈σ

(
(1− η)eσi(Xi) + E

Yi∼Xi
eσi(Yi)

)
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We bound the second moment of Γ1−ηF as follows

E
X

(Γ1−ηF (X))2 =
∑
σ

f̂ 2
σ E
X

Πi∈σ

(
(1− η)eσi(Xi) + η E

Yi∼Xi
eσi(Yi)

)2

=
∑
σ

f̂ 2
σΠi∈σ

(
(1− η)2 E

Xi
eσi(Xi)

2 + η2 E
Xi

(
E

Yi∼Xi
eσi(Yi)

)2

+2η(1− η) E
Xi

E
Yi∼Xi

eσi(Xi)eσi(Yi)

)2

=
∑
σ

f̂ 2
σΠi∈σ

(
(1− η)2 + η2λ2

i + 2η(1− η)λi
)

=
∑
σ

f̂ 2
σΠi∈σ (1− η + ηλi)

2

Therefore,

Var
[
Q>p
j

]
6 4

∑
σ:|σ|>p

f̂ 2
σΠi∈σ (1− η + ηλi)

2

6
∑
σ:|σ|>p

f̂ 2
σ (1− εη)2|σ|

6 (1− εη)2p

Here the second inequality follows from the fact that all non-trivial eigenvalues of H

are at most 1− ε and the third inequality follows Parseval’s indentity.

Furthermore, on applying the noise operator Γ1−η, the resulting function Γ1−ηF

can have a bounded number of influential coordinates as shown by the following

lemma.

Lemma 8.5.4. (Sum of Influences Lemma) If the spectral gap of a Markov chain is

at least ε then for any function F : V R
H → R,

∑
i∈[R]

Inf i(Γ1−ηF) 6
1

ηε
Var [F]
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Proof. By suitable normalization, we may assume without loss of generality that

Var [F ] = 1. If Q denotes the multi-linear representation of Γ1−ηF , then the sum of

influences can be written as,∑
i∈[R]

Inf i(Γ1−ηF) 6
∑
|σ|6=0

|σ|Q̂2
σ

6
∑
|σ|6=0

|σ|(1− ηε)2|σ|F̂ 2
σ

6

(
max
k∈Z>0

k(1− ηε)2k

)∑
|σ|6=0

F̂ 2
σ <

1

ηε

where we used the fact that the function h(t) = t(1 − ηε)2t achieves its maximum

value at t = −1
2

ln(1− ηε).

8.5.4 Soundness Claim

Now we are ready to formally state our soundness claim for a dictatorship test gadget

constructed out of a Markov chain.

Proposition 8.5.5 (Soundness). For all ε, η, α, τ > 0 the following holds. Let H be a

finite Markov-chain with a spectral gap of at least ε, and the probability of every state

under stationary distribution is > α. Let F : V (HR)→ {0, 1} be a function such that

maxi∈[R] Inf i(Γ1−ηF) 6 τ . Then we have

E
(X,Y1,...,Yd)∼P

HR

[max
i
|F (Yi)− F (X)|]

> Ω(
√
ε log d) E

X,Y∼µ
HR

|F (X)− F (Y )| −O(η)− τΩ(εη/ log(1/α)) .

For the sake of brevity, we define soundness(V (HR),PHR) to be the following :

Definition 8.5.6.

soundness(V (HR),PHR)
def
= min

F :maxi∈[R] Inf i(F)6τ

E(X,Y1,...,Yd)∼P
HR

[maxi |F (Yi)− F (X)|]
EX,Y∼µ

HR
) |F (X)− F (Y )|

In the rest of the section, we will present a proof of Proposition 8.5.5. First, we

construct Gaussian random variables with moments matching the eigenvectors of the

chain H.
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Gaussian Ensembles. Let Q = (Q0, Q1, . . . , Qd) be the multi-linear polynomial

representation of the vector-valued function (Γ1−ηF (X),Γ1−ηF (Y1), . . . ,Γ1−ηF (Yd)).

Let E denote the ensemble of nd random variables

(e0(X), e1(X), . . . , en(X)), (e0(Y1), . . . , en(Y1)), . . . , (e0(Yd), . . . , en(Yd)) .

Let E1, . . . , ER be R independent copies of the ensemble E. Clearly, the polynomial

Q can be thought of as a polynomial over E1, . . . , ER. For each random variable x in

E1, . . . , ER and a value β in its support, P [x = β] is at least the minimum probability

of a vertex in H under its stationary distribution.

This polynomial Q satisfies the requirements of Theorem 8.5.2 because on the

one hand, the influences of F are 6 τ and on the other by Lemma 8.5.3, Var [Q>p] 6

(1− εη)2p. Now we will apply the invariance principle to relate the soundness to the

corresponding quantity on the Gaussian graph, and then appeal to the isoperimetric

result on the Gaussian graph (Theorem 8.4.1).

The invariance principle translates the polynomial (Q0(X), Q1(Y1), . . . Qd(Yd)) on

the sequence of independent ensembles E1, . . . , ER, to a polynomial on a corresponding

sequence of Gaussian ensembles with the same moments up to degree two.

Consider the ensemble E. For each i 6= 0,

E[ei(X)] = E[ei(Y1) = 0] = . . .E[ei(Yd)] = 0 .

For each i 6= j, it is easy to see that,

E[ei(X)ej(X)] = E[ei(Y1)ej(Y1)] = . . .E[ei(Yd)ej(Yd] = 0 .

Moreover,

E[ei(X)ej(Ya)] = E[ei(Ya)ej(Yb)] = 0

whenever i 6= j and all a, b ∈ {1, . . . d}. The only non-trivial correlations are

E[ei(X)ei(Ya)] and E[ei(Ya)ei(Yb)] for all i ∈ [n] and a, b ∈ [d]. It is easy to check that

E[ei(X)ei(Ya)] = λi E[ei(Ya)ei(Yb)] = λ2
i
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From the above discussion, we see that the Gaussian ensemble z = (zX , zY1 , . . . , zYd)

has the same covariance as the ensemble E.

1. Sample zX and n-dimensional Gaussian random vector.

2. Sample zY1 , . . . , zYd ∈ Rn i.i.d as follows : The ith coordinate of each zYa is

sampled from λizX(i) +
√

1− λ2
i ξa,i where ξa,i is a Gaussian random variable

independent of zX and all other ξa,i.

Let ZX , ZY1 , . . . , ZYd ∈ RnR be the ensemble obtained by R independent samples from

zX , zY1 , . . . , zYd .

Let Σ denote the nR× nR diagonal matrix whose entries are 1− λ2
1, . . . , 1− λ2

n

repeated R times. Since the spectral gap of H is ε, we have that

1− λ2
i > 2ε− ε2 > ε

for all i ∈ {1, . . . , n}. Therefore, we have Σ � εI.

