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SUMMARY

The problem of generating random samples from large, complex sets is widespread

across the sciences, where such samples provide one way to begin to learn about the sets’

typical properties. However, when the samples generated are unexpectedly correlated or

drawn from the wrong distribution, this can produce misleading conclusions. One way to

generate random samples is with Markov chains, which are widely used but often applied

without careful analysis of their mixing time, how long they must run for until they are

guaranteed to produce good samples. We present new mixing time bounds for two sampling

problems from discrete geometry: dyadic tilings, combinatorial structures with applications

in machine learning and harmonic analysis, and 3-colorings on a grid, an instance of the

celebrated antiferromagnetic Potts model from statistical physics. Both of these results

required the development of new techniques.

In addition, we use Markov chains in a novel way to address research questions in pro-

grammable matter. Here, a main goal is to understand how simple computational elements

can collectively accomplish complicated system-level goals. In an abstracted setting, we

show that groups of particles executing our simple processes, based on Markov chains, can

accomplish various tasks. This includes compression, a behavior exhibited by natural dis-

tributed systems such as fire ants and honey bees, and shortcut bridging, where the particles

build bridges that optimize the same global trade-off as certain bridge-building ant colonies.

Throughout, a key ingredient is the interplay between global properties of Markov chains,

including but not limited to mixing time, and their dependence on local moves, or Markov

chain transitions that change only a small part of the configuration. We call the global

behavior that arises out of these local moves and their probabilities emergent behavior. In

addition to understanding the relationship between local moves and mixing times in order

to give sampling guarantees, our work on programmable matter harnesses this interaction

between local and emergent behavior in a novel way, to develop distributed algorithms.

xvi



CHAPTER 1

INTRODUCTION

The problem of generating a random sample from a large, complex set arises across many

areas, such as polling [3], approximating statistics of real-world systems [63], and as a sub-

routine in randomized algorithms [32]. In these examples and more, studying random sam-

ples can tell us what a ‘typical’ element of a set looks like and provide insights about likely

properties and behaviors. However, the problem of efficiently finding random elements is

often a difficult one. One common approach uses a Markov chain: starting at an arbitrary

configuration, iteratively make random local changes for long enough that, regardless of

the starting point, we output a good random sample. This requires mathematically bound-

ing the mixing time, the number of iterations until the configuration obtained is sufficiently

random. Sampling algorithms using Markov chains are widespread throughout the natural

and computational sciences, but are often applied without rigorous mixing time analysis,

potentially producing misleading conclusions when samples are unexpectedly correlated

or drawn from the wrong distribution. This thesis provides rigorous guarantees about the

behavior of several Markov chain sampling algorithms, with a particular focus on problems

from discrete geometry.

We also present a novel applications of Markov chains to programmable matter. Here

our goal extends beyond generating random samples, and we develop decentralized, asyn-

chronous algorithms for accomplishing various objectives in distributed systems. The in-

tuition and analysis tools developed for understanding Markov chain sampling algorithms

enabled this interdisciplinary effort to be successful and allows us to provide guarantees

about the behavior of our distributed algorithms.

A common thread throughout this thesis is understanding the relationship between lo-

cal and global behavior of Markov chains and their underlying models, which can be non-
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intuitive and complex. Global properties of Markov chains are often affected by various

(input) parameters that dictate the local behavior of the chains, and extremely small changes

to some parameter – such as modifying the probabilities of certain moves – can have enor-

mous impact. Phase transitions exist when there is a critical value for some parameter

such that the behavior on either side of this critical point is radically different; for example,

sampling algorithms may be prohibitively slow above a critical point but efficient other-

wise. Furthermore, once we understand such emergent behavior, we can also harness it:

understanding the relationship between probabilities of local moves and overall converge

behavior of Markov chains is precisely the insight that enabled our work on programmable

matter.

1.1 Random Sampling using Markov Chains

A main focus of this thesis is random sampling. How can you quickly choose an uniformly

random element from a very large set? This is difficult when, for instance, even writing

down everything in the set would take a prohibitively long amount of time.

Markov chains are one widely-used method for generating random samples. For exam-

ple, the state-of-the-art algorithm for estimating the volume of high-dimensional convex

bodies uses a Markov chain to take random samples from a sequence of high-dimensional

distributions [32]. Markov chain sampling algorithms also appear as primitives within fast

graph algorithms, such as in [52], and in machine learning algorithms, such as in [103].

More broadly, Markov chain Monte Carlo methods are used in a variety of statistical appli-

cations in the natural sciences. For example, such methods have been used in chemistry, to

estimate degradation of chemicals in the soil [63]; in computational biology, to reconstruct

phylogenetic trees [74]; and in linguistics, to infer probabilistic context-free grammars for

spoken languages [72].

We begin with two examples of Markov chain sampling problems that are relevant to

the work presented in this thesis and will illustrate some important points.
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1.1.1 Card Shuffling: Global and Local Moves

A standard illustrative example of using a Markov chain to generate a random sample is

shuffling a deck of cards. Here the set from which we wish to generate a random sample,

the state space, consists of all possible orderings of the cards. The goal of shuffling is to

quickly reach a random order on the deck of cards (a random state in this state space),

by repeating random reordering/shuffling steps according to some iterative rules (making

random transitions between states).

A common way cards are shuffled in practice is the riffle shuffle, where the deck of

cards is divided into two parts and then the cards from each half are interleaved. This has

been formalized, so that it can be studied mathematically, in the Gilbert-Shannon-Reeds

model, which has been shown to be a good approximation of how humans perform the

riffle shuffle (see [45], Chapter 4D). It is a well-known result that, for a certain notion

of “close to uniform” that is often used when studying Markov chains (total variation

distance), after seven riffle shuffles a deck of 52 is close to being in a uniformly random

order. More generally, for decks of n cards, about 1.5 log2 n riffle shuffles suffice to reach

a nearly uniform random order [8]. Because a single riffle shuffle significantly changes the

order of the cards in a deck, we call it a global move.

There are other methods for shuffling a deck of cards that just change one or two cards

at a time; we call such transitions local moves. For many Markov chains, local moves are

easier to identify and simpler to implement in practice. Examples of shuffling processes us-

ing local moves include the top-to-random shuffle, where the top card of the deck is placed

at a random location in the deck, and the random transposition shuffle, where two randomly

chosen cards are swapped. The number of times each of these shuffles has to be performed

to guarantee a close to uniformly random ordering of the cards is Θ(n log2 n) [2, 46]; it is

impractical for a human to perform this many shuffling steps, but this process can easily

be implemented and executed on a computer. Throughout this thesis a focus will be placed

on Markov chains like these that use local moves: a single transition changes only a very
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small part of the configuration. In many cases, we can design Markov chains using only

local moves that as a whole still converge as desired, and often do so fairly quickly. The

simplicity of such local processes is appealing. Furthermore, when transitions are local,

often they can be implemented in a distributed way without requiring global knowledge of

the whole system. This is a critical feature in the success of our stochastic, Markov chain-

based approach to developing algorithms for distributed programmable matter systems (see

Section 1.5 and Chapter 5).

1.1.2 The Hardcore Model from Statistical Physics

We now discuss the hardcore model from statistical physics as a second illustrative example

of random sampling using a Markov chain. Related statistical physics models, the Ising

model and Potts model, will both feature prominently in later chapters.

For a graph G, an independent set is a subset of the vertices of G such that no two ver-

tices in the set are adjacent. One can make an analogy to physical systems where the ver-

tices of G represent the possible locations for gas molecules, and the size of the molecules

is large enough to preclude them from occupying adjacent locations. When graph G is a

lattice, the independent set model is referred to as the hardcore lattice gas model; the term

hardcore refers to the hard constraint that adjacent vertices cannot both be in the same

independent set.

Computationally, we are interested understanding whether or not it is possible to effi-

ciently sample a uniformly random independent set from a graph G. Answers to algorith-

mic questions about sampling from statistical physics systems are often closely tied to the

properties of the systems themselves, such as how quickly correlations between spins at

different sites decay with distance [13, 54]. One way to generate a random independent set

is to use the following Markov chain: beginning at an arbitrary independent set, repeatedly

pick a random vertex of G; if the vertex is in the independent set, remove it; if the vertex

is not in the independent set, add it if the resulting configuration is still independent. This
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gives a simple way of moving between independent sets that only requires looking at some

random local neighborhood ofG in each step. These moves suffice to reach all independent

sets, and in Chapter 2 we’ll define the machinery necessary to prove that if you do enough

of these random transitions, eventually you’ll be equally likely to be at any independent set

in G. Quantifying ‘eventually,’ the amount of time it takes to reach a random state, will be

discussed more in Section 1.2.

1.2 Convergence Times of Markov Chains

To formalize the processes described above, a Markov chain is a process that iteratively

makes random transitions between states in some state space and eventually outputs its

current state as a random sample. For such a sampling process to be effective, we need to

know that the sample output comes from a distribution that is close to our desired one, and

that we reach such a distribution quickly. We give an introduction to these ideas here; more

formal definitions can be found in Chapter 2.

