
LP AND SDP EXTENDED FORMULATIONS:
LOWER BOUNDS AND APPROXIMATION ALGORITHMS

A Dissertation

Presented to

The Academic Faculty

By

Aurko Roy

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

Algorithms, Combinatorics and Optimization

College of Computing

Georgia Institute of Technology

May 2017

Copyright © Aurko Roy 2017

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction and Background . 1

1.1 LP and SDP extended formulations . 2

1.1.1 Optimization Problems . 4

1.1.2 LP and SDP formulations . 10

1.2 Symmetric SDP formulations . 13

1.3 Hierarchical Clustering . 14

1.3.1 Preliminaries . 15

1.4 Robust Reinforcement Learning . 17

Chapter 2: Matching has no small symmetric SDP 21

2.1 Symmetric SDP formulations . 24

2.2 The perfect matching problem . 26

2.2.1 Highly symmetric functions are juntas 26

2.2.2 Lower bounds on matching . 28

2.2.3 Low-degree certificates for matching ideal membership 31

2.3 The Metric Traveling Salesperson Problem (TSP) revisited 35

v

2.3.1 Low-degree certificates for tour ideal membership 39

Chapter 3: LP and SDP lower bounds for other problems 44

3.1 Preliminaries . 47

3.1.1 Nonnegativity problems: Extended formulations as proof

system . 49

3.1.2 Base hard problems . 58

3.2 Reductions with distortion . 59

3.3 Fractional optimization problems . 60

3.3.1 Reduction between fractional problems 65

3.4 A simple example: Matching over 3-regular graphs has no small LPs . 67

3.5 BalancedSeparator and SparsestCut . 69

3.5.1 SparsestCut with bounded treewidth supply graph 70

3.5.2 BalancedSeparator with bounded-treewidth demand graph . . 74

3.6 SDP hardness of MaxCut . 78

3.7 Lasserre relaxation is suboptimal for IndependentSet(G) 80

3.8 From SheraliâĂŞAdams reductions to general LP reductions 84

3.8.1 Reducing UniqueGames to 1F-CSP 84

3.8.2 Reducing stuff . 88

3.9 A small uniform LP over graphs with bounded treewidth 90

Chapter 4: Hierarchical clustering . 99

4.0.1 Related Work . 99

4.0.2 Contribution . 101

vi

4.1 Preliminaries . 102

4.2 Convex hull of hierarchical clusterings 104

4.3 Rounding an LP relaxation . 112

4.4 Generalized Cost Function . 124

4.5 Experiments . 132

4.6 Discussion . 137

4.7 Hardness of finding the optimal hierarchical clustering 138

Chapter 5: Robust Reinforcement Learning 149

5.1 Robust Q-learning . 150

5.2 Robust TD-Learning . 157

References . 172

vii

LIST OF TABLES

3.1 Inapproximability of optimization problems. 48

viii

LIST OF FIGURES

3.1 The graph D2n for n � 2 in the reduction to 3-regular Matching. . . . 68

3.2 The gadget HC for the clause C � (xi + x j + xk � 0) in the reduction

from Max-3-XOR/0 to MaxCut. Solid vertices are shared by gadgets,

the empty ones are local to the gadget. 79

4.1 Comparison of f-ILP-ultrametric and 4 for 1 + κcos (left) and κ1auss
(right) . 134

4.2 Comparison of 4 using f (x) � x, with other algorithms for clustering

using 1 + κcos (left) and κ1auss (right) 135

4.3 Comparison of 4 using f (x) � x2
, with other algorithms for clustering

using 1 + κcos (left) and κ1auss (right) 135

4.4 Comparison of 4 using f (x) � log(1 + x), with other algorithms for

clustering using 1 + κcos (left) and κ1auss (right) 136

4.5 Comparison of 4 using f (x) � ex − 1, with other algorithms for

clustering using 1 + κcos (left) and κ1auss (right) 136

ix

SUMMARY

Linear programming (LP) and semidefinite programming (SDP) are some of

the most fundamental paradigms for convex optimization and approximation algo-

rithms. In this thesis we study various aspects of linear and semidefinite programs

including their limitations in expressing different combinatorial optimization prob-

lems, as well as the applications of these convex optimization paradigms in solving

problems arising in machine learning. We summarize the main contributions of the

thesis as follows

1. Exponential lower bound for symmetric SDPs approximating the Matching

problem. Matching is a fundamental problem in combinatorial optimization

where the goal is to compute the maximum matching in a graph. From now

on we will refer to the Matching problem simply by Matching. Several fast

combinatorial algorithms are known for this problem (see e.g., [1]). However

[2] in his seminal work showed that any symmetric linear program describing

Matching must have an exponential number of inequalities. A symmetric

linear program is one that respects the inherent symmetry of the matching

problem: for every permutation of the vertices of the underlying graph there

is a corresponding permutation of the variables that leaves the LP unchanged.

A natural question is whether there is a small symmetric SDP formulation

for the matching problem, since SDPs are a strictly stronger paradigm than

LPs. We answer this question negatively, showing that any symmetric SDP

approximating the matching problem must have an exponential number of

inequalities. A key ingredient of this work is to derive low degree sums of

squares refutations for Matching leading to a contradiction due to a result of

[3].

2. Lower bounds for LPs and SDPs for non-CSP problems. Recent work by [4,

x

5, 6] introduced several new techniques for showing lower bounds on the

size of LP and SDP formulations for approximating Constraint Satisfaction

Problems (CSPs). The main idea behind these results is to show that no

polynomial sized LP and SDP has a better approximation guarantee than the

Sherali-Adams and Lasserre hierarchy respectively. This does not however

hold in general for NP-hard problems that cannot be expressed as CSPs. To

prove lower bounds for such problems [7] introduced an affine reduction

mechanism for LPs and SDPs that allowed hardness of approximation results

to propagate for these paradigms by a reduction from a base hard (usually

CSP) problem. In this work we generalize this reduction mechanism in two

ways 1) relaxing the limitation for affineness by a form of gap-amplification and

boosting 2) generalizing this framework to fractional optimization problems,

thereby proving lower bounds for several new problems such as SparsestCut,

BalancedSeparator, and IndependentSet. In addition, we also show that there

are non-CSP problems for which the Lasserre SDP relaxation is not the best

convex relaxation for a given approximation factor.

3. Approximation algorithms for hierarchical clustering. In this section we

study a classical problem in machine learning, namely, hierarchical clustering

from an optimization perspective. Motivated by popular objective functions

such as k-means and k-medians used in practice for classical clustering, [8]

introduced a cost function for hierarchical clustering that was shown to have

several desirable properties. In particular, optimizing this cost function over

cliques, line graphs, planted partitions etc. recovers the expected hierarchical

clustering for these family of graphs. In this work we show a fundamental

connection between this cost function and spreading metrics type linear inequal-

ities that characterize several graph partitioning problems. We show that this

leads to an improved approximation algorithm for this problem by employing

xi

a sphere growing rounding approach recursively. We also establish constant

factor hardness results for this problem.

4. Robust Reinforcement Learning. We study another classical problem in

machine learning, namely reinforcement learning in a robust setting where the

transition matrices corresponding to every action are not known explicitly but

may lie in some convex set and may be chosen adversarially. For this setting

[9] showed a minimax characterization for the value function and Q-factors of

the optimal policy. However, to compute an (approximate) optimal policy one

needs an exact description of this convex set corresponding to every action. In

this work we consider the setting when the uncertainty set corresponding to

every action is a fixed convex set (such as a ball, ellipsoid or parallelepiped)

centered around the empirical probability transition vector with which the

simulator transitions to a new state. In other words, in any future run of

the simulator, the transition probabilities may come from anywhere within

this uncertainty set. We define robust versions of the classical Q-iterations

and TD(λ)-iterations and prove convergence to an optimal policy under a

suitable choice of step lengths and discount factors for the cost function. The

robust version of these iterations can be viewed as the classical Q and TD(λ)

updates coupled with one step of optimizing a linear function over a convex

uncertainty set centered at the simulator probabilities.

xii

CHAPTER 1

INTRODUCTION AND BACKGROUND

The central challenge in combinatorial optimization is to find solutions that are

optimal or nearly optimal with respect to some value function and that satisfy

certain combinatorial properties depending on the specifics of the problem. While

several problems admit efficient combinatorial algorithms, a major drawback of

suchmethods is that they are problem dependent and a combinatorial approach that

works for one particular problem may not generalize well to some other problem. A

standard approach to address this shortcoming is to cast these discrete problems

into a continuous optimization setting using the formulation of linear programming

(LP) and semidefinite programming (SDP). Both these paradigms admit efficient

algorithms such as the Ellipsoid algorithm [10] and Interior point methods [11] and

the running time typically depends on the number of inequalities in the description

or on the complexity of a separation oracle in the case of the Ellipsoid method.

Therefore the bottleneck is in coming up with small relaxations or formulations

for a combinatorial problem that still approximately captures the underlying

value function. In this thesis we will study the relationship between discrete

and continuous optimization by exploring the following two main threads: 1) the

limitations of these continuous paradigms especially LPs and SDPs in approximately

capturing different combinatorial problems and 2) successful applications of these

paradigms to problems in discrete settings arising in several machine learning

applications.

1

1.1 LP and SDP extended formulations

The principle idea behind an LP or SDP extended formulation is the question

of whether there exists some polyhedron or spectrahedron in a possibly higher

dimensional space that projects back to a specific polyhedron of interest depending

on the problem. The motivation behind this question is that often it is easy to

describe the feasible set of solutions to a combinatorial optimization problem by a

polyhedron e.g., the convex hull of all the solutions. However, for most problems

such a description usually involves exponentially many inequalities and therefore

using a convex optimization algorithm directly on such a description would be

inefficient. This however, does not rule out polynomial sized formulations of these

problems and amajor question in the theory of approximation algorithms is whether

there exist small LP or SDP formulations that approximately project back to several

problems of interest such as Matching, SparsestCut or IndependentSet.

Clearly, the existence of such small formulations would imply polynomial

time algorithms and we do not expect it for NP-hard problems such as MaxCut

or SparsestCut. Nevertheless, even for problems such as Matching for which fast

combinatorial algorithms exist (see e.g., [1]) it was shown by [2] that no small

symmetric LP formulations exist. This ruled out separating P vs NP by showing

that problems in P have small linear programming representations. However, the

paradigm of semidefinite programming is strictly stronger than linear programming

while still being efficiently optimizable, and so a natural question is whether

Matching has a small formulation in the SDP paradigm. We show this negatively for

symmetric SDPs by showing how to derive low degree sums-of-square certificates

over the convex hull of perfect matchings and appealing to a result of [3] that shows

that matching does not have a small sums-of-square certificate.

Our next contribution is to prove lowerbounds on the size of approximate LP

2

and SDP extended formulations for several classes of combinatorial optimization

problems. The class of Constraint Satisfaction Problems (CSPs) is a special class of

combinatorial optimization problems where the linear objective is to satisfy as many

constraints as possible while the feasible set is restricted only to the hypercube of

its underlying alphabet. Therefore in the boolean setting of a problem like MaxCut,

the feasible region is the {0, 1}-hypercube. For this class of problems it was shown

by [4, 12, 6] that any polynomial sized LP and SDP cannot do better than certain

standard relaxations - Sherali-Adams relaxations in the case of LPs and the Lasserre

relaxation for the case of SDPs. However, for several other combinatorial problems

for which the underlying feasible set is more complicated than a hypercube, it is

not clear if these standard relaxations indeed give rise to the optimal LP and SDP

descriptions for these problems. We answer this question negatively by showing

that there are indeed non-CSP problems for which the Lasserre or sums-of-squares

SDP hierarchy yields strictly sub-optimal relaxations compared to the class of all

polynomial sized LPs. In particular, we show for the IndependentSet that the nγ-level

Lasserre relaxation has integrality gap of Ω
(
n1−γ)

, while a result of [13] implies

the existence of O(n)-sized LP approximating IndependentSet to within O(
√

n).

The main ingredient in this work is to improve the reduction framework of [7] in

the following ways. The main idea behind the reduction framework of [7] is to

model reductions between LP and SDP formulations of two different combinatorial

optimization problems as an affine reduction. However, this restriction of affineness

is a major limitation in using several well-known NP-hardness reductions for

problems such as IndependentSet, VertexCover and BalancedSeparator. We relax

this requirement of affineness by modeling "extra computation" in the form of low

nonnegative or psd matrices in the reduction, thereby allowing for ideas analogous

to gap amplification and boosting. We also show how to generalize this framework to

the class of fractional optimization problems such as SparsestCut.

3

In the rest of this section we introduce formally an abstract view of combinatorial

optimization problems as well as general LP and SDP relaxations that approxi-

mately capture these problems. We will also define several specific combinatorial

optimization problems of interest in this abstract framework.

1.1.1 Optimization Problems

We begin by defining a generic combinatorial optimization problem in this context

and introduce several problems of interest as concrete examples of this general

definition.

Definition 1.1.1 (Optimization problem). An optimization problem is a tuple P �

(S ,I, val) consisting of a set S of feasible solutions, a set I of instances, and a

real-valued objective called measure val : I × S → �.

We shall write valI(s) for the objective value of a feasible solution s ∈ S for an

instance I ∈ I.

The SparsestCut problem is defined over a graph with two kinds of edges: supply

and demand edges. The objective is to find a cut that minimizes the ratio of the

capacity of cut supply edges to the total demand separated. For a weight function

f : E(Kn) → �>0, we define the graph [n] f
def

� ([n], E f) where E f
def

� {(i , j) | i , j ∈

[n], f (i , j) > 0}. We study the SparsestCut problemwith bounded-treewidth supply

graph.

Definition 1.1.2 (SparsestCut(n , k)). Let n be a positive integer. The minimization

problem SparsestCut(n , k) consists of

instances a pair (d , c) of a nonnegative demand d : E(Kn) → �>0 and a capacity

c : E(Kn) → �>0 such that tw([n]c) 6 k;

feasible solutions all subsets s of [n];

4

measure ratio of separated capacity and separated demand:

vald ,c(s) �
∑

i∈s , j<s c(i , j)∑
i∈s , j<s d(i , j)

for capacity c, demand d, and set s.

The BalancedSeparator problem is similar to the SparsestCut problem and is

also defined over a graph with supply and demand edges. However it restricts the

solutions to cuts that are balanced, i.e., which separate a large proportion of the

demand. Note that in this case we define the BalancedSeparator problem on n

vertices for a fixed demand function d, unlike in the case of SparsestCut where the

demand function d was part of the instances. This is because in the framework of

[7] the solutions should be independent of the instances. We formalize this below.

Definition 1.1.3 (BalancedSeparator(n, d)). Let n be a positive integer, and d : [n] ×

[n] → �>0 a nonnegative function called demand function. Let D denote the total

demand

∑
i , j∈[n] d(i , j). The minimization problem BalancedSeparator(n, d) consists

of

instances nonnegative capacity function c : E(Kn) → �>0 on the edges of the

complete graph Kn ;

feasible solutions all subsets s of [n] such that

∑
i∈s , j<s d(i , j) is at least D/4;

measure capacity of cut supply edges: valc(s)
def

�
∑

i∈s , j<s c(i , j) for a capacity

function c and set s.

Recall that an independent set I of a graph G is a subset of pairwise non-adjacent

vertices I ⊆ V(G). The IndependentSetproblemonagraphG asks for an independent

set of G of maximum size. We formally define it as an optimization problem below.

Definition 1.1.4 (IndependentSet(G)). Given a graph G, the maximization problem

IndependentSet(G) consists of

5

instances all induced subgraphs H of G;

feasible solutions all independent subsets I of G;

measure valH(I) � |I ∩ V(H)|.

Recall that a subset X of V(G) for a graph G is a vertex cover if every edge of G

has at least one end point in X. The VertexCover problem on a graph G asks for a

vertex cover of G of minimum size. We give a formal definition below.

Definition 1.1.5 (VertexCover(G)). Given a graph G, the minimization problem

VertexCover(G) consists of

instances all induced subgraphs H of G;

feasible solutions all vertex covers X of G;

measure valH(X) � |X ∩ V(H)|.

The MaxCut problem on a graph G asks for a vertex set of G cutting a

maximum number of edges. Given a vertex set X ⊆ V(G), let δG(X)
def

�

{{u , v} ∈ E(G) | u ∈ X, v < X} denote the set of edges of G with one end point

in X and the other end point outside X.

Definition 1.1.6 (MaxCut(G)). Given a graph G, the maximization problem

MaxCut(G) consists of

instances all induced subgraph H of G;

feasible solutions all vertex subsets X ⊆ V(G);

measure valH(X) � |E(H) ∩ δG(X)|.

Constraint satisfaction problems (CSPs for short) are inherently related to inapprox-

imability results, and form a basic collection of inapproximable problems. There

are many variants of CSPs, but the general structure is as follows:

6

Definition 1.1.7 (Constraint Satisfaction Problems). A constraint satisfaction problem,

in short CSP, is an optimization problem on a fixed set {x1, . . . , xn} of variables with

values in a fixed set [q] consisting of

instances formal weighted sums I �
∑

i wiCi(x j1 , . . . , x jki
) of some clauses

Ci : [q]ki → {0, 1} with weights wi > 0.

feasible solutions all mappings s : {x1, . . . , xn} → [q], called assignments to vari-

ables

measure weighted fraction of satisfied clauses:

valI(s) B
∑

i wiCi(s(x j1), . . . , s(x jki
))∑

i wi

A CSP can be either a maximization problem or a minimization problem. For

specific CSPs there are restrictions on permitted clauses, and later we will define

CSPs by specifying only these restrictions. For example Max-k-CSP is the problem

where only clauses with at most k free variables are allowed (i.e., ki 6 k in the

definition above). The problem Max-k-XOR is the problem with clauses of the form

x1 + · · · + xk � b where the xi are distinct variables, b ∈ {0, 1}, and the addition is

modulo 2. We shall use the subproblem Max-k-XOR/0, where the clauses have the

form x1 + · · · + xk � 0.

Given a k-arypredicateP, letMax-k-CSP(P)denote theCSPwhere all clauses arise

via a change of variables from P, i.e., every clause have the form P(xi1 , . . . , xik) with

i1, . . . , ik being pairwisely distinct. For example, Max-k-XOR/0 � Max-k-CSP(x1 +

· · · + xk � 0).

Another specific example of a CSP we will make use of is the UniqueGames

problem. The UniqueGames problem asks for a labeling of the vertices of a graph

that maximizes the number (or weighted sum) of edges where the labels of the

7

endpoints match. We formalize it restricted to regular bipartite graphs.

Definition 1.1.8 (UniqueGames∆(n , q)). Let n, q and∆ be positive integer parameters.

The maximization problem UniqueGames∆(n , q) consists of

instances All edge-weighted ∆-regular bipartite graphs (G, w) (i.e., a graph G with

a collection {wu ,v}{u ,v}∈E(G) of real numbers) with partite sets {0} × [n] and

{1} × [n] with every edge {i , j} labeled with a permutation πi , j : [q] → [q]

such that πi , j � π−1

j,i .

feasible solutions All functions s : {0, 1} × [n] → [q] called labelings of the vertices.

measure The weighted fraction of correctly labeled edges, i.e., edges {i , j} with

s(i) � πi , j(s(j)):

val(G,w)(s) B

∑
{i , j}∈E(G)

s(i)�πi , j(s(j))
w(i , j)∑

{i , j}∈E(G) w(i , j)

The Matching problem asks for a matching in a graph H of maximal size. The

restriction to matchings and subgraphs (which corresponds to 0/1 weights in the

objective of the matching problem) below serves the purpose to obtain a base hard

problem, with which we can work more easily later.

Definition 1.1.9 (Matching(G)). The maximum matching problem Matching(G) over

a graph G is defined as the maximization problem:

instances all subgraphs H of G

feasible solutions all perfect matchings S on G.

measure the size of induced matching valG(S) B |S ∩ E(H)| with S ∈ S, and H a

subgraph of G.

We will also write Matchingk(G) to indicate that the maximum vertex degree is at

most k.

8

Uniform problems

Here we present so called uniform versions of some of the optimization problems

discussed so far, where the class of instances is typically much larger, e.g., the class of

all instances of a given size. Non-uniform optimization problems typically consider

weighted versions of a specific instance or all induced subgraphs of a given graph.

For establishing lower bounds, non-uniform optimization problems give stronger

bounds: ‘even if we consider a specific graph, then there is no small LP/SDP’. In the

case of upper bounds, i.e., when we provide formulations, uniform optimization

problems provide stronger statements: ‘even if we consider all graphs simultaneously,

then there exists a small LP/SDP’.

We start by defining the uniform version of MaxCut. Recall that for a graph G

and a subset X of V(G), we define δG(X)
def

� {{u , v} ∈ E(G) | u ∈ X, v < X} to be the

set of crossing edges.

Definition 1.1.10 (MaxCut(n)). For a positive integer n, the maximization problem

MaxCut(n) consists of

instances all graphs G with V(G) ⊆ [n];

feasible solutions all subsets X of [n];

measure valG(X) � |δG(X)|.

With IndependentSet and VertexCover we face the difficulty that the solutions are

instance dependent. Hence we enlarge the feasible solutions to include all possible

vertex sets, and in the objective function penalize the violation of requirements.

Definition 1.1.11 (IndependentSet(n)). For a positive integer n, the maximization

problem IndependentSet(n) consists of

instances all graphs G with V(G) ⊆ [n];

9

feasible solutions all subsets X of [n];

measure the number of vertices of G in X penalized by the number of edges of G

inside X:

valG(X) � |X ∩ V(G)| − |E(G[X])| . (1.1.1)

Recall that VertexCover asks for a minimal size vertex set X of a graph G such

that every edge of G has at least one of its endpoints in X.

Definition 1.1.12. For a positive integer n the minimization problem VertexCover

consists of

instances all graphs G with V(G) ⊆ [n]

feasible solutions all subsets X ⊆ V(G)

measure the number of vertices of G in X penalized by the number of uncovered

edges:

valG(X) B |X ∩ V(G)| + |E(G \ X)| . (1.1.2)

1.1.2 LP and SDP formulations

Here we recall the notion of linear programming and semi-definite programming

complexity of optimization problems from [7]. The key idea to modeling approxima-

tions of an optimization problem P � (S ,I, val) is to represent the approximation

gap by two functions C, S : I→ �, the completeness guarantee and soundness guaran-

tee, respectively, and the task is to differentiate problems with OPTI 6 S(I) and

OPTI > C(I), as in the algorithmic setting.

The guarantees C and S will often be of the form C � α1 and S � β1 for

some constants α and β and an easy-to-compute function 1. Then we shall write

fcLP(P , α, β) instead of the more precise fcLP(P , α1 , β1).

10

Definition 1.1.13 (LP formulation of an optimization problem). Let P � (S ,I, val)

be an optimization problem, and C, S be real-valued functions on I, called complete-

ness guarantee and soundness guarantee, respectively. If P is a maximization problem,

then let IS B {I ∈ I |max valI 6 S(I)} denote the set of instances, for which the

soundness guarantee S is an upper bound on the maximum. If P is a minimization

problem, then let IS B {I ∈ I |min valI > S(I)} denote the set of instances, for

which the soundness guarantee S is a lower bound on the minimum.

A (C, S)-approximate LP formulation of P consists of a linear program Ax 6 b with

x ∈ �r
for some r and the following realizations:

Feasible solutions as vectors xs ∈ �r
for every s ∈ S satisfying

Axs 6 b for all s ∈ S , (1.1.3)

i.e., the system Ax 6 b is a relaxation of conv xs | s ∈ S.

Instances as affine functions wI : �r → � for all I ∈ IS
satisfying

wI(xs) � valI(s) for all s ∈ S , (1.1.4)

i.e., the linearization wI of valI is required to be exact on all xs
with s ∈ S.

Achieving (C, S) approximation guarantee by requiring

max {wI(x) | Ax 6 b} 6 C(I) for all I ∈ IS , (1.1.5)

if P is a maximization problem (and min {wI(x) | Ax 6 b} > C(I) if P is a

minimization problem).

The size of the formulation is the number of inequalities in Ax 6 b. Finally, the

(C, S)-approximate LP formulation complexity fcLP(P , C, S) of P is the minimal size

11

of all its LP formulations.

The definition of SDP formulations is similar.

Definition 1.1.14 (SDP formulation of an optimization problem). As in Def-

inition 1.1.13, let P � (S ,I, val) be an optimization problem and C, S be

real-valued functions on I, the completeness guarantee and soundness guarantee.

Let IS B {I ∈ I |max valI 6 S(I)} if P is a maximization problem, and let

IS B {I ∈ I |min valI > S(I)} if P is a minimization problem.

A (C, S)-approximate SDP formulation of P consists of a linear mapA : �r → �k

and a vector b ∈ �k
(i.e., a semidefinite program

{
X ∈ �r

+

��A(X) � b
}
) together with

the following realizations of P:

Feasible solutions as vectors Xs ∈ �r
+ for all s ∈ S satisfying

A(Xs) � b (1.1.6)

i.e., the SDPA(X) � b ,X ∈ �r
+ is a relaxation of conv Xs[s ∈ S].

Instances as affine functions wI : �r → � for all I ∈ IS
satisfying

wI(Xs) � valI(s) for all s ∈ S , (1.1.7)

i.e., the linearization wI of valI is exact on the Xs
with s ∈ S.

Achieving (C, S) approximation guarantee by requiring

max {wI(X) | A(Xs) � b , Xs ∈ �r
+} 6 C(I) for all I ∈ IS , (1.1.8)

if P is a maximization problem, and the analogous inequality if P is a

minimization problem.

12

The size of the formulation is the dimension parameter r. Now the (C, S)-

approximate SDP formulation complexity fcSDP(P , C, S) of the problem P is the

minimal size of all its SDP formulations.

1.2 Symmetric SDP formulations

In this section we extend the definition of SDP formulations of the previous section

to account for symmetry. We restrict ourselves to maximization problems since for

the symmetric case we are interested in Matching.

Let G be a group acting on S and F . The problem P is G-symmetric if it satisfies

the compatibility constraint 1 · f (1 · s) � f (s). For a G-symmetric problem we

require G-symmetric approximation guarantees:
˜C(1 · f) � ˜C(f) and ˜S(1 · f) � ˜S(f)

for all f ∈ F and 1 ∈ G.

We now define the notion of a symmetric semidefinite programming formulation

of a maximization problem.

Definition 1.2.1 (G-symmetric SDP formulation for P). Let P � (S , F) be a max-

imization problem with approximation guarantees
˜C, ˜S. Let A(X) � b be a

(˜C, ˜S)-approximate SDP formulation of P. If P is G-symmetric, and G acts on �d
+,

then an SDP formulation of P with symmetric approximation guarantees
˜C, ˜S is

G-symmetric if it satisfies the compatibility conditions for all 1 ∈ G:

1. Action on solutions: X1·s � 1 · Xs
for all s ∈ S.

2. Action on functions: w1· f (1 ·X) � w f (X) for all f ∈ F with maxs∈S f (s) 6 ˜S(f).

3. Invariant affine space: A(1 · X) � A(X).

A G-symmetric SDP formulation is G-coordinate-symmetric if the action of G on

�d
+ is by permutation of coordinates: that is, there is an action of G on [d] with

(1X)i j � X1−1·i ,1−1· j for all X ∈ �d
+ and i , j ∈ [d].

13

1.3 Hierarchical Clustering

In this section we introduce the problem of hierarchical clustering and the cost

function of [8]. Hierarchical clustering is an important method in cluster analysis

where a data set is recursively partitioned into clusters of successively smaller size.

They are represented by rooted trees where the root corresponds to the entire data

set, the leaves correspond to individual data points and the intermediate nodes

correspond to a cluster of its descendant leaves. Such a hierarchy represents several

possible flat clusterings of the data at various levels of granularity; every pruning of

this tree returns a possible clustering.

Popular heuristics for hierarchical clustering are bottoms-up agglomerative

algorithms such as single linkage, average linkage and complete linkage. A standard

approach in the classical clustering setting is to choose an objective function and

to think of the target clustering as one that optimizes this function. Some popular

objective functions include k-means, k-median, min-sum and k-center (see e.g.,

Chapter 14, [14]). However, for a lot of popular hierarchical clustering algorithms

including linkage based algorithms, it is hard to pinpoint explicitly the cost function

that these algorithms optimize. Moreover, much of the existing cost function based

approaches towards hierarchical clustering evaluate a hierarchy based on a cost

function for flat clustering, e.g., assigning the k-means or k-median cost to a pruning

of this tree.

Motivated by this, [8] introduced a cost function for hierarchical clustering

where the cost takes into account the entire structure of the tree rather than just the

projections into flat clusters. This cost function recovers the expected hierarchical

clustering on several synthetic examples such as planted partitions, line graphs and

cliques. In addition, a top-down algorithm using SparsestCut as a subroutine is

presented in [8] that outputs a tree with cost at most O(αn log n) times the cost of

14

the optimal tree and where αn is the approximation guarantee of the SparsestCut

algorithm used. Therefore, using the Leighton-Rao algorithm [15, 16] or the

Arora-Rao-Vazirani algorithm [17] gives an approximation factor of O
(
log

2 n
)
and

O
(
log

3/2 n
)
respectively.

In this work we give polynomial time algorithms to recover a hierarchical

clustering of cost at most O(log n) times the cost of the optimal clustering for this

cost function and its generalization also introduced in [8]. The main technical

ingredient is to view the cost function in terms of the ultrametric it induces on the

data, giving a combinatorial characterization of all such metrics which allows us to

write a polyhedral description of this function and analyzing a linear programming

(LP) relaxation using a recursive version of the sphere growing rounding technique

used in several graph partitioning problems. In the rest of this section we will

introduce the problem setting and the cost function of [8] and its generalization.

1.3.1 Preliminaries

A similarity based clustering problem consists of a dataset V of n points and a

similarity function κ : V × V → �>0 such that κ(i , j) is a measure of the similarity

between i and j for any i , j ∈ V . We will assume that the similarity function is

symmetric i.e., κ(i , j) � κ(j, i) for every i , j ∈ V . Note that we do not make any

assumptions about the points in V coming from an underlying metric space. For a

given instance of a clustering problem we have an associated weighted complete

graph Kn with vertex set V and weight function given by κ. A hierarchical clustering

of V is a tree T with a designated root r and with the elements of V as its leaves,

i.e., leaves(T) � V . For any set S ⊆ V we denote the lowest common ancestor of S in

T by lca(S). For pairs of points i , j ∈ V we will abuse the notation for the sake of

simplicity and denote lca({i , j}) simply by lca(i , j). For a node v of T we denote the

subtree of T rooted at v by T[v]. The following cost function was introduced by [8]

15

to measure the quality of the hierarchical clustering T

cost(T) B
∑

{i , j}∈E(Kn)
κ(i , j)

��
leaves(T[lca(i , j)])

�� . (1.3.1)

The intuition behind this cost function is as follows. Let T be a hierarchical clustering

with designated root r so that r represents the whole data set V . Since leaves(T) � V ,

every internal node v ∈ T represents a cluster of its descendant leaves, with the

leaves themselves representing singleton clusters of V . Starting from r and going

down the tree, every distinct pair of points i , j ∈ V will be eventually separated at

the leaves. If κ(i , j) is large, i.e., i and j are very similar to each other then we would

like them to be separated as far down the tree as possible if T is a good clustering of

V . This is enforced in the cost function (1.3.1): if κ(i , j) is large then the number of

leaves of lca(i , j) should be small i.e., lca(i , j) should be far from the root r of T.

A more general variant of cost function (1.3.1) was also introduced by [8] where

the distance between the two points is scaled by a function f : �>0→ �>0, i.e.,

cost f (T) B
∑

{i , j}∈E(Kn)
κ(i , j) f

(��
leaves T[lca(i , j)]

��) . (1.3.2)

In order that cost function (1.3.2) is meaningful, f should be strictly increasing and

satisfy f (0) � 0. Possible choices for f could be

{
x2, ex − 1, log(1 + x)

}
. The top-

downheuristic in [8] finds the optimal hierarchical clustering up to an approximation

factor of cn log n with cn being defined as

cn B 3αn max

16n′6n

f (n′)
f (dn′/3e)

and where αn is the approximation factor from the Sparsest Cut algorithm used.

The dual object to hierarchical clustering is the notion of an ultrametric. We

briefly recall it below.

16

Definition 1.3.1 (Ultrametric). An ultrametric on a set X of points is a distance

function d : X × X → � satisfying the following properties for every x , y , z ∈ X

1. Nonnegativity: d(x , y) > 0 with d(x , y) � 0 iff x � y

2. Symmetry: d(x , y) � d(y , x)

3. Strong triangle inequality: d(x , y) 6 max{d(y , z), d(z , x)}

Under cost functions (1.3.1), one can interpret the tree T as inducing an

ultrametric dT on V given by dT(i , j) B
��
leaves(T[lca

(
i , j

)
])
�� − 1. This is an

ultrametric since dT(i , j) � 0 iff i � j and for any triple i , j, k ∈ V we have

dT(i , j) 6 max{dT(i , k), dT(j, k)}. Similarly, under cost (1.3.2) the tree T induces

the ultrametric on V given by dT(i , j) B
��
leaves(T[lca

(
i , j

)
])
�� − 1. In Chapter 4 we

will give a complete combinatorial characterization of ultrametrics induced by the

cost functions (1.3.1) and (1.3.2) and describe the convex hull of all hierarchical

clusterings under these functions.

1.4 Robust Reinforcement Learning

In this section we introduce another problem in machine learning and study it

from a convex optimization perspective, namely reinforcement learning in the robust

setting. The classical reinforcement learning setup is as follows. We have an infinite

horizon Markov Decision Process (MDP) [18] with finite state space X of size n and

finite action spaceA of size m. At every time step t the MDP is in a state i ∈ X and

can choose an action a ∈ A incurring a cost ct(i , a). A popular choice of the cost as

a function of time is the so called discounted cost function, where a discount factor of

ν < 1 is applied to future rewards i.e.,

ct(i , a) B νt c(i , a),

17

where c(i , a) is a fixed constant independent of the time step t. The states make

transitions according to probability transition matrices τ B {Pa}a∈A which depends

only on their action a. A policy of the controller is a sequence π � (a0, a1, . . .),

where every at(i) corresponds to an action inA if the system is in state i at time t.

The end goal in the reinforcement learning setting is to devise algorithms to learn an

optimal policy π∗ that minimizes the expected total reward. We define the optimal

policy formally below.

Definition 1.4.1 (Optimal policy). Given an MDP with state space X, action space

A and transition matrices Pa
, let Π be the strategy space of all possibile policies.

Then an optimal policy π∗ is one that minimizes the expected total reward, i.e.,

π∗ B arg min

π∈Π
�

[∞∑
t�0

ct(it , at(it))
]
.

In the case when the transition probabilities are exactly known then one can

express an ε-suboptimal policy via the Bellman recursion (see e.g., [18]). Various

methods such as the Q-iteration and TD(λ) can then be used to iteratively compute

an approximately optimal policy starting from some initial estimate. However,

in many practical applications, the transition matrices are estimated from noisy

data and therefore in practice a transition matrix Pa
corresponding to an action a

may actually come from a larger uncertainty set. Prior work has approached this

problem of uncertain transition matrices from a Bayesian point of view e.g., [19];

however this requires perfect knowledge of prior distributions over the whole set of

transition matrices. Another line of approach has been to assume that the set of

transition probability matrices lie in some set Pa
(see [20, 21, 22, 9]) which is often

assumed to be convex and bounded. Under this setting [9] prove the following

robust analogue of Bellman recursion. Let T denote the admissible policies of nature

with regard to the transition matrices, i.e., T B (⊗a∈APa). In other words a policy

18

τ ∈ T of nature is a sequence of transition matrices that may be played by it in

response to the actions of the simulator. For any set P ⊂ �n
and vector v ∈ �n

let

σP(v) B sup

{
p>v | p ∈ P

}
. For a state i ∈ X let Pa

be the projection onto the ith

row.

Theorem 1.4.2. [9] Under the discounted version of the cost function ct , we have the

following perfect duality

min

π∈Π
max

τ∈T
�

[∞∑
t�0

ct (it , at(it))
]
� max

τ∈T
min

π∈Π
�

[∞∑
t�0

ct (it , at(it))
]
. (1.4.1)

The optimal value is v(i0) where i0 is the initial state and where the value function v satisfies

the following recurrence relation for every i ∈ X

v(i) � min

a∈A

(
c(i , a) + νσPa

i
(v)

)
. (1.4.2)

A stationary optimal policy π∗ � (a∗, a∗, . . .) can then be obtained in a greedy fashion:

a∗(i) ∈ arg min

a∈A

{
c(i , a) + νσPa

i
(v)

}
(1.4.3)

However, the drawback of this approach of [9] is that one requires explicit

knowledge of the uncertainty set Pa
i for every action a ∈ A and state i ∈ X in order

to compute σPa
i
(v) for any vector v ∈ �n

. On the other hand, a more plausible

scenario is when the underlying uncertainty set Pa
i is a simple convex set such as a

ball, ellipsoid or parallelepiped centered around the actually experienced simulator

probabilities pa
i . The motivation behind this is that often it is easy to estimate some

measure of the uncertainty that one is dealing with, e.g., the maximum eigenvector of

the ellipsoid or the principal axis of the parallelepiped rather than estimate the true

19

description of the uncertainty sets Pa
i . As a concrete example, we have the ellipsoid

U B

{
x | x>Ax 6 1,

∑
i∈X

xi � 0

}
(1.4.4)

for some n × n psd matrix A with the uncertainty set Pa
i being

Pa
i B {x + pa

i | x ∈ U}, (1.4.5)

where pa
i was the simulator transition probability that was experienced in practice.

Note that while the set U may be easy to estimate, the approach of [9] breaks down

since one has no knowledge of pa
i as one merely observes the new state j sampled

with according to this probability distribution. This gives rise to a fundamental

question:

Can one still compute an ε-suboptimal policy under the weaker assumption of knowing

the generic shape of the uncertainty region without knowing its location/center?

Wewill answer this question positively in Chapter 5 by developing robust versions

of the celebrated Q-iterations and the TD(λ)-iterations. We will show that with an

appropriately chosen step-size γt and discount factor ν and under the assumption

that one can efficiently optimize linear functions over U, these iterations converge

to the optimal policy.

20

CHAPTER 2

MATCHING HAS NO SMALL SYMMETRIC SDP

The main result of this chapter is that any symmetric semidefinite program ap-

proximating the matching problem to within 1 − ε
n−1

must have exponential size.

The result is a semidefinite programming analogue of the seminal result of [23, 2]

who showed that any symmetric linear program (LP) for the matching problem has

exponential size. Further [24] recently showed that one can drop the symmetry

requirement: any linear program for the matching problem has exponential size.

Since it is possible to optimize over matchings in polynomial time (see e.g., [1]), it

follows that there is a gap between the class of problems that have small linear pro-

gramming formulations and the class of problems that allow efficient deterministic

optimization.