Proof of soundness. Now we return to the proof of the main soundness claim for

the dictatorship testing gadget (V (HR), PHR) constructed out an arbitrary Markov

chain.

Proof of Proposition 8.5.5. Let Q = (Q0, Q1, . . . , Qd) be the multi-linear polynomial

representation of the vector-valued function (Γ1−ηF (X),Γ1−ηF (Y1), . . . ,Γ1−ηF (Yd)).

Define a function s : R→ R as follows

s(x) =


0 if x < 0

x if x ∈ [0, 1]

1 if x > 1

Define a function Ψ : Rd+1 → R as,

Ψ(x, y1, . . . , yd) = max
i
|s(yi)− s(x)| .
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Clearly, Ψ is a Lipschitz function with a constant of 1.

Using the fact that F is bounded in [0, 1],

E
(X,Y1,...,Yd)∼P

HR

max
a
|F (X)− F (Ya)|

> E
(X,Y1,...,Yd)∼P

HR

max
a
|Γ1−ηF (X)− Γ1−ηF (Ya)| − 2η (69)

Furthermore, since Γ1−ηF is also bounded in [0, 1], we have s(Γ1−ηF ) = Γ1−ηF .

Therefore,

E
(X,Y1,...,Yd)∼P

HR

max
a
|Γ1−ηF (X)− Γ1−ηF (Ya)|

= E
(X,Y1,...,Yd)∼P

HR

max
a
|s (Γ1−ηF (X))− s (Γ1−ηF (Ya))| (70)

Apply the invariance principle to the polynomial Q = (Γ1−ηF,Γ1−ηF, . . . ,Γ1−ηF ) and

Lipschitz function Ψ. By invariance principle Theorem 8.5.2, we get

E
(X,Y1,...,Yd)∼P

HR

max
a
|s (Γ1−ηF (X))− s (Γ1−ηF (Ya))|

> E
(ZX ,ZY1

,...,ZYd )∼PGΛ,Σ

max
a
|s (Γ1−ηF (ZX))− s (Γ1−ηF (ZYa))| − τΩ(εη/ log(1/α)) (71)

Observe that s ◦ (Γ1−ηF ) is bounded in [0, 1] even over the Gaussian space. Hence, by

using the isoperimetric result on Gaussian graphs (Corollary 8.4.4), we know that

E
(ZX ,ZY1

,...,ZYd )∼PGΛ,Σ

max
a
|s (Γ1−ηF (ZX))− s (Γ1−ηF (ZYa))|

> c
√
ε log d E

ZX ,ZY ∼µGΛ,Σ

|s (Γ1−ηF (ZX))− s (Γ1−ηF (ZY ))| (72)

Now we apply the invariance principle on the polynomial (Γ1−ηF,Γ1−ηF ) and the

functional Ψ : R2 → R given by

Ψ(a, b) = |s(a)− s(b)| .

This yields,

E
ZX ,ZY ∼µGΛ,Σ

|s (Γ1−ηF (ZX))− s (Γ1−ηF (ZY ))|

> E
X,Y∼µ(HR)

|s (Γ1−ηF (X))− s (Γ1−ηF (Y ))| − τΩ(εη/ log(1/α)) (73)
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Over HR, the function Γ1−ηF is bounded in [0, 1], which implies that s(Γ1−ηF (X)) =

Γ1−ηF (X) and Γ1−ηF (X) > F (X)− η.

E
X,Y∼µ(HR)

|s (Γ1−ηF (X))− s (Γ1−ηF (Y ))| > EX,Y∼µ(HR) |F (X)− F (Y )| − 2η (74)

From equations (69) to (74) we get,

E
(X,Y1,...,Yd)∼P

HR

max
a
|F (X)− F (Ya)| > Ω(

√
ε log d)EX,Y∼µ(HR) |F (X)− F (Y )|

−4η − τΩ(εη/ log(1/α))

8.6 Hardness Reduction from SSE

In this section we will present a reduction from Small Set Expansion problem

to Balanced Analytic Vertex Expansion problem. Let G = (V,E) be an

instance of Small Set Expansion (γ, δ,M). Starting with the instance G = (V,E)

of Small Set Expansion(γ, δ,M), our reduction produces an instance (V ′,P ′) of

Balanced Analytic Vertex Expansion.

To describe our reduction, let us fix some notation. For a set A, let A{R} denote

the set of all multi-sets with R elements from A. Let Gη = (1− η)G+ ηKV where KV

denotes the complete graph on the set of vertices V . For an integer R, define G⊗Rη to

be the product graph G⊗Rη = (Gη)
R.

Define a Markov chain H on VH = {s, t, t′, s′} as follows ((Figure 23)),

p(s|s) = p(s′|s′) = 1− ε

1− 2ε
, p(t|s) = p(t′|s′) =

ε

1− 2ε
,

p(s|t) = p(s′|t′) =
1

2
, p(t′|t) = p(t|t′) =

1

2
.

It is easy to see that the stationary distribution of the Markov chain H over VH is

given by,

µH(s) = µH(s′) =
1

2
− ε µH(t) = µH(t′) = ε
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The reduction consists of two steps. First, we construct an “unfolded” instance (V ,P)

of the Balanced Analytic Vertex Expansion, then we merge vertices of (V ,P)

to create the final output instance (V ′,P ′). The details of the reduction are presented

below (Figure 24).

Reduction
Input: A graph G = (V,E) - an instance of Small Set Expansion(γ, δ,M).
Parameters: R = 1

δ
, ε

Unfolded instance (V ,P)
Set V = (V × VH)R. The probability distribution µ on V is given by (µV × µH)R.
The probability distribution P is given by the following sampling procedure.

1. Sample a random vertex A ∈ V R.

2. Sample d+ 1 random neighbors B,C1, . . . , Cd ∼ G⊗Rη (A) of the vertex A in
the tensor-product graph G⊗Rη .

3. Sample x ∈ V R
H from the product distribution µR.

4. Independently sample d neighbours y(1), . . . , y(d) of x in the Markov chain HR,
i.e., y(i) ∼ µRH(x).

5. Output ((B, x), (C1, y1), . . . , (Cd, yd))

Folded Instance (V ′,P ′)
Fix V ′ = (V × {s, t}){R}. Define a projection map Π : V → V ′ as follows:

Π(A, x) = {(ai, xi)|xi ∈ {s, t}}

for each (A, x) = ((a1, x1), (a2, x2), . . . , (aR, xR)) in (V × {s, t}){R}.
Let µ′ be the probability distribution on V ′ obtained by projection of probability
distribution µ on V . Similarly, the probability distribution P ′ on (V ′)d+1 by applying
the projection Π to the probability distribution P .