Before we can say anything about the distribution from which we generate random

samples, we must show that the random transitions we have defined suffice to reach all

configurations in the state space. In many examples, such as for card shuffling and the

hardcore model, this is nearly trivial, but for the Markov chains we consider in Chapter 5 it

takes significant effort to show. If the transitions connect all states and additionally we show

the state space is aperiodic, which is nearly always trivial to do, we say the Markov chain

is ergodic. When a finite ergodic Markov chain process is executed for a large number

of steps, it is known to eventually converge to a unique stationary distribution over the

states, which is the distribution samples are being (approximately) generated from. That

is, the probability of a particular state being output as the random sample is its probability

in the stationary distribution. It is important to ensure that the stationary distribution of

the Markov chain matches the distribution we which to sample from, and tools (such as

detailed balance) exist to verify this.
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Bounding the time it takes for a Markov chain to reach its stationary distribution can

be extremely challenging. We measure the distance from stationarity in terms of total vari-

ation distance, half the `1 distance between the stationary distribution and the probability

distribution describing the state of the Markov chain at a given time. We say the chain

has mixed when this total variation distance is less that ε; as is standard, we often assume

ε = 1/4. The mixing time is the amount of time it takes a Markov chain to become mixed

from the worst-case starting state.

Often when a Markov chain is used in practice, it is run for long enough that samples

“appear” to be random, but there are no theoretical guarantees on what distribution the sam-

ple is being drawn from and how close that distribution is to the stationary distribution. For

this reason, rigorous bounds on the mixing time of Markov chains, and proof techniques

to achieve them, are essential. There exist many well-established techniques for bounding

mixing times – such as coupling [29], path coupling [16], comparison [43], decomposi-

tion [81, 83], and canonical paths [44, 107] – but there remain many problems for which

these approaches fail to give meaningful mixing time bounds. Among other results, this

thesis presents two new techniques for proving mixing time bounds, the bisection/block

moves approach (Section 3.5) and randomized extensions (Chapter 4).

1.3 Biased Markov Chains

The examples presented in Sections 1.1.1 and 1.1.2 use Markov chains to generate samples

drawn from a uniform distribution. In these and other settings, sometimes it can be more

desirable to draw samples from biased distributions. Given a Markov chain with defined

transitions and a target distribution over its state space, one can ensure the Markov chain

converges to this target distribution by setting the probabilities of transitions according to a

Metropolis Filter [88]. Changing the bias of a Markov chain (that is, modifying the proba-

bilities of its transitions) can have profound impacts on the mixing behavior it exhibits, so

this has to be carefully understood.
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1.3.1 Biased Card Shuffling

Consider the following shuffling algorithm for a deck of n cards that are labeled 1, 2, 3, ..., n:

choose two random adjacent cards in the deck and swap them with some probability.

Changing the probability with which such a swap occurs changes the distribution over

orderings of the deck that this shuffling process converges to as well as the time time it

takes to converge. When each such swap is made with probability 1/2, this process still

converges to the uniform distribution and does so in time Θ(n3 log n) [118]. Suppose in-

stead probabilities of adjacent swaps are set so that whenever cards i and j are picked with

i < j, card i is placed before card j with probability p and after card j with probability

1 − p for some fixed p > 1/2. It turns out that this process converges to a distribution

that favors having the cards in order, and does so in time Θ(n2), much faster than in the

unbiased case [9]. There are also ways to set transition probabilities that cause the chain

to converge slower. Bhakta et al. [10] give one such example, obtained via a reduction to

biased lattice paths, where transition probabilities still favor putting the cards in order (it’s

more likely to put i before j when i < j), but the shuffling process to takes exponential

time to converge.

1.3.2 The Weighted Hardcore Model from Statistical Physics

A similar dependence of convergence time on the probabilities of local moves can be found

when considering a weighted version of the hardcore model presented in Section 1.1.2.

Suppose, instead of sampling a uniformly random independent set of a graph G, we want

to be more likely to sample the larger (more interesting) independent sets. We can add

a bias λ > 1 to the sampling process described above: pick a random vertex of G; if

the vertex is in the independent set, remove it with probability 1/λ; if the vertex is not in

the independent set, add it if possible. As we are less likely to remove vertices from the

independent set, it’s reasonable to expect that our random sample is more likely to have

more vertices, and this turns out to be the case.
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It has been shown that the convergence time of this process depends critically on the

value of λ. Even just for graphsG that are rectangular subsets of Z2, when λ is small it con-

verges to its stationary distribution quickly [113], but when λ is large this takes exponential

time [12]. It is conjectured that there is a critical point λc such that when λ is below this

point the mixing time is fast and above it the mixing time is slow [7]. This is one example

of a more general phenomenon known as a phase transition. Though this phase transition

for the hard core model has been studied empirically, efforts to extend proofs of mixing

behavior past the known bounds have been unsuccessful; currently, mixing is only known

to be fast for λ < 2.48 and slow for λ > 7.12, even though it is conjectured that λc ≈ 3.79.

1.4 Phase Transitions and Emergent Behavior

In this dissertation, a main focus is placed on global characteristics of Markov chains,

including but not limited to mixing time, and how they depend on local moves, transitions

between states that only change a small part of the configuration at a time. We refer to

the global behavior that arises out of these local moves and their probabilities as emergent

behavior. While understanding the relationship between local moves and mixing times

is essential to ensuring widely-used sampling processes are reliable, this thesis also shows

how to harness the relationship between local moves and emergent behavior in a novel way,

to develop distributed algorithms for programmable matter.

In Chapter 3 we prove the existence of a phase transition for a natural local Markov

chain on dyadic tilings: the chain has a parameter λ that determines the probabilities of

local moves, and there is a critical point λc = 1 such that for all λ < λc the convergence

time is polynomial and for all λ > λc the convergence time is exponential. Furthermore, at

the critical point λ = λc the convergence time is polynomial but a larger polynomial than

when λ < λc. This behavior, where there is some bias parameter λ (inverse temperature)

and the mixing time of a natural Markov chain is as fast as possible above some critical

temperature, a larger polynomial at the critical temperature, and exponential below the
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critical temperature, is conjectured in many systems, especially in statistical physics. There

are very few instances for which this behavior has been rigorously confirmed. Notable

examples include the Ising model on complete graphs [77, 48], regular trees [47], and two-

dimensional lattice regions [78], and the Potts model on the complete graph [33] and the

two-dimensional lattice [60], all of which required significant effort to analyze.

Chapter 4 considers the effect boundary conditions have on sampling from grid 3-

colorings and lozenge tilings. While we expect sampling with a natural local Markov

chain to be fast regardless of boundary conditions (i.e., there is only one phase), previous

proofs were insufficient to show this. We were able to use a new technique to push past

previous barriers and give efficient sampling results for even more boundary conditions. Of

particular interest, the new regions we’re now able to efficiently sample from include those

needed for self-reducibility; for the first time, we can also approximately count 3-colorings

of grid regions. These results move us significantly closer to rigorously verifying that for

these problems the emergent behavior has no dependence on boundary conditions.

Our Markov chain algorithms for particle processes presented in Chapter 5 provably

exhibit phased behavior that depends on the input to the problem, but these results are of a

different flavor. For these problems, we wish to obtain a sample that with high probability

has a certain property, and show how to bias a Markov chain to guarantee this is true

at stationarity. Rather than different phases characterizing when a Markov chain enables

efficient sampling and when it does not, in these algorithms different phases correspond to

different interesting, desirable properties that the stationary distribution exhibits. Just by

changing a single parameter, we can use the same algorithm to obtain radically different

behaviors. While we conjecture a sharp phase transition between the two phases we see

(as there is for dyadic tilings), current proof techniques are not sufficient to obtain such a

result. The most significant contribution of this result is the novel connections we make

between Markov chains for sampling from particle processes and distributed algorithms

for programmable matter. The next section defines and explains programmable matter and
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motivates our work on the topic.

1.5 Programmable Matter

To develop a system of programmable matter, one endeavors to create a material or sub-

stance that utilizes user input or stimuli from its environment to change its physical proper-

ties in a programmable fashion. Many such systems have been realized; a non-exhaustive

list includes:

• DNA computing, where strands of DNA programmed with specific base sequences

combine in solution to form specific arrangements [1];

• Smart materials, including 3D-printed wood that bends in a preprogrammed way

when wet [34];

• Modular robots that can reconfigure themselves to accomplish different tasks, such as

the ReBiS robot which can switch between bipedal and snake-like movement [109].

• Swarm robotics, where large groups of robots collectively perform tasks, like the

kilobots of [102].

Programmable matter can be divided into active and passive types. In passive pro-

grammable matter systems, which includes most instances of DNA computing and smart

materials, individual elements have little to no control over how they respond to their en-

vironment. Instead, they rely on physical properties and interactions with environmental

conditions to produce the desired results. Much work in this area has focused on shape

formation(e.g., [34, 108]), including a large body of research in molecular self-assembly

(e.g., [30, 50, 116, 119]).

In contrast, in active programmable matter systems, individual computational units

are capable of making decisions and acting on those decisions. For example, in self-

reconfigurable modular robots each robotic module can adjust its connections to other
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modules in order to form different structures [93], and in distributed swarms each robot

makes independent decisions about what to do [102].

1.5.1 Self-organizing Particle Systems

We will focus on active programmable matter. Because instances of active programmable

matter are incredibly varied, instead of focusing on just one system we will instead ex-

amine an abstraction that captures features that are common across many different active

programmable matter systems. This will allow rigorous exploration of the general algo-

rithmic capabilities and limitations of active programmable matter, free from the particular

nuances and constraints of certain instantiations.

In a self-organizing particle system, individual units called particles with limited com-

putational and communication abilities occupy the vertices and move along the edges of

some graph (representing real space) in a distributed, asynchronous way [39]. We are in-

terested in what these simple particles can collectively accomplish without any centralized

control.