A natural question following these results is whether such a gap exists for

the paradigm of semidefinite programming (SDP). Semidefinite programs are a

generalization of linear programs and therefore strictly more powerful than the LP

paradigm. Crucially, they also allow efficient optimization using e.g., the Ellipsoid

algorithmof [25]. Moreover, formanyNP-hard combinatorial optimization problems

such as MaxCut and SparsestCut, the best known algorithms come from rounding

SDP relaxations due to [26, 27]. In Chapter 3 we will introduce one strategy of

proving lowerbounds on the size of SDPs approximating different optimization

problems. A different strategy, which will be the approach of this chapter, is to argue

that certain hierarchies such as the Lasserre or the Sums-of-squares SDP hierarchy

are no more powerful than general SDP relaxations of equivalent sizes. This is the

basis of the approach of recent work [5, 6] showing the power of hierarchies for

the class of Constraint Satisfaction Problems (CSPs) and the traveling salesperson

21

problem (TSP). However the question of whether the matching problem has a

small SDP remains open. In this chapter we give a partial negative answer to this

question by proving the analogue of Yannakakis’s result for semidefinite programs,

by showing that general semidefinite relaxations are no more powerful than the

Lasserre hierarchy or the Sums-of-squares SDP relaxation, thereby leading to an

exponential lowerbound due to a result of [28].

Related work

The question of the minimum sized linear programming formulation for a given

problem was initiated by Yannakakis’s seminal work [23, 2]. In Yannakakis’s setting,

a general linear program for the perfect matching polytope PM(n) consists of a

higher-dimensional polytope Q ∈ �D
and a projection π such that π(Q) � PM(n).

The size of the linear program is measured by the number of constraints in the

description of the polytope Q.

The main idea behind the result of [23] was an elegant characterization of the

size of linear programming formulations in terms of the non-negative rank of

an associated matrix known as the slack matrix. Using this characterization, [23]

showed that any symmetric linear program for the matching problem and traveling

salesperson problem require exponential size. On a high level, a linear program

for matching problem is symmetric, if for every permutation σ of the vertices in the

graph, there is a corresponding permutation σ̃ of the coordinates in �D
that leave

the polytope Q invariant.

A natural question that comes out of thework of Yannakakis is whether dropping

the symmetry requirement helps in giving polynomial sized linear programs

for Matching. [29, 30] and [24] answered this question negatively for the TSP

and matching problems respectively: any linear extended formulation of either

problem has exponential size. Separations between symmetric and general linear

22

programming relaxations were obtained by [31] who showed that for Matching on Kn

restricted to having log n edges leads to a small nonsymmetric linear programming

formulation, while still requiring exponential size for any symmetric formulation.

Analogous results were proven by [32, 33] on the extension complexity of the

permutahedron.

For the class of maximum constraint satisfaction problems (MaxCSPs), [4]

established a connection between lower bounds for general linear programs to lower

bounds against an explicit linear program namely the well-known Sherali-Adams

hierarchy. A similar connection was shown for SDP relaxations of Constraint

Satisfaction Problems (CSPs) by [5] and improved by [6] to the Lasserre or Sums-

of-squares SDP relaxation thereby showing strong lowerbounds for general SDP

relaxations for these problems. This is also the approach of this chapter for the

Matching and TSP problem respectively. A different approach will be explored in

Chapter 3 where we will establish lowerbounds for other non-CSP problems.

Contribution

We can summarize the contributions of this chapter as follows.

1. The first main result is the following theorem analogous to the result of [23, 2]

for SDP relaxations of Matching.

Theorem 2.0.1. There exists an absolute constant α such that for every ε ∈ [0, 1),

every symmetric SDP relaxation approximating the perfect matching problem within

a factor 1 − ε
n−1

has size at least 2
αn .

The main idea is to show that among all symmetric SDP relaxations for

Matching, the Lasserre or Sums-of-squares SDP hierarchy is optimal. In light

of a result of [28] that shows that Ω(n)-rounds of the Lasserre SDP hierarchy

cannot refute the existence of a perfect matching in an odd clique of size n.

23

The main obstacle in going from MaxCSPs to Matching is the non-trivial

algebraic structure of the underlying solution space, namely the space of

all perfect matchings. Specifically, given a multilinear polynomial testing

whether it is identically zero over all perfect matchings is non-trivial in itself.

In contrast, a multilinear polynomial is nonzero over solution space to a

MaxCSP namely {0, 1}n , if and only if all the coefficients of the polynomial

are zero. At a high level, for the Lasserre SDP hierarchy to be optimal for the

matching problem, it must at least be powerful enough to detect whether a

given polynomial is identically zero over matchings. We will show that every

multilinear polynomial F that is identically zero all perfect matchings, can

be certified to be zero via a degree 2 deg(F) − 1 derivation, starting from the

linear and quadratic constraints that describe the space of perfect matchings.

2. The second main result shows the optimality of Lasserre SDP relaxations

among all symmetric SDP relaxations for approximating the metric traveling

salesperson problem. The formal statement of the result is as follows.

Theorem. For every constant ρ > 0, if there exists a symmetric SDP relaxation

of size r <
√(

2n
k

)
− 1 which achieves a ρ-approximation for TSP instances on 2n

vertices. Then the (2k − 1)-round Lasserre relaxation achieves a ρ-approximation for

TSP instances on n vertices.

The technical idea behind this derivation is similar in spirit to that of Matching,

where we show a low degree derivation for every identically zero polynomials

over the space of all traveling salesman tours of Kn .

2.1 Symmetric SDP formulations

Let us introduce some useful notation. The expression [n] denotes the set {1, . . . , n}.

�r
+ denotes the cone of r × r real symmetric positive semidefinite (psd) matrices.

24

�[x] denotes the set of polynomials in n real variables x � (x1, . . . , xn) with real

coefficients. 〈H〉 denotes the vector space spanned byH while 〈H〉I denotes the

ideal generated byH . Groups act on the left.

For any psd matrix M let

√
M denote the unique psd matrix with

√
M

2

� M.

Note that

√
M
√

M
ᵀ
� M also, since

√
M is symmetric. We now turn a G-coordinate-

symmetric SDP formulation into a symmetric sum of squares representation over a

small set of basis functions.

Lemma 2.1.1 (Sums-of-squares for symmetric SDP formulations). If a G-symmetric

maximization problem P � (S , F) admits a G-coordinate-symmetric (˜C, ˜S)-approximate

SDP formulation of size d, then there is a G-symmetric setH of at most
(d+1

2

)
functions

h : S → � such that for any f ∈ F with max f 6 ˜S(f) we have ˜C(f) − f �
∑

j h2

j + µ f

for some h j ∈ 〈H〉 and constant µ f > 0. The action onH is given by (1 · h)(s) � h(1−1 · s)

for all 1 ∈ G, h ∈ H and s ∈ S.

Proof. LetA, b, Xs
, w f

comprise a G-coordinate-symmetric SDP formulation of size

d. We define the setH B
{

hi j
�� i , j ∈ [d]

}
via hi j(s) B

√
Xs i j . By the action of G and

the uniqueness of the square root, we have 1 · hi j � h1·i ,1· j , soH is G-symmetric.

As hi j � h ji , the setH has at most

(d+1

2

)
elements.

By standard strong duality arguments as in [7], for every f ∈ F with max f 6

˜S(f), there is a U f ∈ �d
+ and µ f > 0 such that for all s ∈ S

˜C(f) − f (s) � Tr[U f Xs] + µ f .

Again by standard arguments the trace can be rewritten as a sum of squares:

Tr[U f Xs] � Tr[
√

U f
√

U f
ᵀ√

Xs
√

Xs
ᵀ
] � Tr[

√
U f
ᵀ√

Xs
√

Xs
ᵀ√

U f] �
∑
j∈[d]

©«
∑
i∈[d]

√
U f

i j ·
√

Xs i j
ª®¬

2

.

25

Therefore
˜C(f) − f �

∑
j∈[d]

(∑
i∈[d]
√

U f
i j · hi j

)
2

+ µ f , as claimed. �

2.2 The perfect matching problem

In this section we describe the perfect matching problem PM(n) as a maximization

problem in the framework of Section 1.2 and show that any symmetric SDP

formulation has exponential size.

Let n be an even positive integer, and let Kn denote the complete graph on

n vertices. The feasible solutions of PM(n) are all the perfect matchings M on

Kn . The objective functions fF are indexed by the edge sets F of Kn and are

defined as fF(M) B |M ∩ F |. For approximation guarantees we use
˜S(f) B max f

and
˜C(f) B max f + ε/2 for some fixed 0 6 ε < 1 as in [34], which will establish

(1−ε/(n−1))-inapproximability asmax f 6 (n−1)/2, and hence (1−ε/(n−1)) ˜C(f) >

max f .

The alternating groupAn acts naturally onPM(n)via permutation of vertices, and

the guarantees
˜C, ˜S are clearly An-symmetric. Our main theorem is an exponential

lower bound on the size of any An-coordinate-symmetric SDP extension of PM(n).

Theorem 2.2.1. There exists an absolute constant α > 0 such that for all even n and every

0 6 ε < 1, every An-coordinate-symmetric (˜C, ˜S)-approximate SDP extended formulation

for the perfect matching problem PM(n) has size at least 2
αn . In particular, every An-

coordinate-symmetric SDP extended formulation approximating the perfect matching

problem PM(n) within a factor of 1 − ε/(n − 1) has size at least 2
αn .

2.2.1 Highly symmetric functions are juntas

We now show that functions on perfect matchings with high symmetry are actually

juntas: they depend only on the edges of a small vertex set. The key is the following

lemma stating that perfect matchings coinciding on a vertex set belong to the same

26

orbit as the centralizer of the vertex set. For any set W ⊆ [n] let E[W] denote the

edges of Kn with both endpoints in W .

Lemma 2.2.2. Let S ⊆ [n] with |S | < n/2 and let M1 and M2 be perfect matchings in Kn .

If M1 ∩ E[S] � M2 ∩ E[S] then there exists σ ∈ A([n] \ S) such that σ ·M1 � M2.

Proof. Let δ(S) denote the edges with exactly one endpoint in S. There are three

kinds of edges: those in E[S], those in δ(S), and those disjoint from S. We construct

σ to handle each type of edge, then fix σ to be even.

To handle the edges in E[S] we set σ to the identity on S, since M1 ∩ E[S] �

M2 ∩ E[S].

To handle the edges in δ(S)we note that V(M1∩ δ(S)) equals V(M2∩ δ(S))when

both are restricted to S, since M1 and M2 are perfect matchings. Therefore for each

edge (s , v) ∈ M1 with s ∈ S and v < S there is a unique edge (s , w) ∈ M2 with w < S;

we extend σ to map v to w for each such s.

To handle the edges disjoint from S, we again use the fact that M1 and M2 are

perfect matchings, so the number of edges in each that are disjoint from S is the

same. We extend σ to be an arbitrary bĳection on those edges.

We now show that we can choose σ to be even. Since |S | < n/2 there is an edge

(u , v) ∈ M2 disjoint from S. Let τu ,v denote the transposition of u and v and let

σ′ B τu ,v ◦ σ. We have σ′ ·M1 � σ ·M1 � M2, and either σ or σ′ is even. �

We also need the following lemma, which has been used extensively for sym-

metric linear extended formulations. See references [2, 23, 35, 36, 5] for examples.

Lemma 2.2.3 ([37, Theorems 5.2A and 5.2B]). Let n > 10 and let G 6 An be a group. If

|An : G | <
(n

k

)
for some k < n/2, then there is an invariant subset W with |W | < k such

that A([n] \W) is a subgroup of G.

We combine the previous two lemmas to get the main result of this section.

27

Proposition 2.2.4. Let n > 10, let k < n/2 and letH be an An-symmetric set of functions

on the set of perfect matchings of Kn of size less than
(n

k

)
. Then for every h ∈ H there is a

vertex set W ⊆ H of size less than k such that h depends only on the (at most
(k−1

2

)
) edges

in W .

Proof. Applying Lemma 2.2.3 to the stabilizer of h, we obtain a subset W ⊆ [n] of

size less than k such that h is stabilized by A([n] \W), i.e.,

h(M) � (1 · h)(M) � h(1−1 ·M)

for all 1 ∈ A([n] \W).

Therefore for every perfect matching M the function h is constant on the

A([n] \W)-orbit of M. As the orbit is determined by M ∩ E[W] by Lemma 2.2.2, so

is the function value h(M). Therefore h depends only on the edges in E[W]. �

2.2.2 Lower bounds on matching

A key step in proving our lower bound is obtaining low-degree derivations of

approximation guarantees for objective functions of PM(n). Therefore we start with

a standard representation of functions as polynomials. We define the matching

constraint polynomials Pn as:

Pn B {xuv xuw | u , v , w ∈ [n] distinct}

∪

∑
u∈[n],u,v

xuv − 1

������ v ∈ [n]

∪
{

x2

uv − xuv | u , v ∈ [n] distinct
}
.

(2.2.1)

Intuitively, the first set of polynomials ensures that no vertex is matched more

than once, the second set ensures that each vertex is matched, and the third set

ensures that each coordinate is 0-1 valued. We observe that the ring of real valued

28

functions on perfect matchings is isomorphic to �[{xuv}{u ,v}∈([n]
2
)]/〈Pn〉I with xuv

representing the indicator function of the edge uv being contained in a perfect

matching.

Now we formulate low-degree derivations. Let P denote a set of polynomials in

�[x]. For polynomials F and G, we write F '(P ,d) G, or F is congruent to G from P in

degree d, if and only if there exist polynomials {q(p) : p ∈ P} such that

F +

∑
p∈P

q(p) · p � G

and maxp deg(q(p) · p) 6 d. We often drop the dependence on P when it is clear

from context. We shall write F ≡ G for two polynomials F and G defining the same

function on perfect matchings, i.e., F − G ∈ 〈Pn〉I .

A crucial part of our argument is the result that any F ∈ 〈Pn〉I can be generated

by low-degree coefficients from Pn :

Theorem 2.2.5. For every polynomial F ∈ �[{xuv}{u ,v}∈(n
2
)], if F ∈ 〈Pn〉I then

F '(Pn ,2 deg F−1) 0.

The proof is presented in Section 2.2.3.

We now have all the ingredients to present the proof of our main theorem.

Proof of Theorem 2.2.1. Fix an even integer n > 10, as α can be clearly adjusted to

hold for smaller n. Let k � dβne for some small enough constant 0 < β < 1/2

chosen later. Suppose for a contradiction that PM(n) admits a symmetric SDP

extended formulation of size d <
√(n

k

)
− 1. Let S � [m] and T � {m + 1, . . . , n},

where m is the odd number with n � 2m or n � 2m + 2. In particular, |T | > m and

m � Θ(n). Consider the objective function for the set of edges E[S] on S. Clearly

29

max fE[S] � (|S | − 1)/2:

f (x) def

� ˜C(fE[S]) − fE[S](x) �
|S | − 1

2

+
ε
2

−
∑

u ,v∈S

xuv ≡
∑

u∈S,v∈T

xuv −
1 − ε

2

. (2.2.2)

By Lemma 2.1.1, as

(d+1

2

)
<

(n
k

)
, there is a constant µ f > 0 and an An-symmetric set

H of functions of size at most

(n
k

)
on the set of perfect matchings with

f ≡
∑
1

12

+ µ f where 1 ∈ 〈H〉.

By Proposition 2.2.4, every h ∈ H depends on at most k edge variables, and hence

can be represented as a polynomial with degree at most k (using the generators

x2

e − xe from Pn). As the 1 are linear combinations of the h ∈ H , they can also be

represented with polynomials of degree at most k, which we do from now on.

Applying Theorem 2.2.5 with (2.2.2), we conclude

∑
u∈S,v∈T

xuv −
1 − ε

2

'(Pn ,4k−1)
∑
1

12.

Setting xuv � 0 for all u ∈ S, v ∈ T and xuv :� xu−m ,v−m for each {u , v} ∈
([2m]

2

)
,

finally, if n � 2m + 2, also x2m+1,2m+2 � 1 and xuv � 0 for u 6 2m and v � 2m + 1 or

v � 2m + 2, we obtain a new polynomial identity on the variables {xuv}{u ,v}∈(S
2
).

−1 − ε
2

'(Pm ,4k−1)
∑
1

12.

The main point here is that the substitution maps every polynomial in Pn to either

0 or one in Pm .

This equation is a sum-of-squares refutation of the existence of a perfect matching

in a clique of size m, i.e. an odd clique. By [28, Corollary 2] (see also [38]), it follows

that 4k − 1 � Ω(m) � Ω(n), a contradiction when β is chosen small enough. �

30

2.2.3 Low-degree certificates for matching ideal membership

In this section we prove Theorem 2.2.5 showing that every degree d polynomial

identically zero over perfect matchings is congruent to 0 within degree O(d).

For a partial matching M, let xM B
∏

e∈M xe denote the product of edge

variables for the edges in M. The first step is to reduce every polynomial to a linear

combination of the xM .

Lemma 2.2.6. For every polynomial F there is a polynomial F′ with deg F′ 6 deg F and

F '(Pn ,deg F) F′, where all monomials of F have the form xM for some partial matching M.

Proof. It is clearly enough to prove the lemma when F is a monomial: F �
∏

e∈A xke
e

for a set A of edges with multiplicities ke > 1. From x2

e '2 xe it easily follows that

xk
e 'k xe for all k > 1, hence F 'deg F

∏
e∈A xe , proving the claim if A is a partial

matching. If A is not a partial matching, then there are distinct e , f ∈ A with a

common vertex, hence xe x f '2 0, leading to F 'deg F 0. �

The rest of Theorem 2.2.5 is proven in two steps: First we show that any heavily

symmetric polynomial is congruent to a constant within its degree, and secondly

we show that any polynomial F constant on matchings is congruent to its symmetric

analogue
1

n!

∑
σ∈Sn σF. The first step can be seen in a sequence of a few lemmas:

Lemma 2.2.7. For any partial matching M on 2d vertices and a vertex a not covered by M,

we have

xM '(Pn ,d+1)
∑

M1�M∪{a ,u}
u∈Kn\(M∪{a})

xM1
. (2.2.3)

Proof. We use the generators

∑
u xau −1 to add variables corresponding to edges at a,

and then use xauxuv to remove monomials not corresponding to a partial matching:

xM '(Pn ,d+1) xM

∑
u∈Kn

xau '(Pn ,d+1)
∑

M1�M∪{a ,u}
u∈Kn\(M∪{a})

xM1
.

31

�

This easily leads to a similar congruence using all containing matchings of a

larger size:

Lemma 2.2.8. For any partial matching M of 2d vertices and d 6 k 6 n/2, we have

xM '(Pn ,k)
1(n/2−d

k−d

) ∑
M′⊃M
|M′ |�k

xM′ (2.2.4)

Proof. We use induction on k − d. The start of the induction is when k � d, when

the sides of Equation (2.2.4) are actually equal.

If k > d, let a be a fixed vertex not covered by M. Applying Lemma 2.2.7 to M

and a followed by the inductive hypothesis proves the claim:

xM '(Pn ,d+1)
∑

M1�M∪{a ,u}
u∈Kn\(M∪{a})

xM1
'(Pn ,k)

1(n/2−d−1

k−d−1

) ∑
M′⊃M1

|M′ |�k
M1�M∪{a ,u}

u∈Kn\(M∪{a})

xM′ .

Averaging over all vertices a not covered by M, we obtain

xM '(Pn ,k)
1

n − 2d
1(n/2−d−1

k−d−1

) ∑
M′⊃M1

|M′ |�k
M1�M∪{a ,u}

a ,u∈Kn\M

xM′ �
1

n − 2d
1(n/2−d−1

k−d−1

) 2(k − d)
∑

M′⊃M
|M′ |�k

xM′

�
1(n/2−d

k−d

) ∑
M′⊃M
|M′ |�k

xM′ .

�

Corollary 2.2.9. For any polynomial F, there is a constant cF with
∑
σ∈Sn σF '(Pn ,deg F) cF.

Proof. In view of Lemma 2.2.6, it is clearly enough to prove the claim for F � xM for

some partial matching M on 2k vertices, which is an easy application of Lemma 2.2.8

32

with d � 0:

∑
σ∈Sn

σxM � 2
k k!(n − k)!

∑
M′ : |M′ |�k

xM′ 'k 2
k k!(n − k)!

(
n/2

k

)
.

�

The next few lemmas use induction on the degree to prove that if F is a polynomial

that is constant on matchings then F '(Pn ,2 deg F−1)
1

n!

∑
σ∈Sn F:

Lemma 2.2.10. Let L be a polynomial with L '(Pn−2 ,d) 0, and a , b be the new vertices.

Then Lxab '(Pn ,d+1) 0.

Proof. Clearly, it is enough to prove the claim when L is from Pn−2. For L � x2

e − xe

and L � xuvxuw the claim is obvious, as then L ∈ Pn . The remaining case is

L �
∑

u∈Kn−2

xuv − 1 for some v ∈ Kn−2. Then

Lxab �

(∑
u∈Kn

xuv − 1

)
xab − xav xab − xbvxab 'd+1

0.

�

Lemma 2.2.11. Let L be a degree d − 1 polynomial such that L ≡ 0 mod 〈Pn−4〉I . Let

a , b , c , d be the four new vertices in Kn . If Theorem 2.2.5 holds for degree (d−1) polynomials,

then Lxabxcd '(Pn ,2d−1) 0.

Proof. By Theorem 2.2.5, L '(Pn−4 ,2d−3) 0, hence by Lemma 2.2.10 Lxab '(Pn−2 ,2d−2) 0,

and one more application of the Lemma provides Lxabxuv '(Pn ,2d−1) 0. �

Using these, we prove the following symmetrization lemma:

Lemma 2.2.12. Let F be a degree d polynomial, d > 2 and F ∈ 〈Pn〉I . Let σ be a

permutation of vertices. Then if Theorem 2.2.5 holds for degree (d − 1) polynomials,

F '(Pn ,2d−1) σF

33

Proof. It is clearly enough to prove the statement when σ is a transposition of two

vertices a and u. Note that in F − σF all monomials which do not contain an xe with

e incident to a or u cancel:

F − σF �

∑
e : a∈e or u∈e

Le xe ,

where the Le have degree at most d − 1. Here every summand is congruent to a sum

of monomials containing edges incident to both a and u, e.g., for e � {a , b}

Lab xab 'd+1
Labxab

∑
v

xuv .

Therefore

F − σF 'd+1

∑
bv

L′bvxab xuv

for some polynomials L′bv of degree at most d − 1. We may assume that L′bv does

not contain variables xe with e incident to a , b , u , v, as these can be removed using

generators like xau xav or x2

au − xau . Moreover, L′bv is zero on all perfect matchings

containing {a , b} and {u , v}, and hence L′bv '(Pn−4 ,2d−3) 0 (identifying Kn−4 with the

graph Kn ,n \ {a , b , u , v}), from which L′bv '(Pn ,2d−1) 0 follows by Lemma 2.2.11. This

finishes the proof. �

We are ready to prove Theorem 2.2.5 by simply applying Lemma 2.2.12 and

Corollary 2.2.9.

Proof of Theorem 2.2.5. We use induction on the degree d of F. The case d � 0 is

obvious, as then clearly F � 0. (Note that '−1 is just equality.) The case d � 1

rephrased means that the affine space spanned by the characteristic vectors of all

perfect matchings is defined by the

∑
v xuv − 1 for all vertices u. This clearly follows

from Edmonds’s description of the perfect matching polytope by linear inequalities

in [39].

34

If d > 2 then we apply Lemma 2.2.12 followed by Corollary 2.2.9:

F '
2d−1

1

n!

∑
σ∈Sn

σF 'd
cF

n!

for a constant cF. As F ∈ 〈Pn〉I , clearly cF � 0, and therefore F '
2d−1

0. �

2.3 The Metric Traveling Salesperson Problem (TSP) revisited

In this section, we prove that a particular Lasserre SDP is optimal among all

symmetric SDP relaxations for the asymmetricmetric Traveling Salesperson Problem

on Kn . The feasible solutions of the problem are all permutations σ ∈ Sn . A

permutation σ corresponds to the tour in Kn in which vertex i is the σ(i)-th vertex

visited. An instance I of TSP is a set of non-negative distances dI(i , j) for each edge

(i , j) ∈ Kn , obeying the triangle inequality. The value of a tour σ is just the sum

of the distances of edges traversed valI(σ) �
∑

i dI(σ−1(i), σ−1(i + 1)). The objective

functions are all the valI .

The natural action of An on TSP is by permutation of vertices, which means here

that An acts on Sn by composition from the left: (σ1 · σ2)(i) � σ1(σ2(i)). Obviously,

the problem TSP is An-symmetric.

The ring of real-valued functions on the set Sn of feasible solutions is easily seen

to be isomorphic to �[{xi j}{i , j}∈[n]]/〈Qn〉I , with xi j being the indicator of σ(i) � j,

and Qn is the set of TSP constraints:

Qn �

∑
i∈[n]

xi j − 1

������ j ∈ [n]
 ∪

∑
j∈[n]

xi j − 1

������ i ∈ [n]

∪
{

xi jxik
�� i , j, k ∈ [n]

}
∪

{
xi j xk j

�� i , j, k ∈ [n]
}

∪
{
x2

i j − xi j

��� i , j ∈ [n]
}
.

35

The Lasserre Hierarchy for TSP is defined as follows. The k-th level Lasserre

SDP relaxation for a TSP instance I is given by

Minimize C

subject to C − valI '(Qn ,k)
∑

p

p2

for some polynomials p.

We now state our main theorem regarding optimal SDP relaxations for TSP.

We shall use approximation guarantees S(f) � max f and C(f) � max f /ρ for a

factor ρ > 1, and for clarity, instead of (C, S)-approximate formulation we shall use

formulation within a factor ρ.

Theorem 2.3.1. Suppose that there is some coordinate A2n-symmetric SDP relaxation of

size r <
√(n

k

)
− 1 approximating TSP within some factor ρ > 1 for instances on 2n vertices.

Then the (2k − 1)-level Lasserre relaxation approximates TSP within the factor of ρ on

instances on n vertices.

First we prove the equivalent of Proposition 2.2.4 for TSP tours. The main

difference here is that we will need a slightly different trick than that used in

Lemma 2.2.2 to eliminate the dependence on the sign of the permutation.

Proposition 2.3.2. LetH be an An-symmetric set of functions of size
(n

k

)
on the set of TSP

tours σ ∈ Sn . Then for every h ∈ H there is a set W ⊆ [n] of size less than k, such that

h(σ) depends only on the positions of the vertices in W in the tour σ, and the sign of σ as a

permutation.

Proof. For every h ∈ H we can apply Lemma 2.2.3 to the stabilizer of h to obtain a

subset W ⊆ [n] of size at most k such that h is stabilized by A([n] \W). In particular,

the value of h can only depend on the positions of the vertices W and possibly on

the sign of the permutation σ ∈ S2n . �

36

Next we give a reduction which allows us to eliminate the dependence of the

functions h ∈ H on the sign of the permutation σ. In particular we encode every

TSP tour σ on an n vertex graph as some new tour Φ(σ) in a 2n vertex graph, such

that Φ(σ) is always an even permutation in S2n .

Lemma 2.3.3. Let I be an instance of TSP on Kn . Then there exists an instance I′ of TSP

on K2n and an injective map Φ : Sn → S2n such that

1. valI(σ) � valI′(Φ(σ)) for all σ ∈ Sn .

2. For every tour τ ∈ S2n there exists σ ∈ Sn such that valI′(Φ(σ)) 6 valI′(τ)

3. For all σ ∈ Sn the permutation Φ(σ) is even.

Proof. Given a TSP instance I on Kn we construct a new instance I′ on K2n as

follows:

• For every vertex i ∈ I add a pair of vertices i and i′ to I′.

• For every distance d(i , j) in I add 4 edges all with the same distance d(i , j) �

d(i′, j) � d(i , j′) � d(i′, j′) to I′.

• For every pair of vertices i , i′ ∈ I′ add an edge of distance zero i.e set d(i , i′) � 0.

Wewill call a tour τ ∈ S2n canonical if it visits i′ immediately after i i.e. σ(i′) � σ(i)+1.

We will write T for the set of canonical tours in S2n . It is easy to check using the

triangle inequality that for every tour τ there is a canonical tour with no larger value.

For every tour σ in I define Φ(σ) to be the corresponding canonical tour in I′. That

is Φ(σ)(i) � 2σ(i) − 1 and Φ(σ)(i′) � 2σ(i). Note that Φ : Sn → S2n is an injective

map whose image is all of T. By construction we have:

valI(σ) ≡ valI′(Φ(σ))

37

which proves property (1). Property (2) follows from the fact that every tour τ ∈ S2n

has a canonical tour with no larger value, and that T is the image of Φ.

For property (3), note that every canonical tour is an even permutation. To see

why suppose σ ∈ Sn is given by σ � (i1, j1)(i2, j2), . . . , (im , jm)where (i , j) denotes

the permutation that swaps i and j. Then Φ(σ) � (i1, j1)(i′
1
, j′

1
), . . . , (im , jm)(i′m , j′m)

is comprised of 2m swap permutations, and is therefore even. �

The last ingredient we need is a version of Theorem 2.2.5 for the problem TSP.

Theorem 2.3.4. If F is a multilinear polynomial whose monomials are partial matchings

on Kn ,n , and F ≡ 0 modulo Qn , then F '(Qn ,2 deg F−1) 0.

The proof of the above theorem is deferred to the next subsection. We now have

all the tools necessary to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. First let I be an instance of TSP on Kn . Use Lemma 2.3.3 to

construct a TSP instance I′ on K2n and the corresponding map Φ. Now assume we

have an arbitrary A2n-symmetric SDP relaxation of size d <
√(

2n
k

)
− 1 for TSP on

K2n . By Lemma 2.1.1 there is a corresponding A2n-symmetric family of functions

H ′ of size
(d+1

2

)
such that whenever maxτ valI′(τ) 6 S(valI′)we have:

C(valI′) − valI′(τ) ≡
∑

j

h j(τ)2 where h j ∈ 〈H ′〉 .

Let h′ ∈ H ′. By Proposition 2.3.2 h′(τ) depends only on some subset W′ of size at

most k, and possibly on the sign of τ.

Now we restrict the above relaxation to the image of Φ. By Lemma 2.3.3 this

does not change the optimum. Using the fact that valI(σ) ≡ valI′(Φ(σ)) then gives

rise to a new relaxation where whenever maxσ valI(σ) 6 S(valI)we have:

C(valI) − valI(σ) ≡
∑

j

h j(Φ(σ))2 where h j ∈ 〈H ′〉

38

as clearly S(valI) � S(valI′) and C(valI) � C(valI′). Next for each h′ ∈ H ′ define

h : Sn → �by h(σ) � h′(Φ(σ)). SinceΦ(σ) is even, we then have that each h depends

only on the position of some subset W ⊆ [n] of size at most k. Such a function can

be written as a degree k polynomial p in the variables xi j so that p(xσ) ≡ f (σ) on

the vertices of PTSP(n). Now by Theorem 2.3.4 we have that p '(Qn ,2k−1) h. Thus, we

conclude that whenever maxσ valI(σ) 6 S(valI)we have:

C(fI) − fI(x) '(Qn ,2k−1)
∑

p

p(x)2

which is precisely the statement that the (2k−1)-level Lasserre relaxation for PTSP(n)

is a (C, S)-approximation. �

2.3.1 Low-degree certificates for tour ideal membership

In this section we prove Theorem 2.3.4 showing that every degree d polynomial

identically zero over TSP tours is congruent to 0 within degree O(d).

Note that any partial tour τ can be thought of as a partial matching M in Kn ,n ,

namely if τ(i) � j, then M includes the edge (i , j). Because of this, it will come as

no surprise that the proof proceeds in a very similar manner to Section 2.2.3, and

hereafter we shall always refer to partial matchings on Kn ,n rather than on Kn .

For a partial matching M, let xM B
∏

e∈M xe denote the product of edge

variables for the edges in M. The first step is to reduce every polynomial to a linear

combination of the xM .

Lemma 2.3.5. For every polynomial F there is a polynomial F′ with deg F′ 6 deg F and

F '(Qn ,deg F) F′, where all monomials of F have the form xM for some partial matching M.

Proof. It is clearly enough to prove the lemma when F is a monomial: F �
∏

e∈A xke
e

for a set A ⊆ E[Kn ,n] of edges with multiplicities ke > 1. From x2

e '2 xe it easily

follows that xk
e 'k xe for all k > 1, hence F 'deg F

∏
e∈A xe , proving the claim if A is

39

a partial matching. If A is not a partial matching, then there are distinct e , f ∈ A

with a common vertex, hence xe x f '2 0, leading to F 'deg F 0. �

The rest of the proof proceeds identically to Theorem 2.2.5, but we let the

symmetric group act on polynomials slightly differently. If Kn ,n � Un ∪ Vn is the

bipartite decomposition of Kn ,n , then we only let the permutation group act on

the labels of vertices of Un , i.e. σx(a ,b) � x(σ(a),b). We show that under this action,

symmetrized polynomials are congruent to zero, which can again be seen in the

same sequence of lemmas:

Lemma 2.3.6. For any partial matching M on 2d vertices and a vertex a ∈ Un not covered

by M, we have

xM '(Qn ,d+1)
∑

M1�M∪{a ,u}
v∈Vn\(M∩Vn)

xM1
. (2.3.1)

Proof. We use the generators

∑
v xav − 1 to add variables corresponding to edges at a,

and then use xav xbv to remove monomials not corresponding to a partial matching:

xM '(Qn ,d+1) xM

∑
v∈Vn

xav '(Qn ,d+1)
∑

M1�M∪{a ,v}
v∈Vn\(M∩Vn)

xM1
.

�

This easily leads to a similar congruence using all containing matchings of a

larger size:

Lemma 2.3.7. For any partial matching M of 2d vertices and d 6 k 6 n, we have

xM '(Qn ,k)
1(n−d

k−d

) ∑
M′⊃M
|M′ |�k

xM′ (2.3.2)

Proof. We use induction on k − d. The start of the induction is when k � d, when

the sides of Equation (2.3.2) are actually equal.

40

If k > d, let a ∈ Un be a fixed vertex not covered by M. Applying Lemma 2.3.6 to

M and a followed by the inductive hypothesis proves the claim:

xM '(Qn ,d+1)
∑

M1�M∪{a ,u}
u∈Vn\(M∩Vn)

xM1
'(Qn ,k)

1(n−d−1

k−d−1

) ∑
M′⊃M1

|M′ |�k
M1�M∪{a ,u}
u∈Vn\(M∩Vn)

xM′ .

Averaging over all vertices a ∈ Un not covered by M, we obtain

xM '(Qn ,k)
1

n − d
1(n−d−1

k−d−1

) ∑
M′⊃M1

|M′ |�k
M1�M∪{a ,u}
a∈Un\(M∩Un)
u∈Vn\(M∩Vn)

xM′ �
1

n − d
1(n−d−1

k−d−1

) (k−d)
∑

M′⊃M
|M′ |�k

xM′ �
1(n−d

k−d

) ∑
M′⊃M
|M′ |�k

xM′ .

�

Corollary 2.3.8. For any polynomial F, there is a constant cF with
∑
σ∈Sn σF '(Qn ,deg F) cF.

Proof. In view of Lemma 2.3.5, it is clearly enough to prove the claim for F � xM for

some partial matching M on 2k vertices, which is an easy application of Lemma 2.3.7

with d � 0: ∑
σ∈Sn

σxM � (n − k)!
∑

M′ : |M′ |�k

xM′ 'k (n − k)!
(
n
k

)
.

�

The next few lemmas use induction on the degree to prove that if F is a polynomial

that is constant on matchings then F '(Qn ,2 deg F−1)
1

n!

∑
σ∈Sn F:

Lemma 2.3.9. Let L be a polynomial with L '(Qn−2 ,d) 0, and a , b be the new vertices. Then

Lxabxba '(Qn ,d+2) 0.

Proof. Clearly, it is enough to prove the claim when L is from Qn−2. For L � x2

e − xe ,

L � xuvxuw , and L � xuvxwv the claim is obvious, as then L ∈ Qn . The remaining

cases are (1) L �
∑

u∈Un−2

xuv − 1 for some v ∈ Vn−2, and (2) L �
∑

v∈Vn−2

xuv − 1 for

41

some u ∈ Un−2. We only deal with the first case, as the second one is analogous.

Then

Lxabxba �

(∑
u∈Un

xuv − 1

)
xabxba − xav xabxba − xbv xabxba '(Qn ,d+1) 0.

�

Lemma 2.3.10. Let L be a degree d − 1 polynomial such that L ≡ 0 mod 〈Qn−2〉I . Let

a , b be the two new vertices on each side of Kn ,n . If Theorem 2.3.4 holds for degree (d − 1)

polynomials, then Lxab xba '(Qn ,2d−1) 0.

Proof. By Theorem 2.3.4, L '(Qn−2 ,2d−3) 0, hence by Lemma 2.3.9 Lxabxba '(Qn ,2d−1)

0. �

Using these, we prove the following symmetrization lemma:

Lemma 2.3.11. Let F be a degree d polynomial, d > 2 and F ∈ 〈Qn〉I . Let σ act on

polynomials by permuting the left labels of the variables. Then if Theorem 2.3.4 holds for

degree (d − 1) polynomials,

F '(Qn ,2d−1) σF

Proof. It is clearly enough to prove the statement when σ is a transposition of two

vertices a and u. Note that in F − σF all monomials which do not contain an xe with

e incident to a or u on the left cancel:

F − σF �

∑
e : e�(a ,r) or e�(u ,r)

Le xe ,

where the Le have degree at most d − 1. Here every summand is congruent to a sum

of monomials containing edges incident to both a and u, e.g., for e � {a , b}

Lab xab 'd+1
Labxab

∑
v

xuv .

42

Therefore

F − σF 'd+1

∑
bv

L′bvxab xuv

for some polynomials L′bv of degree at most d − 1. We may assume that L′bv does

not contain variables xe with e incident to a , b , u , v, as these can be removed using

generators like xabxac or x2

uv − xuv . Moreover, L′bv is zero on all perfect matchings

containing (a , b) and (u , v), and hence L′bvxabxuv '(Qn ,2d−1) 0 by Lemma 2.3.10

(identifying Kn−2,n−2 with the graph Kn ,n \ {a , b , u , v}). This finishes the proof. �

We are ready to prove Theorem 2.3.4 by simply applying Lemma 2.3.11 and

Corollary 2.3.8.

Proof of Theorem 2.3.4. We use induction on the degree d of F. The case d � 0 is

obvious, as then clearly F � 0. (Note that '−1 is just equality.) The case d � 1

rephrased means that the affine space spanned by the characteristic vectors of all

perfect matchings is defined by the

∑
v xuv − 1 for all vertices u. This follows again

from Edmonds’s description of the perfect matching polytope by linear inequalities

in [39] (valid for any graph in addition to K2n and Kn ,n).

If d > 2 then we apply Lemma 2.3.11 followed by Corollary 2.3.8:

F '
2d−1

1

n!