Figure 24: Hardness Reduction

Observe that each of the queries Π(B, x) and {Π(Ci, yi)}di=1 are distributed accord-

ing to µ′ on V ′. Let F ′ : V ′ → {0, 1} denote the indicator function of a subset for the

instance. Let us suppose that

E
X,Y∼V

[|F ′(X)− F ′(Y )|] > 1

10
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For the whole reduction, we fix η = ε/(100d). We will restrict γ < ε/(100d). We

will fix its value later.

Theorem 8.6.1. (Completeness) Suppose there exists a set S ⊂ V such that vol(S) = δ

and Φ(S) 6 γ then there exists F ′ : V ′ → {0, 1} such that,

E
X,Y∼V ′

[|F ′(X)− F ′(Y )|] > 1

10

and,

E
X,Y1,...,Yd∼P

[
max
i
|F ′(X)− F ′(Yi)|

]
6 2ε+O (d(η + γ)) 6 4ε

Proof. Define F : V → {0, 1} as follows:

F (A, x) =


1 if |Π(A, x) ∩ (S × {s, t})| = 1

0 otherwise

Observe that by definition of F , the value of F (A, x) only depends on Π(A, x). So

the function F naturally defines a map F ′ : V ′ → {0, 1}. Therefore we can write,

P [F (A, x) = 1] =
∑
i∈[R]

P [xi ∈ {s, t}]P [{a1, . . . , aR} ∩ S = {ai}|xi ∈ {s, t}]

> R · 1

2
· 1

R
·
(

1− 1

R

)R−1

>
1

10

and,

P [F (A, x) = 1] = P [|Π(A, x) ∩ (S × {s, t})| = 1]

6 E
(A,x)∼V

[|Π(A, x) ∩ (S × {s, t})|]

= R · 1

2
· |S|
|V |
6

1

2

The above bounds on P [F (A, x) = 1] along with the fact that F takes values only in

{0, 1}, we get that

E
X,Y∼V ′

|F ′(X)− F ′(Y )| = E
(A,x),(B,y)∼V

|F (A, x)− F (B, y)| > 1

10
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Suppose we sample A ∈ V R and B,C1, . . . , Cd independently from G⊗Rη (A). Let

us denote A = (a1, . . . , aR), B = (b1, . . . , bR), Ci = (ci1, . . . , ciR) for all i ∈ [d]. Note

that,

P [∃i ∈ [R] such that |{ai, bi} ∩ S| = 1]

6
∑

i∈[R](1− η)P
[
(ai, bi) ∈ E[S, S̄]

]
+ η P

[
(ai, bi) ∈ S × S̄

]
6 R(vol(S)Φ(S) + 2ηvol(S)) 6 2(γ + η) .

Similarly, for each j ∈ [d],

P [∃i ∈ [R]||{ai, cji} ∩ S| = 1] 6
∑
i∈[R]

P
[
(ai, cji) ∈ E[S, S̄]

]
6 Rvol(S)Φ(S) 6 2(γ+η) .

By a union bound, with probability at least 1− 2(d+ 1)(γ + η) we have that none of

the edges {(ai, bi)}i∈[R] and {(ai, cji)}j∈[d],i∈[R] cross the cut (S, S̄).

Conditioned on the above event, we claim that if (B, x) ∩ (S × {t, t′}) = ∅ then

max
i
|F (B, x)− F (Ci, yi)| = 0 .

First, if (B, x)∩(S × {t, t′}) = ∅ then for each bi ∈ S the corresponding xi ∈ {s, s′}. In

particular, this implies that for each bi ∈ S, either all of the pairs (bi, xi), {(cji, yji)}j∈[d]

are either in S×{s, t} or S×{s′, t′}, thereby ensuring that maxi |F (B, x)−F (Ci, yi)| =

0.

From the above discussion we conclude,

E(B,x),(C1,y1),...,(Cd,yd)∼P [maxi |F (B, x)− F (Ci, yi)|]

6 P [|(B, x) ∩ (S × {t, t′}) | > 1] + 2(d+ 1)(γ + η)

6 E [|(B, x) ∩ (S × {t, t′}) |] + 2(d+ 1)(γ + η)

= R · vol(S) · ε+ 2(d+ 1)(γ + η) = ε+ 2(d+ 1)(γ + η)
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Let F ′ : V ′ → {0, 1} be a subset of the instance (V ′,P ′). Let us define the following

notation.

VALP ′(F
′)

def
= E

(X,Y1,...,Yd)∼P ′

[
max
i∈[d]
|F ′(X)− F ′(Yi)|

]
and

Var
1

[F ′]
def
= E

X,Y∼V ′
|F ′(X)− F ′(Y )| .

We define the functions F : V → [0, 1] and fA, gA : V R
H → [0, 1] for each A ∈ V R

as follows.

F (A, x)
def
= F ′(Π(A, x)) fA(x)

def
= F (A, x) gA(x)

def
= E

B∼G⊗Rη (A)
F (B, x)

Lemma 8.6.2.

VALP ′(F
′) > E

A∈V R
VALµRH (gA)

Proof.

VALP ′(F
′) = VALP(F )

= E
A∼V R

E
x∼µRH

E
y1,...,yd∼µRH(x)

E
B,C1,...,Cd∼G⊗Rγ (A)

max
i
|F (B, x)− F (Ci, yi)|

> E
A∼V R

E
x∼µRH

E
y1,...,yd∼µRH(x)

max
i

∣∣∣∣∣ E
B∼G⊗Rγ (A)

F (B, x)− E
Ci∼G⊗Rγ (A)

F (Ci, yi)

∣∣∣∣∣
> E

A∼V R
E

x∼µRH
E

y1,...,yd∼µRH(x)
max
i
|gA(x)− gA(yi)|

= E
A∈V R

VALµRH (gA)

Lemma 8.6.3.

E
A∼V R

E
x∼µRH

gA(x)2 > E
(A,x)∼V

F 2(A, x)− VALP ′(F
′)
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Proof.

E
A∼V R

E
x∼µRH

gA(x)2 = E
A∼V R

E
x∼µRH

E
B,C∼G⊗Rη (A)

F (B, x)F (C, x)

=
1

2
E

A∼V R
E

x∼µRH
E

B,C∼G⊗Rη (A)
F 2(B, x) + F 2(C, x)− (F (B, x)− F (C, x))2

= E
A∼V R

E
x∼µRH

F 2(A, x)− 1

2
E

A∼V R
E

x∼µRH
E

B,C∼G⊗Rη (A)
(F (B, x)− F (C, x))2 (75)

where in the last step we used the fact that B,C have the same distribution as A ∼ V R.