Initial work on self-organizing particle systems gave deterministic distributed algo-

rithms for problems such as shape formation [42] and object coating [41]. When a small

amount of randomness was added, leader election was also shown to be possible [35].

These carefully-constructed distributed algorithms provably accomplished exactly the out-

lined objectives, but a lack of robustness and a need for persistent memory limited their

practicality for real programmable matter systems.

1.5.2 The Stochastic Approach

In [21], we initiated the stochastic approach to developing distributed algorithms for pro-

grammable matter. By basing our distributed algorithm on a Markov chain, we are able to

provably accomplish our objectives in a robust, nearly-oblivious way. The viability of this

approach, which we present in Chapter 5, was further validated in [4] and [22]. At a high
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level, we begin with a Markov chain on particle arrangements that converges to a desired

distribution using local moves. Because each local move changes only a very small part

of the configuration – one particle moves to an adjacent location – and is independent of

what is happening elsewhere, it is possible to implement these moves in a distributed way.

Specifically, we can give a distributed algorithm for each particle to execute independently

and asynchronously so that the desired collective behavior is still realized despite the lack

of central control. Because our distributed algorithm comes from a Markov chain, we can

leverage some of the many tools commonly used for Markov chain analysis to provide

guarantees about the performance of the distributed algorithm. This novel application of

Markov chains to programmable matter and distributed algorithms was made possible by

intuition developed from studying Markov chain sampling algorithms from a rigorous per-

spective and a thorough understanding of how probabilities of local Markov chain moves

determine its behavior.

1.5.3 Inspiration: Biological Systems

Many programmable matter systems are inspired by distributed natural systems that are

able to do amazing things. Species of social insects offer perhaps the most immediate

analogy to active programmable matter systems: individual ants, wasps, or bees are fairly

simple organisms, but colonies as a whole exhibit remarkable collective behaviors that ap-

pear to be greater than the sum of their parts. For example, individual fire ants Solenopsis

invicta struggle to swim in water, but when their nests are flooded they gather together

to form rafts out of their own bodies and float for weeks to months until they find a new

home [89]. When foraging, army ants of the genus Eciton build bridges that shortcut the

distance other ants have to travel. The construction of these bridges seems to optimize

a global trade-off between having shorter foraging paths but having fewer foraging ants

because many are occupied in bridge-building. This is done despite each ant only having

knowledge of its local environment, not the whole foraging trail [98]. Remarkable collec-
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tive behaviors have also been observed in other species: honey bees choose hive locations

based on decentralized recruitment [19] and cockroach larvae perform self-organizing ag-

gregation using pheromones with limited range [68].

The programmable matter problems we solve in Chapter 5 take inspiration from simple

behaviors observed in biological systems: compression, expansion, and bridge-building.

Biologists don’t entirely understand how such tasks are accomplished in nature, but our

algorithms give one plausible explanation of how simple individual elements, such as ants,

can collectively exhibit greater intelligence and accomplish difficult tasks.
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CHAPTER 2

BACKGROUND

Formalizing many of the ideas discussed in Chapter 1 is necessary to discuss our results.

A Markov chain is a memoryless random process on some state space Ω; in this thesis, we

only consider Markov chains on finite discrete state spaces. In particular, a Markov chain

randomly transitions between states of Ω in a time-independent, or stochastic, fashion:

there are fixed rules that prescribe the probabilities with which the chain transitions to

its next state that depend only on its current state. The probabilities of moves have no

dependence on any past behavior of the Markov chain, how long the chain has been running

for, or anything else. We focus on discrete time Markov chains, where in each iteration of

the Markov chain one transition occurs, though most of our results apply to the analogous

continuous time chains as well. For a more detailed background on Markov chains than is

included here, see [76].

Because of its stochasticity, we can completely describe a Markov chain by its transition

matrix P , which is an |Ω|× |Ω|matrix, indexed by the states of Ω, defined such that for any

pair x, y ∈ Ω, P (x, y) is the probability, if in state x, of moving to state y in one iteration

of the Markov chain. The t-step transition probability P t(x, y) is the probability of moving

from x to y in exactly t steps.

A Markov chain is irreducible if there is a sequence of valid transitions from any state

to any other state, that is, if for all x, y ∈ Ω there is a t such that P t(x, y) > 0. A Markov

chain is aperiodic if for all x, y ∈ Ω, gcd{t : P t(x, y) > 0} = 1. A Markov chain is

ergodic if it is both irreducible and aperiodic.

Any finite, ergodic Markov chain converges to a unique stationary distribution π, given

by, for any x, y ∈ Ω, π(y) = limt→∞ P t(x, y); importantly, this stationary distribution

is completely independent of the starting state x. We can find the stationary distribution
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of any finite ergodic Markov chain using detailed balance: any distribution π′ that satis-

fies π′(x)P (x, y) = π′(y)P (y, x) for all x, y ∈ Ω (the detailed balance condition) and

has
∑

x∈Ω π
′(x) = 1 must be the unique stationary distribution of the Markov chain (see,

e.g., [55]). If a Markov chain satisfies the detailed balance equation, it is said to be re-

versible.

Given the transitions of a Markov chain and a desired stationary distribution π on Ω,

the Metropolis-Hastings algorithm [88] defines appropriate transition probabilities for the

chain so that π is its stationary distribution. For a state x ∈ Ω, we say its neighbors are

the states it can transition to, and its degree is its number of neighbors. Starting at x ∈ Ω,

the Metropolis-Hastings algorithm picks a neighbor y ∈ Ω uniformly with probability

1/(2∆), where ∆ is the maximum degree of any state, and moves to y with probability

min{1, π(y)/π(x)}; with the remaining probability, it stays at x and repeats. If the given

transitions connect the state space Ω (i.e., if the chain is irreducible), then π must be the

stationary distribution by detailed balance. While calculating π(y)/π(x) seems to require

global knowledge, this ratio can often be calculated easily using only local information

when many terms cancel out. This is the case for all biased local algorithms we consider in

this thesis.

2.1 Convergence to Stationarity: Mixing Time, Spectral Gap and Relaxation Time

The time a Markov chainM takes to converge to its stationary distribution π is typically

measured in terms of the total variation distance between π and P t(x, ·), the probability

distribution describing the state ofM at time t from starting state x; formally,

∥∥P t(x, ·), π
∥∥
TV

=
1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ .

The mixing time tmix of a Markov chainM is the time it takes this total variation distance

between P t and the stationary distribution π to drop (and stay) below ε, from the worst
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case starting state:

tmix(ε) = min

{
t : ∀ t′ ≥ t, max

x∈Ω

∥∥∥P t′(x, ·), π
∥∥∥
TV
≤ ε

}
.

As is standard, we often assume ε = 1/4 and consider mixing time tmix = tmix(1/4). We

sayM is rapidly mixing if tmix is bounded above by a polynomial in n and slowly mixing

if it is bounded below by an exponential in n, where n is the size of the problem.

Closely related to mixing times of Markov chains are the notions of relaxation time

and spectral gap. Following the notation of [76], the absolute spectral gap γ? of a Markov

chainM with transition matrix P is 1− |λ?|, where λ? is the second largest eigenvalue of

P in absolute value; P ’s largest eigenvalue is always 1. The relaxation time of a reversible

Markov chain is 1/γ?.

A lazy Markov chain is one where P (x, x) ≥ 1/2 for all x ∈ Ω. For a lazy Markov

chainM, all eigenvalues are nonnegative, and so λ? = λ2, the second largest eigenvalue

of P . The spectral gap γ is defined to be 1−λ2, and for lazy Markov chains trel = 1/γ. In

this thesis, we only examine the spectral gap and relaxation time for Markov chains that are

lazy. The following well-known proposition relates the relaxation time and mixing time of

a Markov chain; for a proof, see, e.g., [76, Theorem 12.3 and Theorem 12.4].

Proposition 2.1. Let M be an ergodic Markov chain on state space Ω with reversible

transition matrix P and stationary distribution π. Let πmin = minx∈Ω π(x). Then:

(trel − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel.

One can study the spectral gap of a Markov chain, and thus its relaxation and mixing

times, by considering functions on the chain’s state space. For f : Ω → R, the variance
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of f with respect to a distribution π on Ω can be expressed as:

varπ(f) =
∑
x∈Ω

π(x) (f(x)− Eπ[f(x)])2 =
1

2

∑
x,y∈Ω

π(x)π(y)(f(x)− f(y))2.

For a given reversible transition matrix P on state space Ω with stationary distribution π,

the Dirichlet form, also known as the local variance, associated to the pair (P, π) is, for

any function f : Ω→ R,

E(f) =
1

2

∑
x,y∈Ω

[f(x)− f(y)]2π(x)P (x, y).

The following well-known result (see, e.g., [76, Lemma 13.12]) demonstrates the close

relationship between the spectral gap, Dirichlet form, and variance of a function on Ω.

Proposition 2.2. Given a Markov chain with reversible transition matrix P and stationary

distribution π, the spectral gap γ = 1− λ2 of P satisfies

γ = min
f :Ω→R

varπ(f)6=0

E(f)

varπ(f)
.

In Chapter 3, in particular, we will bound mixing and relaxation times by appealing to

spectral gaps and Dirichlet forms.