∑
σ∈Sn

σF 'd
cF

n!

for a constant cF. As F ∈ 〈Qn〉I , clearly cF � 0, and therefore F '
2d−1

0. �

43

CHAPTER 3

LP AND SDP LOWER BOUNDS FOR OTHER PROBLEMS

In this chapter we study Linear and Semidefinite programming relaxations for

various non-Constraint Satisfaction Problems (CSPs) and present a general reduction

framework to prove lower bounds on their sizes. We call a problem LP-hard if it

does not admit an LP formulation with a polynomial number of constraints, and we

define SDP-hardness similarly.

Recently, motivated by Yannakakis’s influential work [2, 23], a plethora of strong

lower bounds have been established formany important optimizationproblems, such

as e.g., theMatching problem [24] or the TravelingSalesman problem [29, 30, 12]. In [7],

the authors introduced a reduction mechanism providing inapproximability results

for several problems. However, the reductions were required to be affine, which is

a major restriction and hence failed for many natural combinatorial optimization

problems such as VertexCover, IndependentSet and SparsestCut.

In this work we extend the reduction mechanism of [7] in the following two

ways, which enable us to establish several new hardness results both in the LP and

SDP setting; both are special cases arising from reinterpreting LPs and SDPs as

proof systems (see Section 3.1.1).

1. Wegeneralize the reduction framework of [7] by including additional ‘computa-

tion’ in the reduction, thereby allowing non-affine relations between problems.

As a result we no longer need complicated Sherali-Adams reductions as in

[40] to show a 2 − ε hardness for VertexCover.

2. We also extend the framework to the broader class of fractional optimization

problems (such as e.g., SparsestCut) where ratios of linear functions have to

44

be optimized. While the objective is non-linear, one can still write LP and

SDP relaxations by optimizing the numerator and the denominator at the

same time e.g., the relaxation studied by [41]. We generalize the reduction

framework to allow for non-affine reductions between fractional optimization

problems, thereby allowing us to prove inapproximability results for non-

uniform versions of SparsestCut even when the treewidth of the demand

graph is constant. This shows that the approximation factor obtained by [41]

is tight for any polynomial sized LPs and SDPs.

Related Work

The idea of using reductions to show LP and SDP hardness in the same manner

as in computational complexity has been explored in various forms before. A

lifting like argument was used by [42] to show exponential extension complexity for

subset-sum and three dimensional matching. The authors used a lifting argument

to show a relationship between the cut polytope and these polytopes and used a

lowerbound for the cut polytope proved in [43]. However, the lifting idea does

not capture the approximations of various problems and is not applicable to other

problems than the ones presented in [42]. For the class of Constraint Satisfaction

Problems (CSPs), [4, 12, 6] present lowerbounds by showing that general relaxations

can do no better than hierarchies. However, as we show in this chapter, there are

problems like the IndependentSet for which this is not true. The first step towards

defining a reduction framework between LP and SDP relaxations between different

problems was taken by [7], generalizing the ideas in [44, 45]. To prove lowerbounds

for an optimization problem using our generalized reduction framework, we require

base hard problems, which will be Matching [24], as well as constraint satisfaction

problems [4, 12, 6], as well as hierarchy hardness results such as e.g., [46] and [47]

for the UniqueGames problem.

45

Contribution

We formally outline the several contributions of this chapter.

Generalized LP/SDP reductions. We generalize the reduction mechanism in [7] by

modeling additional computation, by using extra LP or SDP constraints. More

precisely, we allow for more complicated reduction maps as long as these maps

themselves have a small LP/SDP formulation in terms of their nonnegative and

psd rank respectively. As a consequence, we can relax the affineness requirement

of [7] and enable a weak form of gap-amplification and boosting. This overcomes a

major limitation of the approach in [7], yielding significantly stronger reductions

at a small cost, while allowing lowerbounds for new problems for which affine

reductions were not known.

Fractional LP/SDP optimization. Second, we present a framework modeling LP and

SDP relaxations for fractional optimization problmes and a corresponding reduc-

tion mechanism, where the objective functions are now ratios of functions from a

low dimensional space. A canonical example of such a fractional optimization

problem is the SparsestCut problem where we want to minimize the ratio of the

weight of the cut edges to the weight of separated demand. For these problems

the standard LP and SDP framework is meaningless as the ratios span a high

dimensional affine space. The fractional framework models the usual way of solv-

ing fractional optimization problems, enabling us to establish strong lowerbounds

about LP and SDP relaxations for these problems.

Direct non-linear hardness reductions. We demonstrate the power of our generalized

reduction by establishing newLP-hardness and SDP-hardness for several problems

of interest, i.e., these problems cannot be solved by LPs/SDPs of polynomial size;

see Table Figure 3.1. We establish various hardness results for the SparsestCut and

BalancedSeparator problems even when one of the underlying graph has constant

46

treewidth. We redo the reductions to intermediate CSP problems used for optimal

inapproximability results for the VertexCover problem over simple graphs and

Q-regular hypergraphs in [40], eliminating SheraliâĂŞAdams reductions. We also

show the first explicit SDP-hardness for the MaxCut problem, inapproximability

within a factor of 15/16 + ε, which is stronger than the algorithmic hardness

of 16/17 + ε. Finally, we prove a new, strong Lasserre integrality gap of n1−γ

after O(nγ) rounds for the IndependentSet problem for any sufficiently small

γ > 0. It not only significantly strengthens and complements the best-known

integrality gap results so far ([48] and [49, 50]; see also [51, 52]), but also shows

the suboptimality of Lasserre relaxations for the IndependentSet problem together

with [40].

Small uniform LPs for bounded treewidth problems. Finally, we introduce a new tech-

nique in Section Section 3.9 to derive small uniform linear programs for problems

over graphs of bounded treewidth. The motivation behind these results are

analogous results in complexity theory where restricting the treewidth or genus

of a problem often allows polynomial time algorithms for NP-hard problems. We

establish similar results for linear programs, by showing the existence of polyno-

mial sized LPs for these bounded treewidth problems. A result of similar flavor

was obtained by [53], however crucially in our result the same linear program is

used for all bounded treewidth instances of the same size, independent of the

actual tree decompositions, whereas the linear program in [53] work for a single

input instance only (with fewer inequalities than our linear program).

3.1 Preliminaries

Here we recall the linear programming and semidefinte programming framework

from [7], as well as the optimization problems we shall consider later, paying

47

Problem Factor Source Paradigm Remark

MaxCut 15

16
+ ε Max-3-XOR/0 SDP

SparsestCut(n), tw(supply) � O(1) 2 − ε MaxCut LP opt. [4]

SparsestCut(n), tw(supply) � O(1) 16

15
− ε MaxCut SDP

BalancedSeparator(n, d),
tw(demand) � O(1)

ω(1) UniqueGames LP

IndependentSet ω(n1−ε) Max-k-CSP
Lasserre

O(nε) rounds
Matching, 3-regular 1 + ε/n2 Matching LP

1F-CSP
ω(1) UniqueGames LP

[40]

w/o SAQ-,-CSP

Table 3.1: Inapproximability of optimization problems. tw denotes treewidth.

particular attention to base hard problems. Section Section 3.1.1 is a new technical

foundation for the framework, presenting the underlying theory in a unified simple

way, from which the extensions in Sections Section 3.2 and Section 3.3 readily follow.

We start by recalling the notion of tree decompositions and treewidth of a graph.

Definition 3.1.1 (Tree width). A tree decomposition of a graph G is a tree T together

with a vertex set of G called bag Bt ⊆ V(G) for every node t of T, satisfying the

following conditions: (1) V(G) � ⋃
t∈V(T) Bt , (2) For every adjacent vertices u, v of

G there is a bag Bt containing both u and v, and (3) For all nodes t1, t2, t of T with t

lying between t1 and t2 (i.e., t is on the unique path connecting t1 and t2) we have

Bt1
∩ Bt2

⊆ Bt The width of the tree decomposition is maxt∈V(T) |Bt | − 1: one less

than the maximum bag size. The treewidth tw(G) of G is the minimum width of its

tree decompositions.

We will use χ(·) for indicator functions: i.e., χ(X) � 1 if the statement X is true,

and χ(X) � 0 otherwise. We will denote random variables using bold face, e.g. x.

Let �r
denote the set of symmetric r × r real matrices, and let �r

+ denote the set of

positive semidefinite r × r real matrices.

48

3.1.1 Nonnegativity problems: Extended formulations as proof system

In this section we introduce an abstract view of formulation complexity, where the

main idea is to reduce all statements to the core question about the complexity

of deriving nonnegativity for a class of nonnegative functions. This abstract view

will allow us to easily introduce future versions of reductions and optimization

problems with automatic availability of Yannakakis’s Factorization Theorem and

the reduction mechanism.

Definition 3.1.2. A nonnegativity problem P � (S ,I, val) consists of a set I of

instances, a set S of feasible solutions and a nonnegative evaluation val : I × S → �>0.

As before, we shall write valI(s) instead of val(I , s). The aim is to study the

complexity of proving nonnegativity of the functions valI . Therefore we define the

notion of proof as a linear program or a semidefinite program.

Definition 3.1.3. Let P � (S ,I, val) be a nonnegativity problem. An LP proof of

nonnegativity of P consists of a linear program Ax 6 b with x ∈ �r
for some r and

the following realizations:

Feasible solutions as vectors xs ∈ �r
for every s ∈ S satisfying

Axs 6 b for all s ∈ S , (3.1.1)

i.e., the system Ax 6 b is a relaxation (superset) of conv xs | s ∈ S.

Instances as affine functions wI : �r → � for all I ∈ IS
satisfying

wI(xs) � valI(s) for all s ∈ S , (3.1.2)

i.e., the linearization wI of valI is required to be exact on all xs
with s ∈ S.

49

Proof We require that the wI are nonnegative on the solution set of the LP:

wI(x) > 0 whenever Ax 6 b ,I ∈ I. (3.1.3)

The size of the formulation is the number of inequalities in Ax 6 b. Finally, LP proof

complexity fcLP(P) of P is the minimal size of all its LP proofs.

The notion of an SDP proof is defined similarly.

Definition 3.1.4. Let P � (S ,I, val) be a nonnegativity problem. An SDP proof of

nonnegativity of P consists of a semidefinite program

{
X ∈ �r

+

��A(X) � b
}
(i.e., a

linear mapA : �r → �k
together with a vector b ∈ �k

) and the following realizations:

Feasible solutions as vectors Xs ∈ �r
+ for all s ∈ S satisfying

A(Xs) � b (3.1.4)

Instances as nonnegative affine functions wI : �r → � for all I ∈ I satisfying

wI(Xs) � valI(s) for all s ∈ S. (3.1.5)

Proof We require nonnegativity on the feasible region of the SDP:

wI(X) > 0 wheneverA(X) � b ,X ∈ �r
+,I ∈ I. (3.1.6)

The size of the formulation is the dimension parameter r. Finally, the SDP proof

complexity fcSDP(P) of P is the minimal size of all its SDP proofs.

50

Slack matrix and proof complexity

We introduce the slack matrix of a nonnegativity problem as a main tool to study

proof complexity, generalizing the approach from the polyhedral world. The

main result is a version of Yannakakis’s Factorization Theorem formulating proof

complexity in the language of linear algebra as a combinatorial property of the slack

matrix.

Definition 3.1.5. The slack matrix of a nonnegativity problem P � (S ,I, val) is the

I × S matrix MP with entries the values of the function valI

MP(I , s) B valI(s). (3.1.7)

We will use the standard notions of nonnegative rank and semidefinite rank.

Definition 3.1.6 ([7]). Let M be a nonnegative matrix.

nonnegative factorization A nonnegative factorization of M of size r is a decomposi-

tion M �
∑r

i�1
Mi of M as a sum of r nonnegative matrices Mi of rank 1. The

nonnegative rank rank+ M is the minimum r for which M has a nonnegative

factorization of size r.

psd factorization A positive semi-definite (psd) factorization of M of size r is a de-

composition M(I , s) � Tr[AIBs] of M where the AI and Bs are positive

semi-definite (psd) r × r matrices. The psd rank rankpsd M is the minimum r

for which M has a psd factorization of size r.

We define variants ignoring factors of the form a:

LP factorization An LP factorization of M of size r is a decomposition M �
∑r

i�1
Mi+

u of M as a sum of r nonnegative matrices Mi of rank 1 and possibly an

additional nonnegative rank-1 u with all columns being equal. The LP rank

rankLP M is the minimum r for which M has an LP factorization of size r.

51

SDP factorization An SDP factorization of M of size r is a decomposition M(I , s) �

Tr[AIBs]+ uI of M where the AI and Bs are positive semi-definite (psd) r × r

matrices, and uI is a nonnegative number. The SDP rank rankSDP M is the

minimum r for which M has an SDP factorization of size r.

Remark 3.1.7. The difference between LP rank and nonnegative rank (see Defini-

tion Definition 3.1.6) is solely by measuring the size of a factorization: for LP rank

factors with equal columns do not contribute to the size. This causes a difference of

at most 1 between the two ranks. The motivation for the LP rank is that it captures

exactly the LP formulation complexity of an optimization problem, in particular for

approximation problems (see [7] for an in-depth discussion). Similar remarks apply

to the relation of SDP rank, psd rank, and SDP formulation complexity.

Theorem 3.1.8. For every nonnegativity problem P with slack matrix MP we have

fcLP(P) � rankLP MP , (3.1.8)

fcSDP(P) � rankSDP MP , (3.1.9)

Proof. The proof is an extension of the usual proofs of Yannakakis’s Factorization

Theorem, e.g., that in [7]. We provide the proof only for the LP case, as the proof for

the SDP case is similar.

First we prove rankLP MP 6 fcLP(P). Let Ax 6 b be an LP proof for P of

size fcLP(P) with realization xs
for s ∈ S and affine functions wI for I ∈ I. By

Farkas’s lemma, there are nonnegative matrices uI and nonnegative numbers γI

with wI(x) � uI · (b −Ax)+ γI . Substituting x by xs
, we obtain an LP factorization

of size fcLP(P):

MP(I , s) � valI(s) � wI(xs) � uI · (b − Axs) + γI .

52

Conversely, to show fcLP(P) 6 rankLP(P), we choose an LP factorization of MP

of size r � rankLP(P)

MP(I , s) � uIxs
+ γI

where the uI and xs
are nonnegative matrices of size 1 × r and r × 1, respectively,

and the γI are nonnegative numbers. Now P has the following LP proof: The linear

program is x > 0 for x ∈ �r×1
. A feasible solution s is represented by the vector xs

.

An instance I is represented by

wI(x)
def

� uIx + γI .

To check the proof, note that by nonnegativity of uI and γI , we have wI(x) > 0 for

all x > 0. Clearly, wI(xs) � MP(I , s) � valI(s), completing the proof. �

Reduction between nonnegativity problems

Definition 3.1.9 (Reduction). Let P1 � (S1,I1, val
P1) and P2 � (S2,I2, val

P2) be

nonnegativity problems.

A reduction from P1 to P2 consists of

1. two mappings: ∗ : I1→ I2 and ∗ : S1→ S2 translating instances and feasible

solutions independently;

2. two nonnegative I1 × S1 matrices M1, M2

satisfying

val
P1

I1 (s1) � val
P2

I∗
1

(s∗
1
) ·M1(I1, s1) + M2(I1, s1). (3.1.10)

The matrices M1 and M2 encode additional arguments in the nonnegativity

proof of P1, besides using nonnegativity of P2. Therefore in applications they

should have low complexity, to provide a strong reduction. The following theorem

relates the proof complexity of problems in a reduction.

53

Theorem 3.1.10. Let P1 and P2 be nonnegativity problems with a reduction from P1 to

P2. Then

fcLP(P1) 6 rankLP M2 + rankLP M1 + rank+ M1 · fcLP(P2), (3.1.11)

fcSDP(P1) 6 rankSDP M2 + rankSDP M1 + rankpsd M1 · fcSDP(P2), (3.1.12)

where M1 and M2 are the matrices in the reduction as in Definition Definition 3.1.9.

Proof. We prove the claim only for the LP rank, as the proof for the SDP rank is

similar. We apply the Factorization Theorem (Theorem Theorem 3.1.8). Let MP1

and MP2
denote the slack matrices of P1 and P2, respectively. Then Eq. (3.1.10) can

be written as

MP1
�

(
FIMP2

FS
)
◦M1 + M2, (3.1.13)

where ◦ denotes the Hadamard product (entrywise product), and FI and FS are the

I1 × I2 and S2 × S1 matrices encoding the two maps ∗, respectively:

FI(I1,I2) B

1 if I2 � I∗

1
,

0 if I2 , I∗
1
;

FS(S2, S1) B

1 if S2 � S∗

1
,

0 if S2 , S∗
1
.

(3.1.14)

Let MP2
� M̃P2

+ a with rankLP MP2
� rank+ M̃P2

. This enables us to further

simplify Eq. (3.1.13):

MP1
�

(
FIM̃P2

FS
)
◦M1 + diag(FIa) ·M1 + M2, (3.1.15)

where diag(x) stands for the square diagonal matrix with the entries of x in the

diagonal. Now the claim follows from Theorem Theorem 3.1.8, the well-known

identities rank+(A ◦ B) 6 rank+ A · rank+ B, rank+ ABC 6 rank+ B, and the obvious

rankLP(A + B) 6 rankLP A + rankLP B together with rankLP(AB) 6 rankLP B. �

54

Slack matrix and formulation complexity

The (C, S)-approximate complexity of a maximization problem P � (S ,I, val)

is the complexity of proofs of valI 6 C(I) for instances with max valI 6 S(I),

and similarly for minimization problems. Formally, the proof complexity of

the nonnegativity problem PC,S � (S ,IS , C − val) equals the (C, S)-approximate

complexity of P both in the LP and SDP world, as obvious from the definitions:

fcLP(P , C, S) � fcLP(PC,S), fcSDP(P , C, S) � fcSDP(PC,S). (3.1.16)

Thus the theory of nonnegativity problems from Section Section 3.1.1 immediately

applies, which we formulate now explicitly for optimization problems. The ma-

terial here already appeared in [7] without using nonnegativity problems and a

significantly weaker reduction mechanism.

The main technical tool for establishing lower bounds on the formulation

complexity of a problem is its slack matrix and its factorizations (decompositions).

We start by recalling the definition of the slack matrix for optimization problems.

Definition 3.1.11. Let P � (S ,I, val) be an optimization problem with completeness

guarantee C and soundness guarantee S. The (C, S)-approximate slack matrix MP ,C,S is

the nonnegative IS × S matrix with entries

MP ,C,S(I , s) B τ · (C(I) − valI(s)), (3.1.17)

where τ � +1 if P is a maximization problem, and τ � −1 if P is a minimization

problem.

Finally, we are ready to recall the factorization theorem, equating LP rank

and SDP rank with LP formulation complexity and SDP formulation complexity,

respectively. The notion of LP and SDP rank is recalled in Definition Definition 3.1.6.

55

Theorem 3.1.12 (Factorization theorem, [7]). Let P � (S ,I, val) be an optimization

problem with completeness guarantee C and soundness guarantee S. Then

fcLP(P , C, S) � rankLP MP ,C,S , (3.1.18)

fcSDP(P , C, S) � rankSDP MP ,C,S , (3.1.19)

where MP ,C,S is the (C, S)-approximate slack matrix of P.

NowTheorem Theorem 3.2.2 follows as a special case of Theorem Theorem 3.1.10.

Lasserre or SoS hierarchy

The Lasserre hierarchy, also called the Sum-of-Squares (SoS) hierarchy, is a series of

SDP formulations of an optimization problem, relying on a set of base functions.

The base functions are usually chosen so that the objectives valI of instances are

low-degree polynomials of the base functions. For brevity, we recall only the

optimal bound obtained by the SDP formulation, using the notion of pseudoexpec-

tation, which is essentially a feasible point of the SDP. We follow the definition of

[Lee2014power].

Definition 3.1.13 (Lasserre/SoS hierarchy).

Pseudoexpectation Let { f1, . . . , f`} be real-valued functions with common domain

S. A pseudoexpectation functional �̃ of level d over { f1, . . . , f`} is a real-valued

function with domain the vector space V of real-valued functions F with

domain S, which are polynomials in f1, . . . , f` of degree at most d. A

pseudoexpectation �̃ is required to satisfy

Linearity For all F1, F2 ∈ V

�̃(F1 + F2) � �̃(F1) + �̃(F2), (3.1.20)

56

and for all r ∈ � and F ∈ V

�̃(rF) � r �̃(F) (3.1.21)

Positivity �̃(F2) > 0 for all F ∈ V with degree at most d/2 (so that F2 ∈ V)

Normalization �̃(1) � 1 for the constant function 1.

Lasserre or SoS value Given an optimization problem P � (S ,I, val) and base

functions f1, . . . , f` defined on S, the degree d SoS value or round d Lasserre

value of an instance I ∈ I is

SoSd(I) B max

�̃ : deg �̃62d
�̃(valI). (3.1.22)

Note that the base functions fi might satisfy non-trivial polynomial relations,

and therefore the vector space V need not be isomorphic to the vector space of formal

low-degree polynomials in the fi . For example, if the fi are all 0/1-valued, which is

a common case, then f 2

i and fi are the same elements of V . We would also like to

mention that the degree or level d is not used consistently in the literature, some

papers use 2d instead of our d. This results in a constant factor difference in the

level, which is usually not significant.

For CSPs we shall use the usual set of base functions Xxi�α, the indicators that a

variable xi is assigned the value α. For graph problems, the solution set S usually

consists of vertex sets or edge sets. Therefore the common choice of base functions

are the indicators Xv that a vertex or edge v lies in a solution. This has been used

for UniqueGames in [54] establishing an ω(1) integrality gap for an approximate

Lasserre hierarchy after a constant number of rounds.

57

3.1.2 Base hard problems

In this section we will recall the LP-hardness of the problems that will serve as the

starting point in our later reductions. We start with the LP-hardness of the Matching

problem with an inapproximability gap of 1 − ε/n:

Theorem 3.1.14 ([55], c.f., [24]). Let n ∈ � and 0 6 ε < 1.

fcLP

(
Matching(K2n),

⌊
|V(H)|

2

⌋
+

1 − ε
2

,OPT H
)
� 2

Θ(n), (3.1.23)

where H is the placeholder for the instance, and the constant factor in the exponent depends

on ε.

The following integrality gap was shown in [6] improving upon the result of [4]

for MaxCut.

Theorem 3.1.15 ([6, Corollary 1.3]). For any ε > 0 there is a constant c(ε) and infinitely

many n such that

fcLP

(
MaxCut(n), 1 − ε, 1

2

+
ε
6

)
> 2

nc(ε)
.

We now recall the Lasserre integrality gap result for approximating Max-k-CSP

from [56]. See also [57, 58, 59, 46, 48] for related results.

Theorem 3.1.16 ([56, Theorem 4.2]). For q > 2, ε, κ > 0 and δ > 3/2 and large enough

n depending on ε, κ, δ and q, for every k , β satisfying k 6 n1/2 and
(
6qk

ln q
)
/ε2 6

β 6 n(1−κ)(δ−1)/
(
10

8(δ−1)k2δ+0.75

)
there is a k-ary predicate P : [q]k → {0, 1} and a

Max-k-CSP(P) instance I on alphabet [q] with n variables and m � βn constraints such

that OPTI 6 O
(

1+ε
qk

)
, but the nη

16
round Lasserre relaxation for I admits a perfect solution

with parameter η � 1

/(
10

8(βk2δ+0.75) 1

δ−1

)
. In other words, SoSηn/16

(I) � 1.

58

The following LP-hardness for UniqueGames was shown in [12] (based on [4,

47]):

Theorem 3.1.17 ([12, Corollary 7.7]). For every q > 2, δ > 0 and k > 1 there exists a

constant c > 0 such that for all n > 1

fcLP

(
UniqueGames(n , q), 1 − δ, 1

q
+ δ

)
> cnk

In other words there is no polynomial sized linear program that approximates UniqueGames

within a factor of 1/q.

3.2 Reductions with distortion

We now introduce a generalization of the affine reduction mechanism for LPs and

SDPs as introduced in [7], answering an open question posed both in [7, 40], leading

to many new reductions that were impossible in the affine framework.

Definition 3.2.1 (Reduction). Let P1 � (S1,I1, val) and P2 � (S2,I2, val) be opti-

mization problems with guarantees C1, S1 and C2, S2, respectively. Let τ1 � +1 if P1

is a maximization problem, and τ1 � −1 if P1 is a minimization problem. Similarly,

let τ2 � ±1 depending on whether P2 is a maximization problem or a minimization

problem.

A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1→ I2 and ∗ : S1→ S2 translating instances and feasible

solutions independently;

2. two nonnegative I1 × S1 matrices M1, M2

59

subject to the conditions

τ1

[
C1(I1) − valI1(s1)

]
� τ2

[
C2(I∗

1
) − valI∗

1

(s∗
1
)
]

M1(I1, s1) + M2(I1, s1)

(3.2.1-complete)

τ2 OPTI∗
1
6 τ2S2(I∗

1
) if τ1 OPTI1 6 τ1S1(I1). (3.2.1-sound)

The matrices M1 and M2 provide extra freedom to add additional (valid)

inequalities during the reduction. In fact, we might think of them as modeling

more complex reductions. These matrices should have low computational overhead,

which in our frameworkmeans LP or SDP rank, aswill be obvious from the following

special case of Theorem 3.1.10, see Section 1.1.2 for details.

Theorem 3.2.2. Let P1 and P2 be optimization problems with a reduction from P1 to P2

respecting the completeness guarantees C1, C2 and soundness guarantees S1, S2 of P1 and

P2, respectively. Then

fcLP(P1, C1, S1) 6 rankLP M2 + rankLP M1 + rank+ M1 · fcLP(P2, C2, S2), (3.2.2)

fcSDP(P1, C1, S1) 6 rankSDP M2 + rankSDP M1 + rankpsd M1 · fcSDP(P2, C2, S2),

(3.2.3)

where M1 and M2 are the matrices in the reduction as in Definition 3.2.1.

The corresponding multiplicative inapproximability factors can be obtained as

usual, by taking the ratio of soundness and completeness.

3.3 Fractional optimization problems

A fractional optimization problem is an optimization problem where the objectives

have the form of a fraction valI � val
n
I/val

d
I , such as for SparsestCut. In this case

the affine space of the objective functions valI of instances is typically not low

60

dimensional, immediately ruling out small linear and semidefinite formulations.

Nevertheless, there are examples of efficient linear programming based algorithms

for such problems, however here the linear programs are used to find an optimal

value of a linear combination of val
n
I and val

d
I (see e.g., [41]). To be able to analyze

the size of LPs or SDPs for such problems we refine the notion of formulation

complexity from [7] to incorporate these types of linear programs, which reduces to

the original definition with the choice of val
n
I � valI and val

d
I � 1.

We now provide the formal definitions of linear programming and semidefinite

formulations for fractional optimization problems. The idea is again that the

complexity is essentially the proof complexity of valI 6 C(I) for instances with

valI 6 S(I). Formally, given a fractional optimization problem P � (S ,I, val)with

guarantees C, S, we study the nonnegativity problem PC,S � (S ,IS × {0, 1}, val
∗)

with val
∗
(I ,0) � C(I)val

d
I −val

n
I (encoding valI 6 C(I)) and val

∗
(I ,1) � val

d
I . The

addition of val
d
to the objective functions is for the technical reason to ensure

that the objectives span the same affine space as the val
n
I and val

d
I , i.e., to capture

the affineness of these functions. This is not expected to significantly affect the

complexity of the resulting problem, as the val
d
I in interesting applications are

usually a positive linear combination of a small number of nonnegative functions.

As a special case of Section 3.1.1 we obtain the following setup for fractional

optimization problems. Note that when P is a fractional optimization problem with

val
d
� 1, then P is an optimization problem and Definition 3.3.1 and Definition 3.3.2

are equivalent to Definition 1.1.13 and Definition 1.1.14, as we will see now.

Definition 3.3.1 (LP formulation of a fractional optimization problem). Let P �

(S ,I, val) be a fractional optimization problem and let C, S be two real valued

functions on I called completeness guarantee and soundness guarantee respectively.

Let IS def

� {I ∈ I | max valI 6 S(I)} when P is a maximization problem and

IS def

� {I ∈ I | min valI > S(I)} if P is a minimization problem.

61

A (C, S)-approximate LP formulation for the problemP consists of a linear program

Ax 6 b with x ∈ �r
for some r and the following realizations:

Feasible solutions as vectors xs ∈ �r
for every s ∈ S satisfying

Axs 6 b for all s ∈ S ,

i.e., Ax 6 b is a relaxation of conv xs | s ∈ S.

Instances as a pair of affine functions wn
I , w

d
I : �r → � for all I ∈ IS

satisfying

wn
I(x

s) � val
n
I(s)

wd
I(x

s) � val
d
I(s)

for every s ∈ S. In other words the linearizations wn
I , w

d
I are required to be

exact on all xs
for s ∈ S.

Achieving (C, S) approximation guarantee requiring the following for every I ∈

IS

Ax 6 b ⇒

wd
I(x) > 0

wn
I(x) 6 C(I)wd

I(x)

if P is a maximization problem and

Ax 6 b ⇒

wd
I(x) > 0

wn
I(x) > C(I)wd

I(x)

ifP is aminimization problem. In otherwordswe can derive the nonnegativity

of wd
I and the approximation guarantee C(I) from the set of inequalities in

Ax 6 b.

62

The size of the formulation is the number of inequalities in Ax 6 b. Finally, the

(C, S)-approximate LP formulation complexity fcLP (P , C, S) of P is the minimal size

of all its LP formulations.

SDP formulations for fractional optimization problems are defined similarly.

Definition 3.3.2 (SDP formulation of fractional optimization problem). Let P �

(S ,I, val) be a fractional optimization problem and let C, S : I → �>0 be the

completeness guarantee and the soundness guarantee respectively. Let IS def

� {I ∈

I | max valI 6 S(I)} when P is a maximization problem and IS def

� {I ∈ I |

min valI > S(I)} if P is a minimization problem.

A (C, S)-approximate SDP formulation of P consists of a linear mapA : �r → �k

together with a vector b ∈ �k
(i.e., a semidefinite program {X ∈ �r

+ | A(X) � b})

and the following realizations of P:

Feasible solutions as vectors Xs ∈ �r
+ for every s ∈ S satisfying

A(Xs) � b for every s ∈ S ,

i.e. A(X) � b ,X ∈ �r
+ is a relaxation of conv Xs | s ∈ S.

Instances as a pair of affine functions wn
I , w

d
I : �r → �>0 for everyI ∈ IS

satisfying

wn
I(X

s) � val
n
I(s)

wd
I(X

s) � val
d
I(s)

for every s ∈ S. In other words the linearizations wn
I , w

d
I are required to be

exact on all Xs
for s ∈ S.

Achieving (C, S) approximation guarantee requiring the following for every I ∈

63

IS

A(X) � b ⇒

wd
I(X) > 0

wn
I(X) 6 C(I)wd

I(X)

if P is a maximization problem and

A(X) � b ⇒

wd
I(X) > 0

wn
I(X) 6 C(I)wd

I(X)

if P is a minimization problem.

The size of the formulation is given by the dimension r. The (C, S)-approximate

SDP formulation complexity fcSDP(P , C, S) of the problem P is the minimal size of all

its SDP formulations.

The slack matrix for fractional problems plays the same role as for non-fractional

problems, with the twist thatwe factorize the denominator and numerator separately.

This allows us to overcome the high dimensionality of the space spanned by the

actual ratios.

Definition 3.3.3. Let P � (S ,I, val) be a fractional optimization problem with

completeness guarantee C and soundness guarantee S. The (C, S)-approximate slack matrix

MP ,C,S is the nonnegative 2IS × S matrix of the form

MP ,C,S �

M(d)P ,C,S

M(n)P ,C,S

where M(d)P ,C,S ,M

(n)
P ,C,S are nonnegative IS × S matrices with entries

M(d)P ,C,S(I , s)
def

� val
d
I(s)

64

M(n)P ,C,S(I , s)
def

� τ
(
C(I)val

d
I(s) − val

n
I(s)

)
where τ � +1 if P is a maximization problem and τ � −1 if P is a minimization

problem.

We are now ready to obtain the factorization theorem for the class of fractional

optimization problems, as a special case of Theorem 3.1.8:

Theorem 3.3.4 (Factorization theorem for fractional optimization problems). Let

P � (S ,I, val) be a fractional optimization problem with completeness guarantee C and

soundness guarantee S. Then

fcLP(P , C, S) � rankLP M(P ,C,S),

fcSDP(P , C, S) � rankSDP M(P ,C,S)

where M(P ,C,S) is the (C, S)-approximate slack matrix of P.

Now Theorem 3.3.6 arises as a special case of Theorem 3.1.10.

3.3.1 Reduction between fractional problems

Reductions for fractional optimization problems are completely analogous to the

non-fractional case:

Definition 3.3.5 (Reduction). Let P1 � (S1,I1, val) and P2 � (S2,I2, val) be frac-

tional optimization problems with guarantees C1, S1 and C2, S2, respectively. Let

τ1 � +1 if P1 is a maximization problem, and τ1 � −1 if P1 is a minimization prob-

lem. Similarly, let τ2 � ±1 depending on whether P2 is a maximization problem or

a minimization problem.

A reduction from P1 to P2 respecting the guarantees consists of

65

1. two mappings: ∗ : I1→ I2 and ∗ : S1→ S2 translating instances and feasible

solutions independently;

2. four nonnegative I1 × S1 matrices M(n)
1

, M(d)
1

, M(n)
2

, M(d)
2

subject to the conditions

τ1

[
C1(I1)val

d
I1(s1) − val

n
I1(s1)

]
� τ2

[
C2(I∗

1
)val

d
I∗

1

(s∗
1
) − val

n
I∗

1

(s∗
1
)
]

M(n)
1
(I1, s1) + M(n)

2
(I1, s1)

(3.3.1-complete)

val
d
I1(s1) � val

d
I∗

1

(s∗
1
) ·M(d)

1
(I1, s1) + M(d)

2
(I1, s1)

(3.3.1-denominator)

τ2 OPTI∗
1
6 τ2S2(I∗

1
) if τ1 OPTI1 6 τ1S1(I1).

(3.3.1-sound)

As the val
d
are supposed to have a small proof, the matrices M(d)

1
and M(d)

2
are

not supposed to significantly influence the strength of the reduction even with the

trivial choice M(d)
1

� 0 and M(d)
2
(I1, s1) � val

d
I1(s1). However, as in the non-fractional

case, the complexity of M(n)
1

and M(n)
2

could have a major influence on the strength

of the reduction. The reduction theorem is a special case of Theorem 3.1.10, see

Section 3.3:

Theorem 3.3.6. Let P1 and P2 be optimization problems with a reduction from P1 to P2

Then

fcLP(P1, C1, S1) 6 rankLP

M(n)

2

M(d)
2

 + rankLP

M(n)

1

M(d)
1

 + rank+

M(n)

1

M(d)
1

 · fcLP(P2, C2, S2),

(3.3.2)

fcSDP(P1, C1, S1) 6 rankSDP

M(n)

2

M(d)
2

 + rankSDP

M(n)

1

M(d)
1

 + rankpsd

M(n)

1

M(d)
1

 · fcSDP(P2, C2, S2),

(3.3.3)

66

where M(n)
1

, M(d)
1

, M(n)
2

, and M(d)
2

are the matrices in the reduction as in Definition Defini-

tion 3.3.5.

3.4 A simple example: Matching over 3-regular graphs has no small LPs

We now show that the Matching problem even over 3-regular graphs does not admit

a small LP formulation. This has been an open question of various researchers,

given that the Matching problem admits polynomial-size LPs for many classes of

sparse graphs, like bounded treewidth, planar (and bounded genus) graphs [60,

61, 53]. We also show that for graphs of bounded degree 3, the Matching problem

does not admit fully-polynomial size relaxation schemes, the linear programming

equivalent of FPTAS, see [62, 55] for details on these schemes.

Theorem 3.4.1. Let n ∈ � and 0 6 ε < 1. There exists a 3-regular graph D2n with

2n(2n − 1) vertices, so that

fcLP

(
Matching(D2n),

⌊
|V(H)|

2

⌋
+

1 − ε
2

,OPT H
)
� 2

Ω(
√
|V(D2n)|), (3.4.1)

where H is the placeholder for an instance, and the constant factor in the exponent

depends on ε. In particular, Matching(D2n) is LP-hard with an inapproximability factor of

1 − ε/|V(D2n)|.

Proof. As usual, the inapproximability factor simply arises as the smallest factor

OPT H/(b|V(H)| /2c + (1 − ε)/2) of the soundness and completeness guarantees.

The proof is a simple application of the reduction framework. In fact, it suffices to

use the affine framework of [7]. We will reduce from the perfect matching problem

Matching(K2n) as given in Definition Problem 1.1.9.

We first construct our target graph D2n as follows, see Figure Figure 3.1:

1. For every vertex v of K2n we consider a cycle Cv
of length 2n − 1. We denote

the vertices of Cv
by [v , u], where v , u ∈ V and v , u.

67

2. The graph D2n is the disjoint union of the Cv
for v ∈ V together with the

following additional edges: an edge ([v , u], [u , v]) for every (u , v) ∈ E.

Thus D2n has a total of 2n(2n − 1) vertices. This completes the definition of the

Figure 3.1: The graph D2n for n � 2 in the reduction to 3-regular Matching.

graph D2n , which is obviously 3-regular. (There is some ambiguity regarding the

order of vertices in the cycles Cv
, but this does not affect the argument below.) Now

we define the reduction from Matching(K2n) to Matching(D2n).

We first map the instances. Let H be a subgraph of K2n . Its image H∗ under the

reduction is the union of the Cv
for v ∈ H together with the edges ([u , v], [v , u]) for

{u , v} ∈ E(H).

Now let M be a perfect matching in K2n . We define M∗ by naturally extending

it to a perfect matching in D2n . For every edge e � {u , v} ∈ M in the matching,

the edges ([u , v], [v , u]) ∈ D2n form a matching containing exactly one vertex from

every cycle Cv
. We choose M to be the unique extension of this matching to a perfect

matching by adding edges from the cycles Cv
.

We obviously have the following relationship between the objective values:

val
D2n
H∗ (M

∗) � |M∗ ∩ E(H∗)| � |V(H)| · (n − 1) + |M ∩ V(H)|

� |V(H)| · (n − 1) + val
K2n
H (M),

(3.4.2)

68

providing immediately the completeness of the reduction:⌊
|V(H)|

2

⌋
+

1 − ε
2

− val
K2n
H (M) �

⌊
|V(H)| · (2n − 1)

2

⌋
+

1 − ε
2

− val
D2n
H∗ (M

∗)

�

⌊
|V(H∗)|

2

⌋
+

1 − ε
2

− val
D2n
H∗ (M

∗).
(3.4.3)

The soundness of the reduction is immediate, as the soundness guarantee is the

optimal value. �

It is an interesting open problem, whether there exists a family of bounded-

degree graphs Gn on n vertices so that the lower bound in Theorem Theorem 3.4.1

can be strengthened to 2
Ω(n)

.