Since the function F is bounded in [0, 1], we have

E
A∼V R

E
x∼µRH

E
B,C∼G⊗Rη (A)

(F (B, x)− F (C, x))2

6 E
A∼V R

E
x∼µRH

E
B,C∼G⊗Rη (A)

|F (B, x)− F (C, x)| (76)

E
A∼V R

E
x∼µRH

E
B,C∼G⊗Rη (A)

|F (B, x)− F (C, x)|

6 E
A∼V R

E
x∼µRH

E
y∼µRH(x)

E
B,C,D∼G⊗Rη (A)

|F (B, x)− F (D, y)|+ |F (C, x)− F (D, y)|

= 2 E
A∼V R

E
x∼µRH

E
y∼µRH(x)

E
B,D∼G⊗Rη (A)

|F (B, x)− F (D, y)| (77)

(because (B,D), (C,D) have same distribution )

6 2 E
A∼V R

E
x∼µRH

E
y1,...,yd∼µRH(x)

E
B,D1,...,Dd∼G⊗Rη (A)

max
i
|F (B, x)− F (Di, yi)|

= 2VALP(F ) = 2VALP ′(F
′) (78)

Equations (75), (76) and (78) yield the desired result.

Lemma 8.6.4.

E
A∼V R

Var
1

[gA] = E
A∼V R

E
x,y∈µRH

|gA(x)− gA(y)| > 1

2
(Var

1
[F ])2 − VALP ′(F

′)

Proof. Since the function gA is bounded in [0, 1] we can write

E
A∼V R

E
x,y∈µRH

|gA(x)− gA(y)| > E
A∼V R

E
x,y∈µRH

(gA(x)− gA(y))2

> E
A∼V R

E
x∈µRH

g2
A(x)− E

A
E

x,y∈µRH
gA(x)gA(y) (79)
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In the above expression there are two terms. From Lemma 8.6.3, we already know

that

E
A∼V R

E
x∈µRH

g2
A(x) > E

(A,x)∼V
F 2(A, x)− VALP ′(F

′) (80)

Let us expand out the other term in the expression.

E
A

E
x,y∈µRH

gA(x)gA(y) = E
A

E
B,C∼G⊗Rη (A)

E
x,y∈µRH

F ′(Π(B, x))F ′(Π(C, y)) (81)

Now consider the following graph H on V ′ defined by the following edge sampling

procedure.

• Sample A ∈ V R, and x, y ∈ µRH .

• Sample independently B ∼ G⊗Rη (A) and C ∼ G⊗Rη (A)

• Output the edge Π(B, x) and Π(C, y)

Let λ denote the second eigenvalue of the adjacency matrix of the graph H.

E
A

E
B,C∼G⊗Rη (A)

E
x,y∈µRH

F ′(Π(B, x))F ′(Π(C, y)) = 〈F ′,HF ′〉

6

(
E

(A,x)∼V
F ′(Π(A, x))

)2

+ λ

(
E

(A,x)∼V
(F ′(Π(A, x)))

2 − ( E
(A,x)∼V

F ′(Π(A, x)))2

)
= λ E

(A,x)∼V
F (A, x)2 + (1− λ)( E

(A,x)∼V
F (A, x))2

(because F ′(Π(A, x)) = F (A, x))

Using the above inequality with equations (79), (80), (81) we can derive the following,

E
A∼V R

E
x,y∈µRH

|gA(x)− gA(y)|

> E
A∼V R

E
x∈µRH

g2
A(x)− E

A
E

x,y∈µRH
gA(x)gA(y)

> (1− λ)

[
E

(A,x)∼V
F 2(A, x)− ( E

(A,x)∼V
F (A, x))2

]
− VALP ′(F

′)

> (1− λ) Var [F ]− VALP ′(F
′)

> (1− λ)(Var
1

[F ])2 − VALP ′(F
′)(

because Var [F ] > Var
1

[F ]2 for all F
)
.
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To finish the argument, we need to bound the second eigenvalue λ for the graph H.

Here we will present a simple argument showing that the second eigenvalue λ for the

graph H is strictly less than 1
2
. Let us restate the procedure to sample edges from H

slightly differently.

• Define a map M : V × VH → (V ∪ ⊥)× (VH ∪ {⊥}) as follows, M(b, x) = (b, x)

if x ∈ {s, t} andM(b, x) = (⊥,⊥) otherwise. Let Π′ : ((V ∪ ⊥)× (VH∪ ⊥))R →

(V × {s, t}){R} denote the following map.

Π′(B′, x′) = {(b′i, x′i)|xi ∈ {s, t}}

• Sample A ∈ V R and x, y ∈ µRH

• Sample independently B = (b1, . . . , bR) ∼ G⊗Rη (A) and C = (c1, . . . , cR) ∼

G⊗Rη (A).

• Let M(B, x),M(C, y) ∈ ((V ∪ {⊥})× (VH ∪ {⊥}))R be obtained by applying

M to each coordinate of (B, x) and (C, y).

• Output an edge between (Π′(M(B, x)),Π′(M(C, y))).

It is easy to see that the above procedure also samples the edges of H from the same

distribution as earlier. Note that Π′ is a projection from ((V ∪ ⊥) × (VH∪ ⊥))R to

(V × {s, t}){R}. Therefore, the second eigenvalue of the graph H is upper bounded by

the second eigenvalue of the graph on ((V ∪ ⊥)× (VH ∪{⊥}))R defined byM(B, x) ∼

M(C, y). Let H1 denote the graph defined by the edgesM(B, x) ∼M(C, y). Observe

that the coordinates ofH1 are independent, i.e.,H1 = HR
2 for a graphH2 corresponding

to each coordinate of M(B, x) and M(C, y). Therefore, the second eigenvalue of H1

is at most the second eigenvalue of H2. The Markov chain H2 on (V ∪{⊥})× (VH∪ ⊥)

is defined as follows,

• Sample a ∈ V and two neighbors b ∼ Gη(a) and c ∼ Gη(a).
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• Sample x, y ∈ VH independently from the distribution µH .

• Output an edge between M(b, x) M(c, y).

Notice that in the Markov chainH2, for every choice ofM(b, x) in (V ∪{⊥})×(VH∪ ⊥),

with probability at least 1
2
, the other endpoint M(c, y) = (⊥,⊥). Therefore, the

second eigenvalue of H2 is at most 1
2
, giving a bound of 1

2
on the second eigenvalue of

H.

Now we restate a claim from [88] that will be useful for our our soundness proof.

Theorem 8.6.5. (Restatement of Lemma 6.11 from [88]) Let G be a graph with a

vertex set V . Let a distribution on pairs of tuples (A,B) be defined by A ∼ V R,

B ∼ G⊗Rη (A). Let ` : V R → [R] be a labelling such that over the choice of random

tuples and two random permutations πA, πB

P
A∼V R,B∼G⊗Rη (A)

P
πA,πB

{
π−1
A (`(πA(A))) = π−1

B (`(πB(B)))
}
> ζ

Then there exists a set S ⊂ V with vol(S) ∈
[

ζ
16R

, 3
ηR

]
satisfying Φ(S) 6 1− ζ/16.