2.2 Techniques for Proving Mixing and Relaxation Time Upper Bounds

We now briefly summarize some well-known techniques that we will use to prove mixing

and relaxation time upper bounds, first focusing on three different variants of the coupling

approach. A coupling of a Markov chainM is a joint Markov process (A,B) on Ω×Ω such

that each of the marginals A and B is a faithful copy ofM and, once the two coordinates

coalesce, they move in unison: if At = Bt, then At+1 = Bt+1. There is a close relationship

between the coupling time, the amount of time it takes for the two marginal chains in a
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coupling to coalesce, and mixing and relaxation times of the chain.

2.2.1 Coupling

The first coupling theorem we state is a result of Chen [29] (see also [76, Theorem 13.1]).

Theorem 2.3 ([29]). Let M be a Markov chain on state space Ω, and let Φ be a metric

on Ω. Suppose there exists a coupling (A,B) of M and a constant β < 1 such that for

any pair of states At, Bt ∈ Ω, which are updated to At+1 and Bt+1, respectively, after one

iteration of the coupling, that

E [Φ(At+1, Bt+1) | At, Bt] ≤ βΦ(At, Bt).

Then, the spectral gap ofM satisfies γ ≥ 1− β.

This will be used in Section 3.3 to give an upper bound on the relaxation time of the biased

edge-flip Markov chain on dyadic tilings (for certain biases), and in Section 3.5.3 to prove

that a certain Markov chain on dyadic tilings that uses block moves has a constant spectral

gap.

2.2.2 Path Coupling

Path coupling arguments are a convenient way of bounding the mixing time of a Markov

chain by considering only a subset U of the joint state space Ω × Ω of a coupling. To

show thatM is rapidly mixing, we consider an appropriate metric Φ on Ω and prove that

the two marginal chains, if in a joint configuration in subset U , get no farther away in

expectation after one iteration. Through linearity of expectation, this implies that any pair

of configurations get no father apart in one iteration of the coupling. Though path coupling

was first proposed by Bubley and Dyer [16], we instead state the slightly cleaner version of

the path coupling theorem due to Dyer and Greenhill [53].
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Theorem 2.4 ([53]). Let Φ : Ω × Ω → Z be a metric which takes values in [0, S]. LetM

be an ergodic Markov chain on Ω and let (A,B) be a coupling ofM, with Φt := Φ(At, Bt)

and ∆Φt := Φt+1 −Φt. Let U ⊆ Ω×Ω be such that for all (At, Bt) ∈ Ω×Ω, there exists

a path At = Z0, Z1, ..., Zr = Bt such that (Zi, Zi+1) ∈ U for 0 ≤ i < r and

r−1∑
i=0

Φ(Zi, Zi+1) = Φ(At, Bt).

Suppose that for all (At, Bt) ∈ U , the coupling satisfies

E[∆Φt | At, Bt] ≤ 0.

Additionally, assume there exists α > 0 such that for all t with Φt 6= 0,

P(∆Φt 6= 0) > α.

Then the mixing time ofM satisfies

tmix(ε) ≤
⌈
eS2

α

⌉
dlog(ε−1)e.

We use this path coupling theorem in Chapter 4 to show a Markov chain for grid 3-colorings

mixes in polynomial time.

2.2.3 Multiplicative Path Coupling

Another variant of path coupling allows distances between states in Ω to get exponentially

large; with the previously stated path coupling theorem, such metrics would never yield

polynomial time mixing bounds. To enable such a result, we need a stronger statement

about the expected decrease in distance: the two coupled processes must, in expectation,

get closer by a multiplicative factor in each iteration. A version of this theorem was first
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proved in [16], but the statement presented in [62] that we give here will be easier for us to

work with.

Theorem 2.5 ([62]). Let φ : Ω× Ω→ R+ ∪ {0} be a metric which takes on finitely many

values in {0} ∪ [1, S]. Let M be a lazy ergodic Markov chain on Ω and let (A,B) be a

coupling ofM, with φt := φ(At, Bt). Let U ⊆ Ω×Ω be such that for all (At, Bt) ∈ Ω×Ω,

there exists a path At = Z0, Z1, ..., Zr = Bt such that (Zi, Zi+1) ∈ U for 0 ≤ i < r and

r−1∑
i=0

φ(Zi, Zi+1) = φ(At, Bt).

Suppose there exists β < 1 such that, for all (At, Bt) ∈ U ,

E[φt+1 | At, Bt] ≤ βφt.

Then the mixing time ofM satisfies

tmix(ε) ≤ ln(Sε−1)

1− β .

This result has also been referred to as the exponential metric path coupling theorem. We

use this theorem to prove mixing time upper bounds for a biased Markov chain on dyadic

tilings in Section 3.3.

2.2.4 Comparison

Another method for obtaining a mixing time bound on a Markov chain is to compare the

chain to similar Markov chains whose mixing time is already known. The comparison

method was first used by Diaconis and Saloff-Coste [43], and has since been applied to a

wide range of problems. Though Diaconis and Saloff-Coste state their comparison results

in terms of Dirichlet forms, we go one step farther and state comparison results in terms of

spectral gaps (as in Sections 13.4 and 13.5 of [76]).
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Let E ⊆ Ω × Ω be E = {(x, y) | P (x, y) > 0}. An E-path from x to y is a sequence

Γ = (e1, e2, ..., em) of edges in E such that ei = (vi, vi+1) for v1, .v2, ..., vm+1 ∈ Ω, where

v1 = x and vm+1 = y. The length of an E-path is the number of edges it contains and is

denoted |Γ|.

Theorem 2.6. Let P and P̃ be reversible transition matrices with stationary distributions

π and π̃, respectively, on the same state space. For E = {(x, y) | P (x, y) > 0}, for each x

and y such that P̃ (x, y) > 0 pick an E-path Γx,y from x to y. Let the congestion ratio be

B = max
e=(z,w)∈E

 1

π(z)P (z, w)

∑
x,y:Γx,y3e

π̃(x)P̃ (x, y)|Γx,y|

 .

Then the spectral gaps γ and γ̃ of P and P̃ , respectively, satisfy

γ̃ ≤
[
max
x∈Ω

π(x)

π̃(x)

]
Bγ.

In particular, if two Markov chains with the same stationary distribution differ in their

probabilities of moves by only a constant factor, then their spectral gaps, relaxation times,

and mixing times also differ by at most a constant factor; such a situation is discussed in

Section 4.2.5. Furthermore, while we prove results in Chapter 4 about a Markov chain

that uses non-local tower moves, an application of the comparison technique, similar to

that of [61] and [97], extends these fast mixing results to a local Markov chain known as

Glauber dynamics that uses single site updates.

2.2.5 Other Techniques

Other techniques commonly used to prove mixing time upper bounds include canonical

paths [81, 83], which can be viewed as a special case of the comparison approach, and

decomposition [81, 83]. However, there remain many problems for which these approaches

fail to give meaningful mixing time bounds. Because of this, new approaches, techniques,
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and insights are needed. We make progress towards this goal in Section 3.5, where we use

a new technique, based on work in statistical physics, to give a mixing time upper bound

for the unbiased edge-flip Markov chain on dyadic tilings.

2.3 Techniques for Proving Mixing and Relaxation Time Lower Bounds

We complement many of the mixing and relaxation time upper bounds presented in this

thesis with lower bounds. We briefly outline the three main techniques used to give mixing

and relaxation time lower bounds; for more details on all of these approaches, see Chapter 7

of [76].

2.3.1 Diameter

The diameter of the state space of a Markov chain can be used to give a first lower bound

on its mixing time.

Theorem 2.7. Let D be the diameter of the state space of an irreducible aperiodic Markov

chain. Then for any ε < 1/2, the mixing time satisfies

tmix(ε) ≥ D

2
.

We give a diameter lower bound for the biased edge-flip Markov chain for dyadic tilings in

Section 3.3 to show that our mixing time upper bound is within a factor of n/ log n of the

true mixing time of the chain.

2.3.2 Isoperimetric Inequalities

One can also give a lower bound on the time a Markov chain takes to converge to its

stationary distribution by demonstrating that the state space contains a bottleneck. The

expected time it takes the chain to cross this bottleneck is a lower bound on the mixing
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time. We use this approach to give an exponential mixing time lower bound on the biased

edge-flip Markov chain for dyadic tilings – for certain biases – in Section 3.4.

The conductance of an ergodic Markov chainM with stationary distribution π is

ΦM = min
S⊆Ω

π(S)≤1/2

1

π(S)

∑
s1∈S,s2∈Ω\S

π(s1)P (s1, s2).

We can infer a lower bound on the mixing time using the following theorem that relates

conductance and mixing time (see, e.g., [106]).

Theorem 2.8. For any Markov chain with conductance Φ, ∀ε > 0 we have

tmix(ε) ≥
(

1

4Φ
− 1

2

)
log

(
1

2ε

)
.

2.3.3 Distinguishing Statistics

Distinguishing statistics are a generalization of conductance. Let f : Ω → R be some

function (a statistic) on the state space of some Markov chain M. The partitions of Ω

into a set S and its complement Ω \ S considered in the definition of conductance can be

thought of a statistic where f(σ) = 1 if σ ∈ S and f(σ) = 0 if σ /∈ S, but we can also

consider more general statistics. For any such f , it follows from Proposition 2.2 that for a

Markov chainM with transition matrix P and stationary distribution π thatM’s spectral

gap satisfies

γ ≤ E(f)

varπ(f)
.