3.5 BalancedSeparator and SparsestCut

The SparsestCut problem is a high-profile problem that received considerable

attention in the past. It is known that SparsestCut with general demands can be

approximated within a factor of O(
√

log n log log n) [63] and that the standard

SDP has an integrality gap of (log n)Ω(1) [64]. The BalancedSeparator problem is a

related problem which often arises in connection to the SparsestCut problem (see

Definition Definition 1.1.3). The main result of this section will be to show that the

SparsestCut and BalancedSeparator problems cannot be approximated well by small

LPs and SDPs by using the new reduction mechanism from Section Section 3.3.1.

In the case of the SparsestCut problem our result holds even if the supply graph

has bounded treewidth, with the lower bound matching the upper bound in [41] in

the LP case. The results are unconditional LP/SDP analogues to [65], however for

a different regime. In the case of the BalancedSeparator problem our result holds

even if the demand graph has bounded treewidth.

The SparsestCut problem is a fractional optimization problem: we extend

69

Definition Definition 1.1.2 via

val
n
I(s)

def

�

∑
i∈s , j<s

c(i , j), val
d
I(s)

def

�

∑
i∈s , j<s

d(i , j) (3.5.1)

for any vertex set s and any instance I with capacity c and demand d.

Theorem 3.5.1 (LP/SDP hardness for SparsestCut, tw(supply) � O(1)). For any

ε ∈ (0, 1) there are ηLP > 0 and ηSDP > 0 such that for every large enough n the following

hold

fcLP

(
SparsestCut(n , 2), ηLP(1 + ε), ηLP (2 − ε)

)
> nΩ(log n/log log n),

fcSDP

(
SparsestCut(n , 2), ηSDP

(
1 +

4ε
5

)
, ηSDP

(
16

15

− ε
))
> nΩ(log n/log log n).

In other words SparsestCut(n , 2) is LP-hard with an inapproximability factor of 2 − ε, and

SDP-hard with an inapproximability factor of 16

15
− O(ε).

A complementary reduction proves the hardness of approximating Balanced-

Separator where the demand graph has constant treewidth. Note that we only

have an inapproximability result for LPs in this case since the reduction is from

UniqueGames for which we do not yet know of any SDP hardness result.

Theorem 3.5.2 (LP-hardness for BalancedSeparator). For any constant c1 > 1 there

is another constant c2 > 1 such that for all n there is a demand function d : E(Kn) →

�>0 satisfying tw([n]d) 6 c2 so that BalancedSeparator(n, d) is LP-hard with an

inapproximability factor of c1.

3.5.1 SparsestCut with bounded treewidth supply graph

In this section we show that the SparsestCut problem over supply graphs with

treewidth 2 cannot be approximated up to a factor of 2 by any polyonomial sized LP

and up to a factor of
16

15
by any polynomial sized SDP, i.e., Theorem Theorem 3.5.1.

70

We use the reduction from [41], reducing MaxCut to SparsestCut. Given an

instance I of MaxCut(n) we first construct the instance I∗ on vertex set V �

{u , v} ∪ [n]where u and v are two special vertices. Let us denote the degree of a

vertex i in I by deg(i) and let m def

�
1

2

∑n
i�1

deg(i) be the total number of edges in I.

We define the capacity function c : V × V → �>0 as

c(i , j) def

�

deg(i)

m if j � u , i , v or j � v , i , u

0 otherwise.

Note that the supply graph has treewidth at most 2 being a copy of K2,n . The

demand function d : V × V → �>0 is defined as

d(i , j) def

�

2

m if {i , j} ∈ E(I)

0 otherwise.

We map a solution s to MaxCut(n) to the cut s∗ def

� s ∪ {u} of SparsestCut(n + 2, 2).

We remind the reader of the powering operation from [41] to handle the case of

unbalanced and non u-v cuts. It successively adds for every edge of I∗ a copy of

itself, scaling both the capacities and demands by the capacity of the edge. After l

rounds, we obtain an instance I∗l on a fixed set of O(N2l) vertices, and similarly the

cuts s∗ extend naturally to cuts s∗l on these vertices, independent of the instance I.

We provide a formal definition of the powering operation below, for any general

instance I1 and general solution s1 of SparsestCut.

Definition 3.5.3 (Powering instances). The instances of SparsestCut(N1) are G1 B

KN1
with capacity function c1 and demand function d1. Let u and v be two distin-

guished vertices of G1. We construct a sequence {Gl}l of graphs with distinguished

vertices u and v recursively as follows. The graph Gl is obtained by replacing

71

every edge {x , y} of G1 by a copy of Gl−1
. Let us denote by ({x , y}, w) the copy

of vertex w of Gl−1
. We identify the vertices ({x , y}, u) and ({x , y}, v) with x and

y. There are two ways to do so for every edge and we can pick either, arbitrarily.

Obviously, Gl has Nl B
∑l−1

i�1

(N
2

) i(N − 2)+ 2 many vertices. Given a base instance I1
of SparsestCut(N1)wewill construct a sequence of instances {Il}l of SparsestCut(Nl)

recursively as follows. Let the capacity and demand function of Il−1
be cl−1

and

dl−1
respectively. The capacity of edges not in Gl will be 0. Any edge e of Gl has

the unique form {({x , y}, p), ({x , y}, q)} for an edge {x , y} of G1 and an edge {p , q}

of Gl−1
. We define cl(e)

def

� cl−1
(p , q) · c1(x , y). If e is not the edge {x , y} then let

dl(e)
def

� dl−1
(p , q) · c1(x , y). The edge {x , y} takes the demand from G1 in addition,

therefore we define dl(x , y) def

� dl−1
(u , v) · c1(x , y) + d1(x , y).

We recall here the following easy observation that relates the treewidth of the

supply graph of I1 to the treewidth of the supply graph of Il .

Lemma 3.5.4 ([41, Observation 4.4]). If the treewidth of the supply graph of I1 is at most

k, then the treewidth of the supply graph of Il is also at most k.

Corresponding to powering instances, we can also recursively construct solutions

to SparsestCut(Nl) starting from a solution s1 of SparsestCut(N1).

Definition 3.5.5 (Powering solutions separating u and v). Given a base solution

s1 of SparsestCut(N1) we construct a solution sl for SparsestCut(Nl) recursively

as follows. The solution sl coincides with s1 on the vertices of G1. On the copy

of Gl−1
for an edge {x , y} of G1 we define sl as follows. If s1(x) � s1(y) then let

sl(({x , y}, z)) B s1(x) � s1(y) for all vertex z of Gl−1
, so as sl cuts no edges in the

copy of Gl−1
. If s1(x) , s1(y) then we define sl so that the edges it cuts in the

{x , y}-copy of Gl−1
are exactly the copies of edges cut by sl−1

in Gl−1
. More precisely,

let ({x , y}, u) be identified with x and ({x , y}, v)with y. If s1(x) � sl−1
(u) then we

let sl({x , y}, z) B sl−1
(z), otherwise we let sl({x , y}, z) B −sl−1

(z).

72

We now define the actual reduction. We construct a sequence of instances

{I∗
1
,I∗

2
, . . . ,I∗l } where I∗l is obtained as in Definition Definition 3.5.3 by applying

the powering operation to the base instance I∗
1
� I∗ and where N1

def

� n + 2, c1

def

� c

and d1

def

� d. Note that by Lemma Lemma 3.5.4, the treewidth of the supply graph

of I∗l is at most 2. We also construct a sequence of solutions {s∗
1
, . . . , s∗l } where s∗l is

obtained as in Definition Definition 3.5.5 by applying the powering operation to

the base solution s∗
1
� s∗. The final reduction maps the instance I and solution s

of MaxCut(n) to the instance I∗l and solution s∗l of SparsestCut(Nl , 2) respectively.

Completeness and soundness follows from [41].

Lemma 3.5.6 (Completeness, [41, Claim 4.2]). Let I be an instance and s be a solution

of MaxCut(n), and let their image be the instance I∗l and solution s∗l of SparsestCut(Nl , 2),

respectively. Then the following holds

val
n
I∗l
(s∗l) � 1, val

d
I∗l
(s∗l) � l valI(s).

Lemma 3.5.7 (Soundness, [41, Lemmas 4.3 and 4.7]). LetI be an instance of MaxCut(n)

and let I∗l be the instance of SparsestCut(Nl , 2) it is mapped to. Then the instance I∗l has

the following lower bound on its optimum (the number of edges of I scales the MaxCut

value between 0 and 1).

OPTI∗l >
1

1 + (l − 1)OPTI/|E(I)| .

Using the reduction framework of Section Section 3.3.1 we now prove the main

theorem of this section about the LP and SDP inapproximability of SparsestCut.

Proof of Theorem Theorem 3.5.1. This is a simple application of Lemmas Lemma 3.5.6

and Lemma 3.5.7 using Theorem Theorem 3.3.6 with matrices M(n)
1
(I1, s1)

def

� C1(I1),

M(n)
2
(I1, s1)

def

� 0, M(d)
1
(I1, s1)

def

� 0, M(d)
2
(I1, s1)

def

� 1. Hardness of the base problem

73

MaxCut is provided by Theorems Theorem 3.1.15 and Theorem 3.6.1, and leads to

ηLP �
5ε

3−ε and ηSDP �
3ε

1−4ε . �

3.5.2 BalancedSeparator with bounded-treewidth demand graph

In this section we show that the BalancedSeparator problem cannot be approximated

within any constant factor with small LPs evenwhen the demand graph has constant

treewidth:

Theorem 3.5.8 (LP-hardness for BalancedSeparator). (Theorem Theorem 3.5.2 restated)

For any constant c1 > 1 there is another constant c2 > 1 such that for all n there is a demand

function d : E(Kn) → �>0 satisfying tw([n]d) 6 c2 so that BalancedSeparator(n, d) is

LP-hard with an inapproximability factor of c1.

We will reduce the UniqueGames(n , q) problem to the BalancedSeparator(2qn, d)

problem for a fixed demand function d to be defined below. We reuse the reduction

from [66, Section 11.1]. A bĳection π : [q] → [q] acts on strings {−1, 1}q in the natural

way, i.e., π(x)i
def

� xπ(i). For any parameter p ∈ [0, 1], we denote by x ∈p {−1, 1}q a

random string where each coordinate xi of x is −1 with probability p and 1 with

probability 1 − p. For a string x ∈ {−1, 1}q we define x+

def

� |{i | xi � 1}| and

x−
def

� |{i | xi � −1}|. For a pair of strings x , y ∈ {−1, 1}q we denote by x y the string

in {−1, 1}q formed by the coordinate-wise product of x and y, i.e., (x y)i
def

� xi yi for

i ∈ [n]. We are now ready to proceed with the reduction.

Given an instance I � I(w , π) of UniqueGames(n , q)we construct the instance

I∗ of BalancedSeparator(2q n, d). Let ε be a parameter to be chosen later. The vertex

set V of I∗ is defined as V def

� {(x , i) | i ∈ [n], x ∈ {−1, 1}q} so that |V | � 2
q n. Let

W def

�
∑
{i , j}∈E(Kn) w(i , j) denote the total weight of the UniqueGames(n , q) instance

I. For every i , j ∈ [n] and x , y ∈ {−1, 1}q there is an undirected edge {(x , i), (y , j)}

74

in I∗ of capacity c((x , i), (y , j))which is defined as

c
(
(x , i), (y , j)

)
def

�
w(i , j)ε(πi , j(x)y)−(1 − ε)(πi , j(x)y)+

2
qW

.

The demand function d
(
(x , i), (y , j)

)
is defined for an unordered pair of vertices

{(x , i), (y , j)} as

d
(
(x , i), (y , j)

)
def

�

1

2
2q−1n if i � j

0 otherwise

so that the total demand D is 1. Note that the demand graph [2qn]d is a disjoint of

union of cliques of size 2
q
and so tw([2qn]d) � 2

q − 1 � O(1). Given a solution s of

UniqueGames(n , q)wemap it to the solution s∗ of BalancedSeparator(2qn, d) defined

as s∗ def

�
{
(x , i) | xs(i) � 1

}
. Note that the total demand cut by s∗ is 1

2
�

D
2
> D

4
since

for every solution s(i) ∈ [q] there are exactly 2
q−1

strings in {−1, 1}q that have their

s(i)th bit set to 1 and 2
q−1

strings have their s(i)th bit set to −1. Thus s∗ is a valid

solution to the BalancedSeparator(2q n, d) problem and moreover is independent of

the instance I∗. We are now ready to show that this reduction satisfies completeness.

Lemma 3.5.9 (Completeness). Let I and s be an instance and a solution respectively of

UniqueGames(n , q). LetI∗ and s∗ be the instance and solution of BalancedSeparator(2q n,

d) obtained from the reduction. Then

1

2

− valI∗(s∗) �
(
1

2

− ε
)

valI(s)

Proof. Let us sample a random edge (i, j) from the UniqueGames(n , q) instance

I with probabilities proportional to w(i , j) (i.e., �
[
i � i , j � j

]
� w(i , j)/W), and

independently sample x ∈
1/2 {−1, 1}q and z ∈ε {−1, 1}q . Let y B πi,j(x)z.

75

The claim follows by computing the probability of xs(i) � ys(j) in two different

ways.

On the one hand, for a fixed edge (i, j) of I, depending on whether the edge is

correctly labelled, we have

�
[
xs(i) � ys(j)

�� i � i , j � j, s(i) � πi , j(s(j))
]
� �

[
zs(j) � 1

�� i � i , j � j, s(i) � πi , j(s(j))
]
� 1 − ε,

(3.5.2)

�
[
xs(i) � ys(j)

�� i � i , j � j, s(i) , πi , j(s(j))
]
� �

[
xs(i) � ys(j)

�� i � i , j � j, s(i) , πi , j(s(j))
]
�

1

2

.

(3.5.3)

Note that in the latter case xs(i) and ys(j) are independent uniform binary variables.

Hence

�
[
s(i) � πi,j(s(j)), xs(i) � ys(j)

]
� (1 − ε)valI(s), (3.5.4)

�
[
s(i) , πi,j(s(j)), xs(i) � ys(j)

]
� �

[
xs(i) � ys(j)

�� i � i , j � j, s(i) , πi , j(s(j))
]

(3.5.5)

�
1 − valI(s)

2

, (3.5.6)

leading to

�
[
xs(i) � ys(j)

]
�

1

2

+

(
1

2

− ε
)

valI(s). (3.5.7)

On the other hand, note that

(
(x, i), (y, j)

)
is a random edge from I∗ with

distribution given by the weights c
(
(x , i), (y , j)

)
, (i.e., �

[
x � x , i � i , y � y , j � j

]
�

c((x , i), (y , j))). Recall that the cut s∗ cuts an edge ((x , i), (y , j)) if and only if

76

xs(i) , ys(j). It follows that

�
[
xs(i) � ys(j)

]
� 1 − valI∗(s∗). (3.5.8)

The claim now follows from Eqs. (3.5.7) and (3.5.8). �

Soundness of the reduction from UniqueGames to BalancedSeparator is a refor-

mulation of [66, Theorem 11.2] without PCP verifiers:

Lemma 3.5.10 (Soundness). (Theorem 11.2 [66]) For every t ∈
(

1

2
, 1

)
there exists a

constant bt > 0 such that the following holds. Let ε > 0 be sufficiently small and

let I � I(w , π) be an instance of UniqueGames(n , q) and let I∗ be the instance of

BalancedSeparator(2qn, d) as defined in Section 3.5.2. If OPTI < 2
−O(1/ε2) then

OPTI∗ > btεt .

We are now ready to prove the main theorem of this section: that no polynomial

sized linear program can approximate the BalancedSeparator problem up to a

constant factor.

Theorem 3.5.11. For every q > 2, δ > 0, t ∈
(

1

2
, 1

)
and k > 1 there exists a constant

c > 0 and a demand function d : E(Kn) → �>0 for every large enough n, such that

tw([n]d) � 2
q − 1 and

fcLP

(
BalancedSeparator(2qn, d), δ + (log q)−1/2, (log q)−t/2

)
> cnk .

Proof. This statement follows immediately with Lemmas Lemma 3.5.9 and

Lemma 3.5.10, together with Theorem Theorem 3.2.2 and Theorem Theorem 3.1.17

with C1 � 1 − δ, S1 �
1

q + δ, C2 � δ + (log q)−1/2
and S2 �

(
log q

)−t/2
. Note that the

matrices as in Theorem Theorem 3.2.2 are chosen as

M1(I , s) �
2

1 − 2ε
, M2(I , s) �

1 + ε
1 − 2ε

δ

77

with ε �
(
log q

)−1/2
. Since M1 and M2 are constant nonnegative matrices

rankLP M1 � rankLP M2 � 1. �

Finally, we can prove Theorem Theorem 3.5.2 via choosing the right parameters

in Theorem Theorem 3.5.11.

Proof of Theorem Theorem 3.5.2. Straightforward from Theorem Theorem 3.5.11 by

choosing t � 3

4
, δ �

(
log q

)−1/2
and q � 2

(2c1)8
so that the treewidth of the demand

graph is bounded by c2 � 2
q − 1 � 2

2
(2c

1
)8 − 1. �

3.6 SDP hardness of MaxCut()

We now show that MaxCut cannot be approximated via small SDPs within a factor

of 15/16 + ε. As approximation guarantees for an instance graph H, we shall use

C(H) � α |E(H)| and S(H) � β |E(H)| for some constants α and β, and for brevity

we will only write α and β.

Theorem 3.6.1. For any δ, ε > 0 there are infinitely many n such that there is a graph G

with n vertices and

fcSDP

(
MaxCut(G), 4

5

− ε, 3

4

+ δ

)
� nΩ(log n/log log n). (3.6.1)

Proof. Recall [46, Theorem 4.5] applied to the predicate P � (x1 + x2 + x3 � 0) (mod

2): For any γ, δ > 0, and large enough m, there is an instance I of Max-3-XOR/0

on m variables with OPTI 6 1/2 + δ but having a Lasserre solution after Ω(m1−γ)

rounds satisfying all the clauses. By [12, Theorem 6.4], we obtain that for any

δ, ε > 0 for infinitely many m

fcSDP

(
Max-3-XOR/0, 1 − ε, 1

2

+ δ

)
� mΩ(log m/log log m). (3.6.2)

78

We reuse the reduction from Max-3-XOR/0 to MaxCut in [67, Lemma 4.2]. Let

x1, . . . , xm be the variables for Max-3-XOR/0. For every possible clause C �

(xi + x j + xk � 0), we shall use the gadget graph HC from [67, Figure 4.1], reproduced

in Figure Figure 3.2. We shall use the graph G, which is the union of all the gadgets

H(C) for all possible clauses. The vertices 0 and x1, . . . , xm are shared by the gadgets,

the other vertices are unique to each gadget.

0

xi

xj

xk

Figure 3.2: The gadget HC for the clause C � (xi + x j + xk � 0) in the reduction from

Max-3-XOR/0 to MaxCut. Solid vertices are shared by gadgets, the empty ones are

local to the gadget.

AMax-3-XOR/0 instanceI � {C1, . . . , Cl} is mapped to the union GI �
⋃

i H(Ci)

of the gadgets of the clauses Ci in I, which is an induced subgraph of G.

A feasible solution, i.e., an assignment s : {x1, . . . , xm} → {0, 1} is mapped to a

vertex set s∗ satisfying the following conditions: (1) xi ∈ s∗ if and only if s(xi) � 1,

(2) 0 < s∗, and (3) on every gadget H(C) the set s∗ cuts the maximal number of edges

subject to the previous two conditions It is easy to see that s∗ cuts 16 out of the

20 edges of every H(C) if s satisfies C, and it cuts 14 edges if s does not satisfy C.

Therefore

val
MaxCut(G)
GI

(s∗) �
14 + 2 val

Max-3-XOR/0
I (s)
20

, (3.6.3)

which by rearranging provides the completeness of the reduction:

1 − ε − val
Max-3-XOR/0
I (s) � 10

[
4

5

− ε
10

− val
MaxCut(G)
GI

(s∗)
]
. (3.6.4)

79

It also follows from the construction that val
MaxCut(G)
GI

achieves its maximum on a

vertex set of the form s∗: given a vertex set X of G, if 0 < X then let let s(xi) � 1

if xi ∈ X, and s(xi) � 0 otherwise. If xi ∈ X then we do it the other way around:

s(xi) � 1 if and only if xi < X. This definition makes s∗ on the vertices 0, x1, . . . ,

xm either agree with X (if 0 < X) or to be complement of X (if 0 ∈ X). Then

val
MaxCut(G)
GI

(s∗) > val
MaxCut(G)
GI

(X) by construction. This means

max val
MaxCut(G)
GI

�
14 + 2 max val

Max-3-XOR/0
I

20

. (3.6.5)

Thus if max val
Max-3-XOR/0
I 6 1/2+δ then max val

MaxCut(G)
GI

6 3/4+δ/10. Therefore we

obtain a reduction with guarantees CMaxCut(G) � 4/5 − ε/10, SMaxCut(G) � 3/4 + δ/10,

CMax-3-XOR/0 � 1 − ε, SMax-3-XOR/0 � 1/2 + δ, proving

fcSDP

(
MaxCut(G), 4

5

− ε
10

,
3

4

+
δ
10

)
> fcSDP

(
Max-3-XOR/0, 1 − ε, 1

2

+ δ

)
� mΩ(log m/log log m)

� nΩ(log n/log log n),

(3.6.6)

where n � O(m3) is the number of vertices of G. �

3.7 Lasserre relaxation is suboptimal for IndependentSet(G)

Applying reductions within Lasserre hierarchy formulations, we will now derive a

new lower bound on the Lasserre integrality gap for the IndependentSet problem,

establishing that the Lasserre hierarchy is suboptimal: there exists a linear-sized

LP formulation for the IndependentSet problem with approximation guarantee 2

√
n,

whereas there exists a family of graphs with Lasserre integrality gap n1−γ
after

Ω(nγ) rounds for arbitrary small γ. While this is expected assuming P vs. NP,

our result is unconditional. It also complements previous integrality gaps, like

n/2O(
√

log n log log n)
for 2

Θ(
√

log n log log n)
rounds in [48], and others in [49], e.g.,Θ(

√
n)

80

rounds of Lasserre are required for deriving the exact optimum.

For IndependentSet(G), the base functions of the Lasserre hierarchy are the

indicator functions Yv that a vertex v is contained in a feasible solution (which is an

independent set), i.e., Yv(I) B χ(v ∈ I).

Theorem 3.7.1. For any small enough γ > 0 there are infinitely many n, such that there is

a graph G with n vertices with the largest independent set of G having size α(G) � O(nγ)

but there is a Ω(nγ)-round Lasserre solution of size Θ(n), i.e., the integrality gap is n1−γ.

However fcLP(IndependentSet(G), 2
√

n) 6 3n + 1.

Proof. The statement fcLP(IndependentSet(G), 2
√

n) 6 3n + 1 is [40, Lemma 5.2].

For the integrality gap construction, we apply Theorem Theorem 3.1.16 with the

following choice of parameters. We shall use N for the number of variables, as n will

be the number of vertices of G. The parameters q and ε are fixed to arbitrary values.

The parameter κ is chosen close to 1, and δ is chosen to be a large constant; the exact

values will be determined later. The number of variables N will vary, but will be

large enough depending on the parameters already chosen. The parameters β and

k are chosen so that the required lower and upper bounds on β are approximately

the same:

k B
⌊ (1 − κ)(δ − 1) log N −Θ(δ log log N)

log q

⌋
�
(1 − κ)(δ − 1) log N −Θ(δ log log N)

log q
� Θ(log N)

(3.7.1)

β B
1

N

⌈
6Nqk

ln q
ε2

⌉
� qk+o(1)

� N(1−κ)(δ−1)−Θ(δ log log N/log N). (3.7.2)

Thus β > (6qk
ln q)/ε2

, and for large enough N , we also have

β 6 N(1−κ)(δ−1)/(10
8(δ−1)k2δ+0.75).

81

(The role of the term Θ(δ log log N) in k is ensuring this upper bound. Rounding

ensures that k and βN are integers.) By the theorem, there is a k-CSP I on N

variables x1, . . . , xN and clauses C1, . . . , Cm coming from a predicate P such that

OPTI � O((1+ ε)/qk) and there is a pseudoexpectation �̃I of degree at least ηN/16

with �̃I(valI) � 1. Here

m B βN � N(1−κ±o(1))(δ−1), (3.7.3)

ηN/16 � Nκ±o(1). (3.7.4)

Let a denote the number of satisfying partial assignments of P. A uniformly

random assignment satisfies an a/qk
fraction of the clauses in expectation, therefore

a/qk 6 OPTI � O((1 + ε)/qk), i.e., a � Θ(1 + ε).

Let G be the conflict graph of I, i.e., the vertices of G are pairs (i , s)with i ∈ [m]

and s a satisfying partial assignment s of clause Ci with domain the set of free

variables of Ci . Two pairs (i , s) and (j, t) assignments are adjacent as vertices of G

if and only if the partial assignments s and t conflict, i.e., s(x j) , t(x j) for some

variable x j on which both s and t are defined. Thus G has

n B am � N(1−κ)(δ−1)±o(1)
(3.7.5)

vertices.

Given an assignment t : {x1, . . . , xN} → [q]we define the independent set t∗ of

G as the set of partial assignments s compatible with t. (Obviously, t∗ is really an

independent set.) This provides a mapping ∗ from the set of assignments of the

x1, . . . , xN to the set of independent set of G. Clearly, valG(t∗) � m valI(t), as t∗

contains one vertex per clause satisfied by t. It is easy to see that every independent

82

set I of G is a subset of some t∗, and hence

OPT G � m OPTI � mO((1 + ε)/qk) � O(N) � O(n1/[(1−κ)(δ−1)±o(1)]). (3.7.6)

We define a pseudoexpectation �̃G of degree ηN/16k for G as a composition of ∗

and the pseudoexpectation �̃I of the CSP instance I:

�̃G(F) B �̃I(F ◦ ∗). (3.7.7)

Recall that Xx j�b is the indicator that b is assigned to the variable x j , and Y(i ,s) is the

indicator that (i , s) is part of the independent set. Note that for s ∈ V(G), we have

Y(i ,s)◦∗ �
∏

x j∈dom s Xx j�s(x j) is of degree atmost k, and thereforedeg(F◦∗) 6 k deg F,

showing that �̃G is well-defined. Clearly �̃G is a pseudo-expectation, as so is �̃I .

Now, letting s ∼ Ci denote that s is a satisfying partial assignment for Ci :

valG ◦∗ �
∑

(i ,s)∈V(G)
Y(i ,s) ◦ ∗ �

∑
i∈[m]

∑
s∼Ci

∏
x j∈dom s

Xx j�s(x j) �
∑

i∈[m]
Ci � m valI , (3.7.8)

and hence

�̃G(valG) � m · �̃I(valI) � m � n/a � Θ(n), (3.7.9)

showing SoSηN/16k(G) > m. The number of rounds is

ηN/16k � n[κ±o(1)]/[(1−κ)(δ−1)±o(1)]. (3.7.10)

From Equations (3.7.6), (3.7.9) and (3.7.10) the theorem follows with an appropriate

choice of κ and δ depending on γ. �

83

3.8 From SheraliâĂŞAdams reductions to general LP reductions

There are several reductions between SheraliâĂŞAdams solutions of problems in

the literature. Most of these reductions do not make essential use of the Sheral-

iâĂŞAdams hierarchy. The reduction mechanism introduced in Section Section 3.2

allows us to directly execute them in the linear programming framework. As an

example, we extend the SheraliâĂŞAdams reductions from UniqueGames to various

kinds of CSPs from [40] to the general LP case. These CSPs are used in [40] as

intermediate problems for reducing to non-uniform VertexCover and Q-VertexCover,

hence composing the reductions here with the ones in [40] yield direct reductions

from UniqueGames to VertexCover and Q-VertexCover.

3.8.1 Reducing UniqueGames to 1F-CSP

We demonstrate the generalization to LP reductions by transforming the Sheral-

iâĂŞAdams reduction from UniqueGames to 1F-CSP in [40].

Definition 3.8.1. A one-free bit CSP (1F-CSP for short) is a CSP where every clause

has exactly two satisfying assignments over its free variables.

Theorem 3.8.2. With small numbers η, ε, δ > 0 positive integers t, q, ∆ as in [40,

Lemma 3.4], we have for any 0 < ζ < 1 and n large enough

fcLP(UniqueGames∆(n , q), 1−ζ, δ)−n∆t qt+1 6 fcLP(1F-CSP, (1−ε)(1−ζt), η) (3.8.1)

Proof. Let V � {0, 1} × [n] denote the common set of vertices of all the instances

of UniqueGames∆(n , q). The variables of 1F-CSP are chosen to be all the 〈v , z〉 for

v ∈ V and z ∈ {−1,+1}[q]. (Here 〈v , z〉 stands for the pair of v and z.) Given a

UniqueGames∆(n , q) instance (G, w , π), we define an instance (G, w , π)∗ of 1F-CSP

as follows.

84

Let v be any vertex of G, and let u1, . . . , ut be vertices adjacent to v (allowing

the same vertex to appear multiple times). Furthermore, let x ∈ {−1,+1}[q] and let

S be a subset of [q] of size (1 − ε)q. We introduce the clause C(v , u1, . . . , ut , x , S)

as follows, which is an approximate test for the edges {v , u1}, . . . , {v , ut} to be

correctly labelled.

C(v , u1, . . . , ut , x , S) B ∃b ∈ {−1,+1} ∀i ∈ [t] ∀z ∈ {−1,+1}[q]
〈ui , z〉 � b if πv ,ui (z) � S � x � S,

〈ui , z〉 � −b if πv ,ui (z) � S � −x � S.

(3.8.2)

We will define a probability distribution on clauses, and the weight of a clause will

be its probability.

First we define a probability distribution µ1 on edges of G proportional to the

weights. More precisely, we define a distribution on pairs of adjacent vertices (v, u):

� [{v, u} � {v , u}] B w(v , u)∑
i , j w(i , j) , (3.8.3)

therefore for the objective of UniqueGames∆(n , q)we obtain

val

UniqueGames∆(n ,q)
(G,w ,π) (s) � �

[
s(v) � πv,u(s(u))

]
(3.8.4)

Let µv
1
denote themarginal of v in the distribution µ1, and µ

u |v
1

denote the conditional

distribution of u given v � v.

Now we define a distribution µt on vertices v, u1, . . . , ut such that v has the

marginal distribution µv
1
, and given v � v, the verticesu1, . . . , ut are chosenmutually

independently, each with the conditional distribution µu |v
1

. Thereby every pair

(v, ui) has marginal distribution µ1.

Finally, x ∈ {−1,+1}[q] and S ⊆ [q] are chosen randomly and independently of

85

each other and the vertices v, u1, . . . , ut, subject to the restriction |S| � (1 − ε)q on

the size of S. This finishes the definition of the distribution of clauses, in particular,

val
1F-CSP
(G,w ,π)∗(p) � �

[
C(v, u1, . . . , ut, x, S)[p]

]
(3.8.5)

for all evaluation p.

Feasible solutions are translated via

s∗(〈v , z〉) B zs(v). (3.8.6)

Soundness of the reduction, i.e., (3.2.1-sound) follows from [40, Lemma 3.4].

Completeness, i.e., (3.2.1-complete), easily follows from an extension of the

argument in [40, Lemma 3.5]. The main estimation comes from the fact that

the clause C(v , u1, . . . , ut , x , S) is satisfied if the edges {v , u1}, . . . , {v , ut} are all

correctly labeled and the label s(v) of v lies in S:

C(v , u1, . . . , ut , x , S)[s∗] > χ[s(v) � πv ,ui (s(ui)), ∀i ∈ [t]; s(v) ∈ S]. (3.8.7)

Let us fix the vertices v, u1, . . . , uk and take expectation over x and S:

�x,S [C(v , u1, . . . , ut , x, S)[s∗]] > (1 − ε)χ[s(v) � πv ,ui (s(ui)), ∀i ∈ [t]]

> (1 − ε) ©«
∑
i∈[t]

χ[s(v) � πv ,ui (s(ui))] − t + 1

ª®¬ .
(3.8.8)

We build a nonnegative matrix M out of the difference of the two sides of the

inequality. The difference depends only partly on s: namely, only on the values of

s on the vertices v, u1, . . . , ut . Therefore we also build a smaller variant M̃ of M

making this dependence explicit, which will be the key to establish low LP-rank

86

later:

M̃v ,u1 ,...,ut ((G, w , π), s � {v , u1, . . . , ut}) � Mv ,u1 ,...,ut ((G, w , π), s)

B �x,S [C(v , u1, . . . , ut , x, S)[s∗]] − (1 − ε)
©«
∑
i∈[t]

χ[s(v) � πv ,ui (s(ui))] − t + 1

ª®¬
> 0.

(3.8.9)

Taking expectation provides

val
1F-CSP
(G,w ,π)∗(s

∗) � � [C(v, u1, . . . , ut, x, S)[s∗]]

� (1 − ε) ©«
∑
i∈[t]
�

[
s(v) � πv,ui(s(ui))

]
− t + 1

ª®¬ +�
[
Mv,u1 ,...,ut((G, w , π), s)

]
� (1 − ε)(t val

UniqueGames(n ,q)
(G,w ,π) (s) − t + 1) +�

[
Mv,u1 ,...,ut((G, w , π), s)

]
,

(3.8.10)

and hence after rearranging we obtain, no matter what ζ is

1−ζ−val

UniqueGames(n ,q)
(G,w ,π) (s) �

(1 − ε)(1 − ζt) − val
1F-CSP
(G,w ,π)∗(s∗) +�

[
Mv,u1 ,...,ut((G, w , π), s)

]
t(1 − ε) .

(3.8.11)

(Note that Equation (3.8.11) is not affine due to the last term in the numerator.)

Here the last term in the numerator is the matrix M2 in the reduction Defini-

tion Definition 3.2.1 (up to the constant factor of the denominator). We show that it

has low LP rank:

�
[
Mv,u1 ,...,ut((G, w , π), s)

]
�

∑
v ,u1 ,...,ut

f : {v ,u1 ,...,ut}→[q]

(
� [v � v , u1 � u1, . . . , ut � ut] M̃v ,u1 ,...,ut ((G, w , π), f)

)

87

· χ(f � s � {v , u1, . . . , ut}), (3.8.12)

i.e., the expectation can be written as the sum of at most n∆t qt+1
nonnegative rank-1

factors. Therefore the claim follows from Theorem Theorem 3.2.2. �

3.8.2 Reducing stuff

Definition 3.8.3. A not equal CSP (Q-,-CSP for short) is a CSP with value set�Q , the

additive group of integers modulo Q, where every clause has the form

∧k
i�1

xi , ai

for some constants ai .

Theorem 3.8.4. With small numbers η, ε, δ > 0 positive integers t, q, ∆ as in [40,

Lemma 3.4], we have for any 0 < ζ < 1 and n large enough

fcLP(UniqueGames∆(n , q), 1−ζ, δ)−n∆t qt+1 6 fcLP(Q-,-CSP, (1−ε)(1−1/q)(1−ζt), η)

(3.8.13)

Proof. The proof is similar to that of Theorem Theorem 3.8.2, with the value set

{−1,+1} consistently replaced with �Q . Let V � {0, 1} × [n] again denote the

common set of vertices of all the instances of UniqueGames(n , q). The variables of

Q-,-CSP are chosen to be all the 〈v , z〉 for v ∈ V and z ∈ �[q]Q .

To simplify the argument, we now introduce additional hard constraints, i.e.,

which have to be satisfied by any assignment. This can be done without loss of

generality as these hard constraints can be eliminated by using only one variable

from every coset of �Q and substituting out the other variables. The resulting CSP

will be still a not equal CSP, however this would break the natural symmetry of the

structure. Let ∈ �[q]Q denote the element with all coordinates 1. We introduce the

hard constraints

〈v , z + λ〉 � 〈v , z〉 + λ (λ ∈ �Q). (3.8.14)

88

Given a UniqueGames∆(n , q) instance (G, w , π), we now define an instance

(G, w , π)∗ of Q-,-CSP as follows. Let v be any vertex of G, and let u1, . . . , ut

be vertices adjacent to v (allowing the same vertex to appear multiple times).

Furthermore, let x ∈ �[q]Q and let S be a subset of [q] of size (1 − ε)q. We introduce

the clause C(v , u1, . . . , ut , x , S) as follows, which is once more an approximate test

for the edges {v , u1}, . . . , {v , ut} to be correctly labeled.

C(v , u1, . . . , ut , x , S) B ∀i ∈ [t]∀z ∈ �[q]Q

〈ui , z〉 , 0 if πv ,ui (z) � S � x � S.
(3.8.15)

The weight of a clause is defined as its probability using the same distribution on

vertices v, u1, . . . , ut as in Theorem Theorem 3.8.2, and randomly and independently

chosen x ∈ �[q]Q and S ⊆ [q] with |S | � ε[q]. This is the analogue of the distribution

in Theorem Theorem 3.8.2, in particular,

val

UniqueGames∆(n ,q)
(G,w ,π) (s) � �

[
s(v) � πv,ui(s(ui))

]
(i ∈ [t]), (3.8.16)

val
1F-CSP
(G,w ,π)∗[p] � �

[
C(v, u1, . . . , ut, x, S)[p]

]
. (3.8.17)

Feasible solutions are translated via

s∗(〈v , z〉) B zs(v), (3.8.18)

which clearly satisfy the hard constraints (3.8.14).

The reduction is sound by [40, Lemma 6.9]. For completeness, we follow a

similar approach to [40, Lemma 6.10] and of Theorem Theorem 3.8.2. The starting

point is that given a labeling s of (G, w , π) a clause C(v , u1, . . . , ut , x , S) is satisfied

89

if the edges {v , u1}, . . . , {v , ut} are correctly labeled, s(v) ∈ S, and xs(v) , 0:

C(v , u1, . . . , ut , x , S)[s∗] > χ[s(v) � πv ,ui (s(ui)), ∀i ∈ [t]; xs(v) , 0; s(v) ∈ S].

(3.8.19)

Fixing the vertices v, u1, . . . , uk and taking expectation over x and S yields:

�x,S [C(v , u1, . . . , ut , x, S)[s∗]] > (1 − ε)(1 − 1/q)χ[s(v) � πv ,ui (s(ui)), ∀i ∈ [t]],

(3.8.20)

where the term (1 − 1/q) arises as the probability of xs(v) , 0. The rest of the

proof is identical to that of Theorem Theorem 3.8.2, with 1 − ε replaced with

(1 − ε)(1 − 1/q). �

3.9 A small uniform LP over graphs with bounded treewidth

Complementing the results from before, we now present a SheraliâĂŞAdams like

uniform LP formulation that solves Matching, IndependentSet, and VertexCover over

graphs of bounded treewidth. The linear program has size roughly O(nk), where

n is the number of vertices and k is the upper bound on treewidth. Here uniform

means that the same linear program is used for all graphs of bounded treewidth with

the same number of vertices, in particular, the graph and weighting are encoded

solely in the objective function we optimize. This complements recent work [53],

which provides a linear program of linear size for a fixed graph for weighted versions

of problems expressible in monadic second order logic. Our approach is also in

some sense complementary to [68] where small approximate LP formulations are

obtained for problems where the intersection graph of the constraints has bounded

treewidth; here the underlying graph of the problem is of bounded treewidth.