The following lemma asserts that if the graph G is a NO-instance of Small Set

Expansion (γ, δ,M) then for almost all A ∈ V R the functions have no influential

coordinates.

Lemma 8.6.6. Fix δ = 1/R. Suppose for all sets S ⊂ V with vol(S) ∈ (δ/M,Mδ) ,

Φ(S) > 1− γ then for all τ > 0,

P
A∼V R

[∃i | Inf i[Γ1−ηgA] > τ ] 6
1000

τ 3ε2η2
·max(1/M, γ)

Proof. For each A ∈ V R, let

LA = {i ∈ [R] | Inf i(Γ1−ηfA) > τ/2}

and

L′A = {i ∈ [R] | Inf i(Γ1−ηgA) > τ} .
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Call a vertex A ∈ V R to be good if L′A 6= ∅. By Lemma 8.5.4, the sum of influences of

Γ1−ηgA is at most 1
εη

Var [gA] 6 1
εη

. Therefore, the cardinality of L′A is upper bounded

by |L′A| 6 2
τεη

. Similarly, the cardinality of LA is upper bounded by |LA| 6 1
τεη

.

The lemma asserts that at most a 1000
τ3η2ε2

·max(1/M, γ) fraction of vertices are good.

For the sake of contradiction, assume that PA∈V R [L′A 6= ∅] > 1000 max(1/M, γ)/τ 2ε2η2.

Define a labelling ` : V R → [R] as follows: for each A ∈ V R, with probability 1
2

choose a random coordinate in LA and with probability 1/2, choose a random coordinate

in L′A. If the sets LA, L
′
A are empty, then we choose a uniformly random coordinate

in [R].

Observe that for each A ∈ V R, the function gA is the average over bounded

functions fB : V R
H → [0, 1], where B ∼ GR

η (A). Fix a vertex A ∈ V R such that L′A 6= ∅

and a coordinate i ∈ L′A. In particular, we have that Inf i[Γ1−ηgA] > τ . Using convexity

of influences, this implies that,

EB∼G⊗Rη (A)Inf i[Γ1−ηfB] > τ .

Specifically, this implies that for at least a τ
2

fraction of the neighbours B ∼ GR
η (A),

the influence of the ith coordinate on fB is at least τ
2
. Hence, if L′A 6= ∅ then for at

least a τ/2 fraction of neighbours B ∼ G⊗Rη (A) we have L′A ∩ LB 6= ∅.

By definition of the functions fA, gA, it is clear that for every permutation π : [R]→

[R], fA(π(x)) = fπ(A)(x) and gA(π(x)) = gπ(A)(x). Therefore, for every permutation

π : [R]→ [R] and A ∈ V R,

LA = π−1(Lπ(A)) and L′A = π−1(L′π(A))

From the above discussion, for every good vertex A ∈ V R, for at least a τ/2 fraction

of the vertices B ∼ G⊗Rη (A), and every pair of permutations πA, πB : [R]→ [R], we
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have π−1
A (L′πA(A)) ∩ π

−1
B (LπB(B)) 6= ∅. This implies that,

P
A∼V R,B∼G⊗Rη (A)

P
πA,πB

{
π−1
A (`(πA(A))) = π−1

B (`(πB(B)))
}

> P
A∼V R

[L′A 6= ∅] · P
B∼G⊗Rη (A)

[L′A ∩ LB 6= ∅|L′A 6= ∅]

· P
[
π−1
A (`(πA(A))) = π−1

B (`(πB(B))) | L′A ∩ LB 6= ∅
]

> P
A∼V R

[L′A 6= ∅] ·
(τ

2

)
· 1

2
· 1

2
· 1

|L′A|
1

|LB|

> P
A∼V R

[L′A 6= ∅] ·
(τ

2

)
· 1

2
· 1

2
·
(τηε

2

)2

> 16 max(1/M, γ)

By Theorem 8.6.5, this implies that there exists a set S ⊂ V with vol(S) ∈ [ 1
MR

, 3
ηR

]

satisfying Φ(S) 6 1− γ. A contradiction.

Finally, we are ready to show the soundness of the reduction.

Theorem 8.6.7. (Soundness) For all ε, d there exists choice of M and γ, η such that

the following holds. Suppose for all sets S ⊂ V with vol(S) ∈ (δ/M,Mδ) , Φ(S) > 1−η,

then for all F ′ : V ′ → [0, 1] such that Var1[F ′] > 1
10

, we have VALP ′(F
′) > Ω(

√
ε log d)

Proof. Recall that we had fixed η = ε/(100d). We will choose τ to small enough so

that the error term in the soundness of dictatorship test (Proposition 8.5.5) is smaller

than ε. Since the least probability of any vertex in Markov chain H is ε, setting

τ = ε1/ε
3

would suffice.

First, we know that if G is a NO-instance of Small Set Expansion (γ, δ,M)

then for almost all A ∈ V R, the function gA has no influential coordinates. Formally,

by Lemma 8.6.6, we will have

P
A∼V R

[∃i | Inf i[Γ1−ηgA] > τ ] 6
1000

τ 3η2
·max(1/M, γ) .

For an appropriate choice of M,γ, the above inequality implies that for all but an

ε-fraction of vertices A ∈ V R, the function gA will have no influential coordinates.
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Without loss of generality, we may assume that VALP ′(F
′) 6

√
ε log d, else we

would be done. Applying Lemma 8.6.4, we get that EA∈V R Var1[gA] > (Var1[F ])2 −

VALP ′(F
′) > 1

200
. This implies that for at least a 1

400
fraction of A ∈ V R, Var1[gA] >

1/400. Hence for at least an 1/400− ε fraction of vertices A ∈ V R we have,

Var
1

[gA] >
1

400
and max

i
Inf i(Γ1−η(gA)) 6 τ

By appealing to the soundness of the gadget (Proposition 8.5.5), for every such

vertex A ∈ V R, VALµRH (gA) > Ω(
√
ε log d)−O(ε) = Ω(

√
ε log d). Finally, by applying

Lemma 8.6.2, we get the desired conclusion.

VALP ′(F
′) > E

A∈V R
VALµRH (gA) > Ω(

√
ε log d)

8.7 Reduction from Analytic d-Vertex Expansion to Vertex
Expansion

Theorem 8.7.1. A c-vs-s hardness for d-Balanced Analytic Vertex Expansion

implies a 4 c-vs-s/16 hardness for Balanced Symmetric Vertex Expansion on

graphs of degree at most D, where D = max {100d/s, 2 log(1/c)}.

At a high level, the proof of Theorem 8.7.1 has two steps.

1. We show that a c-vs-s hardness for Balanced Analytic Vertex Expansion

implies a 2 c-vs-s/4 hardness for instances of Balanced Analytic Vertex

Expansion having uniform distribution (Proposition 8.7.2).