In Section 3.5.5, we give a distinguishing statistic for the unbiased edge-flip Markov chain

that gives a spectral gap upper bound, and consequently a mixing and relaxation time lower

bound. This result nicely complements our other results for the edge-flip Markov chain on

dyadic tilings, and supports some interesting connections to statistical physics that we will

discuss in Section 3.6.
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CHAPTER 3

DYADIC TILINGS

In this chapter we examine the edge-flip Markov chain for dyadic tilings. A dyadic tiling

of size n is a tiling of the unit square by n non-overlapping dyadic rectangles with the same

area 1/n, where a dyadic rectangle is one that can be written in the form [a2−s, (a+1)2−s]×

[b2−t, (b+1)2−t] for a, b, s, t ∈ Z≥0; see Figure 3.1. More naturally, Lagarias, Spencer, and

Vinson [73] showed that dyadic tilings are precisely those tilings that can be constructed by

bisecting the unit square, either horizontally or vertically; bisecting each half again, either

horizontally or vertically; and repeatedly bisecting all remaining rectangular regions until

there are n total dyadic rectangles, each of equal area. We necessarily assume n is a power

of 2.

Dyadic tilings have been used as a classifier in machine learning algorithms [104]; in

harmonic analysis to approximate isotopic curves [18]; and their interesting combinatorial

properties have been studied [73, 67]. More broadly, partitions of lattice regions into rect-

angles whose corners lie on lattice points, called rectangular dissections, arise in the study

of VLSI layout [37], mapping graphs for floor layouts [94, 115], and routings and place-

ments [120] and have long been of interest to combinatorialists [15, 112]. Of particular

relevance to us are equitable rectangular dissections which require that all rectangles in

the partition have the same area [64].

We are interested in understanding the efficiency of a natural method for generating ran-

dom dyadic tilings via local moves, called the edge flip Markov chain. Given any dyadic

tiling, this chain evolves by selecting an edge of the tiling uniformly at random and replac-

ing it by its perpendicular bisector, if doing so yields a valid dyadic tiling of size n. A

valid edge flip is shown in Figure 3.2a, while two edges that cannot be flipped are shown in

Figures 3.2b and 3.2c. Similar edge flip Markov chains have been considered for domino
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(a) (b) (c)

Figure 3.1: (a) A dyadic tiling of size 16 with a vertical bisector. (b) A dyadic tiling of size
16 with both a vertical and horizontal bisector. (c) A tiling that is not dyadic; the shaded
rectangles are not dyadic because of their vertical dimension.

(a)
(a)

(b)
(b)

(c)
(c)

Figure 3.2: (a) A valid edge flip from one dyadic tiling to another. (b) Flipping the bold
edge is not valid as the resulting tiling is not dyadic. (c) Flipping the bold edge is not valid
as it does not result in a rectangular tiling.

tilings, where they have been shown to be rapidly mixing [79, 97, 118], and triangulations

of point sets, where the mixing time of edge flips is a major open problem in computational

geometry (see, e.g., [117]), though some special cases have been solved [87, 92].

The mixing time of the edge-flip Markov chain for dyadic tilings, and whether it mixes

in polynomial time, was left as an open question by Janson, Randall, and Spencer in

2002 [67]. We answered this in the affirmative in [20], and we present these results in

Section 3.5: we show the relaxation time of the edge flip Markov chain on dyadic tilings of

size n is O(n4.09) and its mixing time is O(n5.09).

As has been done for triangulations [27, 26], we also consider a weighted version of

the edge-flip Markov chain for dyadic tilings. Here we bias our Markov chain so that it

converges to a stationary distribution π where the probability of a tiling σ depends on the

total length |σ| of all its edges: π(σ) ∼ λn|σ|. When λ > 1, this favors dyadic tilings with
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lots of long, thin rectangles. When λ < 1, this favors dyadic tilings with lots of squares

and rectangles that are close to square. When λ = 1, this is exactly the unbiased edge-flip

chain discussed above.

In [24], we showed that this weighted edge-flip Markov chain for dyadic tilings exhibits

a phase transition at a critical point λc = 1. Specifically, we show that whenever λ < 1, the

biased edge-flip Markov chain converges in polynomial time (Section 3.3) and whenever

λ > 1 it converges in exponential time (Section 3.4). Though phase transitions like this,

where the behavior of a system changes dramatically at a single point, are conjectured to

exist for many systems, proving they exist is rare.

More broadly, it is a general principle in statistical physics that in systems with some

bias parameter (temperature) that induces different phases, the mixing time of natural heat-

bath dynamics should be as fast as possible (the diameter of the state space) at high temper-

ature, a larger polynomial at the critical temperature, and exponential at low temperature.

However, there are very few instances for which this behavior has been rigorously con-

firmed. Exceptions are the Ising model on complete graphs [77, 48], regular trees [47],

and the two-dimensional lattice [78], and the Potts model on the complete graph [33] and

the two-dimensional lattice [60], all of which required significant effort to analyze. The

edge-flip Markov chain for dyadic tilings is an example of heat-bath dynamics, and the

parameter λ can be viewed as a function of inverse temperature. Our results confirm expo-

nential mixing at low temperature (λ > 1), polynomial mixing at high temperature (λ < 1),

and that the mixing time at the critical point (λ = 1) is polynomial but strictly larger than

the diameter of the state space (which is n log(n)/2), providing further evidence for this

general statistical physics principle.

3.1 Preliminaries and Previous Work

A dyadic interval is an interval that can be written in the form [a2−s, (a + 1)2−s] for non-

negative integers a and s with 0 ≤ a < 2s. As defined above, a dyadic rectangle is the
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product of two dyadic intervals. A dyadic tiling of size n = 2k is a tiling of the unit

square by n dyadic rectangles of equal area 1/n = 2−k that do not overlap except on their

boundaries; see Figure 3.1. Let Ωk be the set of all dyadic tilings of size n = 2k. While we

index by k, because there are no dyadic tilings unless n = 2k for an integer k, our goal is

still to give meaningful mixing time bounds in terms of n, the number of tiles.

We say a dyadic tiling has a vertical bisector if the line x = 1/2 does not intersect

the interior of any dyadic rectangle in the tiling. We say it has a horizontal bisector if the

same is true of the line y = 1/2. The dyadic tiling in Figure 3.1a has a vertical bisector

but no horizontal bisector, while the tiling in Figure 3.1b has both a vertical and horizontal

bisector. It is easy to prove that every dyadic tiling of size n > 1 has a horizontal bisector

or a vertical bisector. We will also need the following lemma about dyadic intervals.

Lemma 3.1. Two dyadic intervals of the same length do not overlap nontrivially.

Proof. For any integer u, the only dyadic intervals of length 2−u are

[0, 2−u], [2−u, 2 · 2−u], [2 · 2−u, 3 · 2−u], ... [k · 2−u, (k + 1) · 2−u], ...

and none of these overlap except at their endpoints.

3.1.1 Combinatorics of Dyadic Tilings

The asymptotics of dyadic tilings were first explored by Lagarias, Spencer, and Vinson [73],

and we present a summary of their results. Let Ak = |Ωk| denote the number of dyadic

tilings of size n = 2k. The unit square is the unique dyadic tiling consisting of one dyadic

rectangle, so A0 = 1. There are two dyadic tilings of size 2, since the unit square may

be divided by either a horizontal or vertical bisector, so A1 = 2. One can also observe

that A2 = 7, A3 = 82, A4 = 11047, ... . In fact, the values Ak can be shown to satisfy

the recurrence Ak = 2A2
k−1 − A4

k−2; we include a proof of this fact as presented in [67],

because we will use these ideas later.
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Proposition 3.2 ([73]). For k ≥ 2, the number of dyadic tilings of size 2k is

Ak = 2A2
k−1 − A4

k−2.

Proof. A dyadic tiling of size 2k has a horizontal bisector, a vertical bisector, or both. If it

has a vertical bisector, the number of ways to tile the left half of the unit square is Ak−1; by

mapping x → 2x, we can see that the left half of a dyadic tiling of size 2k is equivalent to

a dyadic tiling of the unit square of size 2k−1 because dyadic rectangles scaled by factors

of two remain dyadic. Similarly, mapping x → 2x − 1, the right half of a dyadic tiling

of size 2k is equivalent to a dyadic tiling of size 2k−1. We conclude the number of dyadic

tilings of size 2k with a vertical bisector is A2
k−1. Similarly, by appealing to the maps

y → 2y and y → 2y − 1, the number of dyadic tilings of size 2k with a vertical bisector

is A2
k−1. The number of dyadic tilings of size 2k with both a horizontal and a vertical

bisector is A4
k−2, as each quadrant of any such tiling is equivalent to a dyadic tiling of

size 2k−2. This follows from appealing to the map (x, y) → (2x, 2y) for the lower left

quadrant, and appropriate translations of this for the other three quadrants. Altogether, we

see Ak = A2
k−1 + A2

k−1 − A4
k−2 = 2A2

k−1 − A4
k−2, as claimed.

It is believed this recurrence does not have a closed form solution, but Lagarias, Spencer

and Vinson proved the following about the number of dyadic tilings of a certain size.

Lemma 3.3 ([73]). The number of dyadic tilings of size n = 2k satisfies Ak ∼ φ−1ω2k ,

where φ = (1 +
√

5)/2 is the golden ratio and ω = 1.84454757...; an exact value for ω is

not known.