Bounded treewidth graphs are of interest, as many NP-hard problems can be

solved in polynomial time when restricting to graphs of bounded treewidth. The

90

celebrated Courcelle’s Theorem [69] states that any graph property definable by a

monadic second order formula can be decided for bounded treewidth graphs in

time linear in the size of the graph (but not necessarily polynomial in the treewidth

or the size of the formula).

The usual approach to problems for graphs of bounded treewidth is to use

dynamic programming to select and patch together the best partial solutions defined

on small portions of the graph. Here we model this in a linear program, with the

unique feature that it does not depend on any actual tree decomposition. We call

problems admissible which have the necessary additional structure, treating partial

solutions and restrictions in an abstract way.

Definition 3.9.1 (Admissible problems). Let n and k be positive integers. Let

P � (S ,Gn ,k , val) be an optimization problem with instances the set Gn ,k of all

graphs G with V(G) ⊆ [n] and tw(G) 6 k. The problem P is admissible if

1. Partial feasible solutions. There is a set S ⊆ S of partial feasible solutions and a

restriction operation �mapping any partial solution s and a vertex set X ⊆ [n]

to a partial solution s � X. We assume the identity (s � X) � Y � s � Y

for all vertex sets X,Y ⊆ V(G) with Y ⊆ X and partial solutions s ∈ S. Let

SX B {s � X | s ∈ S} denote the set of restriction of all feasible solutions to X.

2. Locality. The measure valG(s) depends only on G and s � V(G) for a graph

G ∈Gn ,k and a solution s ∈ S.

3. Gluing. For any cover V(G) � V1∪· · ·∪Vl satisfying E[G] � E[V1]∪ · · ·∪E[Vl]

and any feasible solutions σ1 ∈ SV1
, . . . , σl ∈ SVl satisfying

σi � Vi ∩ Vj � σ j � Vi ∩ Vj for all i , j , (3.9.1)

there is a unique feasible solution s with s � Vi � σi for all i.

91

4. Decomposition. Let T be an arbitrary tree decomposition of a graph G with

tw(G) 6 k with bags Bv at nodes v ∈ T. Let t ∈ V(T) be an arbitrary node

of T. Let T1, . . . , Tm be the components of T \ t and ti ∈ V(Ti) be the unique

node ti in T connected to t. Clearly, every Ti is a tree decomposition of an

induced subgraph Gi � G[⋃p∈Ti
Bp] of G. Moreover, Bt ∩ V(Gi) � Bt ∩ Bti .

We require the existence of a (not necessarily nonnegative) function corrG,T,t

such that for all feasible solution s

valG(s) � corrG,T,t(s � Bt) +
∑

i

valGi (s). (3.9.2)

The decomposition property forms the basis of thementioned dynamic approach,

which together with the gluing property allows the solutions to be built up from the

best compatible pieces. The role of the locality property is to ensure that the value

function is independent of irrelevant parts of the feasible solutions. In particular,

(3.9.2) generalizes for the optima, when the restriction σ of the solution to Bt is fixed,

this is also the basis of the dynamic programming approach mentioned earlier:

Lemma 3.9.2. For any admissible problem P, with the assumption and notation of the

decomposition property we have for any σ ∈ SBt

OPT[s : s � Bt � σ]valG(s) � corrG,T,t(σ)+
∑

i

OPT[s : s � Bti∩Bt � σ � Bti∩Bt]valGi (s).

(3.9.3)

Proof. For simplicity, we prove this only for maximization problems, as the proof for

minimization problems is similar. By (3.9.2), the left-hand side is clearly less than

or equal to the right-hand side. To show equality let

si B argmaxs : s�Bt∩Bti�σ�Bt∩Bti
valGi (s)

92

be maximizers. We apply the gluing property for the si � V(Gi) and σ.

First we check that the conditions for the property are satisfied. By the properties

of a tree decomposition, we have V(G) � Bt ∪
⋃

i V(Gi) and E[V(G)] � E[Bt] ∪⋃
i E[V(Gi)]. Moreover, Bt ∩ V(Gi) � Bt ∩ Bti , and hence si � (Bt ∩ V(Gi)) � σ �

(Bt ∩ V(Gi)). Again by the properties of tree decomposition, for i , j, it holds

V(Gi) ∩ V(G j) ⊆ Bt , and hence

si � (V(Gi) ∩ V(G j)) � si � (Bt ∩ (V(Gi)) ∩ V(G j))

� σ � (Bt ∩ V(Gi)) ∩ V(G j) � σ � (V(Gi) ∩ V(G j)).
(3.9.4)

In particular, si � (V(Gi) ∩ V(G j)) � s j � (V(Gi) ∩ V(G j)).

Therefore by the gluing property, there is a unique feasible solution s with

s � Bt � σ and s � V(Gi) � si � V(Gi) for all i. Clearly, valG(s) is equal to the

right-hand side. �

We are ready to state the main result of this section, the existence of a small

linear programming formulation for bounded treewidth graph problems:

Theorem 3.9.3 (Uniform local LP formulation). Let P � (S ,Gn ,k , val) be an admissible

optimization problem. Then it has the following linear programming formulation, which

does not depend on any tree decomposition of the instance graphs, and has size

fcLP(P) 6
∑

X⊆V(G),|X |<k

|SX | . (3.9.5)

The guarantees are C(G) � S(G) � OPT G. Let V0 be the real vector space with coordinates

indexed by the X, σ for X ⊆ V(G), σ ∈ SX with |X | < k.

Feasible solutions A feasible solution s ∈ S is represented by the vectors xs in V0 with

coordinates xs
X,σ B χ(s � X � σ).

Domain The domain of the linear program is the affine space V spanned by all the xs .

93

Inequalities The LP has the inequalities x > 0.

Instances An instance G is represented by the unique affine function wG
: V → �

satisfying wG(xs) � valG(s).

One can eliminate the use of the affine subspace V , by using some coordinates

for V as variables for the linear program.

Remark 3.9.4 (Relation to the SheraliâĂŞAdams hierarchy). The linear program above

is inspired by the Sherali-Adams hierarchy [70] as well as the generalized extended

formulations model in [7]. The LP is the standard (k − 1)-round SheraliâĂŞAdams

hierarchy when P arises from a CSP: the solution set S is simply the set of all

subsets of V(G), and one chooses s � X � s ∩ X. The inequalities of the LP are

the linearization of the following functions, in exactly the same way as for the

SheraliâĂŞAdams hierarchy:

χ(s � X � σ) B
∏
i∈σ

xi

∏
i∈X\σ
(1 − xi).

For non-CSPs the local functions take on different meanings that are incompatible

with the Sherali-Adams perspective.

With this we are ready to prove the main theorem of this section.

Proof of Theorem Theorem 3.9.3. We shall prove that there is a nonnegative factoriza-

tion of the slack matrix of P

τ[OPT G − valG(s)] �
∑

X⊆V(G),|X |<k
σ∈SX

αG,X,σ · χ(s � X � σ), (3.9.6)

where τ � 1 if P is a maximization problem, and τ � −1 if it is a minimization

problem.

94

From this, one can define the function wG
as:

wG(x) B OPT G − τ−1

∑
X⊆V(G),|X |<k

σ∈SX

αG,X,σ · xX,σ , (3.9.7)

such that it is immediate that wG
is affine, wG(xs) � valG(s) for all s ∈ S, and

that τ[OPT G − wG(x)] > 0 for all x ∈ V satisfying the LP inequalities x > 0. The

uniqueness of the wG
follow from V being the affine span of the points xs

, where

wG
has a prescribed value.

To show (3.9.6), let us use the setup for the decomposition property: Let t be a

node of T, and let t1, . . . , tm be the neighbors of t, and Ti be the component of T \ t

containing ti . Let Bx denote the bag of a node x of T. Let Gi B G[⋃p∈Ti
Bp] be the

induced subgraph of G for which Ti is a tree decomposition (with bags inherited

from T).

We shall inductively define nonnegative numbers αG,X,σ,A for G ∈ Gn ,k , X ⊆

V(G), σ ∈ SX , and A ⊆ Bt satisfying

τ [OPT[s′ : s′ � A � s � A]valG(s′) − valG(s)] �
∑

X⊆V(G),σ∈SX

αG,X,σ,A · χ(s � X � σ).

(3.9.8)

This will prove the claimed (3.9.6) with the choice αG,X,σ B αG,X,σ,Bt . The help

variable A is only for the induction.

To proceed with the induction, we take the difference of Eqs. (3.9.2) and (3.9.3)

with the choice σ B s � Bt :

τ [OPT[s′ : s′ � Bt � σ]valG(s′) − valG(s)] �
∑

i

τ
[
OPT[s′ : s′ � Bti ∩ Bt � σ � Bti ∩ Bt]valGi (s′) − valGi (s)

]
.

(3.9.9)

Nowwe use the induction hypothesis on the Gi with tree decomposition Ti to obtain

95

τ [OPT[s′ : s′ � Bt � σ]valG(s′) − valG(s)] �
∑

i

∑
X⊆V(G)
|X |<k
σ∈SX

αGi ,X,σ,Bti∩Btχ(s � X � σ).

(3.9.10)

Hence (3.9.6) follows with the following choice of the αG,X,σ,A, which are clearly

nonnegative:

αG,X,σ,A B

∑

i

αGi ,X,σ,Bti∩Bt if X , Bt∑
i

αGi ,X,σ,Bti∩Bt + τ [OPT[s′ : s′ � A � σ � A]valG(s′) −OPT[s′ : s′ � Bt � σ]valG(s′)] if X � Bt .

(3.9.11)

�

We now demonstrate the use of Theorem Theorem 3.9.3.

Example 3.9.5 (VertexCover, IndependentSet, and CSPs such as e.g., MaxCut,

UniqueGames). For the problems MaxCut, IndependentSet, and VertexCover, the

set of feasible solutions S is the set of all subsets of S. We need no further partial

solutions (i.e., S B S), and we choose the restriction to be simply the intersection

s � B B s ∩ B.

It is easily seen that thismakes IndependentSet andVertexCover admissible problems,

providing an LP of size O(nk−1) for graphs with treewidth at most k. As an example,

we check the decomposition property for IndependentSet. Using the same notation

96

as in the decomposition property,

valG(s) −
∑

i

valGi (s) � |s | −
∑

i

{
|s ∩ V(Gi)| − |E(Gi[s ∩ V(Gi)])|

}
� |s ∩ Bt | −

∑
i

{
|s ∩ Bt ∩ V(Gi)| − |E(Gi[s ∩ Bt ∩ V(Gi)])|

}
,

(3.9.12)

as any vertex v < Bt is a vertex of exactly one of the Gi , and similarly for edges with

at least one end point not in Bt . Therefore the decomposition property is satisfied

with the choice

corrG,T,t(σ) B |σ ∩ Bt |−
∑

i

{
|σ ∩ Bt ∩ V(Gi)| − |E(Gi[σ ∩ Bt ∩ V(Gi)])|

}
. (3.9.13)

For UniqueGames(n , q), the feasible solutions are all functions [n] → [q]. Partial

solutions are functions X → [q] defined on some subset X ⊆ [n]. Restriction s � X

is the usual restriction of s to the subset dom(s) ∩ X. This obviously makes MaxCut

and UniqueGames(n , q) admissible. The size of the LP is O(n2(k−1)) for MaxCut, and

O((qn2)k−1) for UniqueGames(n , q).

The Matching problem requires that the restriction operator preserves more local

information to ensure that partial solutions are incompatible when they contain a

different edge at the same vertex.

Example 3.9.6 (Matching). The Matching problem has feasible solutions all perfect

matchings. The partial solutions are all matchings, not necessarily perfect. The

restriction s � X of a matching s to a vertex set X is defined as the set of all edges in

s incident to some vertex of X:

s � X B {{u , v} ∈ s | u ∈ B ∨ v ∈ B} .

97

Now s � X can contain edges with only one end point in X. Again, this makes

Matching an admissible problem, providing an LP of size O(nk) (the number of edges

with at most k edges). Here we check the gluing property. Let V(G) � V1 ∪ · · · ∪ Vl

be a covering (we do not need E[V(G)] � E[V(G1)] ∪ · · · ∪ E[V(Gl)]), and let σi be

a (partial) matching covering Vi with every edge in σi incident to some vertex in

Vi (i.e., σi ∈ SVi) for i ∈ [l]. Let us assume σi � Vi ∩ Vj � σ j � Vi ∩ Vj , i.e., every

vertex v ∈ Vi ∩ Vj is matched to the same vertex by σi and σ j for i , j. It readily

follows that the union s B
⋃

i σi is a matching. Actually, it is a perfect matching as

V(G) � V1 ∪ · · · ∪ Vl ensures that it covers every vertex. Obviously, s � Vi � σi and

s is the unique perfect matching with this property.

98

CHAPTER 4

HIERARCHICAL CLUSTERING

In this chapter we will study a cost function for hierarchical clustering introduced by

[8] from a convex optimization perspective. Hierarchical clustering is a fundamental

problem inmachine learning and arises naturally inmany contexts such as evolution

and phylogenetics. Several heuristics are popular in practice for this problem e.g.,

linkage based algorithms, Ward’s method etc. (see [71] for a survey). While these

heuristis are useful in practice, a cost function based approach that is popular

in flat clustering such as k-means, k-median, min-sum has the advantage that

one has an objective measure to compare the quality of two different hierarchical

clusterings. Such an objective function was proposed in [8], where several desirable

properties of this cost function were established. The main contribution of this

chapter will be to study this combinatorial cost function from an optimization

perspective, by describing the convex hull of all hierarchical clusterings according

to this cost function. We will also study linear relaxations leading to an improved

approximation algorithm for this problem and establish constant factor hardness

results for approximating this objective function.

4.0.1 Related Work

The immediate precursor to this work is [8] where the cost function for evaluating a

hierarchical clustering was introduced. Prior to this there has been a long line of

research on hierarchical clustering in the context of phylogenetics and taxonomy

(see, e.g., [71, 72, 73]). Several authors have also given theoretical justifications for

the success of the popular linkage based algorithms for hierarchical clustering (see,

e.g. [74, 75, 76]). In terms of cost functions, one approach has been to evaluate a

99

hierarchy in terms of the k-means or k-median cost that it induces (see [77]). The

cost function and the top-down algorithm in [8] can also be seen as a theoretical

justification for several graph partitioning heuristics that are used in practice.

Besides this prior work on hierarchical clustering we are also motivated by the

long line of work in the classical clustering setting where a popular strategy is to

study convex relaxations of these problems and to round an optimal fractional

solution into an integral one with the aim of getting a good approximation to the

cost function. A long line of work (see, e.g., [78, 79, 80, 81]) has employed this

approach on LP relaxations for the k-median problem, including [82] which gives

the best known approximation factor of 1 +
√

3 + ε. Similarly, a few authors have

studied LP and SDP relaxations for the k-means problem (see, e.g., [83, 84, 85]),

with the best known approximation guarantee of 6.357 due to a recent LP rounding

result of [86].

LP relaxations for hierarchical clustering have also been studied in [87] where

the objective is to fit a tree metric to a data set given pairwise dissimilarities. While

the LP relaxation and rounding algorithm in [87] is similar in flavor, the result

is incomparable to ours (see Section 4.6 for a discussion). Another work that is

indirectly related to our approach is [88] where the authors study an ILP to obtain a

closest ultrametric to arbitrary functions on a discrete set. Our approach is to give a

combinatorial characterization of the ultrametrics induced by the cost function of

[8] which allows us to use the tools from [88] to model the problem as an ILP. The

natural LP relaxation of this ILP turns out to be closely related to LP relaxations

considered before for several graph partitioning problems (see, e.g., [15, 16, 89, 90])

and we use a rounding technique studied in this context to round this LP relaxation.

Further work by [91] studied spreading metric SDP relaxations for this cost

function to improve the approximation factor to O
(√

log n
)
. The analysis of this

rounding procedure also enabled them to show that the top-down heuristic of [8]

100

actually returns an O(
√

log n) approximate clustering rather than an O
(
log

3/2 n
)

approximate clustering as was initially shown. They also analyze a similar LP

relaxation using the divide-and-conquer approximation algorithms using spreadingmetrics

paradigm of [92] together with a result of [93] to show an O(log n) approximation.

Finally, they also give similar constant factor inapproximability results for this

problem.

4.0.2 Contribution

While studying convex relaxations of optimization problems is fairly natural, for

the cost function introduced in [8] however, it is not immediately clear how one

would go about writing such a relaxation. Our first contribution is to give a

combinatorial characterization of the family of ultrametrics induced by this cost

function on hierarchies. Inspired by the approach in [88] where the authors study an

integer linear program for finding the closest ultrametric, we are able to formulate

the problem of finding the minimum cost hierarchical clustering as an integer

linear program. Interestingly and perhaps unsurprisingly, the specific family of

ultrametrics induced by this cost function give rise to linear constraints studied

before in the context of finding balanced separators in weighted graphs. We then

show how to round an optimal fractional solution using the sphere growing technique

first introduced in [15] (see also [94, 89, 95]) to recover a tree of cost at most O(log n)

times the optimal tree for this cost function. The generalization of this cost function

involves scaling every pairwise distances by an arbitrary strictly increasing function

f satisfying f (0) � 0. Wemodify the integer linear program for this general case and

show that the rounding algorithm still finds a hierarchical clustering of cost at most

O(log n) times the optimal clustering in this setting. We also show a constant factor

inapproximability result for this problem for any polynomial sized LP and SDP

relaxations and under the assumption of the Small Set Expansion hypothesis. We

101

concludewith an experimental study of the integer linear program and the rounding

algorithm on some synthetic and real world data sets to show that the approximation

algorithm often recovers clusters close to the true optimum (according to this cost

function) and that its projections into flat clusters often has a better error rate than

the linkage based algorithms and the k-means algorithm.

4.1 Preliminaries

Recall the basic problem setup from Section 1.3. The following definition introduces

the notion of non-trivial ultrametrics. These turn out to be precisely the ultrametrics

that are induced by tree decompositions of V corresponding to cost function (1.3.1),

as we will show in Corollary 4.2.4.

Definition 4.1.1. An ultrametric d on a set of points V is non-trivial if the following

conditions hold.

1. For every non-empty set S ⊆ V , there is a pair of points i , j ∈ S such that

d(i , j) > |S | − 1.

2. For any t if St is an equivalence class of V under the relation i ∼ j iff d(i , j) 6 t,

then maxi , j∈St d(i , j) 6 |St | − 1.

Note that for an equivalence class St where d(i , j) 6 t for every i , j ∈ St it follows

from Definition 4.1.1spreading: that t > |St | − 1. Thus in the case when t � |St | − 1

the two conditions imply that the maximum distance between any two points in

S is t and that there is a pair i , j ∈ S for which this maximum is attained. The

following lemma shows that non-trivial ultrametrics behave well under restrictions

to equivalence classes St of the form i ∼ j iff d(i , j) 6 t.

Lemma 4.1.2. Let d be a non-trivial ultrametric on V and let St ⊆ V be an equivalence

class under the relation i ∼ j iff d(i , j) 6 t. Then d restricted to St is a non-trivial

ultrametric on St .

102

Proof. Clearly d restricted to St is an ultrametric on St and so we need to establish

that it satisfies Definition 4.1.1spreading: and Definition 4.1.1hereditary: of Defini-

tion 4.1.1. Let S ⊆ St be any set. Since d is a non-trivial ultrametric on V it follows

that there is a pair i , j ∈ S with d(i , j) > |S | − 1, and so d restricted to St satisfies

Definition 4.1.1spreading:.

If S′r is an equivalence class in St under the relation i ∼ j iff d(i , j) 6 r then

clearly S′r � St if r > t. Since d is a non-trivial ultrametric on V , it follows that

maxi , j∈S′r d(i , j) � maxi , j∈St d(i , j) 6 |St | − 1 � |S′r | − 1. Thus we may assume

that r 6 t. Consider an i ∈ S′r and let j ∈ V be such that d(i , j) 6 r. Since

r 6 t and i ∈ St , it follows that j ∈ St and so j ∈ S′r . In other words S′r is an

equivalence class in V under the relation i ∼ j iff d(i , j) 6 r. Since d is an ultrametric

on V it follows that maxi , j∈S′r d(i , j) 6 |S′r | − 1. Thus d restricted to St satisfies

Definition 4.1.1hereditary:. �

The intuition behind the two conditions in Definition 4.1.1 is as follows. Defini-

tion 4.1.1spreading: imposes a certain lower bound by ruling out trivial ultrametrics

where, e.g., d(i , j) � 1 for every distinct pair i , j ∈ V . On the other hand Defini-

tion 4.1.1hereditary: discretizes and imposes an upper bound on d by restricting

its range to the set {0, 1, . . . , n − 1} (see Lemma 4.1.3). This rules out the other

spectrum of triviality where for example d(i , j) � n for every distinct pair i , j ∈ V

with |V | � n.

Lemma 4.1.3. Let d be a non-trivial ultrametric on the set V as in Definition 4.1.1. Then

the range of d is contained in the set {0, 1, . . . , n − 1} with |V | � n.

Proof. We will prove this by induction on |V |. The base case when |V | � 1 is trivial.

Therefore, we now assume that |V | > 1. By Definition 4.1.1spreading: there is a pair

i , j ∈ V such that d(i , j) > n − 1. Let t � maxi , j∈V d(i , j), then the only equivalence

class under the relation i ∼ j iff d(i , j) 6 t is V . By Definition 4.1.1hereditary: it

103

follows that maxi , j∈V d(i , j) � t � n − 1. Let V1, . . .Vm denote the set of equivalence

classes of V under the relation i ∼ j iff d(i , j) 6 n − 2. Note that m > 1 as there is

a pair i , j ∈ V with d(i , j) � n − 1, and therefore each Vl (V . By Lemma 4.1.2, d

restricted to each of these Vi’s is a non-trivial ultrametric on those sets. The claim

then follows immediately: for any i , j ∈ V either i , j ∈ Vl for some Vl in which case

by the induction hypothesis d(i , j) ∈ {0, 1, . . . , |Vl | − 1}, or i ∈ Vl and j ∈ Vl′ for

l , l′ in which case d(i , j) � n − 1. �

4.2 Convex hull of hierarchical clusterings

We start with the following easy lemma about the lowest common ancestors of

subsets of V in a hierarchical clustering T of V .

Lemma 4.2.1. Let S ⊆ V with |S | > 2. If r � lca(S) then there is a pair i , j ∈ S such that

lca(i , j) � r.

Proof. We will proceed by induction on |S |. If |S | � 2 then the claim is trivial and so

we may assume |S | > 2. Let i ∈ S be an arbitrary point and let r′ � lca(S \ {i}). We

claim that r � lca(i , r′). Clearly the subtree rooted at lca(i , r′) contains S and since

T[r] is the smallest such tree it follows that r ∈ T[lca(i , r′)].

Conversely, T[r] contains S \ {i} and so r′ ∈ T[r] and since i ∈ T[r], it follows

that lca(i , r′) ∈ T[r]. Thus we conclude that r � lca(i , r′).

If lca(i , r′) � r′, then we are done by the induction hypothesis. Thus we may

assume that i < T[r′]. Consider any j ∈ S such that j ∈ T[r′]. Then we have that

lca(i , j) � r as lca(i , r′) � r and j ∈ T[r′] and i < T[r′]. �

We will now show that non-trivial ultrametrics on V as in Definition 4.1.1

are exactly those that are induced by hierarchical clusterings on V under cost

function (1.3.1). The following lemma shows the forward direction: the ultrametric

dT induced by any hierarchical clustering T is non-trivial.

104

Lemma 4.2.2. Let T be a hierarchical clustering on V and let dT be the ultrametric on V

induced by it. Then dT is non-trivial.

Proof. Let S ⊆ V be arbitrary and r � lca(S), then T[r] has at least |S | leaves. By

Lemma 4.2.1 theremust be a pair i , j ∈ S such that r � lca(i , j) and so dT(i , j) > |S |−1.

This satisfies Definition 4.1.1spreading: of non-triviality.

For any t, let St be a non-empty equivalence class under the relation i ∼ j iff

dT(i , j) 6 t. Since dT satisfies Definition 4.1.1spreading: it follows that |St | − 1 6 t.

Let us assume for the sake of contradiction that there is a pair i , j ∈ St such

that dT(i , j) > |St | − 1. Let r � lca(St); using the definition of dT it follows that

t + 1 > |leaves (T[r])| > |St | since i , j ∈ St . Let k ∈ leaves (T[r]) \ St be an arbitrary

point, then for every l ∈ St it follows that dT(k , l) 6 |leaves(T[r])| − 1 6 t since

the subtree rooted at r contains both k and l. This is a contradiction to St being

an equivalence class under i ∼ j iff dT(i , j) 6 t since k < St . Thus dT also satisfies

Definition 4.1.1hereditary: of Definition 4.1.1. �

The following crucial lemma shows the converse: every non-trivial ultrametric

on V is realized by a hierarchical clustering T of V .

Lemma 4.2.3. For every non-trivial ultrametric d on V there is a hierarchical clustering T

on V such that for any pair i , j ∈ V we have

dT(i , j) �
��
leaves(T[lca

(
i , j

)
])
�� − 1 � d(i , j).

Moreover this hierarchy can be constructed in time O
(
n3

)
by 1 where |V | � n.

Proof. The proof is by induction on n. The base case when n � 1 is straightforward.

We now suppose that the statement is true for sets of size < n. Note that i ∼ j iff

d(i , j) 6 n−2 is an equivalence relation onV and thuspartitionsV into m equivalence

classes V1, . . . ,Vm . We first observe that m > 1 since by Definition 4.1.1spreading:

105

there is a pair of points i , j ∈ V such that d(i , j) > n − 1 and in particular |V | l < n

for every l ∈ {1, . . . ,m}. By Lemma 4.1.2, d restricted to any Vl is a non-trivial

ultrametric on Vl and there is a pair of points i , j ∈ Vl such that d(i , j) � |Vl | − 1

by Definition 4.1.1spreading: and Definition 4.1.1hereditary:. Therefore by the

induction hypothesis we construct trees T1, . . . , Tm such that for every l ∈ {1, . . . ,m}

we have leaves(Tl) � Vl . Further for any pair of points i , j ∈ Vl for some l ∈

{1, . . . ,m}, we also have d(i , j) � dTl (i , j).

We construct the tree T as follows: we first add a root r and then connect the root

rl of Tl to r for every l ∈ {1, . . . ,m}. Consider a pair of points i , j ∈ V . If i , j ∈ Vl

for some l ∈ {1, . . . ,m} then we are done since dTl (i , j) � dT(i , j) as lca(i , j) ∈ Tl . If

i ∈ Vl and j ∈ Vl′ for some l , l′ then d(i , j) � n−1 since d(i , j) > n−1 by definition

of the equivalence relation and the range of d lies in {0, 1, . . . , n− 1} by Lemma 4.1.3.

Moreover i and j are leaves in Tl and Tl′ respectively, and thus by construction of T

we have lca(i , j) � r, i.e., dT(i , j) � n − 1 and so the claim follows. 1 simulates this

inductive argument can be easily implemented to run in time O
(
n3

)
. �

Lemma 4.2.2 and Lemma 4.2.3 together imply the following corollary about the

equivalence of hierarchical clusterings and non-trivial ultrametrics.

Corollary 4.2.4. There is a bĳection between the set of hierarchical clusterings T on V and

the set of non-trivial ultrametrics d on V satisfying the following conditions.

1. For every hierarchical clustering T on V , there is a non-trivial ultrametric dT defined

as dT(i , j) def

�
��
leaves T[lca(i , j)]

�� − 1 for every i , j ∈ V .

2. For every non-trivial ultrametric d on V , there is a hierarchical clustering T on V

such that for every i , j ∈ V we have
��
leaves T[lca(i , j)]

�� − 1 � d(i , j).

Moreover this bĳection can be computed in O(n3) time, where |V | � n.

Therefore to find the hierarchical clustering of minimum cost, it suffices to

minimize 〈κ, d〉 over non-trivial ultrametrics d : V ×V → {0, . . . , n − 1}, where V is

106

Input: Data set V of n points, non-trivial ultrametric d : V × V → �>0

Output: Hierarchical clustering T of V with root r
1 r ← arbitrary choice of designated root in V
2 X ← {r}
3 E← ∅
4 if n � 1 then
5 T ← (X, E)
6 return r, T
7 else
8 Partition V into {V1, . . .Vm} under the equivalence relation i ∼ j iff

d(i , j) < n − 1

9 for l ∈ {1, . . . ,m} do
10 Let rl , Tl be output of 1 on Vl , d |Vl

11 X ← X ∪ V(Tl)
12 E← E ∪ {r, rl}
13 end
14 T ← (X, E)
15 return r, T
16 end

Algorithm 1: Hierarchical clustering of V from non-trivial ultrametric

the data set. Note that the cost of the ultrametric dT corresponding to a tree T is an

affine offset of cost(T). In particular, we have 〈κ, dT〉 � cost(T) −∑
{i , j}∈E(Kn) κ(i , j).

A natural approach is to formulate this problem as an Integer Linear Program

(ILP) and then study LP or SDP relaxations of it. We consider the following ILP for

this problem that is motivated by [88]. We have the variables x1

i j , . . . , x
n−1

i j for every

distinct pair i , j ∈ V with xt
i j � 1 if and only if d(i , j) > t. For any positive integer n,

let [n] def

� {1, 2, . . . , n}.

min

n−1∑
t�1

∑
{i , j}∈E(Kn)

κ(i , j)xt
i j (ILP-ultrametric)

s.t. xt
i j > xt+1

i j ∀i , j ∈ V, t ∈ [n − 2] (4.2.1)

xt
i j + xt

jk > xt
ik ∀i , j, k ∈ V, t ∈ [n − 1] (4.2.2)

107

∑
i , j∈S

xt
i j > 2 ∀t ∈ [n − 1], S ⊆ V, |S | � t + 1 (4.2.3)

∑
i , j∈S

x |S |i j 6 |S |
2

©«
∑
i , j∈S

xt
i j +

∑
i∈S
j<S

(
1 − xt

i j

)ª®®®¬∀t ∈ [n − 1], S ⊆ V (4.2.4)

xt
i j � xt

ji ∀i , j ∈ V, t ∈ [n − 1] (4.2.5)

xt
ii � 0 ∀i ∈ V, t ∈ [n − 1] (4.2.6)

xt
i j ∈ {0, 1} ∀i , j ∈ V, t ∈ [n − 1] (4.2.7)

Constraints (4.2.1) and (4.2.6) follow from the interpretation of the variables xt
i j :

if d(i , j) > t, i.e., xt
i j � 1 then clearly d(i , j) > t − 1 and so xt−1

i j � 1. Furthermore,

for any i ∈ V we have d(i , i) � 0 and so xt
ii � 0 for every t ∈ [n − 1]. Note that

constraint (4.2.2) is the same as the strong triangle inequality (Definition 1.3.1) since

the variables xt
i j are in {0, 1}. (4.2.5) ensures that the ultrametric is symmetric.

(4.2.3) ensures the ultrametric satisfies Definition 4.1.1spreading: of non-triviality:

for every S ⊆ V of size t + 1 we know that there must be points i , j ∈ S such

that d(i , j) � d(j, i) > t or in other words xt
i j � xt

ji � 1. (4.2.4) ensures that the

ultrametric satisfies Definition 4.1.1hereditary: of non-triviality. To see this note

that the constraint is active only when

∑
i , j∈S xt

i j � 0 and

∑
i∈S, j<S(1 − xt

i j) � 0. In

other words d(i , j) 6 t − 1 for every i , j ∈ S and S is a maximal such set since if i ∈ S

and j < S then d(i , j) > t. Thus S is an equivalence class under the relation i ∼ j iff

d(i , j) 6 t−1 and so for every i , j ∈ S we have d(i , j) 6 |S | −1 or equivalently x |S |i j � 0.

The ultrametric d represented by a feasible solution xt
i j is given by d(i , j) � ∑n−1

t�1
xt

i j .

Definition 4.2.5. For any

{
xt

i j | t ∈ [n − 1], i , j ∈ V
}
let Et be defined as Et

def

�{
{i , j} | xt

i j � 0

}
. Note that if xt

i j is feasible for ILP-ultrametric then Et ⊆ Et+1

for any t since xt
i j > xt+1

i j . The sets {Et}n−1

t�1
induce a natural sequence of graphs

{Gt}n−1

t�1
where Gt � (V, Et)with V being the data set.

108

For a fixed t ∈ {1, . . . , n−1} it is instructive to study the combinatorial properties

of the so called layer-t problem, where we restrict ourselves to the constraints

corresponding to that particular t and drop constraints (4.2.1) and (4.2.4) since they

involve different layers in their expression.

min

∑
{i , j}∈E(Kn)

κ(i , j)xt
i j (ILP-layer)

s.t. xt
i j + xt

jk > xt
ik ∀i , j, k ∈ V (4.2.8)∑

i , j∈S

xt
i j > 2 ∀S ⊆ V, |S | � t + 1 (4.2.9)

xt
i j � xt

ji ∀i , j ∈ V (4.2.10)

xt
ii � 0 ∀i ∈ V (4.2.11)

xt
i j ∈ {0, 1} ∀i , j ∈ V (4.2.12)

The following lemma provides a combinatorial characterization of feasible

solutions to the layer-t problem.

Lemma 4.2.6. Let Gt � (V, Et) be the graph as in Definition 4.2.5 corresponding to a

solution xt
i j to the layer-t problem ILP-layer. Then Gt is a disjoint union of cliques of size

6 t. Moreover this exactly characterizes all feasible solutions of ILP-layer.

Proof. We first note that Gt � (V, Et) must be a disjoint union of cliques since

if {i , j} ∈ Et and { j, k} ∈ Et then {i , k} ∈ Et since xt
ik 6 xt

i j + xt
jk � 0 due to

constraint (4.2.8). Suppose there is a clique in Gt of size > t. Choose a subset S of

this clique of size t + 1. Then

∑
i , j∈S xt

i j � 0 which violates constraint (4.2.9).

Conversely, let Et be a subset of edges such that Gt � (V, Et) is a disjoint

union of cliques of size 6 t. Let xt
i j � 0 if {i , j} ∈ Et and 1 otherwise. Clearly

xt
i j � xt

ji by definition. Suppose xt
i j violates constraint (4.2.8), so that there is a pair

109

i , j, k ∈ V such that xt
ik � 1 but xt

i j � xt
jk � 0. However this implies that Gt is not a

disjoint union of cliques since {i , j}, { j, k} ∈ Et but {i , k} < Et . Suppose xt
i j violates

constraint (4.2.9) for some set S of size t + 1. Therefore for every i , j ∈ S, we have

xt
i j � 0 since xt

i j � xt
ji for every i , j ∈ V and so S must be a clique of size t + 1 in Gt

which is a contradiction. �

By Lemma 4.2.6 the layer-t problem is to find a subset Et ⊆ E(Kn) of minimum

weight under κ, such that the complement graph Gt � (V, Et) is a disjoint union

of cliques of size 6 t. Note that this implies that the number of components in

the complement graph is > dn/te.The converse however, is not necessarily true:

when t � n − 1 then the layer t-problem is the minimum (weighted) cut problem

whose partitions may have size larger than 1. Our algorithmic approach is to

solve an LP relaxation of ILP-ultrametric and then round the solution to obtain a

feasible solution to ILP-ultrametric. The rounding however proceeds iteratively

in a layer-wise manner and so we need to make sure that the rounded solution

satisfies the inter-layer constraints (4.2.1) and (4.2.4). The following lemma gives a

combinatorial characterization of solutions that satisfy these two constraints.

Lemma 4.2.7. For every t ∈ [n − 1], let xt
i j be feasible for the layer-t problem ILP-layer. Let

Gt � (V, Et) be the graph as in Definition 4.2.5 corresponding to xt
i j , so that by Lemma 4.2.6,

Gt is a disjoint union of cliques Kt
1
, . . . , Kt

lt
each of size at most t. Then xt

i j is feasible for

ILP-ultrametric if and only if the following conditions hold.

Nested cliques For any s 6 t every clique Ks
p for some p ∈ [ls] in Gs is a subclique of

some clique Kt
q in Gt where q ∈ [lt].

Realization If
���Kt

p

��� � s for some s 6 t, then Gs contains Kt
p as a component clique, i.e.,

Ks
q � Kt

p for some q ∈ [ls].

Proof. Since xt
i j is feasible for the layer-t problem ILP-layer it is feasible for ILP-

ultrametric if and only if it satisfies constraints (4.2.1) and (4.2.4). The solution xt
i j sat-

110

isfies constraint (4.2.1) if and only ifEt ⊆ Et+1 bydefinition and so Lemma 4.2.7cond1:

follows.

Let us now assume that xt
i j is feasible for ILP-ultrametric, so that by the above

argument Lemma 4.2.7cond1: is satisfied. Note that every clique Kt
p in the clique

decomposition of Gt corresponds to an equivalence class St under the relation

i ∼ j iff xt
i j � 0. Moreover, by Lemma 4.2.6 we have |St | 6 t. (4.2.4) implies that

x |St |
i j � 0 for every i , j ∈ St . In other words, if |St | � s 6 t, then xs

i j � 0 for every

i , j ∈ St and so St is a subclique of some clique Ks
q in the clique decomposition

of Gs . However by Lemma 4.2.7cond1:, Ks
q must be a subclique of a clique Kt

p′ in

the clique decomposition of Gt , since s 6 t. However, as Kt
p ∩ Kt

p′ � St and the

clique decomposition decomposes Gt into a disjoint union of cliques, it follows that

St ⊆ Ks
q ⊆ Kt

p′ � Kt
p � St and so Ks

q � Kt
p . Therefore Lemma 4.2.7cond2: is satisfied.

Conversely, suppose that xt
i j satisfies Lemma 4.2.7cond1: and Lemma 4.2.7cond2:,

so that by the argument in the paragraph above xt
i j satisfies constraint (4.2.1). Let

us assume for the sake of contradiction that for a set S ⊆ V and a t ∈ [n − 1]

constraint (4.2.4) is violated, i.e.,

∑
i , j∈S

x |S |i j > |S |
©«
∑
i , j∈S

xt
i j +

∑
i∈S
j<S

(
1 − xt

i j

)ª®®®¬ .
Since xt

i j ∈ {0, 1} it follows that xt
i j � 0 for every i , j ∈ S and xt

i j � 1 for every

i ∈ S, j < S so that S is a clique in Gt . Note that |S | < t since
∑

i , j∈S x |S |i j > 0. This

contradicts Lemma 4.2.7cond2: however, since S is clearly not a clique in G|S |. �

The combinatorial interpretation of the individual layer-t problems allow us

to simplify the formulation of ILP-ultrametric by replacing the constraints for

sets of a specific size (constraint (4.2.3)) by a global constraint about all sets (con-

straint (4.2.13)).