2. We show that a c-vs-s hardness for instances of d-Balanced Analytic Vertex

Expansion having uniform stationary distribution implies a 2 c-vs-s/2 hardness

for Balanced Symmetric Vertex Expansion on Θ(D)-regular graphs.

(Proposition 8.7.5).
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Proposition 8.7.2. A c-vs-s hardness for Balanced Analytic Vertex Expan-

sion implies a 2 c-vs-s/4 hardness for instances of Balanced Analytic Vertex

Expansion having uniform distribution.

Proof. Let (V,P) be an instance of Balanced Analytic Vertex Expansion. We

construct an instance (V ′,P ′) as follows. Let T = 2n2. We first delete all vertices i

from V which have µ(i) < 1/2n2, i.e. V ← V \ {i ∈ V : µ(i) < 1/2n2}. Note that after

this operation, the total weight of the remaining vertices is still at least 1− 1/2n and

the Balanced Analytic Vertex Expansion can increase or decrease by at most

a factor of 2. Next for each i, we introduce introduce dµ(i)T e copies of vertex i. We

will call these vertices the cloud for vertex i and index them as (i, a) for a ∈ [µ(i)T ].

We set the probability mass of each (d + 1)-tuple ((i, a), (j1, b1) . . . , (jd, bd)) as

follows :

P ′((i, a), (j1, b1) . . . , (jd, bd)) =
P(i, j1, . . . , jd)

(µ(i)T ) · Πd
`=1(µ(j`)T )

It is easy to see that µ′(i, a) = 1/T for all vertices (i, a) ∈ V ′. The analytic d-vertex

expansion under a function F is given by,

E((i,a),(j1,b1)...,(jd,bd))∼P ′ max` |F (i, a)− F (j`, b`)|
E(i,a),(j,b)∼µ′ |F (i, a)− F (j, b)|

where X = (i, a) and Y` = (j, b) which are sampled as follows:

1. Sample a (d+ 1)-tuple (i, j1, . . . , jd) from P .

2. Sample a uniformly at random from 1, . . . , µ(i)T .

3. Sample b` uniformly at random from {1, . . . , µ(j`)T} for each ` ∈ [d].

Completeness Suppose, Φ(V,P) 6 c. Let f be the corresponding cut function.

The function f : V → {0, 1} can be trivially extended to a function F : V ′ → {0, 1}

thereby certifying that Φ(V ′,P ′) 6 2c.
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Soundness Suppose Φ(V,P) > s. Let F : V ′ → {0, 1} be any balanced function.

By convexity of absolute value function we get

E
((i,a),(j1,b1),...,(jd,bd))∼P ′

max
`
|F (i, a)− F (j`,b`)|

> E
(i,j1,...,jd)∼P

max
`

∣∣∣E
a
F (i, a)− ÈF (j`, b`)

∣∣∣ .
So if we define f(i) = EaF (i, a), the numerator for analytic d-vertex expansion in

(V,P) for f is only lower than the corresponding numerator for F in (V ′,P ′). We

need to lower bound the denominator, Ei,j∼µ |f(i)− f(j)|. The requisite lower bound

follows from the following two lemmas.

Lemma 8.7.3.

E
i,j∼µ
|f(i)− f(j)| > E

(i,a),(j,b)∼µ′
|F (i, a)− F (j, b)| − E

(i,a),(i,b)∼µ′
|F (i, a)− F (i, b)|

Proof. The Lemma follows directly from the following two inequalities.

E
(i,a),(j,b)

|F (i, a)− F (j, b)| 6 E
(i,a)
|F (i, a)− f(i)|+ E

(j,b)
|F (j, b)− f(j)|+ E

i,j
|f(i)− f(j)|

which follows from Triangle Inequality, and

E
i,a
|F (i, a)− f(i)| 6 E

i,a,b
|F (i, a)− F (i, b)|

Lemma 8.7.4.

E
i,a,b
|F (i, a)− F (i, b)| 6 2VALP ′(F ) = 2 E

(i,a),(j1,c1),...(jd,cd)∼P ′
max
`
|F (i, a)− F (j`, c`)|

Proof. Sample (i, j1, . . . , jd) ∼ P. For any neighbour (j, c) of (i, a), (i, b), using the

Triangle Inequality we have

|F (i, a)− F (i, b)| 6 |F (i, a)− F (j, c)|+ |F (j, c)− F (i, b)|
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Therefore,

|F (i, a)− F (i, b)| 6
∑

` |F (i, a)− F (j`, c`)|+
∑

` |F (i, b)− F (j`, c`)|
d

6 max
`
|F (i, a)− F (j`, c`)|+ max

`
|F (i, b)− F (j`, c`)|

Taking expectations over the uniformly random choice of a and b from the cloud

of i,

E
(i,a),(i,b)

|F (i, a)− F (i, b)| 6 2 E
((i,a),(j1,b1),...,(jd,bd))∼P ′

max
`
|F (i, a)− F (j`, c`)|

Lemma 8.7.3 and Lemma 8.7.4 together show that

E
i,j
|f(i)− f(j)| >

E(i,a),(j,b) |F (i, a)− F (j, b)|
2

.

as long as the value VALP ′(F ) < Var1[F ]/4. Therefore, for any F : V ′ → {0, 1},

E((i,a),(j1,b1)...,(jd,bd))∼P ′ max` |F (i, a)− F (j`, b`)|
E(i,a),(j,b)∼µ′ |F (i, a)− F (j, b)|

>
s

4
.

Theorem 8.4.3 shows that the minimum value of Balanced Analytic Vertex

Expansion is obtained by boolean functions. Therefore, Φ(V ′,P ′) > s/4.

Proposition 8.7.5. A c-vs-s hardness for instances of d-Balanced Analytic Ver-

tex Expansion having uniform stationary distribution implies a 2 c-vs-s/4 hardness

for Balanced Symmetric Vertex Expansion on Θ(D)-regular graphs. Here

D > max {100d/s, 2 log(1/c)}.

Proof. Let (V ′,P ′) be an instance of d-Balanced Analytic Vertex Expansion.

We construct a graph G from (V ′,P ′) as follows. We initially set V (G) = V ′. For each

vertex X we pick D neighbors by sampling D/d tuples from the marginal distribution

of P ′ on tuples containing X in the first coordinate.
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Let di denote the degree of vertex i, i.e. the number of vertices adjacent to

vertex i in G. It is easy to see that di > D and E [di] = 2D ∀i ∈ V (G). Let

L = {i ∈ V (G)|di > 4D}. Using Hoeffding’s Inequality, we get a tight concentration

for di around 2D.

P [di > 4D] 6 e−D .

Therefore, E [|L|] < n/eD. We delete these vertices from G, i.e. V (G) ← V (G)\L.

With constant probability, all remaining vertices will have their degrees in the range

[D/2, 4D]. Also, the vertex expansion of every set will decrease by at most an additive

1/eD.