We now define a recurrence for another useful statistic. We say that a dyadic tiling has

a left half-bisector if the straight line segment from (0, 1/2) to (1/2, 1/2) doesn’t intersect

the interior of any dyadic rectangles. Figure 3.1a does not have a left half-bisector, while

Figure 3.1b does. We are interested in the number of ways to tile the left half of a vertically-

bisected dyadic tiling of size 2k such that it has a left half-bisector. Appealing to the dilation
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maps defined in the proof of Proposition 3.2, this number isA2
k−2. Among all possible ways

to tile the left half of a vertically-bisected tiling σ ∈ Ωk, we define fk to be the fraction

with a left half-bisector. We see

fk =
A2
k−2

Ak−1

.

We can similarly define right half-bisectors, top half-bisectors, and bottom half-bisectors

by considering the straight line segments between (1/2, 1/2) and, respectively, (1, 1/2),

(1/2, 1), and (1/2, 0). Then fk is also the fraction of tilings of the right half of vertically-

bisected tiling σ with a right half-bisector, or the fraction of tilings of the top or bottom

halves of a horizontally-bisected tiling σ with a top or bottom half-bisector, respectively.

One can calculate f2 = 0.5, f3 = 4/7 ∼ 0.571, and f4 = 49/82 ∼ 0.598. We now examine

the asymptotic behavior of fk.

Lemma 3.4. For all k ≥ 3, fk = 1
2−f2

k−1
.

Proof. This follows from the recurrence for Ak given in Proposition 3.2:

fk =
A2
k−2

Ak−1

=
A2
k−2

2A2
k−2 − A4

k−3

=
1

2− A4
k−3

A2
k−2

=
1

2− f 2
k−1

.

We can use this recurrence to study the asymptotic behavior of the sequence {fk}∞k=2.

Lemma 3.5. The sequence {fk}∞k=2 is strictly increasing and bounded above by (
√

5−1)/2.

Furthermore, limk→∞ fk = (
√

5− 1)/2.

Proof. Note f2 = 0.5 < (
√

5− 1)/2. Suppose by induction that fk−1 <
√

5−1
2

. Then

fk =
1

2− f 2
k−1

<
1

2−
(√

5−1
2

)2 =
4

8− (6− 2
√

5)
=

4

2 + 2
√

5
=

2

1 +
√

5
=

√
5− 1

2
.

To show that fk < fk+1 for all k ≥ 2, it suffices to show x < 1/(2 − x2) for all

x ∈
[
0.5, (

√
5− 1)/2

]
. This is equivalent to showing the polynomial x3−2x+1 is positive
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in that range. Factoring shows this polynomial has roots at 1, (
√

5−1)/2, and−(
√

5+1)/2,

and is positive in the range
(
−(
√

5 + 1)/2, (
√

5− 1)/2
)
. This implies fk < fk+1, so the

sequence is strictly increasing.

The sequence {fk}∞k=2 is bounded and monotone, so it must converge to some limit β.

To find β, we consider the function g(x) = 1/(2− x2), which is the recurrence for the fk.

This function is continuous away from
√

2 and −
√

2, and thus certainly is continuous on[
0.5, (

√
5− 1)/2

]
, the range of possible values for the fk and their limit β. This continuity

implies

g(β) = g
(

lim
k→∞

fk

)
= lim

k→∞
g(fk) = lim

k→∞
fk+1 = β.

Thus the limit β is necessarily a fixed point of g(x). The fixed points of g(x) are exactly the

three roots of x3−2x+1 found above, and the only one in
[
0.5, (

√
5− 1)/2

]
is (
√

5−1)/2.

We conclude limk→∞ fk = (
√

5− 1)/2, as desired.

This recurrence for fk will be used throughout various proofs in Section 3.5.

3.1.2 Markov Chains on Dyadic Tilings

While the previous subsection gave necessary preliminaries on dyadic tilings, our focus

will be on Markov chains, not combinatorics. In 2002, Janson, Randall and Spencer were

the first to consider Markov chains on dyadic tilings [67]. They proposed the unbiased

edge-flip Markov chain, which uses local moves, and they showed it is irreducible but left

as an open problem to derive that the mixing time is polynomial in n; we solve this open

problem in Section 3.5. Additionally, they presented a different nonlocal Markov chain on

dyadic tilings, which has additional global moves consisting of rotations at all scales, and

showed that this chain mixes in polynomial time. Specifically, their chain picks a random

dyadic subrectangle of the unit square (of any area) and if no tiles cross the boundary of

this region, it randomly rotates the tiling within in by 90, 180, or 270 degrees, rescaling

as necessary. However, applications of the comparison technique of Diaconis and Saloff-
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Coste [43] have failed to extend this polynomial mixing bound to the more natural local

edge-flip Markov chain (which, in fact, corresponds to only performing rotations at the

smallest scale).

In [24], we were the first to consider weighted Markov chains for dyadic tilings. Just

as Caputo, Martinelli, Sinclair, and Stauffer did for triangulations [27], we weight dyadic

tilings according to the total length of all the edges in the tiling. The authors of [27] conjec-

tured a phase transition for triangulations, but were unable to give proofs that guaranteed

its existence. We see this same phase transition in dyadic tilings, and are able to prove it

occurs. We formally define this weighted Markov chain next; because of the locality of

edge-flip moves, it is straightforward using a Metropolis Filter [88] to ensure the edge-flip

Markov chain converges to the desired weighted distribution.

3.2 The Edge-flip Markov Chain on Weighted Dyadic Tilings

Let n = 2k. For k ≥ 1, the edge-flip Markov chain Medge
k on the state space Ωk of all

dyadic tilings of the unit square of size 2k is given by Algorithm 1.

Algorithm 1 Weighted Edge-Flip Markov ChainMedge
k on Dyadic Tilings of size n = 2k

Beginning at any σ0 ∈ Ωk, repeat:
1: Choose a rectangle R of σi uniformly at random.
2: Choose left , right , top, or bottom uniformly at random; let e be the corresponding side

of R.
3: Choose a uniformly random p ∈ (0, 1).
4: if e bisects a rectangle of area 2−k+1; replacing e with its perpendicular bisector f

yields a valid dyadic tiling; and p < λn(|f |−|e|) then
5: σi+1 is obtained from σi by replacing e with f .
6: else σi+1 = σi.

We note this differs slightly from the way we originally presented this weighted Markov

chain in [24]; in that paper, we considered dyadic tilings of size n that were scaled up to

occupy an n× n rectangle, rather than the unit square. When calculating edge distances in

Step 4 of Algorithm 1, we correspondingly scale these edge distance up by a factor of n to

match the probabilities used in the original weighted chain of [24].
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We now consider the properties ofMedge
k .

Lemma 3.6 ([67]). Markov chainMedge
k is irreducible.

Proof. Connectivity of the state space Ωk follows from work on dyadic tilings in [67],

specifically from their tree representation of a dyadic tiling. Dyadic constraints ensure

rectangles exist in pairs, meaning there is always a possible edge-flip move for every rect-

angle. Using this fact, from any tiling, one can always reach the tiling σv consisting only of

vertical 1/n×n rectangles by repeatedly finding edge-flips that turn a horizontal edge into

a vertical edge. Because all moves are reversible (P (σ, τ) > 0 if and only if P (τ, σ) > 0),

there also exists a sequence of valid moves turning σv into any other tiling. By going

through σv, it is possible to use edge-flip moves to go between any two tilings in Ωk, mean-

ing edge-flip moves connect Ωk and thusMedge
k is irreducible on this state space.

Lemma 3.7. Markov chainMedge
k is lazy.

Proof. For any rectangle R of a dyadic tiling at most one of its left and right edges can be

flipped to produce another valid dyadic tiling. This is because if R’s projection onto the

x-axis is dyadic interval [a2−s, (a+ 1)2−s] for a, s ∈ Z≥0, then flipping its left edge yields

a rectangle with x-projection [(a − 1)2−s, (a + 1)2−s] and flipping its right edge yields a

rectangle with x-projection [a2−s, (a+ 2)2−s]. If a is even, the first of these intervals is not

dyadic, while if a is odd, the second is not, so at most one of these edge flips produces a

valid dyadic tiling. Similarly, at most one of R’s top and bottom edges yields a valid edge

flip. This implies in each iteration with probability at least 1/2 a pair (R, e) is selected that

does not yield a valid edge flip move.

Lemma 3.8. Markov chainMedge
k on dyadic tilings of size n = 2k with parameter λ has a

unique stationary distribution π given by, for σ ∈ Ωk,

π(σ) =
λn|σ|

Z
,

32



where |σ| is the sum of the lengths of all the edges in tilings σ and Z =
∑

σ∈Ωk
λn|σ| is the

normalizing constant, also called the partition function.

Proof. By Lemmas 3.6 and 3.7, Medge
k is irreducible and aperiodic and thus is ergodic.

Because Medge
k is ergodic on a finite state space, it converges to a unique stationary dis-

tribution. Distribution π given in the statement of the lemma satisfies detailed balance:

for tilings σ and τ that differ by a flip of an edge e in σ to an edge f in τ , we see that

Algorithm 1 yields

P (σ, τ) =
min

(
1, λn(|f |−|e|))

4n
,

P (τ, σ) =
min

(
1, λn(|e|−|f |))

4n
.