111

Lemma 4.2.8. We may replace constraint (4.2.3) of ILP-ultrametric by the following

equivalent constraint

∑
j∈S

xt
i j > |S | − t ∀t ∈ [n − 1], S ⊆ V, i ∈ S. (4.2.13)

Proof. Let xt
i j be a feasible solution to ILP-ultrametric. Note that if |S | 6 t then

the constraints are redundant since xt
i j ∈ {0, 1}. Thus we may assume that |S | > t

and let i be any vertex in S. Let us suppose for the sake of a contradiction that∑
j∈S xt

i j < |S | − t. This implies that there is a t sized subset S′ ⊆ S \ {i} such that

for every j ∈ S′ we have xt
i j′ � 0. In other words {i , j′} is an edge in Gt � (V, Et)

for every j′ ∈ S′ and since Gt is a disjoint union of cliques (constraint (4.2.2)), this

implies the existence of a clique of size t + 1. Thus by Lemma 4.2.6, xt
i j could not

have been a feasible solution to ILP-ultrametric.

Conversely, suppose xt
i j is feasible for the modified ILP where constraint (4.2.3) is

replaced by constraint (4.2.13). Then again Gt � (V, Et) is a disjoint union of cliques

since xt
i j satisfies constraint (4.2.2). Assume for contradiction that constraint (4.2.3)

is violated: there is a set S of size t + 1 such that

∑
i , j∈S xt

i j < 2. Note that this

implies that

∑
i , j xt

i j � 0 since xt
i j � xt

ji for every i , j ∈ V and t ∈ [n − 1]. Fix any

i ∈ S, then
∑

j∈S xt
i j < 1 � |S | − t since xt

i j � xt
ji by constraint (4.2.5), a violation of

constraint (4.2.13). Thus xt
i j is feasible for ILP-ultrametric since it satisfies every

other constraint by assumption. �

4.3 Rounding an LP relaxation

In this section we consider the following natural LP relaxation for ILP-ultrametric.

We keep the variables xt
i j for every t ∈ [n − 1] and i , j ∈ V but relax the integrality

constraint on the variables as well as drop constraint (4.2.4).

112

min

n−1∑
t�1

∑
{i , j}∈E(Kn)

κ(i , j)xt
i j (LP-ultrametric)

s.t. xt
i j > xt+1

i j ∀i , j ∈ V, t ∈ [n − 2] (4.3.1)

xt
i j + xt

jk > xt
ik ∀i , j, k ∈ V, t ∈ [n − 1] (4.3.2)∑

j∈S

xt
i j > |S | − t ∀t ∈ [n − 1], S ⊆ V, i ∈ S (4.3.3)

xt
i j � xt

ji ∀i , j ∈ V, t ∈ [n − 1] (4.3.4)

xt
ii � 0 ∀i , j ∈ V, t ∈ [n − 1] (4.3.5)

0 6 xt
i j 6 1 ∀i , j ∈ V, t ∈ [n − 1] (4.3.6)

A feasible solution xt
i j to LP-ultrametric induces a sequence {dt}t∈[n−1] of distance

metrics over V defined as dt(i , j) def

� xt
i j . 4.3.3 enforces an additional structure on

this metric: informally points in a “large enough” subset S should be spread apart

according to the metric dt . Metrics of type dt are called spreading metrics and were

first studied in [89, 92] in relation to graph partitioning problems. The following

lemma gives a technical interpretation of spreading metrics (see, e.g., [89, 92, 90]);

we include a proof for completeness.

Lemma 4.3.1. Let xt
i j be feasible for LP-ultrametric and for a fixed t ∈ [n − 1], let dt be

the induced spreading metric. Let i ∈ V be an arbitrary vertex and let S ⊆ V be a set with

i ∈ S such that |S | > (1 + ε)t for some ε > 0. Then max j∈S dt(i , j) > ε
1+ε .

Proof. For the sake of a contradiction suppose that for every j ∈ S we have dt(i , j) �

xt
i j 6

ε
1+ε . This implies that xt

i j violates constraint (4.3.3) leading to a contradiction:

∑
j∈S

xt
i j 6

ε
1 + ε

|S | < |S | − t ,

113

where the last inequality follows from |S | > (1 + ε)t. �

The following lemma shows that we can optimize over LP-ultrametric in polyno-

mial time.

Lemma 4.3.2. An optimal solution to LP-ultrametric can be computed in time polynomial

in n and log

(
maxi , j κ(i , j)

)
.

Proof. We argue in the standard fashion via the application of the Ellipsoid method

(see e.g., [96]). As such it suffices to verify that the encoding length of the numbers

is small (which is indeed the case here) and that the constraints can be separated in

polynomial time in the size of the input, i.e., in n and the logarithm of the absolute

value of the largest coefficient. Since constraints of type (4.3.1), (4.3.2), (4.3.4), and

(4.3.5) are polynomially many in n, we only need to check separation for constraints

of type (4.3.3). Given a claimed solution xt
i j we can check constraint (4.3.3) by

iterating over all t ∈ [n − 1], vertices i ∈ V , and sizes m of the set S from t + 1 to

n. For a fixed t , i, and set size m sort the vertices in V \ {i} in increasing order of

distance from i (according to the metric dt) and let S be the first m vertices in this

ordering. If

∑
j∈S xt

i j < m − t then clearly xt
i j is not feasible for LP-ultrametric, so we

may assume that

∑
j∈S xt

i j > m − t. Moreover this is the only set to check: for any set

S ⊆ V containing i such that |S | � m,

∑
j∈S xt

i j >
∑

j∈S xt
i j > m − t. Thus for a fixed

t ∈ [n − 1], i ∈ V and set size m, it suffices to check that xt
i j satisfies constraint (4.3.3)

for this subset S. �

From now on we will simply refer to a feasible solution to LP-ultrametric by

the sequence of spreading metrics {dt}t∈[n−1] it induces. The following definition

introduces the notion of an open ball BU (i , r, t) of radius r centered at i ∈ V

according to the metric dt and restricted to the set U ⊆ V .

Definition 4.3.3. Let {dt | t ∈ [n − 1]} be the sequence of spreading metrics feasible

for LP-ultrametric. Let U ⊆ V be an arbitrary subset of V . For a vertex i ∈ U, r ∈ �,

114

and t ∈ [n − 1]we define the open ball BU (i , r, t) of radius r centered at i as

BU (i , r, t)
def

�
{

j ∈ U | dt(i , j) < r
}
⊆ U.

If U � V then we denote BU (i , r, t) simply by B (i , r, t).

Remark 4.3.4. For every pair i , j ∈ V we have dt(i , j) > dt+1(i , j) by constraint (4.3.1).

Thus for any subset U ⊆ V , i ∈ U, r ∈ �, and t ∈ [n − 2], it holds BU (i , r, t) ⊆

BU (i , r, t + 1).

To round LP-ultrametric to get a feasible solution for ILP-ultrametric, we will use

the technique of sphere growingwhich was introduced in [15] to show an O(log n)

approximation for the maximum multicommodity flow problem. Recall from

Lemma 4.2.6 that a feasible solution to ILP-layer consists of a decomposition of the

graph Gt into a set of disjoint cliques of size at most t. One way to obtain such

a decomposition is to choose an arbitrary vertex, grow a ball around this vertex

until the expansion of this ball is below a certain threshold, chop off this ball and

declare it as a partition and then recurse on the remaining vertices. This is the

main idea behind sphere growing, and the parameters are chosen depending on

the constraints of the specific problem (see, e.g., [94, 89, 95] for a few representative

applications of this technique). The first step is to associate to every ball BU (i , r, t) a

volume vol (BU (i , r, t)) and a boundary ∂BU (i , r, t) so that its expansion is defined.

For any t ∈ [n − 1] and U ⊆ V we denote by γU
t the value of the layer-t objective for

solution dt restricted to the set U, i.e.,

γU
t

def

�

∑
i , j∈U

i< j

κ(i , j)dt(i , j).

When U � V we refer to γU
t simply by γt . Since κ : V × V → �>0, it follows that

γU
t 6 γt for any U ⊆ V . We are now ready to define the volume, boundary, and

115

expansion of a ball BU (i , r, t). We use the definition of [89] modified for restrictions

to arbitrary subsets U ⊆ V .

Definition 4.3.5. [89] Let U be an arbitrary subset of V . For a vertex i ∈ U, radius

r ∈ �>0, and t ∈ [n − 1], let BU (i , r, t) be the ball of radius r as in Definition 4.3.3.

Then we define its volume as

vol (BU (i , r, t))
def

�
γU

t

n log n
+

∑
j,k∈BU (i ,r,t)

j<k

κ(j, k)dt(j, k) +
∑

j∈BU (i ,r,t)
k<BU (i ,r,t)

k∈U

κ(j, k)
(
r − dt(i , j)

)
.

The boundary of the ball ∂BU (i , r, t) is the partial derivative of volume with respect

to the radius:

∂BU (i , r, t)
def

�
∂ vol (BU (i , r, t))

∂r
�

∑
j∈BU (i ,r,t)
k<BU (i ,r,t)

k∈U

κ(j, k).

The expansion φ(BU (i , r, t)) of the ball BU (i , r, t) is defined as the ratio of its

boundary to its volume, i.e.,

φ (BU (i , r, t))
def

�
∂BU (i , r, t)

vol (BU (i , r, t))
.

The following lemma shows that the volume of a ball BU (i , r, t) is differentiable

with respect to r in the interval (0,∆] except at finitely many points (see e.g., [89]).

Lemma 4.3.6. Let BU (i , r, t) be the ball corresponding to a set U ⊆ V , vertex i ∈ U,

radius r ∈ � and t ∈ [n − 1]. Then vol (BU (i , r, t)) is differentiable with respect to r in

the interval (0,∆] except at finitely many points.

Proof. Note that for any fixed U ⊆ V , vol (BU (i , r, t)) is a monotone non-decreasing

function in r since for a pair j, k ∈ U such that j ∈ BU (i , r, t) and k < BU (i , r, t) we

have r−dt(i , j) 6 dt(j, k) otherwise r−dt(i , j) > dt(j, k) so that r > dt(i , j)+dt(j, k) >

116

dt(i , k), a contradiction to the fact that k < BU (i , r, t). Therefore adding the vertex k

to the ball centered at i is only going to increase its volume as r − dt(i , j) 6 dt(j, k)

(see Definition 4.3.3). Thus vol (BU (i , r, t)) is differentiable with respect to r in the

interval (0,∆] except at finitely many points which correspond to a new vertex from

U being added to the ball. �

Input: Data set V , {dt}t∈[n−1] : V × V , ε > 0, κ : V × V → �>0

Output: A solution set of the form

{
xt

i j ∈ {0, 1} | t ∈
[⌊ n−1

1+ε

⌋]
, i , j ∈ V

}
1 mε ←

⌊ n−1

1+ε

⌋
2 t ← mε

3 Ct+1← {V}
4 ∆← ε

1+ε
5 while t > 1 do
6 Ct ← ∅
7 for U ∈ Ct+1 do
8 if |U | 6 (1 + ε)t then
9 Ct ← Ct ∪ {U}
10 Go to line 7

11 end
12 while U , ∅ do
13 Let i be arbitrary in U

14 Let r ∈ (0,∆] be s.t. φ (BU (i , r, t)) 6 1

∆
log

(
vol(BU (i ,∆,t))
vol(BU (i ,0,t))

)
15 Ct ← Ct ∪ {BU (i , r, t)}
16 U ← U \ BU (i , r, t)
17 end
18 end
19 xt

i j � 1 if i ∈ U1 ∈ Ct , j ∈ U2 ∈ Ct and U1 , U2, else xt
i j � 0

20 t ← t − 1

21 end
22 return

{
xt

i j | t ∈ [mε], i , j ∈ V
}

Algorithm 2: Iterative rounding algorithm to find a low cost ultrametric

The following theorem establishes that the rounding procedure of 2 ensures that

the cliques in Ct are “small” and that the cost of the edges removed to form them

are not too high. It also shows that 2 can be implemented to run in time polynomial

in n.

117

Theorem 4.3.7. Let mε
def

�
⌊ n−1

1+ε

⌋
as in 2 and let

{
xt

i j | t ∈ [mε], i , j ∈ V
}
be the output

of 2 run on a feasible solution {dt}t∈[n−1] of LP-ultrametric and any choice of ε ∈ (0, 1).

For any t ∈ [mε], we have that xt
i j is feasible for the layer-b(1 + ε) tc problem ILP-layer and

there is a constant c(ε) > 0 depending only on ε such that

∑
{i , j}∈E(Kn)

κ(i , j)xt
i j 6 c(ε)(log n)γt .

Moreover, 2 can be implemented to run in time polynomial in n.

Proof. We first show that for a fixed t, the constructed solution xt
i j is feasible for the

layer-b(1 + ε)tc problem ILP-layer. Let Ct be as in 2 so that xt
i j � 1 if i , j belong to

different sets in Ct and xt
i j � 0 otherwise. Let Gt � (V, Et) be as in Definition 4.2.5

corresponding to xt
i j . Note that for any t ∈ [mε], every Vi ∈ Ct is a clique in Gt by

construction (??clique:) and for every distinct pair Vi ,Vj ∈ Ct we have Vi ∩ Vj � ∅

(??addsubball: and ??subtractball:). Therefore by Lemma 4.2.6, it suffices to prove

that for any Vi ∈ Ct , it holds |Vi | 6 b(1 + ε)tc. If Vi is added to Ct in ??leftover: then

there is nothing to prove.

Thus let us assume that Vi is of the form BU (i , r, t) for some U ⊆ V as in

??subball: so that φ (BU (i , r, t)) 6 1

∆
log

(
vol(BU (i ,∆,t))
vol(BU (i ,0,t))

)
. Note that by Lemma 4.3.1

it suffices to show that there is such an r ∈ (0,∆]. This property follows from the

rounding scheme due to [89] as we will explain now.

By Lemma 4.3.6 vol (BU (i , r, t)) is differentiable everywhere in the interval

(0,∆] except at finitely many points X. Let the set of discontinuous points be

X � {x1, x2, . . . , xk−1
} with x0 � 0 < x1 < x2 . . . xk−1

< xk � ∆. We claim that

there must be an r ∈ (0,∆] \ X such that φ (BU (i , r, t)) 6 1

∆
log

(
vol(BU (i ,∆,t))
vol(BU (i ,0,t))

)
. Let

us assume for the sake of a contradiction that for every r ∈ (0,∆] \ X we have

φ (BU (i , r, t)) > 1

∆
log

(
vol(BU (i ,∆,t))
vol(BU (i ,0,t))

)
. However integrating both sides from 0 to ∆

118

results in a contradiction:∫ ∆

r�0

φ (BU (i , r, t)) dr �

∫ ∆

r�0

∂BU (i , r, t)
vol (BU (i , r, t))

dr (4.3.7)

�

k∑
i�1

∫ xi

r�xi−1

∂BU (i , r, t)
vol (BU (i , r, t))

dr (4.3.8)

�

k∑
i�1

∫ xi

r�xi−1

d (vol (BU (i , r, t)))
vol (BU (i , r, t))

(4.3.9)

6 log vol (BU (i ,∆, t)) − log vol (BU (i , 0, t)) (4.3.10)

�

∫ ∆

r�0

1

∆
log

(
vol (BU (i ,∆, t))
vol (BU (i , 0, t))

)
dr, (4.3.11)

where (4.3.10) follows since f is monotonic increasing. For any t ∈ [mε] the set

Ct is a disjoint partition of V with balls of the form BU (i , r, t′) for some t′ > t

and U ⊆ Ul ∈ Ct′+1: this is easily seen by induction since Cmε+1 is initialized as

V . Further, a cluster Vi is added to Ct either in ??addsubball: in which case it is

a ball of the form BU (i , r, t) for some U ∈ Ct+1, i ∈ U, and r ∈ � or it is added

in ??leftover: in which case it must have been a ball BU (i′, r′, t′) for some t′ > t,

U ⊆ Ul ∈ Ct′+1, i′ ∈ V , and r′ ∈ �. Note that for any t′ > t and U ⊆ V , it holds

γU
t′ 6 γ

U
t since for every pair i , j ∈ V we have κ(i , j) > 0 and dt(i , j) > dt′(i , j)

because of constraint (4.3.1). Moreover, for any subset U ⊆ V we have γU
t 6 γt since

κ, dt > 0. We claim that for any t ∈ [mε] the total volume of the balls in Ct is at most(
2 +

1

log n

)
γt . First note that the affine term

γU
t′

n log n in the volume of a ball BU (i , r, t′)

in Ct is upper bounded by

γt
n log n and appears at most n times. Next we claim that

the contribution to the total volume from the term involving the edges inside and

crossing a ball BU (i , r, t′) ∈ Ct is at most 2γt . This is because the balls are disjoint,

r − dt′(i , k) 6 dt′(j, k) 6 dt(j, k) for the crossing edges of a ball BU (i , r, t′) ∈ Ct and

a crossing edge contributes to the volume of at most 2 balls in Ct . Note that for

any U ⊆ V , i ∈ U, and r ∈ �>0 we have vol (BU (i , r, t)) ∈
[

γU
t

n log n ,
(
1 +

1

n log n

)
γU

t

]
.

119

Using this observation and the stopping condition of ??subball: it follows that

∑
{i , j}∈E(Kn)

κ(i , j)xt
i j �

∑
{i , j}∈E(Kn):

i , j separated in Ct

κ(i , j)

�
1

2

∑
BU (i ,r,t′)∈Ct :

t′>t
U⊆Ul∈Ct′+1

∑
j∈BU (i ,r,t′)
k<BU (i ,r,t′)

κ(j, k)

︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸
Since κ is symmetric

�
1

2

∑
BU (i ,r,t′)∈Ct :

t′>t
U⊆Ul∈Ct′+1

∂BU (i , r, t′)

�
1

2

∑
BU (i ,r,t′)∈Ct :

t′>t
U⊆Ul∈Ct′+1

φ (BU (i , r, t′))vol (BU (i , r, t′))

6
∑

BU (i ,r,t′)∈Ct :
t′>t

U⊆Ul∈Ct′+1

1

2∆
log

(
vol (BU (i ,∆, t′))
vol (BU (i , 0, t′))

)
vol (BU (i , r, t′))

6
1

2∆

(
log

(
n log n + 1

))︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸
via interval bounds

∑
BU (i ,r,t′)∈Ct :

t′>t
U⊆Ul∈Ct′+1

vol (BU (i , r, t′))

6
1 + ε
2ε

(
log

(
n log n + 1

)) (
2 +

1

log n

)
γt︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸

contribution of affine term 6
γt

log n
contribution of edge terms 6 2γt

6 c(ε)(log n)γt ,

for some constant c(ε) > 0 depending only on ε.

For the run time of 2 note that the loop in ??tloop: runs for at most n − 1 steps,

while the loop in ??iterate: runs for at most n steps. For a set U ⊆ V , to compute

the ball BU (i , r, t) of least radius r such that φ (BU (i , r, t)) 6 1

∆
log

(
vol(BU (i ,∆,t))
vol(BU (i ,0,t))

)
,

sort the vertices in U \ {i} in increasing order of distance from i according to dt .

120

Let the vertices in U \ {i} in this sorted order be

{
j1, . . . , j|U |−1

}
. Then it suffices to

check the expansion of the balls {i} and {i} ∪ { j1, . . . , jk} for every k ∈ [|U | − 1]. It

is straightforward to see that all the other steps in 2 run in time polynomial in n. �

Remark 4.3.8. A discrete version of the volumetric argument for region growing can

be found in [97].

We are now ready to prove the main theorem showing that we can obtain a low

cost non-trivial ultrametric from 2.

Theorem 4.3.9. Let {xt
i j | t ∈ [mε] , i , j ∈ V} be the output of 2 on an optimal solution

{dt}t∈[n−1] of LP-ultrametric for any choice of ε ∈ (0, 1). Define the sequence
{

yt
i j

}
for

every t ∈ [n − 1] and i , j ∈ V as

yt
i j

def

�

x bt/(1+ε)ci j if t > 1 + ε

1 if t 6 1 + ε.

Then yt
i j is feasible for ILP-ultrametric and satisfies

n−1∑
t�1

∑
{i , j}∈E(Kn)

κ(i , j)yt
i j 6

(
2c(ε) log n

)
OPT

where OPT is the optimal solution to ILP-ultrametric and c(ε) is the constant in the

statement of Theorem 4.3.9.

Proof. Note that by Theorem 4.3.7 for every t ∈ [mε], xt
i j is feasible for the layer-

b(1 + ε)tc problem ILP-layer and that there is a constant c(ε) > 0 such that for every

t ∈ [mε], we have

∑
{i , j}∈E(Kn) κ(i , j)xt

i j 6
(
c(ε) log n

)
γt .

Let yt
i j be as in the statement of the theorem. The graph Gt � (V, Et) as in

Definition 4.2.5 corresponding to yt
i j for t 6 1 + ε consists of isolated vertices, i.e.,

cliques of size 1: By definition yt
i j is feasible for the layer-t problem ILP-layer. The

121

collection C1 corresponding to x1

i j consists of cliques of size at most 1 + ε, however

since 0 < ε < 1 it follows that the cliques in C1 are isolated vertices and so x1

i j � 1

for every {i , j} ∈ E(Kn). Thus

∑
i , j κ(i , j)yt

i j �
∑

i , j κ(i , j)x1

i j 6
(
c(ε) log n

)
γ1 for

t 6 1 + ε by Theorem 4.3.7. Moreover for every t > 1 + ε, we have

∑
i , j κ(i , j)yt

i j 6

(c(ε) log n)γbt/(1+ε)c again by Theorem 4.3.7. We claim that yt
i j is feasible for ILP-

ultrametric. The solution yt
i j corresponds to the collection Cb t

1+ε c for t > 1 + ε or to

the collection C1 for t 6 1 + ε from 2. For any t < mε, every ball BU (i , r, t) ∈ Ct

comes from the refinement of a ball BU′ (i′, r′, t′) for some i′ ∈ V , r′ > r, t′ > t and

U′ ⊇ U. Thus yt
i j satisfies Lemma 4.2.7cond1: of Lemma 4.2.7. On the other hand

??smallball: ensures that if |BU (i , r, t)| � b(1 + ε)sc for some U ⊆ V and s < t then

BU (i , r, t) also appears as a ball in Cs . Therefore yt
i j also satisfies Lemma 4.2.7cond2:

of Lemma 4.2.7 and so is feasible for ILP-ultrametric. The cost of yt
i j is at most

n−1∑
t�1

∑
{i , j}∈E(Kn)

κ(i , j)yt
i j 6

(
c(ε) log n

) (
γ1 +

n−1∑
t�2

γbt/(1+ε)c

)
6 2c(ε) log n

n−1∑
t�1

γt

6 2c(ε) log n OPT,

where we use the fact that

∑n−1

t�1
γt � OPT(LP) 6 OPT since LP-ultrametric is a

relaxation of ILP-ultrametric. �

Theorem 4.3.9 implies the following corollary where we put everything together

to obtain a hierarchical clustering of V in time polynomial in n with |V | � n. Let T

denote the set of all possible hierarchical clusterings of V .

Corollary 4.3.10. Given a data setV of n points and a similarity function κ : V×V → �>0,

122

Input: Data set V of n points, similarity function κ : V × V → �>0

Output: Hierarchical clustering of V
1 Solve LP-ultrametric to obtain optimal sequence of spreading metrics

{dt | dt : V × V → [0, 1]}
2 Fix a choice of ε ∈ (0, 1)
3 mε ←

⌊ n−1

1+ε

⌋
4 Let

{
xt

i j | t ∈ [mε]
}
be the output of 2 on V, κ, {dt}t∈[n−1]

5 Let yt
i j

def

�

{
x bt/(1+ε)ci j if t > 1 + ε

1 if t 6 1 + ε
for every t ∈ [n − 1], i , j ∈ E(Kn)

6 d(i , j) ← ∑n−1

t�1
yt

i j for every i , j ∈ E(Kn)
7 d(i , i) ← 0 for every i ∈ V
8 Let r, T be the output of 1 on V, d
9 return r, T

Algorithm 3: Hierarchical clustering of V for cost function (1.3.1)

3 returns a hierarchical clustering T of V satisfying

cost(T) 6 O
(
log n

)
min

T′∈T
cost(T′).

Moreover 3 runs in time polynomial in n and log

(
maxi , j∈V κ(i , j)

)
.

Proof. Let T̂ be the optimal hierarchical clustering according to cost function (1.3.1).

ByCorollary 4.2.4 andTheorem4.3.9we canfind ahierarchical clusteringT satisfying

∑
{i , j}∈E(Kn)

κ(i , j)(
��
leaves(T[lca(i , j)])

�� − 1) 6 O(log n) ©«
∑

{i , j}∈E(Kn)
κ(i , j)

(���leaves(T̂[lca(i , j)])
��� − 1

)ª®¬ .
Let K def

�
∑
{i , j}∈E(Kn) κ(i , j). Then it follows from the above expression that cost(T) 6

O(log n) cost(T̂) − O(log n)K + K 6 O(log n) cost(T̂).

We can find an optimal solution to LP-ultrametric due to Lemma 4.3.2 using

the Ellipsoid algorithm in time polynomial in n and log

(
maxi , j∈V κ(i , j)

)
. 2 runs in

time polynomial in n due to Theorem 4.3.7. Finally, 1 runs in time O
(
n3

)
due to

Lemma 4.2.3. �

123

4.4 Generalized Cost Function

A naive approach to solving this problem using the ideas of 2 would be to replace

the objective function of ILP-ultrametric by

∑
{i , j}∈E(Kn)

κ(i , j) f
(

n−1∑
t�1

xt
i j

)
.

This makes the corresponding analogue of LP-ultrametric non-linear however,

and for a general κ and f it is not clear how to compute an optimum solution

in polynomial time. One possible solution is to assume that f is convex and use

the Frank-Wolfe algorithm to compute an optimum solution. That still leaves the

problem of how to relate f
(∑n−1

t�1
xt

i j

)
to

∑n−1

t�1
f
(
xt

i j

)
as one would have to do to

get a corresponding version of Theorem 4.3.9. The following simple observation

provides an alternate way of tackling this problem.

Observation 4.4.1. Let d : V × V → � be an ultrametric and f : �>0 → �>0 be a

strictly increasing function such that f (0) � 0. Define the function f (d) : V ×V → �

as f (d)(i , j) def

� f (d(i , j)). Then f (d) is also an ultrametric on V .

Therefore by Corollary 4.2.4 to find a minimum cost hierarchical clustering T of

V according to the cost function (1.3.2), it suffices to minimize 〈κ, d〉 where d is the

f -image of a non-trivial ultrametric as in Definition 4.1.1. The following lemma lays

down the analogue of Definition 4.1.1spreading: and Definition 4.1.1hereditary:

from Definition 4.1.1 that the f -image of a non-trivial ultrametric satisfies.

Lemma 4.4.2. Let f : �>0 → �>0 be a strictly increasing function satisfying f (0) � 0.

An ultrametric d on V is the f -image of a non-trivial ultrametric on V iff

1. for every non-empty set S ⊆ V , there is a pair of points i , j ∈ S such that d(i , j) >

f (|S | − 1),

124

2. for any t if St is an equivalence class of V under the relation i ∼ j iff d(i , j) 6 t, then

maxi , j∈St d(i , j) 6 f (|St | − 1).

Proof. If d is the f -image of a non-trivial ultrametric d′ on V then clearly d satisfies

Lemma 4.4.2spreading: and Definition ??hereditary:. Conversely, let d be an

ultrametric on V satisfying Lemma 4.4.2spreading: and Definition ??hereditary:.

Note that f is strictly increasing and V is a finite set and thus f −1
exists and is strictly

increasing as well, with f −1(0) � 0. Define d′ as d′(i , j) def

� f −1(d(i , j)) for every

i , j ∈ V . By 4.4.1 d′ is an ultrametric on V satisfying Definition 4.1.1spreading: and

Definition 4.1.1hereditary: of Definition 4.1.1 and so d′ is a non-trivial ultrametric

on V . �

Lemma 4.4.2 allows us to write the analogue of ILP-ultrametric for finding

the minimum cost ultrametric that is the f -image of a non-trivial ultrametric

on V . Note that by Lemma 4.1.3 the range of such an ultrametric is the set

{ f (0), f (1), . . . , f (n − 1)}. We have the binary variables xt
i j for every distinct pair

i , j ∈ V and t ∈ [n − 1], where xt
i j � 1 if d(i , j) > f (t) and xt

i j � 0 if d(i , j) < f (t).

min

n−1∑
t�1

∑
{i , j}∈E(Kn)

κ(i , j)
(

f (t) − f (t − 1)
)

xt
i j (f-ILP-ultrametric)

s.t. xt
i j > xt+1

i j ∀i , j ∈ V, t ∈ [n − 2] (4.4.1)

xt
i j + xt

jk > xt
ik ∀i , j, k ∈ V, t ∈ [n − 1] (4.4.2)∑

i , j∈S

xt
i j > 2 ∀t ∈ [n − 1], S ⊆ V, |S | � t + 1 (4.4.3)

∑
i , j∈S

x |S |i j 6 |S |
2

©«
∑
i , j∈S

xt
i j +

∑
i∈S
j<S

(
1 − xt

i j

)ª®®®¬∀t ∈ [n − 1], S ⊆ V (4.4.4)

xt
i j � xt

ji ∀i , j ∈ V, t ∈ [n − 1] (4.4.5)

125

xt
ii � 0 ∀i ∈ V, t ∈ [n − 1] (4.4.6)

xt
i j ∈ {0, 1} ∀i , j ∈ V, t ∈ [n − 1] (4.4.7)

If xt
i j is a feasible solution to f-ILP-ultrametric then the ultrametric represented

by it is defined as

d(i , j) def

�

n−1∑
t�1

(f (t) − f (t − 1))xt
i j .

(4.4.3) ensures that d satisfies Lemma 4.4.2spreading: of Lemma 4.4.2, since for

every S ⊆ V of size t + 1 we have a pair i , j ∈ S such that d(i , j) > f (t). Similarly

constraint (4.4.4) ensures that d satisfies Definition ??hereditary: of Lemma 4.4.2

since it is active if and only if S is an equivalence class of V under the relation

i ∼ j iff d(i , j) < f (t). In this case Definition ??hereditary: of Lemma 4.4.2 requires

maxi , j∈S d(i , j) 6 f (|S | − 1) or in other words x |S |i j � 0 for every i , j ∈ S.

Similar to ILP-layer we define an analogous layer-t problem where we fix a choice

of t ∈ [n − 1] and drop the constraints that relate the different layers to each other.

min

∑
{i , j}∈E(Kn)

κ(i , j)
(

f (t) − f (t − 1)
)

xt
i j (f-ILP-layer)

s.t. xt
i j + xt

jk > xt
ik ∀i , j, k ∈ V (4.4.8)∑

i , j∈S

xt
i j > 2 ∀S ⊆ V, |S | � t + 1 (4.4.9)

xt
i j � xt

ji ∀i , j ∈ V (4.4.10)

xt
ii � 0 ∀i ∈ V (4.4.11)

xt
i j ∈ {0, 1} ∀i , j ∈ V (4.4.12)

Note that f-ILP-ultrametric and f-ILP-layer differ from ILP-ultrametric and ILP-layer

126

respectively only in the objective function. Therefore Lemma 4.2.6 and Lemma 4.2.7

also give a combinatorial characterization of the set of feasible solutions to f-ILP-

layer and f-ILP-ultrametric respectively. Similarly, by Lemma 4.2.8 we may replace

constraint (4.4.3) by the following equivalent constraint over all subsets of V

∑
j∈S

xt
i j > |S | − t ∀t ∈ [n − 1], S ⊆ V, i ∈ S.

This provides the analogue of LP-ultrametric in which we drop constraint (4.4.4)

and enforce it in the rounding procedure.

min

n−1∑
t�1

∑
{i , j}∈E(Kn)

κ(i , j)
(

f (t) − f (t − 1)
)

xt
i j (f-LP-ultrametric)

s.t. xt
i j > xt+1

i j ∀i , j ∈ V, t ∈ [n − 2] (4.4.13)

xt
i j + xt

jk > xt
ik ∀i , j, k ∈ V, t ∈ [n − 1] (4.4.14)∑

j∈S

xt
i j > |S | − t ∀t ∈ [n − 1], S ⊆ V, i ∈ S (4.4.15)

xt
i j � xt

ji ∀i , j ∈ V, t ∈ [n − 1] (4.4.16)

xt
ii � 0 ∀i ∈ V, t ∈ [n − 1] (4.4.17)

0 6 xt
i j 6 1 ∀i , j ∈ V, t ∈ [n − 1] (4.4.18)

Since f-LP-ultrametric differs from LP-ultrametric only in the objective function,

it follows from Lemma 4.3.2 that an optimum solution to f-LP-ultrametric can

be computed in time polynomial in n. As before, a feasible solution xt
i j of f-LP-

ultrametric induces a sequence {dt}t∈[n−1] of spreading metrics on V defined as

dt(i , j) def

� xt
i j . Note that in contrast to the ultrametric d, the spreading metrics

{dt}t∈[n−1] are independent of the function f .

127

Let BU (i , r, t) be a ball of radius r centered at i ∈ U for some set U ⊆ V as in

Definition 4.3.3. For a subset U ⊆ V , let γU
t be defined as before to be the value of

the layer-t objective corresponding to a solution dt of f-LP-ultrametric restricted to

U, i.e.,

γU
t

def

�

∑
i , j∈U

i< j

(
f (t) − f (t − 1)

)
κ(i , j)dt(i , j).

As before, we denote γV
t by γt . We will associate a volume vol (BU (i , r, t)) and a

boundary ∂BU (i , r, t) to the ball BU (i , r, t) as in Section 4.3.

Definition 4.4.3. Let U be an arbitrary subset of V . For a vertex i ∈ U, radius

r ∈ �>0, and t ∈ [n − 1], let BU (i , r, t) be the ball of radius r as in Definition 4.3.3.

Then we define its volume as

vol (BU (i , r, t))
def

�
γU

t

n log n
+

(
f (t) − f (t − 1)

) ©«
∑

j,k∈BU (i ,r,t)
j<k

κ(j, k)dt(j, k) +
∑

j∈BU (i ,r,t)
k<BU (i ,r,t)

k∈U

κ(j, k)
(
r − dt(i , j)

)ª®®®®®®¬
.

The boundary of the ball ∂BU (i , r, t) is the partial derivative of volume with respect

to the radius:

∂BU (i , r, t)
def

�
(

f (t) − f (t − 1)
) (
∂ vol (BU (i , r, t))

∂r

)
�

(
f (t) − f (t − 1)

) ©«
∑

j∈BU (i ,r,t)
k<BU (i ,r,t)

k∈U

κ(j, k)

ª®®®®®®¬
.

The expansion φ (BU (i , r, t)) of the ball BU (i , r, t) is defined as the ratio of its

128

boundary to its volume, i.e.,

φ (BU (i , r, t))
def

�
∂BU (i , r, t)

vol (BU (i , r, t))
.

Note that the expansion φ (BU (i , r, t)) of Definition 4.4.3 is the same as in

Definition 4.3.5 since the

(
f (t) − f (t − 1)

)
term cancels out. Thus one could run

2 with the same notion of volume as in Definition 4.3.5, however in that case the

analogous versions of Theorem 4.3.7 and Theorem 4.3.9 do not follow as naturally.

The following is then a simple corollary of Theorem 4.3.7.

Corollary 4.4.4. Let mε
def

�
⌊ n−1

1+ε

⌋
as in 2. Let

{
xt

i j | t ∈ [n − 1], i , j ∈ V
}
be the output

of 2 using the notion of volume, boundary and expansion as in Definition 4.4.3, on a feasible

solution to f-LP-ultrametric and any choice of ε ∈ (0, 1). For any t ∈ [mε], we have that

xt
i j is feasible for the layer-b(1 + ε)tc problem f-ILP-layer and there is a constant c(ε) > 0

depending only on ε such that

∑
{i , j}∈E(Kn)

κ(i , j)
(

f (t) − f (t − 1)
)

xt
i j 6

(
c(ε) log n

)
γt .

Corollary 4.4.4 allows us to prove the analogue of Theorem 4.3.9, i.e., we can use

2 to get an ultrametric that is an f -image of a non-trivial ultrametric and whose cost

is at most O(log n) times the cost of an optimal hierarchical clustering according to

cost function (1.3.2).

Theorem 4.4.5. Let {xt
i j | t ∈ [mε] , i , j ∈ V} be the output of 2 using the notion of

volume, boundary, and expansion as in Definition 4.4.3 on an optimal solution {dt}t∈[n−1] of

f-LP-ultrametric for any choice of ε ∈ (0, 1). Define the sequence
{

yt
i j

}
for every t ∈ [n − 1]

129

and i , j ∈ V as

yt
i j

def

�

x bt/(1+ε)ci j if t > 1 + ε

1 if t 6 1 + ε.

Then yt
i j is feasible for f-ILP-ultrametric and there is a constant c(ε) > 0 such that

n−1∑
t�1

∑
{i , j}∈E(Kn)

κ(i , j)
(

f (t) − f (t − 1)
)

yt
i j 6

(
c(ε) log n

)
OPT

where OPT is the optimal solution to f-ILP-ultrametric.

Proof. Immediate from Corollary 4.4.4 and Theorem 4.3.9. �

Finally we put everything together to obtain the corresponding 4 that outputs a

hierarchical clustering of V of cost at most O
(
log n

)
times the optimal clustering

according to cost function (1.3.2).

Corollary 4.4.6. Given a data set V of n points and a similarity function κ : V ×V → �,

4 returns a hierarchical clustering T of V satisfying

cost f (T) 6 O
(
an + log n

)
min

T′∈T
cost f (T′),

where an
def

� maxn′∈[n] f (n′) − f (n′ − 1). Moreover 4 runs in time polynomial in n,

log f (n) and log

(
maxi , j∈V κ(i , j)

)
.

Proof. Let T̂ be an optimal hierarchical clustering according to cost function (1.3.2).