Completeness Let Φ(V ′,P ′) 6 c and let F : V ′ → {0, 1} be the function corre-

sponding to Φ(V ′,P ′). Let the set S be the support of the function F . Clearly, the

set S is balanced. Therefore, with constant probability, we have

ΦV(G) 6 ΦV
G(S) 6 Φ(V ′,P ′) + 1/eD 6 2c .

Soundness Suppose Φ(V ′,P ′) > s. Let F : V ′ → {0, 1} be any balanced function.

Since the max is larger than the average, we get

E
X

max
Yi∈NG(X)

|F (X)− F (Yi)| >
d

D

D/d∑
j=1

E
(X,Y1,...,Yd)∼P

max
i
|F (X)− F (Yi)|

By Hoeffding’s inequality (Fact 2.5.3), we get

P
[(

E
X

max
Yi∈N(X)

|F (X)− F (Yi)|
)
< s/4

]

6 P

 d

D

D/d∑
j=1

E
(X,Y1,...,Yd)∼P

max
i
|F (X)− F (Yi)|

 < s/4


6 exp

(
−n(sD/d)2

)
Here, the last inequality follows from Hoeffding’s inequality over the index X. There

are at most 2n boolean functions on V . Therefore, using a union bound on all those
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functions we get,

P
[
ΦV(G) > s/4

]
> 1− 2n exp

(
−n(sD/d)2

)
.

Since D > d/s, we get that with probability 1− o(1), ΦV(G) > s/4.

Proof of Theorem 8.7.1. Theorem 8.7.1 follows directly from Proposition 8.7.2 and

Proposition 8.7.5.

8.8 Hardness of Vertex Expansion

We are now ready to prove Theorem 8.0.1. We restate the Theorem below.

Theorem 8.8.1. For every η > 0, there exists an absolute constant C such that

∀ε > 0 it is SSE-hard to distinguish between the following two cases for a given graph

G = (V,E) with maximum degree d > 100/ε.

Yes : There exists a set S ⊂ V of size |S| 6 |V | /2 such that

φV(S) 6 ε

No : For all sets S ⊂ V ,

φV(S) > min
{

10−10, C
√
ε log d

}
− η

Proof. From Theorem 8.6.1 and Theorem 8.6.7 we get that for an instance of Bal-

anced Analytic Vertex Expansion (V,P), it is SSE-hard to distinguish between

the following two cases cases:

Yes :

Φ(V,P) 6 ε

No :

Φ(V,P) > min
{

10−4, c1

√
ε log d

}
− η
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Now from Theorem 8.7.1 we get that for a graph G, it is SSE-hard to distinguish

between the following two cases cases:

Yes :

ΦV,bal 6 ε

No :

ΦV,bal > min
{

10−6, c2

√
ε log d

}
− η

We use a standard reduction from Balanced Symmetric Vertex Expansion

to Symmetric Vertex Expansion. A c-vs-s hardness for b-Balanced Symmet-

ric Vertex Expansion implies a 2 c-vs-s/2 hardness for Symmetric Vertex

Expansion. This can be seen as follows. Fix a graph G = (V,E).

Completeness If G has Balanced-symmetric vertex expansion at most c, then

clearly its symmetric vertex expansion is also at most c.

Soundness Suppose we have a polynomial time algorithm that outputs a set S

having φV(S) 6 s whenever G has a set S ′ having φV(S ′) 6 2c. Then this algorithm

can be used as an oracle to find a balanced set having symmetric vertex expansion

at most s. This would contradict the hardness of Balanced Symmetric Vertex

Expansion.

First we find a set, say T , having φV(T ) 6 s. If we are unable to find such a T ,

we stop. If we find such a set T and T has balance at least b, then we stop. Else, we

delete the vertices in T from G and repeat. We continue until the number of deleted

vertices first exceeds a b/2 fraction of the vertices.

If the process deletes less than b/2 fraction of the vertices, then the remaining

graph (which has at least (1 − b/2)n vertices) has conductance 2c, and thus in the

original graph every b-balanced cut has conductance at least c. This is a contradiction

!
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If the process deletes between b/2 and 1/2 of the nodes, then the union of the

deleted sets gives a set T ′ with φV(T ′) 6 s and balance of T ′ at least b/2.

Using this we get that for a graph G, it is SSE-hard to distinguish between the

following two cases cases:

Yes :

ΦV 6 ε

No :

ΦV > min
{

10−8, c3

√
ε log d

}
− η

Finally, using the computational equivalence of Vertex Expansion and Sym-

metric Vertex Expansion (Theorem 8.3.1), we get that for a graph G, it is

SSE-hard to distinguish between the following two cases cases:

Yes :

φV 6 ε

No :

φV > min
{

10−10, C
√
ε log d

}
− η

This completes the proof of the theorem.

8.9 Conclusion

In this chapter we showed that any polynomial time algorithm algorithm that outputs

a set having vertex expansion less than C
√
φV log d, for some absolute constant C, will

disprove the SSE hypothesis; alternatively, to improve on the bound of O
(√

φV log d
)

,

one has to disprove the SSE hypothesis. From an algorithmic standpoint, we believe

that Theorem 8.0.3 exposes a clean algorithmic challenge of recognizing a vertex

expander – a challenging problem that is not only interesting on its own right, but

whose resolution would probably lead to a significant advance in approximation

algorithms.
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CHAPTER IX

CONCLUSION

In this thesis we studied three notions of expansion, namely edge expansion in graphs,

vertex expansion in graphs and hypergraph expansion. We showed that the notion

of Laplacian eigenvalues and Cheeger Inequalities cuts across these three problems.

We studied higher orders of these expansion quantities and gave optimal higher order

Cheeger Inequalities for edge expansion in graphs, and made partial progress towards

establishing optimal higher order Cheeger Inequalities for vertex expansion in graphs

and hypergraph expansion.

We summarize the contributions of this thesis in Table 1, Table 2, Table 3 and

Table 4, below.

Table 1: Higher Order Cheeger Inequalities
Edge Expansion in graphs Vertex Expansion and Hyper-

graph Expansion
Cheegers Inequality

λ2

2
6 φG 6

√
2λ2 [3, 1]

γ2

2
6 φH 6

√
2γ2

and λ∞
2
6 φV

G 6
√

2λ∞ for
Vertex Expansion [21].

Small Set Expansion
O
(√

λk log k
)

Ω(
√
λk log k) for Noisy hy-

percube graph.

O
(√

r γk log k
)

Õ
(
k
√
γk log r

)
k sparse-cuts

λk
2
6 φkG 6 O

(√
λ2k log k

)
Lower bound tight for hyper-
cube, upper bound tight for
Noisy hypercube.