If |f | ≥ |e|, then P (σ, τ) = λn(|f |−|e|)/4n and P (τ, σ) = 1/4n, and similarly we see

π(σ)P (σ, τ) =
λn|σ|

Z
· λ

n(|f |−|e|)

4n
=
λn(|σ|−|e|+|f |)

Z · 4n =
λn|τ |

Z

1

4n
= π(τ)P (τ, σ).

If |e| ≥ |f |, then P (σ, τ) = 1/4n and P (τ, σ) = λn(|e|−|f |)/4n. In this case detailed

balance is also satisfied:

π(σ)P (σ, τ) =
λn|σ|

Z
· 1

4n
=
λn(|τ |−|f |+|e|)

Z · 4n =
λn|τ |

Z

λn(|e|−|f |)

4n
= π(τ)P (τ, σ).

Thus π satisfies detailed balance. Finally, we check that π is indeed a probability distribu-

tion: ∑
σ∈Ωk

π(σ) =
∑
σ∈Ωk

λn|σ|

Z
=
∑
σ∈Ωk

.
λn|σ|∑

σ∈Ωk
λn|σ|

= 1.

We conclude π is the unique stationary distribution ofMedge
k , as claimed.

We implemented Markov chainMedge
k and simulated its behavior for a variety of values

of k = log n and λ, beginning at the tiling σv consisting of all 1/n× 1 vertical rectangles.

The result of such simulations for k = 6, n = 64, and λ = 0.8, 1, and 1.03 after 1,000,000

iterations are shown in Figure 3.3. Consistently, when λ < 1 we see thatMedge
k converges
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(a) λ = 0.8 (b) λ = 1 (c) λ = 1.03

Figure 3.3: State of Markov chainMedge
k with k = 6 and n = 64 and various values of λ

after 1,000,000 simulated steps, starting from a tiling with all 1/n× 1 vertical rectangles.

quickly to a distribution that favors tilings with square or nearly-square rectangles. When

λ > 1 even after many steps there remain tilings with many vertical rectangles, a clear

lingering dependence on the initial state that indicates slow convergence. When λ = 1 the

chain also seems to converge quickly, but there is not such a strong preference for rectangles

that are square or nearly square as there is when λ < 1. In the next sections we verify all

of these observations rigorously and show thatMedge
k exhibits a phase transition at critical

point λc = 1.

3.3 Polynomial Convergence when λ < 1

When λ < 1, the stationary distribution ofMedge
k favors tilings that have more rectangles

that are square or close to square. We use this bias in a critical way in our proofs to

show that Medge
k mixes in polynomial time – O(n2) – for all λ < 1. The biased edge-

flip Markov chain on grid triangulations discussed above similarly favors triangles with

low aspect ratio at stationarity whenever λ < 1 [27]. Simulations suggest that their chain

mixes in polynomial time for these values of λ, but they are only able to prove fast mixing

for λ < λ0 for a small constant 1/8 ≤ λ0 < 1/4.1 In contrast, our results apply for all

λ < 1, which, with the complementary results of slow mixing for λ > 1 in the next section,

guarantees the existence of a phase transition at λc = 1 only conjectured but not verified

for triangulations.
1The authors of [27] do not give an exact value for λ0 but these bounds can be extracted from their proofs.
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Specifically, we prove that for all even k,Medge
k is rapidly mixing whenever λ < 3−1/

√
n

(Theorem 3.12). This bound approaches 1 as n grows, so for any λ < 1 there is sufficiently

large n for which the Markov chainMn is rapidly mixing (Theorem 3.13). To give some

perspective, we note that for all n ≥ 4 (k ≥ 2), we have fast mixing for all λ < 0.577.

Already for n ≥ 1024 (k ≥ 10) we have fast mixing for all λ < 0.966. That k is even

implies n is a perfect square and there exists a “ground state” tiling consisting entirely of

(1/
√
n)× (1/

√
n) squares, necessary for the proofs in this section.

We use a multiplicative path coupling argument with an exponential metric. Though

multiplicative path coupling was first considered in [16], we use the version of the path

coupling theorem as stated in [62], which will be easier to apply for our purposes. In a path

coupling argument, instead of arguing about the coalescence of two coupled chains in an

arbitrary pair of states, it suffices to assume the configurations of the two coupled chains

are a pair of states in some subset U ⊂ Ωk × Ωk. For our purposes, U consists of all pairs

of tilings of size n = 2k that differ by one edge-flip (i.e., that are adjacent in Ωk). We will

show that for any coupling whose joint state is two configurations in U , after one iteration

of the Markov chain, the expected distance between the two coupled chains decreases by

a constant factor of their original distance. It is crucial to define the appropriate notion of

“distance” between two tilings; we do so by carefully defining the distance between tilings

that are adjacent in Ωk, and then extending this definition to non-adjacent tilings.

Definition 3.9. Consider any dyadic tilings σ1 and σ2 that differ by one flip between edge e

and edge f , both bisecting a common area 2/n rectangle S. Without loss of generality,

suppose that |e| ≥ |f |. We define the distance between σ1 and σ2 to be

φ(σ1, σ2) = φ(σ2, σ1) := λn(|f |−|e|),

For any dyadic tilings σ1 and σ2 that are not adjacent in Ωk, the distance between σ1

and σ2 is the minimum over paths in Ωk from σ1 to σ2 of the sum of the distances between
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⇒ ⇒...⇒

σh σ∗

Figure 3.4: A sequence of edge-flips from tiling σh consisting of all 1 × 1/n horizontal
rectangles to ground state tiling σ∗ consisting of all (1/

√
n× 1/

√
n) rectangles.

adjacent tilings along the path.

If σ1 = σ2, then φ(σ1, σ2) = 0.

We now examine the range of this distance metric.

Lemma 3.10. For λ < 1, the distance metric φ of Definition 3.9 takes on values in the

range 0 ∪ [1, n log(n)λn].

Proof. If σ1 and σ2 differ by an edge-flip, then φ(σ1, σ2) is at least 1 as λ < 1 is being

raised to a nonpositive power. If σ1 and σ2 differ by more than an edge-flip, then φ(σ1, σ2)

is a sum of distances that are at least 1 so is at least 1. It only remains to show that φ(σ1, σ2)

has the stated upper bound.

Let σ∗ denote the ground state tiling, tiling the unit square with n smaller squares of

size (1/
√
n)× (1/

√
n). Careful consideration shows that the two dyadic tilings at farthest

distance φ from σ∗ are the tiling consisting of all 1× 1/n horizontal rectangles σh and the

tiling consisting of all 1/n× 1 vertical rectangles σv. We note that one path in Ωk from σh

to σ∗ consists of (log n)/2 = k/2 stages, where in each stage n/2 edge-flips are performed,

reducing the length of each of the n rectangles by half; see Figure 3.4.

The contribution to φ(σh, σ
∗) from each of these edge-flips is at most λ−n, as for any

two tilings differing by a flip of edge e to edge f we have that ||e| − |f || ≤ 1, so raising

λ−1 > 1 to n times this amount is at most λ−n. There are nk/4 such moves in this particular

path in Ωk from σh to σ∗, giving φ(σh, σ
∗) ≤ (nk/4)λ−n. The same holds for σv. There is
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thus a path between any two tilings, through the ground state σ∗, yielding the bound

φ(σ1, σ2) ≤ (nk/2)λ−n ≤ n log(n)λ−n.

Thus φ takes on values in the range {0} ∪ [1, n log(n)λ−n], as claimed.

To formally define our coupling of Markov chain Medge
k , we first restate Medge

k in a

slightly different way, making it explicitly lazy and easier to couple; see Algorithm 2.

Algorithm 2 Weighted Edge-Flip Markov ChainMedge
k on Dyadic Tilings of size n = 2k

Beginning at any σ0 ∈ Ωk, repeat:
1: Choose, uniformly at random, (x, y, d, o, p) ∈{

1

2n
,

3

2n
,

5

2n
, ...,

2n− 1

2n

}
×
{

1

2n
,

3

2n
,

5

2n
, ...,

2n− 1

2n

}
×{t, l, b, r}×{0, 1}×(0, 1).

2: Let R be the (unique) rectangle in σt containing (x, y).
3: If d = t, let e be the top boundary of R; if d = l, b, or r, let e be the left, bottom, or

right boundary of R, respectively.
4: if e bisects a rectangle of area 2−k+1; log |e| ≡ o(mod 2); replacing e with its perpen-

dicular bisector f yields a valid dyadic tiling; and p < λn(|f |−|e|) then
5: σi+1 is obtained from σi by replacing e with f .
6: elseσi+1 = σi.

We note that Algorithm 2 is simply Algorithm 1 with an additional stationary probabil-

ity at each iteration. In particular, each rectangleR of any tiling σ is of area 1/n and so con-

tains exactly n points in the regular n2-sized grid { 1
2n
, 3

2n
, 5

2n
, ..., 2n−1

2n
}×{ 1

2n
, 3

2n
, 5

2n
, ..., 2n−1

2n
},

meaning the probability that a given rectangle is chosen by Algorithm 2 is exactly 1/n, the

same probability with which each rectangle is chosen in Step 1 of Algorithm 1. A given

flippable edge e in σ is thus selected by 2n different values of (x, y, d, o), specifically, the

2n points (x, y) in the two rectangles e separates, each with the appropriate value of direc-

tion d and parity o. Consequently, a given flippable edge e is selected by (x, y, d, o) with

probability 2n · 1
n2 · 1

4
· 1

2
= 1

4n
=: q. In Algorithm 1, each edge e is selected by 2 choices

of R, e, a selection which occurs with probability 2/(n · 4) = 1/2n. In both version of

Medge
k , this flip then occurs with probability min{1, λn|σ′|−n|σ| = λn(|f |−|e|)}, according to
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2a
2b

e

(a)

2a
2b

f

(b)

Figure 3.5: Rectangle S of area 2/n in marginal tilings (a) At and (b) Bt.

the random value of p. This change to the stationary probability of Medge
k will have no

effect on its asymptotic mixing time, but will make our coupling argument much easier; a

coupling argument for Algorithm 1 is possible, but requires unnecessary technical details

that can be avoided by instead working with Algorithm 2, as we do throughout this section.