By Corollary 4.2.4, Lemma 4.4.2 and Theorem 4.4.5 it follows that we can find a

hierarchical clustering T satisfying

∑
{i , j}∈E(Kn)

κ(i , j) f
(��

leaves(T[lca(i , j)]
�� − 1

)
6

130

O(log n) ©«
∑

{i , j}∈E(Kn)
κ(i , j) f

(���leaves(T̂[lca(i , j)]
��� − 1

)ª®¬ .
Recall that cost f (T)

def

�
∑
{i , j}∈E(Kn) κ(i , j) f

(��
leaves(T[lca(i , j)]

��)
. Let K def

�∑
{i , j}∈E(Kn) κ(i , j). Note that for any hierarchical clustering T′we have K 6 cost f (T′)

since f is an increasing function. From the above expression we infer that

cost f (T) − anK 6
∑

{i , j}∈E(Kn)
κ(i , j) f

(��
leaves(T[lca(i , j)]

�� − 1

)
6 O(log n) cost f (T̂),

and so cost f (T) 6 O(log n) cost f (T̂) + anK 6 O(an + log n) cost f (T̂). We can find

an optimal solution to f-LP-ultrametric due to Lemma 4.3.2 using the Ellipsoid

algorithm in time polynomial in n, log f (n), and log

(
maxi , j∈V κ(i , j)

)
. Note the

additional log f (n) in the running time since now we need to binary search over

the interval

[
0,maxi , j∈V κ(i , j) · f (n) · n

]
. 2 runs in time polynomial in n due to

Theorem 4.3.7. Finally, 1 runs in time O
(
n3

)
due to Lemma 4.2.3. �

Input: Data set V of n points, similarity function κ : V × V → �>0,

f : �>0→ �>0 strictly increasing with f (0) � 0

Output: Hierarchical clustering of V
1 Solve f-LP-ultrametric to obtain optimal sequence of spreading metrics

{dt | dt : V × V → [0, 1]}
2 Fix a choice of ε ∈ (0, 1)
3 mε ←

⌊ n−1

1+ε

⌋
4 Let

{
xt

i j | t ∈ [mε]
}
be the output of 2 on V, κ, {dt}t∈[n−1]

5 Let yt
i j

def

�

{
x bt/(1+ε)ci j if t > 1 + ε

1 if t 6 1 + ε
for every t ∈ [n − 1], i , j ∈ E(Kn)

6 d(i , j) ← ∑n−1

t�1

(
f (t) − f (t − 1)

)
yt

i j for every i , j ∈ E(Kn)
7 d(i , i) ← 0 for every i ∈ V
8 Let r, T be the output of 1 on V, f −1(d)
9 return r, T

Algorithm 4: Hierarchical clustering of V for cost function (1.3.2)

131

4.5 Experiments

Finally, we describe the experiments we performed. For small data sets ILP-

ultrametric and f-ILP-ultrametric describe integer programming formulations that

allow us to compute the exact optimal hierarchical clustering for cost functions (1.3.1)

and (1.3.2) respectively. We implement f-ILP-ultrametric where one can plug in any

strictly increasing function f satisfying f (0) � 0. In particular, setting f (x) � x gives

us ILP-ultrametric. We use the Mixed Integer Programming (MIP) solver Gurobi 6.5

[98]. Similarly, we also implement 1, 2, and 4 using Gurobi as our LP solver. Note

that 4 needs to fix a parameter choice ε ∈ (0, 1). In Section 4.3 and Section 4.4 we

did not discuss the effect of the choice of the parameter ε in detail. In particular,

we need to choose an ε small enough such that for every U ⊆ V encountered in 2,

vol (BU (i ,∆, t)) is of the same sign as vol (BU (i , 0, t)) for every t ∈ [n − 1], so that

log

(
vol(BU (i ,∆,t))
vol(BU (i ,0,t))

)
is defined. In our experiments we start with a particular value of ε

(say 0.5) and halve it till the volumes have the same sign. For the sake of exposition,

we limit ourselves to the following choices for the function f

{
x , x2, log(1 + x), ex − 1

}
.

By Lemma 4.3.2 we can optimize over f-LP-ultrametric in time polynomial in n using

the Ellipsoid method. In practice however, we use the dual simplexmethod where we

separate triangle inequality constraints (4.4.14) and spreading constraints (4.4.15)

to obtain fast computations. For the similarity function κ : V × V → �we limit

ourselves to using cosine similarity and the Gaussian kernel with σ � 1. They are

defined formally below.

Definition 4.5.1 (Cosine similarity). Given a data set V ∈ �m
for some m > 0, the

cosine similarity κcos is defined as κcos(x , y) def

�
〈x ,y〉
‖x‖‖y‖ .

132

Since the LP rounding 2 assumes that κ > 0 in practice we implement 1 + κcos

rather than κcos .

Definition 4.5.2 (Gaussian kernel). Given a data set V ∈ �m
for some m > 0, the

Gaussian kernel κ1auss with standard deviation σ is defined as κ1auss(x , y) def

�

exp

(
− ‖x−y‖2

2σ2

)
.

The main aim of our experiments was to answer the following two questions.

1. How good is the hierarchal clustering obtained from 4 as opposed to the true

optimal output by f-ILP-ultrametric?

2. How good does 4 perform compared to other hierarchical clustering methods?

For the first question, we are restricted to working with small data sets since

computing an optimum solution to f-ILP-ultrametric is expensive. In this case we

consider synthetic data sets of small size and samples of some data sets from the

UCI database [99]. The synthetic data sets we consider are mixtures of Gaussians in

various small dimensional spaces. Figure 4.1 shows a comparison of the cost of the

hierarchy (according to cost function (1.3.2)) returned by solving f-ILP-ultrametric

and by 4 for various forms of f when the similarity function is κcos and κ1auss . Note

that we normalize the cost of the tree returned by f-ILP-ultrametric and 4 by the

cost of the trivial clustering r, T∗ where T∗ is the star graph with V as its leaves and

r as the internal node. In other words dT∗(i , j) � n − 1 for every distinct pair i , j ∈ V

and so the normalized cost of any tree lies in the interval (0, 1].

For the study of the second question, we consider some of the popular algorithms

for hierarchical clustering are single linkage, average linkage, complete linkage, and

Ward’s method [100]. To get a numerical handle on how good a hierarchical clustering

T of V is, we prune the tree to get the best k flat clusters and measure its error

relative to the target clustering. We use the following notion of error also known as

Classification Error that is standard in the literature for hierarchical clustering (see,

133

0.0 0.2 0.4 0.6 0.8 1.0

Cost of HC by solving ILP formulation

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
of

H
C

re
tu

rn
ed

by
A

lg
or

it
hm

4

f(x) = x

f(x) = x2

f(x) = ex − 1

f(x) = log(1 + x)

0.0 0.2 0.4 0.6 0.8 1.0

Cost of HC by solving ILP formulation

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
of

H
C

re
tu

rn
ed

by
A

lg
or

it
hm

4

f(x) = x

f(x) = x2

f(x) = ex − 1

f(x) = log(1 + x)

Figure 4.1: Comparison of f-ILP-ultrametric and 4 for 1+ κcos (left) and κ1auss (right)

e.g., [101]). Note that we may think of a flat k-clustering of the data V as a function

h mapping elements of V to a label set L def

� {1, . . . , k}. Let Sk denote the group of

permutations on k letters.

Definition 4.5.3 (Classification Error). Given a proposed clustering h : V → L its

classification error relative to a target clustering 1 : V → L is denoted by err

(
1 , h

)
and is defined as

err

(
1 , h

)
def

� min

σ∈Sk

[
�

x∈V
[h(x) , σ(1(x))

]
.

We compare the error of 4 with the various linkage based algorithms that are

commonly used for hierarchical clustering, as well as Ward’s method and the

k-means algorithm. We test 4 most extensively for f (x) � x while doing a smaller

number of tests for f (x) ∈
{

x2, log(1 + x), ex − 1

}
. Note that both Ward’s method

and the k-means algorithmwork on the squared Euclidean distance ‖x−y‖2
2
between

two points x , y ∈ V , i.e., they both require an embedding of the data points into

a normed vector space which provides extra information that can be potentially

exploited. For the linkage based algorithms we use the same notion of similarity

1 + κcos or κ1auss that we use for 4. For comparison we use a mix of synthetic data

134

0 10 20 30 40 50

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 10 20 30 40 50

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 4.2: Comparison of 4 using f (x) � x, with other algorithms for clustering

using 1 + κcos (left) and κ1auss (right)

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x2

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x2

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 4.3: Comparison of 4 using f (x) � x2
, with other algorithms for clustering

using 1 + κcos (left) and κ1auss (right)

sets as well as the Wine, Iris, Soybean-small, Digits, Glass, and Wdbc data sets from

the UCI repository [99]. For some of the larger data sets, we sample uniformly at

random a smaller number of data points and take the average of the error over

the different runs. Figure 4.2, Figure 4.3, Figure 4.4, and Figure 4.5 show that the

hierarchical clustering returned by 4 with f (x) ∈
{

x , x2, log(1 + x), ex − 1

}
often has

better projections into flat clusterings than the other algorithms. This is especially

true when we compare it to the linkage based algorithms, since they use the same

pairwise similarity function as 4, as opposed to Ward’s method and k-means.

135

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = log(1 + x)

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = log(1 + x)

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 4.4: Comparison of 4 using f (x) � log(1 + x), with other algorithms for

clustering using 1 + κcos (left) and κ1auss (right)

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = ex − 1

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = ex − 1

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 4.5: Comparison of 4 using f (x) � ex −1, with other algorithms for clustering

using 1 + κcos (left) and κ1auss (right)

136

4.6 Discussion

In this chapter e have studied the cost functions (1.3.1) and (1.3.2) for hierarchical

clustering given a pairwise similarity function over the data and shown an O(log n)

approximation algorithm for this problem. However, such a cost function is not

unique. Further, there is an intimate connection between hierarchical clusterings

and ultrametrics over discrete sets which points to other directions for formulating

a cost function over hierarchies. In particular we briefly mention the related notion

of hierarchically well-separated trees (HST) as defined in [102] (see also [103, 104]). A

k-HST for k > 1 is a tree T such that each vertex u ∈ T has a label ∆(u) > 0 such

that ∆(u) � 0 if and only if u is a leaf of T. Further, if u is a child of v in T then

∆(u) 6 ∆(v)/k. It is well known that any ultrametric d on a finite set V is equivalent

to a 1-HSTwhere V is the set of leaves of T and d(i , j) � ∆
(
lca(i , j)

)
for every i , j ∈ V .

Thus in the special case when∆(u) � |leaves T[u]| −1 we get the cost function (1.3.1),

while if ∆(u) � f (|leaves T[u]| − 1) for a strictly increasing function f with f (0) � 0

then we get cost function (1.3.2). It turns out this assumption on ∆ enables us to

prove the combinatorial results of Section 4.2 and give a O(log n) approximation

algorithm to find the optimal cost tree according to these cost functions. It is an

interesting problem to investigate cost functions and algorithms for hierarchical

clustering induced by other families of ∆ that arise from a k-HST on V , i.e., if the

cost of T is defined as

cost∆(T)
def

�

∑
{i , j}∈E(Kn)

κ(i , j)∆
(
lca(i , j)

)
. (4.6.1)

137

Note that not all choices of ∆ lead to a meaningful cost function. For example,

choosing ∆(u) � diam (T[u]) − 1 gives rise to the following cost function

cost(T) def

�

∑
{i , j}∈E(Kn)

κ(i , j)distT(i , j) (4.6.2)

where distT(i , j) is the length of the unique path from i to j in T. In this case, the

trivial clustering r, T∗ where T∗ is the star graph with V as its leaves and r as the

root is always a minimizer; in other words, there is no incentive for spreading out

the hierarchical clustering. Also worth mentioning is a long line of related work

on fitting tree metrics to metric spaces (see e.g., [87, 105, 106]). In this setting,

the data points V are assumed to come from a metric space dV and the objective

is to find a hierarchical clustering T so as to minimize ‖dV − dT ‖p . If the points

in V lie on the unit sphere and the similarity function κ is the cosine similarity

κcos(i , j) � 1 − dV(i , j)/2, then the problem of fitting a tree metric with p � 2

minimizes the same objective as cost function (4.6.2). Since dV 6 1 in this case, the

minimizer is the trivial tree r, T∗ (as remarked above). In general, when the points in

V are not constrained to lie on the unit sphere, the two problems are incomparable.

4.7 Hardness of finding the optimal hierarchical clustering

In this section we study the hardness of finding the optimal hierarchical clustering

according to cost function (1.3.1). We show that under the assumption of the

Small Set Expansion (SSE) hypothesis there is no constant factor approximation

algorithm for this problem. We also show that no polynomial sized Linear Program

(LP) or Semidefinite Program (SDP) can give a constant factor approximation for

this problem without the need for any complexity theoretic assumptions. Both

these results make use of the similarity of this problem with the minimum linear

arrangement problem. To show hardness under Small Set Expansion, we make

138

use of the result of [107] showing that there is no constant factor approximation

algorithm for the Minimum Linear Arrangement problem under the assumption

of SSE. To show the LP and SDP inapproximability results, we make use of the

reduction framework of [108] together with the NP-hardness proof for Minimum

Linear Arrangement due to [109]. We also note that both these hardness results

hold even for unweighted graphs (i.e., when κ ∈ {0, 1}).

Note that the individual layer-t problem f-ILP-layer for t � bn/2c is equivalent to

the minimum bisection problem for which the best known approximation is O(log n)

due to [105], while the best known bi-criteria approximation is O
(√

log n
)
due to

[17] and improving these approximation factors is a major open problem. However

it is not clear if an improved approximation algorithm for hierarchical clustering

under cost function (1.3.1) would imply an improved algorithm for every layer-t

problem, which is why a constant factor inapproximability result is of interest. We

start by recalling the definition of an optimization problem in the framework of [108].

Definition 4.7.1 (Optimization problem). [108] An optimization problem is a tuple

P � (S ,I, val) consisting of a set S of feasible solutions, a set I of instances, and a

real-valued objective called measure val : I × S → �. We shall use valI(s) for the

objective value of a feasible solution s ∈ S for an instance I ∈ I.

Since we are interested in the integrality gaps of LP and SDP relaxations for

an optimization problem P � (S ,I, val), we represent the approximation gap by

two functions C, S : I → � where C is the completeness guarantee while S is the

soundness guarantee. Note that the ratio C/S represents the approximation factor for

the problem P. We recall below the formal definition of an LP relaxation of P that

achieves a (C, S)-approximation guarantee. We assume without loss of generality

that P is a maximization problem.

Definition 4.7.2 (LP formulation of an optimization problem). [108] Let P �

(S ,I, val) be an optimization problem, and C, S : I → �. Then let IS def

� {I ∈

139

I}max valI 6 S(I) denote the set of sound instances, i.e., for which the soundness

guarantee S is an upper bound on the maximum. A (C, S)-approximate LP formulation

of P consists of a linear program Ax 6 b with x ∈ �r
for some r and the following

realizations:

Feasible solutions as vectors xs ∈ �r
for every s ∈ S satisfying

Axs 6 b for all s ∈ S , (4.7.1)

i.e., the system Ax 6 b is a relaxation of conv xs | s ∈ S.

Instances as affine functions wI : �r → � for all I ∈ IS
satisfying

wI(xs) � valI(s) for all s ∈ S , (4.7.2)

i.e., the linearization wI of valI is required to be exact on all xs
with s ∈ S.

Achieving (C, S) approximation guarantee by requiring

max{wI(x)}Ax 6 b 6 C(I) for all I ∈ IS , (4.7.3)

The size of the formulation is the number of inequalities in Ax 6 b. Finally, the

(C, S)-approximate LP formulation complexity fcLP(P , C, S) of P is the minimal size

of all its LP formulations.

One can similarly define a (C, S)-approximate SDP formulation for a problem P

where instead of a LP, we now have a SDP relaxation A(X) � b with X ∈ �r
+ and

where �r
+ denotes the space of r × r positive semidefinite matrices. The size of such

an SDP formulation is measured by the dimension r and fcSDP(P , C, S) is defined

as the minimum size of an SDP formulation achieving (C, S)-approximation for

140

problem P. Below we recall the precise notion of a reduction between two problems

as in [108].

Definition 4.7.3 (Reduction). [108] Let P1 � (S1,I1, val) and P2 � (S2,I2, val) be

optimization problems with guarantees C1, S1 and C2, S2, respectively. Let τ1 � +1

if P1 is a maximization problem, and τ1 � −1 if P1 is a minimization problem.

Similarly, let τ2 � ±1 depending on whether P2 is a maximization problem or a

minimization problem.

A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1→ I2 and ∗ : S1→ S2 translating instances and feasible

solutions independently;

2. two nonnegative I1 × S1 matrices M1, M2

subject to the conditions

τ1

[
C1(I1) − valI1(s1)

]
� τ2

[
C2(I∗

1
) − valI∗

1

(s∗
1
)
]

M1(I1, s1) + M2(I1, s1)

(4.7.4-complete)

τ2 OPT

(
I∗

1

)
6 τ2S2(I∗

1
) if τ1 OPT (I1) 6 τ1S1(I1). (4.7.4-sound)

The matrices M1 and M2 control the parameters of the reduction relating

the integrality gap of relaxations for P1 to the integrality gap of corresponding

relaxations for P2. For a matrix A, let rank+ A and rankpsd A denote the nonnegative

rank and psd rank of A respectively. The following theorem is a restatement of

Theorem 3.2 from [108] ignoring constants.

Theorem 4.7.4. [108] Let P1 and P2 be optimization problems with a reduction from P1

to P2 respecting the completeness guarantees C1, C2 and soundness guarantees S1, S2 of P1

141

and P2, respectively. Then

fcLP(P1, C1, S1) 6 rank+ M2 + rank+ M1 + rank+ M1 · fcLP(P2, C2, S2), (4.7.5)

fcSDP(P1, C1, S1) 6 rankpsd M2 + rankpsd M1 + rankpsd M1 · fcSDP(P2, C2, S2),

(4.7.6)

where M1 and M2 are the matrices in the reduction as in Definition 4.7.3.

Therefore to obtain a lower bound for problem P2, it suffices to find a source

problem P1 and matrices M1 and M2 of low nonnegative rank and low psd rank,

satisfying Definition 4.7.3.

Below, we cast the hierarchical clustering problem (HCLUST) as an optimization

problem. We also recall a different formulation of cost function (1.3.1) due to [8]

that will be useful in the analysis of the reduction.

Definition 4.7.5 (HCLUST as optimization problem). The minimization problem

HCLUST of size n consists of

instances similarity function κ : E(Kn) → �>0

feasible solutions hierarchical clustering r, T of V(Kn)

measure valκ(T) �
∑
{i , j}∈E(Kn) κ(i , j)

��
leaves(T[lca(i , j)])

��
.

We will also make use of the following alternate interpretation of cost func-

tion (1.3.1) given by [8]. Let κ : V ×V → �>0 be an instance of HCLUST. For a subset

S ⊆ V , a split S1, . . . , Sk is a partition of S into k disjoint pieces. For a binary split

S1, S2 we can define κ(S1, S2)
def

�
∑

i∈S1 , j∈S2

κ(i , j). This can be extended to k-way

splits in the natural way:

κ(S1, . . . , Sk)
def

�

∑
16i6 j6k

κ(Si , S j).

142

Then the cost of a tree T is the sum over all the internal nodes of the splitting costs

at the nodes, as follows.

cost(T) �
∑

splits S→(S1 ,...,Sk) in T

|S | κ(S1, . . . , Sk).

We now briefly recall the MAXCUT problem.

Definition 4.7.6 (MAXCUT as optimization problem). The maximization problem

MAXCUT of size n consists of

instances all graphs G with V(G) ⊆ [n]

feasible solutions all subsets X of [n]

measure valG(X) � |δG(X)|.

Similarly, the Minimum Linear Arrangement problem can be phrased as an

optimization problem as follows.

Definition 4.7.7 (MLA as optimization problem). The minimization problem MLA of

size n consists of

instances weight function w : E(Kn) → �>0

feasible solutions all permutations π : V(Kn) → [n]

measure valw(π)
def

�
∑
{i , j}∈E(Kn) w(i , j)

��π(i) − π(j)��.
We now describe the reduction from MAXCUT to HCLUST which is a modification

of the reduction from MAXCUT to MLA due to [109]. Note that an instance of MAXCUT

maps to an unweighted instance of HCLUST, i.e., κ ∈ {0, 1}.

143

Mapping instances Given an instance G � (V, E) of MAXCUT of size n, let r � n4

and U � {u1, u2, . . . , ur}. The instance κ of HCLUST is on the graph with

vertex set V′ def

� V ∪U and has weights in {0, 1}. For any distinct pair i , j ∈ V′,

if {i , j} ∈ E then we define κ(i , j) def

� 0 and otherwise we set κ(i , j) def

� 1.

Mapping solutions Given a cut X ⊆ V of MAXCUT we map it to the clustering r, T

of V′ where the root r has the following children: n4
leaves corresponding to

U, and 2 internal vertices corresponding to X and X. The internal vertices for

X and X are split into |X | and
���X��� leaves respectively at the next level.

The following lemma relates the LP and SDP formulations for MAXCUT and

MLA.

Lemma 4.7.8. For any completeness and soundness guarantee (C, S), we have the following

fcLP (MAXCUT, C, S) 6 fcLP (HCLUST, C′, S′) + O(n2)

fcSDP (MAXCUT, C, S) 6 fcSDP (HCLUST, C′, S′) + O(n2).

where C′ def

�
(n4+n)3−(n4+n)

3
− C(n4 + n) and S′ def

�
(n4+n+1

3

)
− Sn4.

Proof. To show completeness, we analyze the cost of the tree T that a cut X maps

to, using the alternate interpretation of the cost function (1.3.1) due to [8] (see

above). Let H be the graph on vertex set V′ induced by κ, i.e. {i , j} ∈ E(H) iff

κ(i , j) � 1. Let H denote the complement graph of H and let κ be the similarity

function induced by it, i.e., κ(i , j) � 1 iff {i , j} < E(H) and κ(i , j) � 0 otherwise. For

a hierarchical clustering T of V′, we denote by costH(T) and costH(T) the cost of T

induced by κ and κ respectively, i.e., costH(T)
def

�
∑
{i , j}∈E(H)

��
leaves(T[lca(i , j)])

��
and

costH(T)
def

�
∑
{i , j}<E(H)

��
leaves(T[lca(i , j)])

��
. Let X def

� V′ \ X. The cost of the tree T

that the cut X maps to, is given by

cost(T) � costH(T)

144

�

(
n + n4

)
3 − (n + n4)
3

− costH(T)

�

(
n + n4

)
3 − (n + n4)
3

−
∑

splits S→(S1 ,...,Sk) in T

|S | κ(S1, . . . , Sk)

�

(
n + n4

)
3 − (n + n4)
3

−
(
n + n4

)
valG(X) −

(
|X | |E[X]| +

���X��� ���E[X]���) ,
where E[X] and E[X] are the edges of E(H) induced on the set X and X respectively.

Therefore, we have the following completeness relationship between the two

problems

C − valG(X) �
1

n + n4

(
cost(T) −

(
(n + n4)3 − (n + n4)

3

− C(n + n4)
))

+

|X | |E[X]| +
���X��� ���E[X]���

n4 + n
.

We now define the matrices M1 and M2 as M1(H,X)
def

�
1

n+n4
and M2(H,X)

def

�

|X | |E[X]| +
���X��� ���E[X]���. Clearly, M1 has O(1) nonnegative rank and psd rank. We

claim that the nonnegative rank of M2 is at most 2

(n
2

)
. The vectors vH ∈ �2(n

2
)

corresponding to the instances H is defined as the concatenation [uH , wH] of two

vectors uH , wH ∈ �(
n
2
)
. Both the vectors uH , wH encode the edges of H scaled by

n4 + n, i.e., uH({i , j}) � wH({i , j}) � 1/(n4 + n) iff {i , j} ∈ E(H) and 0 otherwise.

The vectors vX ∈ �2(n
2
)
corresponding to the solutions are also defined as the

concatenation [uX , wX] of two vectors uX , wX ∈ �n
. The vector uX encodes the

vertices in X scaled by |X | i.e., uX({i , j}) � |X | iff i , j ∈ X and 0 otherwise. The

vector wX encodes the vertices in X scaled by

���X��� i.e., wX({i , j}) �
���X��� iff i , j ∈ X and

0 otherwise. Clearly, we have M2(H,X) � 〈vH , vX〉 and so the nonnegative (and

psd) rank of M2 is at most 2

(n
2

)
.

Soundness follows due to the analysis in [109] and by noting that the cost of

a linear arrangement obtained by projecting the leaves of T is a lower bound on

145

cost(T). By the analysis in [109] if the optimal value OPT(G) of MAXCUT is at most

S, then the optimal value of MLA on V′, κ is at least

(n4+n+1

3

)
− Sn4

. Therefore, it

follows that the optimal value of HCLUST on V′, κ is also at least

(n4+n+1

3

)
− Sn4

. �

The constant factor inapproximability result for HCLUST now follows due to the

following theorems.

Theorem 4.7.9 ([4, Theorem 3.2]). For any ε > 0 there are infinitely many n such that

fcLP

(
MAXCUT, 1 − ε, 1

2

+
ε
6

)
> nΩ(log n/log log n).

Theorem 4.7.10 ([108, Theorem 7.1]). For any δ, ε > 0 there are infinitely many n such

that

fcSDP

(
MAXCUT,

4

5

− ε, 3

4

+ δ

)
� nΩ(log n/log log n). (4.7.7)

Thus we have the following corollary about the LP and SDP inapproximability

for the problem HCLUST.

Corollary 4.7.11 (LP and SDP hardness for HCLUST). For any constant c > 1, HCLUST

is LP-hard and SDP-hard with an inapproximability factor of c.

Proof. Straightforward by using Theorem 4.7.9 and Theorem 4.7.10 together with

Lemma 4.7.8 and by choosing n large enough. �

The following lemma shows that a minor modification of the argument in [107]

also implies a constant factor inapproximability result under the Small Set Expansion

(SSE) hypothesis. Note that this reduction is also true for unit capacity graphs, i.e.,

κ ∈ {0, 1}. We briefly recall the formulation of the Small Set Expansion hypothesis.

Informally, given a graph G � (V, E) the problem is to decidewhether all “small” sets

in the graph are expanding. Let d(i) denote the degree of a vertex i ∈ V . For a subset

S ⊆ V let µ(S) def

� |S | /|V | be the volume of S, and let φ(S) def

� E(S, S)/∑i∈S d(i) be

the expansion of S. Then the SSE problem is defined as follows.

146

Definition 4.7.12 (Small set expansion (SSE) hypothesis [107]). For every constant

η > 0, there exists sufficiently small δ > 0 such that given a graph G � (V, E), it is

NP-hard to decide the following cases,

Completeness there exists a subset S ⊆ V with volume µ(S) � δ and expansion

φ(S) 6 η,

Soundness every subset S ⊆ V of volume µ(S) � δ has expansion φ(S) > 1 − η.

Under this assumption, [107] proved the following amplification result about

the expansion of small sets in the graph.

Theorem 4.7.13 (Theorem 3.5 [107]). For all q ∈ � and ε′, γ > 0 it is SSE-hard to

distinguish the following for a given graph H � (VH , EH)

Completeness There exist disjoint sets S1, . . . , Sq ⊆ VH satisfying µ(Si) � 1

q and

φ(Si) 6 ε′ + o(ε′) for all i ∈ [n],

Soundness For all sets S ⊆ VH we have φ(S) > φG(1 − ε′/2)(µ(S)) − γ/µ(S),

where φG(1 − ε′/2)(µ(S)) is the expansion of sets of volume µ(S) in the infinite Gaussian

graph G(1 − ε′/2).

The following lemma establishes that it is SSE-hard to approximate HCLUST to

within any constant factor. The argument closely parallels Corollary A.5 of [107]

where it was shown that it is SSE-hard to approximate MLA to within any constant

factor.

Lemma 4.7.14. Let G � (V, E) be a graph on V with κ induced by the edges E i.e.,

κ(i , j) � 1 iff {i , j} ∈ E and 0 otherwise. Then it is SSE-hard to distinguish between the

following two cases

Completeness There exists a hierarchical clustering T of V with cost(T) 6 εn |E |,

147

Soundness Every hierarchical clustering T of V satisfies cost(T) > c
√
εn |E |

for some constant c not depending on n.

Proof. Apply Theorem 4.7.13 on the graph G with the following choice of parameters:

q � d2/εe, ε′ � ε/3 and γ � ε. Suppose there exist S1, . . . , Sq ⊆ V satisfying

φ(Si) 6 ε′ + o(ε′) and |Si | � |V | /q 6 ε |V | /2. Then consider the tree r, T with

the root r having q children corresponding to each Si , and each Si being further

separated into |Si | leaves at the next level. We claim that cost(T) 6 εn |E |. We

analyze this using the alternate interpretation of cost function (1.3.1) (see above).

Every crossing edge between Si , S j for distinct i , j ∈ [q] incurs a cost of n, but by

assumption there are at most ε |E | /2 such edges. Further, any edge in Si incurs a

cost
n
q 6 εn/2 and thus their contribution is upper bounded by εn |E |.

The analysis for soundness follows by the argument of Corollary A.5 in [107].

In particular, if for every S ⊆ V we have φ(S) > φG(1 − ε′/2)(µ(S)) − γ/µ(S) then

the cost of the optimal linear arrangement on G is at most

√
εn |E |. Since the cost of

any tree (including the optimal tree) is at least the cost of the linear arrangement

induced by projecting the leaf vertices, the claim about soundness follows. �

148

CHAPTER 5

ROBUST REINFORCEMENT LEARNING

In this chapter we will consider the classical reinforcement learning setting in a

robust setting, where the transitionmatrices Pa
corresponding to every action a is not

explicitly known, but lies instead in some uncertainty set Pa
. Under the assumption

that this set is convex, so that one may efficiently optimize a linear function over it,

[9] proved a minmax characterization for the optimal policy and proposed a value

iteration which was shown to converge to the optimal policy π∗. However, this

framework suffers from the problem that for every action we need some knowledge

of the uncertainty set Pa
in order to optimize linear functions over it. A more

natural framework that we propose is the following. We have a generic uncertainty

set U independent of actions which represents a region of uncertainty around

the simulator probabilities pa
with which a simulator transitions in a trajectory.

Therefore the individual uncertainty set for an action a, is a translation of U centered

at the simulator probabilities. Note that in this case we cannot directly optimize a

function over Pa
i since we do not explicitly know the simulator probability pa

, but

rather sample a state from it and transition to it during a trajectory. Thus one cannot

directly use the value iteration proposed by [9] in computing an ε-approximate

optimal policy. The main contribution of this chapter is to define robust versions of

the celebrated Q-iterations and TD(λ)-iterations and prove its convergence to an

ε-approximate policy under an appropriate choice of step lengths γt and discount

factor ν. At every step, we only need to optimize linear functions over the generic

uncertainty set U which may be thought of as a ball, ellipsoid or parallelipiped.

149

5.1 Robust Q-learning

In the classical reinforcement learning setupwhen the transition probabilitymatrices

are known explicitly then one can define the optimal Q-function Q∗ for every state

action pair (i , a), i ∈ X , a ∈ A as

Q∗(i , a) def

� c(i , a) + ν ©«
n∑

j�0

Pa
t (i , j)min

a′∈A
Q∗(j, a′)ª®¬ . (5.1.1)

Since the expectation in the expression is typically hard to compute, in practice the

classical Q iteration samples a state j according to probability Pa
t (i , j) and does the

following update to compute the estimate Qt

Qt(i , a)
def

� (1 − γt)Qt−1(i , a) + γt

(
c(i , a) + νmin

a′∈A
Qt−1(j, a′)

)
, (5.1.2)

where γt ∈ [0, 1] is a step size. This is an example of a stochastic approximation

algorithm or Robbins-Monro algorithm as defined in [110]. Note that if the sequence

of step sizes γt are chosen to satisfy

∞∑
t�0

γt � ∞;

∞∑
t�0

γ2

t < ∞, (5.1.3)

then the iterations of equation (5.1.2) are guaranteed to converge to Q∗. In the robust

setting we now assume that the transition matrices are not known explicitly, but

rather every transition matrix Pa
belongs to some uncertainty set Pa

as in the setup

of [9]. Let Pa
i be the projection of the uncertainty set Pa

onto the ith
row. Let us

define the vector v ∈ �n
as v(i) def

� mina∈A Q∗(i , a). For any convex set P ⊂ �n
let

σP(v)
def

� sup

{
q>v | q ∈ P

}
. In this setting, [9] prove that the optimal Q-value of

150

state action pairs satisfies the following recurrence relation

Q∗(i , a) def

� c(i , a) + νσPa
i
(v). (5.1.4)

Based on equation (5.1.4), the authors define a simple value iteration algorithm that

is guaranteed to converge to the optimal value function for every state. The main

drawback of this approach is that one needs some knowledge of the uncertainty

set Pa
for every choice of action a ∈ A, in order to compute σPa

i
(vt) for a current

estimate of the value function vt .

A more plausible scenario is when the simulator samples a new state j with

some probability pa
i but different runs of the same state action pair come from an

uncertainty set around this sampled point pa
i . One may model the uncertainty

region as any convex set, however simple and natural examples of U are ellipsoids

or parallelepipeds. We define these two special cases below.

1. Ellipsoid: Let A be an n × n psd matrix. Then we can define the set U as

U def

�

{
x | x>Ax 6 1,

∑
i∈X

xi � 0,min

i∈X
−pa

i j 6 x j

}
.

Note that U is an ellipsoid with some additional linear constraints so that its

translation to center pa
i lies within the probability simplex. The uncertainty

set Pa
i is then defined as Pa

i
def

� {pa
i + x | x ∈ U}. In practice, we do not

have knowledge of the simulator probabilities pa
i and so we will use the

unconstrained ellipsoid Û def

� {x | x>Ax 6 1,
∑

i∈X xi � 0} as a proxy for U.

2. Parallelepiped: Let B be an n × n invertible matrix. Then we can define the

set U as

U def

�

{
x | ‖Bx‖1 6 1,

∑
i∈X

xi � 0,min

i∈X
−pa

i j 6 x j

}
.

151

As before, we will use the unconstrained parallelepiped Û def

�

{x | ‖Bx‖1 6 1,
∑

i∈X xi � 0} as a proxy for U since we do not have knowl-

edge of the simulator probabilities pa
i .

Note that the only difference between the proxy uncertainty set and the true

uncertainty set is that in the latter case the translated uncertainty set centered

around the simulator probabilities is constrained to stay within the probability

simplex ∆n . Let us now analyze the expression σPa
i
(v) for some vector v ∈ �n

. We

have the following

σPa
i
(v) � v>pa

i + σU(v). (5.1.5)

Therefore, in this case the optimal Q-function Q∗ can be reformulated analogous to

equation (5.1.1) as

Q∗(i , a) � c(i , a) + νσPa
i
(v) (5.1.6)

� c(i , a) + νσU(v) + ν
∑
j∈X

pa
j min

a′∈A
Qt(j, a). (5.1.7)

Observe that the expression of equation (5.1.6) is similar to the optimal Q-function

of equation (5.1.1). It is reasonable to assume that one has some suitable estimate

for the convex set Û over which it is easy to optimize linear functions. We define a

robust version of Q-iteration in terms of the proxy uncertainty set Û as follows:

Qt(i , a)
def

� (1 − γt)Qt−1(i , a) + γt

(
c(i , a) + νσÛ(v) + νmin

a′∈A
Qt−1(j, a′)

)
, (5.1.8)

where a state j ∈ X is sampled with probability pa
j and the supremum over the

value vectors v is computed over the proxy set Û. We define a ε-suboptimal policy

as follows.

152

Definition 5.1.1 (ε-suboptimal policy). We say that a policy π with Q-function

Q′ is ε suboptimal with respect to the optimal policy π∗ and Q-function Q∗ if the

following holds

‖Q′ −Q∗‖∞ 6 ε‖Q′‖∞. (5.1.9)

The following theorem shows that with a suitable choice of step lengths γt ,

the iteration of equation (5.1.8) converges approximately to Q∗ under a suitable

assumption on the discount factor ν with respect to the uncertainty set U.

Theorem 5.1.2. Let the step lengths γt of the Q-iteration algorithm be chosen such that∑∞
t�0
γt � ∞ and

∑∞
t�0
γ2

t < ∞ and let the discount factor ν < 1. If either of the following

assumptions hold on the proxy uncertainty set Û:

1. For every j ∈ X it holds that supq∈Û q j 6 min i∈X
a∈A

(
1 − pa

i j

)
. In other words Û ⊆ U.

2. If the set Û * U, then the discount factor should satisfy ν < 1

supq∈Û\U ‖q‖1+1
. Note that

if U � Û as in the condition above, then ν is simply required to be less than 1.

Then with probability 1 the iterations of equation (5.1.8) converges to an ε-suboptimal policy

where ε def

�
ν supq∈Û\U ‖q‖1

1−ν . Note that if condition (1) holds then ε � 0.

Proof. Let P̂a
i be the proxy uncertainty set for state i ∈ X and a ∈ A, i.e., P̂a

i
def

�{
x + pa

i | x ∈ Û
}
. Note that by definition Pa

i � P̂a
i ∩ ∆n . Let us define the operator

H mapping a Q-vector to a Q-vector as follows

(HQ)(i , a) def

� c(i , a) + νσP̂a
i
(v)

� c(i , a) + νσÛ(v) + ν
∑
j∈X

pa
j min

a′∈A
Q(j, a′).

Note that a solution Q′ to the equation HQ � Q is an ε-suboptimal policy as in

153

Definition Definition 5.1.1. This is because

|Q′(i , a) −Q∗(i , a)| �
���(HQ′)(i , a) − c(i , a) − νσPa

i
(v)

���
� ν

���σP̂a
i
(v′) − σPa

i
(v)

���
6 ν

���σÛ\U(v
′) + σPa

i
(v′) − σPa

i
(v)

���
6 ν

���σÛ\U(v
′)
��� + ���σPa

i
(v′) − σPa

i
(v)

���
6 ν sup

q∈Û\U
‖q‖1‖Q′‖∞ + ν

������max

q∈Pa
i

∑
j∈X

q j min

a′∈A
Q∗(j, a′) − max

q′∈Pa
i

∑
j∈X

q′j min

a′′∈A
Q′(j, a′′)

������
6 ν sup

q∈Û\U
‖q‖1‖Q′‖∞ + ν

������max

q∈Pa
i

∑
j∈X

q j

(
min

a′∈A
Q∗(j, a′) − min

a′′∈A
Q′(j, a′′)

)������
6 ν sup

q∈Û\U
‖q‖1‖Q′‖∞ + ν

������max

q∈Pa
i

∑
j∈X

q j

(
max

a′∈A
|Q∗(j, a′) −Q′(j, a′)|

)������
6 ν sup

q∈Û\U
‖q‖1‖Q′‖∞ + ν

������max

q∈Pa
i

∑
j∈X

q j ‖Q∗ −Q′‖∞

������
6 ν sup

q∈Û\U
‖q‖1‖Q′‖∞+ 6 ν‖Q −Q′‖∞,

which implies that ‖Q′−Q∗‖∞ 6 ε‖Q′‖∞ for ε �
ν supq∈Û\U ‖q‖1

1−ν . Note that the operator

H applied to the optimal Q-vector Q∗ satisfies HQ∗ � Q∗ by equation (5.1.6). Then

the Q-iteration of equation (5.1.8) can then be reformulated in terms of the operator

H as

Qt(i , a) � (1 − γt)Qt−1(i , a) + γt
(
HQt(i , a) + ηt(i , a)

)
,

where ηt(i , a)
def

� mina′∈A Qt(j, a′) −�pa
i

[
mina′∈A Qt(j, a′)

]
, where the expectation

is over the states j ∈ X with the transition probability from state i to state j given

by pa
j . Note that this is an example of a stochastic approximation algorithm as in [110]

154

with noise parameter ηt . Let Ft denote the history of the algorithm till time t. Note

that �
[
ηt(i , a) | Ft

]
� 0 by definition and the variance is bounded by

�
[
η2

t | Ft
]
6 K ©«1 + max

j∈X
a′∈A

Q2

t (j, a′)
ª®¬ .