γk
2
6 φk 6 O

(
k3
√
γk log r

)
Lower bound tight for hyper-
cube.
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Table 2: Approximation Algorithms
Edge Expansion in graphs Vertex Expansion and Hyper-

graph Expansion
Sparsest Cut

O
(√

OPT
)

[3, 1]

O
(√

log n
)

OPT [13]

O
(√

OPT log r
)

O
(√

log n
)

OPT

and O
(√

log n
)

OPT for Ver-
tex Expansion [39].

Small Set Expansion

O
(√

OPT log k
)

[87]

O
(√

log n log k
)

OPT [16]

Õ
(
k
√

OPT log r
)

Õ
(
k
√

log n
)

OPT

Sparsest k-partition
O
(√

OPT log k
)

O
(√

log n log k
)

OPT

−

Table 3: Computing Eigenvalues
Adjacency Matrix Hypergraph Markov Operator

Upper bound Exact computation for all eigen-
values.

O (k log r)-approximation.

Lower bound Exact computation for all eigen-
values.

Ω(log r) hardness under SSE.

9.1 Future Directions

Partitioning into Expanders. Similar to the k sparse-cuts problem and the

Sparsest k-partition problem is the problem of partitioning a graph into expanders

while minimizing the largest expansion among the parts. More formally, given a graph

G = (V,E,w) and a parameter α ∈ R+, the problem asks to compute a partition of

the vertex set V into sets S1, S2 . . . (the number of sets is not specified) such that the

graph induced on each Si has expansion at least α while minimizing maxi φG(Si). This

problem, whilst being of interest in its own right, could also have numerous practical
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Table 4: Mixing Time Bounds
Random-walks on graphs Hypergraph Dispersion Process

Upper bound

O
(

log n

λ2

)
(folklore)

O
(

log n

γ2

)

Lower bound

Ω

(
1

λ2

)
(folklore) Ω

(
1

γ2

)

applications. Tanaka [101] and Gharan and Trevisan [41] study a slight variant of

this problem, and show that if there is a sufficiently large gap between φkG and φk+1
G ,

then graph can be partitioned into k pieces while ensuring that expansion of the

graph induced on each part is lower bounded by a function of λk and the expansion of

each part in G is upper bounded by a function of λk+1. Kannan et. al.[51] study a

variant of this problem which asks to compute a partition of the graph into expanders

while minimizing the total fraction of edges cut; they give a bi-criteria approximation

algorithm for this problem. We showed that their algorithm can produce a partition of

the graph into a set of expanders, say S1, S2, . . ., with maxi φG(Si) being unbounded.

Computing a partition of the graph into expanders while minimizing maxi φG(Si)

seems to be a challenging open problem.

Hypergraph Markov Operators. In Chapter 4, we introduced a new (non-linear)

hypergraph Markov Operator and studied its eigenvalues. We showed that there exists

no linear operator whose eigenvalues can be used to estimate hypergraph expansion in

a Cheeger-like manner. We also argued that our operator is the “best” operator for

studying hypergraph expansion parameters. We ask, what properties of graphs and

random walks generalize to hypergraphs and this Markov operator? We also ask if

there are any other hypergraph Markov operators whose eigenvalues can be used to

estimate hypergraph parameters.
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Approximation Algorithms. Multiplicative approximation algorithms for all the

expansion problems studied in this thesis rely on the ARV structure theorem [13].

Since all these problems also generalize the Sparsest Cut problem, improving the

approximation guarantee for the Sparsest Cut problem is a common barrier for

improving the approximation guarantee for any of them. Arora, Rao and Vazirani

gave a O
(√

log n
)
-approximation algorithm, based on a rounding algorithm for the

standard SDP relaxation for Sparsest Cut augmented with the triangle inequality

constraints. This problem has resisted attempts to find polynomial-time approximation

algorithms for them that match their known lower bounds. A natural question to

ask is whether we can get better approximation guarantees if we allow ourselves

super-polynomial computational time? Towards this end, one could try to understand

the power of the LP and SDP hierarchies for combinatorial optimization problems.

The hierarchies of linear and semidefinite programs, such as the ones defined by

Lovasz and Schrijver [76], Sherali and Adams [93] and Lasserre [61], provide sequences

of increasingly powerful convex relaxations starting from a basic integer program.

They form a powerful computational model, where one can solve the program at

rth level (also called round) in time nO(r). The gap between integral and fractional

solutions decreases with r, and reaches zero at the nth level, where the program is

guaranteed to find an optimal integral solution. Most known LP/SDP based algorithms

can be derived by 2 or 3 rounds of one of these hierarchies.

Recently, Barak, Raghavendra and Steurer [17] showed a new method to analyze

and round SDP hierarchies. At a high level, they use global correlations inside the

high-dimensional SDP solution combined with the hierarchy constraints to obtain a

better rounding of this solution into an integral one. They show that the surprising

subexponential time algorithm for Unique Games, due to Arora, Barak and Steurer

[8], can be rederived by using these techniques.

Arora et. al.’s [8] showed that if a graph has “many” eigenvalues of its normalized
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Laplacian matrix which are “small”, then the graph has a small set having small

expansion. They used this in obtaining a subexponential time algorithm for the

Unique Games problem. We (in joint work with Prasad Raghavendra and Santosh

Vempala) conjecture that if a graph is a vertex expander (i.e. its vertex expansion

is Ω(1)), then there exists a way to assign non-negative weights to its edges such

that the (weighted) degree of each vertex is equal to one, and the number of “small”

eigenvalues of the resulting normalized Laplacian matrix is “small”. We show that

this conjecture, togethor with the tools of Barak et. al.[17] implies a subexponential

time constant factor approximation algorithm for Sparsest Cut, graph coloring, etc.

Understanding the power of the hierarchy for these problems is a very challenging

questions, and will have numerous applications in other areas of theory as well.

Hardness. Our computational lower bounds for Vertex Expansion and Hyper-

graph Expansion rely on the SSE hypothesis. An interesting open problem is

whether we can prove analogous lower bounds based on the Unique Games Con-

jecture. The Unique Games Conjecture is currently not known to imply hardness

results for problems closely tied to graph expansion such as Sparsest Cut, Vertex

Expansion, etc., the reason being that the hard instances of these problems are

required to have certain global structure, namely expansion. Gadget reductions from

a Unique Games instance preserve the global properties of the Unique Games

instance such as lack of expansion. Therefore, showing Unique Games hardness for

expansion problems requires a new way of reducing a Unique Games instance to the

expansion problem.

Currently, we do not know of any hardness results for Hypergraph Small Set

Expansion and Small Set Vertex Expansion other than those that follow from

the hardneses results for Small Set Expansion in graphs. Closing the gap between

the upper and lower bounds for these problems is also an interesting open problem.
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Obtaining optimal NP-hardness results for expansion problems is a fundamental

open problem on which there has been very little progress. Surprisingly, determining

whether the exact computation of λ∞ (and γ2) is NP-hard also remains open.
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