Therefore the noise term ηt satisfies the zero conditionalmean and bounded variance

assumption (Assumption 4.3 in [110]). Therefore it remains to show that the operator

H is a contractionmapping to argue that the iteration of (5.1.2) converges to the optimal

Q-function Q∗. We will show that the operator H is a contraction mapping with

respect to the infinity norm ‖.‖∞. Let Q and Q′ be two different Q-vectors with

value functions v and v′. If U is not necessarily the same as the unconstrained proxy

set Û, then we need an additional condition on the discount factor in order to ensure

convergence. Intuitively, the discount factor is small enough that the difference in the

estimation due to the difference of the sets U and Û converges to 0 over time. Thus,

the choice of the discount factor should penalize this additional difference of Û \U.

Note that by definition (HQ)(i , a) � c(i , a)+ νσP̂a
i
(v) � c(i , a)+ νσÛ\U(v)+ νσPa

i
(v).

In this case we show contraction for operator H as follows

|(HQ)(i , a) − (HQ′)(i , a)| 6 ν
���σÛ\U(v) − σÛ\U(v

′)
��� + ν ������max

q∈Pa
i

∑
j∈X

q j

(
min

a′∈A
Q(j, a′) − min

a′′∈A
Q′(j, a′′)

)������
6 ν

������ sup

q∈Û\U
q>v − sup

q′∈Û\U
(q′)>v′

������ + νmax

q∈Pa
i

∑
j∈X

q j max

a′∈A

��Q(j, a′) −Q′(j, a′)
��

6 ν

������ sup

q∈Û\U
q>(v − v′)

������ + νmax

q∈Pa
i

∑
j∈X

q j ‖Q −Q′‖∞

6 ν

������ sup

q∈Û\U
q>

(
min

a′∈A
Q(j, a′) − min

a′′∈A
Q′(j, a′′)

)������ + ν‖Q −Q′‖∞max

q∈Pa
i

∑
j∈X

q j

155

6 ν

������ sup

q∈Û\U
q>

(
max

a′∈A

(
Q(j, a′) −Q′(j, a′)

))������ + ν‖Q −Q′‖∞

6 ν
©« sup

q∈Û\U
‖q‖1 + 1

ª®¬ ‖Q −Q′‖∞

where we have used triangle inequality in the first expression, the fact that Pa
i ⊆ ∆n

to conclude that maxq∈Pa
i

∑
j∈X q j � 1 and Cauchy-Schwarz to derive the last

inequality. If condition (1) holds then Û � U and so we just need ν < 1. Otherwise

if condition (2) holds then ν < 1

supq∈Û\U ‖q‖1+1
and so it follows that H is also a norm

contraction in this case.

Since the operator H is a norm contraction under both conditions (1) and 2,

it follows e.g., by Proposition 4.4 of [110] that the robust Q-iteration of equa-

tion (5.1.8) converges to a solution HQ′ � Q′ which is an ε-suboptimal policy for

ε �
ν supq∈Û\U ‖q‖1

1−ν as proved before. �

Corollary 5.1.3. Let the proxy set Û be the ellipsoid Û � {x | x>Ax 6 1,
∑

i∈X xi � 0}.

Let Apro j be the psd matrix corresponding to the projection of A onto the subspace∑
i∈X xi � 0. Then the robust Q-iteration of equation (5.1.8) converges to an ε-suboptimal

policy if either of the two conditions hold:

1. λmax

(
A−1

pro j

)
6 mini , j∈X

a∈A

(
1 − pa

i j

)
2. ν < 1√

nλmax(A−1

pro j)+1

where ε <
νλmax

(
A−1

pro j

)
1−ν .

Proof. The first condition follows since the length in any direction of Û is bounded

by λmax

(
A−1

pro j

)
. For the second condition use the norm inequality to upper bound

supq∈Û\U ‖q‖1 6
√

n supq∈Û ‖q‖2 �
√

nλmax

(
A−1

pro j

)
. �

156

Corollary 5.1.4. Let the proxy set Û be the parallelepiped Û �

{x | ‖Bx‖1 6 1,
∑

i∈X xi � 0}. Let Bpro j denote the projection of B onto
∑

i∈X xi � 0.

Then the robust Q-iteration of equation (5.1.8) converges to an ε-suboptimal policy if either

of the two conditions hold:

1. ‖B−1

pro j ‖∞ 6 mini , j∈X
a∈A

(
1 − pa

i j

)
2. ν < 1

‖B−1

pro j ‖1+1

where ε def

�
ν‖B−1‖∞

1−ν .

Proof. The first condition follows since the length of Û in any direction is bounded

by ‖B−1

pro j ‖∞. The second condition follows by relaxing the supremum over Û \U to

a supremum over Û. �

5.2 Robust TD-Learning

In this section we recall the TD(λ) algorithm for estimating the value of a state

i ∈ X. Given a policy π, let us denote its value function by vπ. The main idea

behind TD-learning is the following Bellman equation

vπ(i) def

� �
[
c(i , π(i)) + vπ(j)

]
, (5.2.1)

where the expectation is over the transition probability matrices Pπ(i) determined

by the policy π at state i. Consider a trajectory of the simulator (i0, i1, . . .). For a

time step k, define the temporal difference vectors dk ∈ �n
as

dk
def

� c(i , π(i)) + νvπ(ik+1
) − vπ(ik). (5.2.2)

157

Let λ ∈ (0, 1). The recurrence relation for TD(λ) may be written in terms of the

temporal difference dk as

vπ(ik) � �
[∞∑

m�0

(νλ)m−k dm

]
+ vπ(ik), (5.2.3)

which leads to the corresponding Robbins-Monro stochastic approximation iteration

with step size γt

vt+1(ik)
def

� vt(ik) + γt

(∞∑
m�k

(νλ)m−k dm

)
. (5.2.4)

A more general variant of the TD iterations is to use eligibility coefficients zm(i) for

every state i ∈ X and temporal difference vector dm in the update for equation (5.2.4)

vt+1(ik)
def

� vt(ik) + γt

(∞∑
m�k

zm(ik)dm

)
. (5.2.5)

Let im denote the state of the simulator at time step m. For the discounted case,

there are two possibilities for the eligibility vectors zm(i) leading to two different

TD(λ) iterations:

1. The every-visit TD(λ)method where the eligibility coefficients are

zm(i)
def

�

νλzm−1(i) if im , i

νλzm−1(i) + 1 if im � i.

2. The restart TD(λ)method where the eligibility coefficients are

zm(i)
def

�

νλzm−1(i) if im , i

1 if im � i.

158

We make the following assumptions about the eligibility coefficients that are

sufficient for proof of convergence. Note that the eligibility coefficients of both the

every-visit and restart TD(λ) iterations satisfy 5.2.1.

Assumption 5.2.1. The eligibility coefficients zm satisfy the following conditions

1. zm(i) > 0

2. z−1(i) � 0

3. zm(i) 6 νzm−1(i) if i < {i0, i1, . . . }

4. The weight zm(i) given to the temporal difference dm should be chosen before

this temporal difference is generated.

In the robust setting, we are interested in estimating the robust value of a policy

π, which is defined as

vπ(i) def

� c(i , π(i)) + ν max

p∈Pπ(i)i

�p
[
vπ(j)

]
, (5.2.6)

where the expectation is now computed over the probability vector p chosen

adversarially from the uncertainty region Pa
i . As in Section 5.1, we may decompose

maxp∈Pa
i
�p

[
v(j)

]
� σPa

i
(v) as σPa

i
(v) � σU(v) +�pa

i
[v], where pa

i are the simulator

probabilities. Let Nt be a stopping time for the t th
trajectory and let Ft denote

the history of the algorithm up to the point where the t th
simulation is about to

commence. Let vt be the estimate of the value function available at the start of the

t th
trajectory. The temporal difference vectors are defined as before

dm ,t
def

� c(it
m , π(it

m)) + νvt(it
m+1
) − vt(it

m). (5.2.7)

159

However, the robust TD-update is now defined in terms of the proxy uncertainty set

Û as

vt+1(i) � vt(i) + γt

Nt−1∑
m�0

zt
m(i)

(
νσÛ(vt) + dm ,t

)
. (5.2.8)

We define an ε-suboptimal value function as in Definition 5.1.1 as follows.

Definition 5.2.2 (ε-approximate value function). Given a policy π, we say that a

vector v′ ∈ �n
is an ε-approximation of vπ if the following holds

‖v′ − vπ‖∞ 6 ε‖v′‖∞.

The following theorem guarantees convergence of the robust TD(λ) iteration of

equation (5.2.8) to an approximate value function for π under Assumption 5.2.1.

Theorem 5.2.3. Consider the robust temporal difference iteration of equation (5.2.8). If

5.2.1 holds, and either of the following two conditions are satisfied

1. For every j ∈ X it holds that supq∈Û q j 6 min i∈X
a∈A

(
1 − pa

i j

)
,

2. If the set Û * U, then the discount factor should satisfy ν < 1

supq∈Û\U ‖q‖1+1
,

then for every policy π and state i ∈ X, the value vt(i) converges to an ε-approximation of

vπ, where ε def

�
ν supq∈Û\U ‖q‖1

1−ν .

Proof. Let P̂a
i be the proxy uncertainty set for state i ∈ X and a ∈ A as in the proof

of Theorem 5.1.2, i.e., P̂a
i

def

�

{
x + pa

i | x ∈ Û
}
. Note that the true uncertainty set

Pa
i is constrained to lie within the simplex ∆n while the proxy set P̂a

i may not.

Let It(i)
def

�
{

m | it
m � i

}
be the set of times the t th

trajectory visits state i. We

define δt(i)
def

� maxq∈Pa
i
�q

[∑
m∈It(i) z

t
m(i) | Ft

]
, so that we may write the update of

160

equation (5.2.8) as

vt+1(i) � vt(i)(1 − γtδt(i)) + γtδt(i)
©«
σÛ\U(vt) + maxq∈Pa

i
�q

[∑Nt−1

m�0
zt

m(i)dm ,t | Ft

]
δt(i)

+ vt(i)
ª®®¬

+γtδt(i)

∑Nt−1

m�0
zt

m(i)
(
νσÛ(v) + dm ,t

)
− σÛ\U(vt) −maxq∈Pa

i
�q

[∑Nt−1

m�0
zt

m(i)dm ,t | Ft

]
δt(i)

.

Let us define the operator Ht : �n → �n
as

(Ht v)(i) def

�

σÛ\U(v) + maxq∈Pa
i
�q

[∑Nt−1

m�0
zt

m(i)
(
c(it

m , π(it
m)) + νv(it

m+1
) − v(it

m)
)
| Ft

]
δt(i)

+ v(i)

so that the solution to Ht v � v is an ε-approximation to vπ for ε �
ν supq∈Û\U ‖q‖1

1−ν

as in the proof of Theorem 5.1.2. Note that the operator Ht applied to the iterates

vt is (Ht vt)(i) �
σÛ\U (vt)+maxq∈Pa

i
�q

[∑Nt−1

m�0
zt

m(i)dm ,t |Ft

]
δt(i) + vt(i) so that the update of

equation (5.2.8) is a stochastic approximation algorithm of the form

vt+1(i) � (1 − γ̂t)vt(i) + γ̂t
(
(Ht vt)(i) + ηt(i)

)
,

where γ̂t � γtδt(i) and ηt is a noise term with zero mean and is defined as

ηt(i)
def

�

∑Nt−1

m�0
zt

m(i)dm ,t −maxq∈Pa
i
�q

[∑Nt−1

m�0
zt

m(i)dm ,t | Ft

]
δt(i)

. (5.2.9)

Note that by Lemma 5.1 of [110], the new step sizes satisfy

∑∞
t�0
γ̂t � ∞ and∑∞

t�0
γ̂t

2 < ∞ if the original step size γt satisfies the conditions

∑∞
t�0
γt � ∞ and∑∞

t�0
γ2

t < ∞, since the conditions on the eligibility coefficients are unchanged. Note

that the noise term also satisfies the bounded variance of Lemma 5.2 of [110] since

for q ∈ Pa
i still specifies a distribution as Pa

i ⊆ ∆n .

Therefore, it remains to show that Ht is a norm contraction with

161

respect to the `∞ norm on v. Let us define the operator At as

(At v)(i) def

�
σÛ\U (v)+maxq∈Pa

i
�q

[∑Nt−1

m�0
zt

m(i)(νv(it
m+1
)−v(it

m)|Ft

]
δt(i) and the expression bt(i)

def

�

maxq∈Pa
i
�q

[∑Nt−1

m�0
c(it

m ,π(it
m))

]
δt(i) so that (Ht v)(i) � (At v)(i) + bt(i). We will show that

‖At v‖∞ 6 β‖v‖∞ for some β < 1 from which the contraction on Ht follows because

for any vector v′′ ∈ �n
and the ε-suboptimal value function v′ we have

‖Ht v′′ − v′‖∞ � ‖Ht v′′ − Ht v′‖∞ � ‖At(v′′ − v′)‖∞ 6 β‖v′′ − v′‖∞. (5.2.10)

Let us now analyze the expression for At . We will show that

max

q∈Pa
i

�q

Nt−1∑
m�0

zt
m(i)

(
νv(it

m+1
) − v(it

m) + νσÛ\U(v)
)
+

∑
m∈It(i)

zt
m(i)v(i) | Ft

 6
β‖v‖∞max

q∈Pa
i

�q

∑

m∈It(i)
zt

m(i) | Ft

 .
Let us collect together the coefficients corresponding to v(it

m) in the expression for

the expectation:

max

q∈Pa
i

�q

Nt−1∑
m�0

zt
m(i)

(
νv(it

m+1
) − v(it

m) + νσÛ\U(v)
)
+

∑
m∈It(i)

zt
m(i)v(i) | Ft

(5.2.11)

� max

q∈Pa
i

�q

Nt∑

m�0

(νzt
m−1
(i) − zt

m(i))v(it
m) +

∑
m∈It(i)

zt
m(i)v(i) + ν

Nt∑
m�0

zt
m(i)σÛ\U(v) | Ft

 ,
(5.2.12)

where we used the fact that zt
−1
(i) � 0 and zt

Nt
(i) � 0. Note that whenever it

m , i, the

coefficient νzt
m−1
(i) − zt

m(i) of v(it
m) is nonnegative while whenever it

m � i, then the

coefficient νzt
m−1
(i) − zt

m(i) + zt
m(i) is also nonnegative. Therefore, we may bound

162

the right hand side of equation (5.2.11) as

max

q∈Pa
i

�q

Nt∑

m�0

(νzt
m−1
(i) − zt

m(i))v(it
m) +

∑
m∈It(i)

zt
m(i)v(i) + ν

Nt∑
m�0

zt
m(i) sup

q∈Û\U
q>v | Ft

6 max

q∈Pa
i

�q

Nt∑

m�0

(νzt
m−1
(i) − zt

m(i))‖v‖∞ +

∑
m∈It(i)

zt
m(i)‖v‖∞ + ν

Nt∑
m�0

zt
m(i) sup

q∈Û\U
‖q‖1‖v‖∞ | Ft

 ,
where we use Cauchy-Schwarz to bound σÛ\U(v). Let us now collect the terms

corresponding to a fixed zt
m(i):

max

q∈Pa
i

�q

Nt∑

m�0

(νzt
m−1
(i) − zt

m(i))‖v‖∞ +

∑
m∈It(i)

zt
m(i)‖v‖∞ + ν

Nt∑
m�0

zt
m(i) sup

q∈Û\U
‖q‖1‖v‖∞ | Ft

� ‖v‖∞max

q∈Pa
i

�q

Nt−1∑
m�0

zt
m(i)

©«ν + ν sup

q∈Û\U
‖q‖1 − 1

ª®¬ | Ft

6 ‖v‖∞

©«ν + ν sup

q∈Û\U
‖q‖1 − 1

ª®¬max

q∈Pa
i

�q

∑

m∈It(i)
zt

m(i) | Ft

where the last inequality follows since ν

(
1 + supq∈Û\U ‖q‖1

)
< 1 by assumption.

Therefore setting β � ν
(
1 + supq∈Û\U ‖q‖1

)
, our claim follows. �

Analogous to Corollary 5.1.3 and 5.1.4 we have the following corollaries for the

convergence of the robust TD-iteration of equation (5.2.8) under the special cases

when the uncertainty set is an ellipsoid or a parallelepiped. We state them without

proof, since they are identical to the corresponding corollaries of Section 5.1.

Corollary 5.2.4. Let the proxy set Û be the ellipsoid Û � {x | x>Ax 6 1,
∑

i∈X xi � 0}.

LetApro j be the psdmatrix corresponding to the projection ofA onto the subspace
∑

i∈X xi � 0.

Then the robustTD-iteration of equation (5.2.8) converges to an ε-approximate value function

either of the two conditions hold:

163

1. λmax

(
A−1

pro j

)
6 mini , j∈X

a∈A

(
1 − pa

i j

)
2. ν < 1√

nλmax(A−1

pro j)+1

where ε <
νλmax

(
A−1

pro j

)
1−ν .

Corollary 5.2.5. Let the proxy set Û be the parallelepiped Û �

{x | ‖Bx‖1 6 1,
∑

i∈X xi � 0}. Let Bpro j denote the projection of B onto
∑

i∈X xi � 0.

Then the robust Q-iteration of equation (5.2.8) converges to an ε-approximate value function

if either of the two conditions hold:

1. ‖B−1

pro j ‖∞ 6 mini , j∈X
a∈A

(
1 − pa

i j

)
2. ν < 1

‖B−1

pro j ‖1+1

where ε def

�
ν‖B−1‖∞

1−ν .

164

REFERENCES

[1] Jack Edmonds. “Maximum matching and a polyhedron with 0, l-vertices.”

In: J. Res. Nat. Bur. Standards B 69 (1965), pp. 125–130.

[2] Mihalis Yannakakis. “Expressing Combinatorial Optimization Problems by

Linear Programs (Extended Abstract).” In: Proc. STOC. 1988, pp. 223–228.
[3] Dima Grigoriev. “Linear lower bound on degrees of Positivstellensatz cal-

culus proofs for the parity.” In: Theoret. Comput. Sci. 259.1-2 (2001), pp. 613–
622.

[4] Siu On Chan et al. “Approximate constraint satisfaction requires large LP

relaxations.” In: Foundations of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on. IEEE. 2013, pp. 350–359.

[5] James R. Lee et al. “On the Power of Symmetric LP and SDP Relaxations.” In:

Proceedings of the 2014 IEEE 29th Conference on Computational Complexity. IEEE
Computer Society. 2014, pp. 13–21.

[6] Pravesh Kothari, Raghu Meka, and Prasad Raghavendra. “Approximating

Rectangles by Juntas and Weakly-Exponential Lower Bounds for LP Relax-

ations of CSPs.” In: arXiv preprint arXiv:1610.02704 (2016).
[7] Gábor Braun, Sebastian Pokutta, and Daniel Zink. Inapproximability of combi-

natorial problems via small LPs and SDPs. 2015.
[8] Sanjoy Dasgupta. “A cost function for similarity-based hierarchical cluster-

ing.” In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. Ed. by Daniel

Wichs and Yishay Mansour. ACM, 2016, pp. 118–127. isbn: 978-1-4503-4132-5.

[9] Arnab Nilim and Laurent El Ghaoui. “Robustness in Markov Decision

Problems with Uncertain Transition Matrices.” In: NIPS. 2003, pp. 839–846.
[10] L. G. Khachiyan. “A polynomial algorithm in linear programming.” In: Dokl.

Akad. Nauk SSSR 244.5 (1979), pp. 1093–1096.

[11] N. Karmakar. “A new polynomial time algorithm for linear programming.”

In: Combinatorica 4 (1984), pp. 373–395.
[12] James R Lee, Prasad Raghavendra, and David Steurer. “Lower bounds

on the size of semidefinite programming relaxations.” In: arXiv preprint
arXiv:1411.6317 (2014).

[13] Uriel Feige and Shlomo Jozeph. “Demand queries with preprocessing.” In:

International Colloquium on Automata, Languages, and Programming. Springer.
2014, pp. 477–488.

[14] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning. Vol. 1. Springer series in statistics Springer, Berlin, 2001.

165

[15] Tom Leighton and Satish Rao. “An approximate max-flow min-cut theorem

for uniform multicommodity flow problems with applications to approxi-

mation algorithms.” In: Foundations of Computer Science, 1988., 29th Annual
Symposium on. IEEE. 1988, pp. 422–431.

[16] Tom Leighton and Satish Rao. “Multicommodity max-flowmin-cut theorems

and their use in designing approximation algorithms.” In: Journal of the ACM
(JACM) 46.6 (1999), pp. 787–832.

[17] Sanjeev Arora, Satish Rao, and Umesh Vazirani. “Expander flows, geometric

embeddings and graph partitioning.” In: Journal of the ACM (JACM) 56.2
(2009), p. 5.

[18] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[19] Alexander Shapiro and Anton Kleywegt. “Minimax analysis of stochastic

problems.” In: Optimization Methods and Software 17.3 (2002), pp. 523–542.
[20] Jay K Satia and Roy E Lave Jr. “Markovian decision processes with uncertain

transition probabilities.” In: Operations Research 21.3 (1973), pp. 728–740.
[21] Robert Givan, Sonia Leach, and Thomas Dean. “Bounded parameter Markov

decision processes.” In: European Conference on Planning. Springer. 1997,
pp. 234–246.

[22] Chelsea C White III and Hany K Eldeib. “Markov decision processes with

imprecise transition probabilities.” In:Operations Research 42.4 (1994), pp. 739–
749.

[23] Mihalis Yannakakis. “Expressing combinatorial optimization problems by

linear programs.” In: J. Comput. System Sci. 43.3 (1991), pp. 441–466.
[24] Thomas Rothvoß. “The matching polytope has exponential extension com-

plexity.” In: Proceedings of STOC (2014), pp. 263–272.

[25] Leonid G Khachiyan. “Polynomial algorithms in linear programming.” In:

USSR Computational Mathematics and Mathematical Physics 20.1 (1980), pp. 53–

72.

[26] Michel X. Goemans and David P. Williamson. “Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite

programming.” In: J. Assoc. Comput. Mach. 42 (1995), pp. 1115–1145.
[27] Sanjeev Arora, Satish Rao, and Umesh Vazirani. “Expander flows, geometric

embeddings and graph partitioning.” In: J. ACM 56.2 (2009), Art. 5, 37.

[28] Dima Grigoriev. “Linear lower bound on degrees of Positivstellensatz cal-

culus proofs for the parity.” In: Theoretical Computer Science 259.1 (2001),

pp. 613–622.

[29] Samuel Fiorini et al. “Linear vs. Semidefinite Extended Formulations: Expo-

nential Separation and Strong Lower Bounds.” In: Proceedings of STOC (2012),

pp. 95–106.

166

[30] Samuel Fiorini et al. “Linear vs. Semidefinite Extended Formulations: Expo-

nential Separation and Strong Lower Bounds.” In: to appear in Journal of the
ACM (2015).

[31] Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. “Symmetry

matters for the sizes of extended formulations.” In: International Conference on
Integer Programming and Combinatorial Optimization. Springer. 2010, pp. 135–
148.

[32] Michel X Goemans. “Smallest compact formulation for the permutahedron.”

In:Mathematical Programming 153.1 (2015), pp. 5–11.
[33] Kanstantsin Pashkovich. “Tight lower bounds on the sizes of symmetric

extensions of permutahedra and similar results.” In:Mathematics of Operations
Research 39.4 (2014), pp. 1330–1339.

[34] Gábor Braun and Sebastian Pokutta. The matching polytope does not admit
fully-polynomial size relaxation schemes. 2014.

[35] Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. “Symmetry

Matters for the Sizes of Extended Formulations.” In: Proc. IPCO 2010. 2010,
pp. 135–148.

[36] Gábor Braun and Sebastian Pokutta. “An algebraic take on symmetric

extended formulations.” Manuscript. 2011.

[37] John D. Dixon and Brian Mortimer. Permutation groups. Springer Verlag, 1996.
[38] Sam Buss et al. “Linear gaps between degrees for the polynomial calcu-

lus modulo distinct primes.” In: Proceedings of the thirty-first annual ACM
symposium on Theory of computing. ACM. 1999, pp. 547–556.

[39] Jack Edmonds. “Maximum matching and a polyhedron with 0, 1-vertices.”
In: J. Res. Nat. Bur. Standards Sect. B 69B (1965), pp. 125–130.

[40] Abbas Bazzi et al. “No Small Linear Program Approximates Vertex Cover

within a Factor 2 − ε.” In: arXiv preprint arXiv:1503.00753 (2015).
[41] AnupamGupta, Kunal Talwar, and DavidWitmer. “Sparsest cut on bounded

treewidth graphs: algorithms and hardness results.” In: Proceedings of the
forty-fifth annual ACM symposium on Theory of computing. ACM. 2013, pp. 281–

290.

[42] David Avis and Hans Raj Tiwary. “On the extension complexity of combi-

natorial polytopes.” In: International Colloquium on Automata, Languages, and
Programming. Springer. 2013, pp. 57–68.

[43] Samuel Fiorini et al. “Linear vs. semidefinite extended formulations: expo-

nential separation and strong lower bounds.” In: Proceedings of the forty-fourth
annual ACM symposium on Theory of computing. ACM. 2012, pp. 95–106.

[44] K. Pashkovich. “Extended Formulations for Combinatorial Polytopes.” PhD

thesis. Magdeburg Universität, 2012.

167

[45] G. Braun et al. “Approximation Limits of Linear Programs (Beyond Hierar-

chies).” In: (2012), pp. 480–489. arXiv: 1204.0957 [cs.CC].

[46] G. Schoenebeck. “Linear level Lasserre lower bounds for certain k-CSPs.” In:

Proc. FOCS. IEEE. 2008, pp. 593–602.
[47] M. Charikar, K. Makarychev, and Y. Makarychev. “Integrality gaps for

Sherali-Adams relaxations.” In: Proc. STOC. ACM. 2009, pp. 283–292.

[48] Madhur Tulsiani. “CSP gaps and reductions in the Lasserre hierarchy.” In:

Proceedings of the forty-first annual ACM symposium on Theory of computing.
ACM. 2009, pp. 303–312.

[49] Yu Hin Au and Levent Tunçel. “Complexity Analyses of Bienstock–

Zuckerberg and Lasserre Relaxations on the Matching and Stable Set Poly-

topes.” In: Integer Programming and Combinatoral Optimization. Springer, 2011,
pp. 14–26.

[50] Yu Hin Au and Levent Tunçel. “A comprehensive analysis of polyhedral

lift-and-project methods.” In: arXiv preprint arXiv:1312.5972 (2013).

[51] László Lipták and Levent Tunçel. “The stable set problem and the lift-and-

project ranks of graphs.” In:Mathematical programming 98.1-3 (2003), pp. 319–
353.

[52] Tamon Stephen and Levent Tuncel. “On a representation of the matching

polytope via semidefinite liftings.” In: Mathematics of Operations Research 24.1

(1999), pp. 1–7.

[53] P. Kolman, M. Kouteck, and H. R. Tiwary. “Extension Complexity, MSO

Logic, and Treewidth.” In: arXiv preprint (July 2015). arXiv: 1507.04907
[cs.DS].

[54] Rishi Saket Subhash Khot Preyas Popat. “Approximate Lasserre Integrality

Gap for Unique Games.” In: Proc. APPROX/RANDOM. Vol. 6302. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 298–311.

isbn: Print 978-3-642-15368-6, Online 978-3-642-15369-3.

[55] G. Braun and S. Pokutta. “The matching polytope does not admit fully-

polynomial size relaxation schemes.” In: IEEE Transactions on Information
Theory 61.10 (2015), pp. 1–11.

[56] Aditya Bhaskara et al. “Polynomial integrality gaps for strong SDP relaxations

of densest k-subgraph.” In: Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms. SIAM. 2012, pp. 388–405.

[57] J. Buresh-Oppenheim et al. “Rank bounds and integrality gaps for cutting

planes procedures.” In: Theory Comput. 2 (2006), pp. 65–90.
[58] Mikhail Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. “Towards strong

nonapproximability results in the Lovász-Schrĳver hierarchy.” In: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing. ACM. 2005,

pp. 294–303.

168

http://arxiv.org/abs/1204.0957
http://arxiv.org/abs/1507.04907
http://arxiv.org/abs/1507.04907

[59] G. Schoenebeck, L. Trevisan, and M. Tulsiani. “Tight integrality gaps for

Lovasz-Schrĳver LP relaxations of vertex cover and max cut.” In: Proc. STOC
2007. ACM, 2007, pp. 302–310.

[60] Francisco Barahona. “On cuts and matchings in planar graphs.” In:Mathe-
matical Programming 60.1–3 (1993), pp. 53–68.

[61] AMHGerards. “Compact systems for T-join and perfect matching polyhedra

of graphs with bounded genus.” In: Operations research letters 10.7 (1991),

pp. 377–382.

[62] G. Braun and S. Pokutta. “The matching polytope does not admit fully-

polynomial size relaxation schemes.” In: Proceeedings of SODA / preprint
available at http://arxiv.org/abs/1403.6710 (2015).

[63] Sanjeev Arora, James Lee, and Assaf Naor. “Euclidean distortion and the

sparsest cut.” In: Journal of the American Mathematical Society 21.1 (2008),

pp. 1–21.

[64] Jeff Cheeger, Bruce Kleiner, and Assaf Naor. “A (log n)Ω(1) Integrality Gap

for the Sparsest Cut SDP.” In: Foundations of Computer Science, 2009. FOCS’09.
50th Annual IEEE Symposium on. IEEE. 2009, pp. 555–564.

[65] Shuchi Chawla et al. “On the hardness of approximating multicut and

sparsest-cut.” In: computational complexity 15.2 (2006), pp. 94–114.
[66] Subhash A Khot and Nisheeth K Vishnoi. “The Unique Games Conjecture,

Integrality Gap for Cut Problems and Embeddability of Negative-Type

Metrics into `1.” In: Journal of the ACM (JACM) 62.1 (2015), p. 8.
[67] Luca Trevisan et al. “Gadgets, approximation, and linear programming.” In:

SIAM Journal on Computing 29.6 (2000), pp. 2074–2097.
[68] Daniel Bienstock and Gonzalo Munoz. “LP approximations to mixed-integer

polynomial optimization problems.” In: CoRR, abs/1501.00288 (2015).
[69] Bruno Courcelle. “Themonadic second-order logic of graphs. I. Recognizable

sets of finite graphs.” In: Information and Computation 85.1 (Mar. 1990), pp. 12–

75.

[70] H. D. Sherali and W. P. Adams. “A hierarchy of relaxations between the

continuous and convex hull representations for zero-one programming

problems.” In: SIAM J. Discrete Math. 3 (1990), pp. 411–430.
[71] Nicholas Jardine and Robin Sibson. “Mathematical taxonomy.” In: London

etc.: John Wiley (1971).
[72] Peter HA Sneath, Robert R Sokal, et al. Numerical taxonomy. The principles and

practice of numerical classification. 1973.
[73] Joseph Felsenstein and Joseph Felenstein. Inferring phylogenies. Vol. 2. Sinauer

Associates Sunderland, 2004.

169

http://arxiv.org/abs/1403.6710

[74] Nicholas Jardine and Robin Sibson. “The construction of hierarchic and

non-hierarchic classifications.” In: The Computer Journal 11.2 (1968), pp. 177–
184.

[75] Reza Bosagh Zadeh and Shai Ben-David. “A uniqueness theorem for clus-

tering.” In: Proceedings of the twenty-fifth conference on uncertainty in artificial
intelligence. AUAI Press. 2009, pp. 639–646.

[76] Margareta Ackerman, Shai Ben-David, and David Loker. “Characterization

of Linkage-based Clustering.” In: COLT. Citeseer. 2010, pp. 270–281.
[77] Sanjoy Dasgupta and Philip M Long. “Performance guarantees for hierar-

chical clustering.” In: Journal of Computer and System Sciences 70.4 (2005),

pp. 555–569.

[78] Moses Charikar et al. “A constant-factor approximation algorithm for the

k-median problem.” In: Proceedings of the thirty-first annual ACM symposium
on Theory of computing. ACM. 1999, pp. 1–10.

[79] Kamal Jain and Vĳay V Vazirani. “Approximation algorithms for metric

facility location and k-median problems using the primal-dual schema and

Lagrangian relaxation.” In: Journal of the ACM (JACM) 48.2 (2001), pp. 274–
296.

[80] Kamal Jain et al. “Greedy facility location algorithms analyzed using dual

fitting with factor-revealing LP.” In: Journal of the ACM (JACM) 50.6 (2003),
pp. 795–824.

[81] Moses Charikar and Shi Li. “A dependent LP-rounding approach for the

k-median problem.” In: Automata, Languages, and Programming. Springer,
2012, pp. 194–205.

[82] Shi Li and Ola Svensson. “Approximating k-median via pseudo-

approximation.” In: Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. ACM. 2013, pp. 901–910.

[83] Jiming Peng and Yu Xia. “A new theoretical framework for k-means-type

clustering.” In: Foundations and advances in data mining. Springer, 2005, pp. 79–
96.

[84] Jiming Peng and Yu Wei. “Approximating k-means-type clustering via

semidefinite programming.” In: SIAM Journal on Optimization 18.1 (2007),

pp. 186–205.

[85] Pranjal Awasthi et al. “Relax, no need to round: Integrality of clustering

formulations.” In:Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science. ACM. 2015, pp. 191–200.

[86] SaraAhmadian et al. “BetterGuarantees for k-Means andEuclidean k-Median

by Primal-Dual Algorithms.” In: arXiv preprint arXiv:1612.07925 (2016).
[87] Nir Ailon and Moses Charikar. “Fitting tree metrics: Hierarchical clustering

and phylogeny.” In: 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05). IEEE. 2005, pp. 73–82.

170

[88] Marco Di Summa, David Pritchard, and Laura Sanità. “Finding the closest

ultrametric.” In: Discrete Applied Mathematics 180 (2015), pp. 70–80.
[89] Guy Even et al. “Fast approximate graph partitioning algorithms.” In: SIAM

Journal on Computing 28.6 (1999), pp. 2187–2214.
[90] Robert Krauthgamer, Joseph Seffi Naor, and Roy Schwartz. “Partitioning

graphs into balanced components.” In: Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and

Applied Mathematics. 2009, pp. 942–949.

[91] Moses Charikar and Vaggos Chatziafratis. “Approximate Hierarchical

Clustering via Sparsest Cut and Spreading Metrics.” In: arXiv preprint
arXiv:1609.09548 (2016).

[92] Guy Even et al. “Divide-and-conquer approximation algorithms via spread-

ing metrics.” In: Journal of the ACM (JACM) 47.4 (2000), pp. 585–616.
[93] Yair Bartal. “Graph decomposition lemmas and their role in metric em-

bedding methods.” In: European Symposium on Algorithms. Springer. 2004,
pp. 89–97.

[94] Naveen Garg, Vĳay V Vazirani, and Mihalis Yannakakis. “Approximate

max-flow min-(multi) cut theorems and their applications.” In: SIAM Journal
on Computing 25.2 (1996), pp. 235–251.

[95] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. “Clustering

with qualitative information.” In: Foundations of Computer Science, 2003.
Proceedings. 44th Annual IEEE Symposium on. IEEE. 2003, pp. 524–533.

[96] Alexander Schrĳver. Theory of linear and integer programming. John Wiley &

Sons, 1998.

[97] Anupam Gupta. “Lecture notes on approximation algorithms.” In: Available
at https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/
scribe/lec20.pdf (2005).

[98] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2015.
[99] M. Lichman. UCI Machine Learning Repository. 2013.

[100] Joe H Ward Jr. “Hierarchical grouping to optimize an objective function.” In:

Journal of the American statistical association 58.301 (1963), pp. 236–244.

[101] Marina Meilă and David Heckerman. “An experimental comparison of

model-based clustering methods.” In:Machine learning 42.1-2 (2001), pp. 9–
29.

[102] Yair Bartal. “Probabilistic approximation of metric spaces and its algorithmic

applications.” In: Foundations of Computer Science, 1996. Proceedings., 37th
Annual Symposium on. IEEE. 1996, pp. 184–193.

171

https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf

[103] Yair Bartal, Béla Bollobás, and Manor Mendel. “A Ramsey-type theorem

for metric spaces and its applications for metrical task systems and related

problems.” In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on. IEEE. 2001, pp. 396–405.

[104] Yair Bartal et al. “On metric Ramsey-type phenomena.” In: Proceedings of
the thirty-fifth annual ACM symposium on Theory of computing. ACM. 2003,

pp. 463–472.

[105] Harald Räcke. “Optimal hierarchical decompositions for congestion mini-

mization in networks.” In: Proceedings of the fortieth annual ACM symposium
on Theory of computing. ACM. 2008, pp. 255–264.

[106] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. “A tight bound on

approximating arbitrary metrics by tree metrics.” In: Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing. ACM. 2003, pp. 448–

455.

[107] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. “Reductions

between expansion problems.” In: Computational Complexity (CCC), 2012 IEEE
27th Annual Conference on. IEEE. 2012, pp. 64–73.

[108] Gábor Braun, Sebastian Pokutta, and Aurko Roy. “Strong reductions for

extended formulations.” In: CoRR abs/1512.04932 (2015).

[109] Michael R Garey, David S. Johnson, and Larry Stockmeyer. “Some simplified

NP-complete graph problems.” In: Theoretical computer science 1.3 (1976),

pp. 237–267.

[110] Dimitri P Bertsekas and John N Tsitsiklis. “Neuro-dynamic programming:

an overview.” In: Decision and Control, 1995., Proceedings of the 34th IEEE
Conference on. Vol. 1. IEEE. 1995, pp. 560–564.

172

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	LP and SDP extended formulations
	Optimization Problems
	LP and SDP formulations

	Symmetric SDP formulations
	Hierarchical Clustering
	Preliminaries

	Robust Reinforcement Learning

	Matching has no small symmetric SDP
	Symmetric SDP formulations
	The perfect matching problem
	Highly symmetric functions are juntas
	Lower bounds on matching
	Low-degree certificates for matching ideal membership

	The Metric Traveling Salesperson Problem (TSP) revisited
	Low-degree certificates for tour ideal membership

	LP and SDP lower bounds for other problems
	Preliminaries
	Nonnegativity problems: Extended formulations as proof system
	Base hard problems

	Reductions with distortion
	Fractional optimization problems
	Reduction between fractional problems

	A simple example: Matching over 3-regular graphs has no small LPs
	BalancedSeparator and SparsestCut
	SparsestCut with bounded treewidth supply graph
	BalancedSeparator with bounded-treewidth demand graph

	SDP hardness of MaxCUT
	Lasserre relaxation is suboptimal for IndependentSetG
	From Sheraliâ•ﬁAdams reductions to general LP reductions
	Reducing UniqueGames to 1F-CSP
	Reducing stuff

	A small uniform LP over graphs with bounded treewidth

	Hierarchical clustering
	Related Work
	Contribution

	Preliminaries
	Convex hull of hierarchical clusterings
	Rounding an LP relaxation
	Generalized Cost Function
	Experiments
	Discussion
	Hardness of finding the optimal hierarchical clustering

	Robust Reinforcement Learning
	Robust Q-learning
	Robust TD-Learning

	References