Let (A,B) denote a coupling of Markov chain Medge
k on dyadic tilings, as stated in

Algorithm 2. Let At and Bt denote the states of these two coupled chains, respectively,

after t iterations. At each iteration, At and Bt are simultaneously updated according to Al-

gorithm 2 by choosing the same random values (x, y, d, o, p) for each. Let φt = φ(At, Bt)

denote the distance between the two chains in the coupling (A,B) after t iterations. We

now show that if At and Bt differ by a single edge-flip, after one iteration of Medge
k in

expectation they are closer together. By linearity of expectation, even if At and Bt differ

by more than one edge-flip, after on iteration ofMedge
k they are closer in expectation; this

is the crux of the path coupling approach.

Lemma 3.11. Suppose At and Bt differ by a single edge flip. Then for all λ < 3−1/
√
n,

there is a constant c such that for q = 1/(4n),

E[φt+1 | At, Bt] ≤ (1− qc)φt

Proof. Let At and Bt differ by a single flip between edge e and edge f , where without loss

of generality |e| ≥ |f |, e is horizontal in At of length 2a, f is vertical in Bt of length 2b,

and both bisect a rectangle S of area 2/n; see Figure 3.5. We wish to bound E[φt+1 − φt]

in terms of φt.

38



Any potential moves (x, y, d, o, p) that select an edge not in S and not on the boundary

of S have the same effect on both At and Bt and thus, in these cases, φt+1 = φt, as At+1

and Bt+1 still differ by the same single edge flip.

Because there is a rectangle in valid dyadic tiling At of dimension 2a× b, this implies

that 2ab = 1/n = 2−k. As a and b are (negative) powers of 2, a ≥ b by assumption, and k

is even, then a = 2ib where i is positive and odd. We now consider two cases, a ≥ 8b and

a = 2b.

Case a ≥ 8b. We first examine the moves that decrease the distance between the two

coupled chains. There are exactly two edge-flips that do this, namely flipping e to f in

At or flipping f to e in Bt. There are 2n values of (x, y, d, o) that select edge e in At.

Precisely, these are each of the 2n points (x, y) in S together with the appropriate direction

from among t, b that selects e and the appropriate parity o such that log |e| = o(mod 2).

Examining the parity o shows these same choices do not yield a flippable edge in Bt; this

is where the value of o plays a critical role, as no edges within or on the top or bottom

boundary of S in Bt have the same length as e. As each such selection of (x, y, d, o) occurs

with probability 1/(8n2), potential edge-flip e is selected with probability q = 1/(4n).

In this case the condition for flipping edge e is p < λn(2b−2a), which always occurs as

2b − 2a ≤ 0. After such a flip, At+1 = Bt while Bt+1 = Bt. Thus φt+1 = 0 and the

change in distance between the two chains is −φt = −λn(2b−2a). The total contribution to

the expected change in φ(A,B) from this move is −q · λn(2b−2a).

Similarly, the probability (x, y, d, o) selects edge f in Bt is also q = 1/(4n), and these

values do not yield a flippable edge in At. Edge f flips only if p < λn(2a−2b), which occurs

with probability λn(2a−2b) < 1. If this move occurs, then Bt+1 = At = At+1, and the

change in distance between A and B is again −λn(2b−2a). The total contribution to the

expected change in φ(A,B) from this move is

−q · λn(2a−2b) · λn(2b−2a) = −q.
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While the two potential moves above decrease the distance between the coupled chains

according to metric φ, there are also moves that increase it. However, dyadic constraints

limit the number of such moves, because two dyadic intervals of the same length cannot

overlap nontrivially (Lemma 3.1). ForAt, this means the top and bottom edges of S are not

flippable, because the vertical dimension of any rectangle resulting from such a flip could

not be dyadic: it would be an interval of length 2b overlapping S’s projection onto the

y-axis, which is a dyadic interval of length 2b. At first glance there are four other potential

edge-flips for At involving S, specifically flips of the top and bottom halves of S’s left and

right boundaries. However, again by Lemma 3.1, at most one of the left boundary and the

right boundary of S contains flippable edges. Without loss of generality, we assume it is

the right boundary of S, and label the two potentially flippable edges as g and h. Similarly,

for Bt, at first glance there exist four other potential edge-flips involving S, specifically the

left and right halves of S’s top and bottom boundaries. By Lemma 3.1, we assume without

loss of generality that only portions of S’s bottom boundary are potentially flippable, and

label the two potentially flippable edges as i and j.

Such edge-flips can only occur if At and Bt are tiled in the neighborhood of S as in

Figure 3.6. To get an upper bound on E[∆φt], we suppose this worst case neighborhood

tiling exists. Edges g and h are each selected by values (x, y, d, o) in At with probability q;

both are then flipped with probability λn(4a−b). The tiling At+1 resulting from this flip is at

distance λn(b−4a) from configuration At. The same selection (x, y, d, o) does not result in

any flip in Bt, so Bt+1 = Bt. The change in distance between A and B for each of these

two moves is thus λn(b−4a). In all, the contribution by these moves to the expected change

in distance between the coupled chains is at most

2 · qλn(4a−b) · λn(b−4a) = 2q.

Similarly, edges i and j are selected to be flipped in Bt by values (x, y, d, o) with prob-
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Figure 3.6: An area 2/n rectangle S bisected by (a) horizontal edge e in At and (b) ver-
tical edge f in Bt. Four “bad” edge-flips g, h, i, j exist only if At and Bt are tiled (up to
reflection) in the neighborhood of S as shown.

ability q, and once selected, these edge-flips occur if p < λn(4b−a), a bound which is at

least 1 for a ≥ 8b. The tiling Bt+1 resulting from either flip is at distance λn(4b−a) from

configuration Bt. The same values of (x, y, d, o) producing these moves also yield At+1 =

At. Thus the change in distance between A and B for these two moves is at most λn(4b−a).

In all, the contribution by these moves to the expected change in distance between the two

chains in the coupling is at most 2 · q · λn(4b−a).

In total, we have shown

E[φt+1 − φt] ≤ −q − qλn(2b−2a) + 2q + 2qλn(4b−a)

= −qλn(2b−2a)
(
λn(2a−2b) + 1− 2λn(2a−2b) − 2λn(2b+a)

)
= −qφt

(
1− λn(2a−2b) − 2λn(2b+a)

)
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As a ≥ 8b and a ≥ 1/
√
n,

2a− 2b ≥ 2(a− 1

8
a) ≥ a ≥ 1/

√
n.

Additionally, 2b+ a ≥ a ≥ 1/
√
n. Thus,

λn(2a−2b) + 2λn(2b+a) ≤ λ
√
n + 2λ

√
n = 3λ

√
n

Provided λ < 3−1/
√
n, as we assumed at the start of this section, we have that

λn(2a−2b) + 2λn(2b+a) ≤ 3λ
√
n < 1

Then, for some c > 0, where c = 1− 3λ
√
n, we have that

E[φt+1 − φt] ≤ −qφt · c.

It follows that, as desired for the At and Bt we consider,

E[φt+1] ≤ (1− qc)φt.

The closer λ is to the bound 3−1/
√
n, the smaller the value of c is.

Case a = 2b. The analysis of potential good moves and bad moves remains the same as the

first case above, though certain probabilities and distances change. Initially, φ(At, Bt) =

λn(2b−2a) = λ−2nb. We note that the contribution to the expected change in distance from

good moves flipping edges e and f is still

−q
(
1 + λn(2b−2a)

)
= −q

(
1 + λ−2nb

)
.

The contributions to the expected change in distance from flipping edges g and h is still
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2q. However, for the edges i and j, once selected by (x, y, d, o), flips now occur with

probability qλ4b−a = qλ2nb rather than probability q. Such a move results in a change in

distance between the chains in the coupling of λn(a−4b) = λ−2nb. The expected contribution

to the change in distance from these moves is now 2qλ2nbλ−2nb = 2q.

In total, we see that in this case,

E[φt+1 − φt] ≤ −q
(
1 + λ−2nb

)
+ 4q

= −qλ−2nb
(
λ2nb + 1− 4λ2nb

)
= −qφt

(
1− 3λ2nb

)
.

Because we know that 2ab = 1/n, we have a = 2b = 1/
√
n. This means 3λ2nb = 3λ

√
n,

and this value is less than one because λ < 3−1/
√
n. Setting c = 1−3λ2nb = 1−3λ

√
n > 0,

we have, as desired for these At and Bt,

E[φt+1] ≤ (1− qc)φt.

As above, the closer λ is to 3−1/
√
n the smaller constant c is.

Theorem 3.12. For any λ < 3−1/
√
n, the edge-flip Markov chainMedge

k on dyadic tilings

of size n = 2k has mixing time at most O(n2).

Proof. We apply the exponential metric theorem from [62] (Theorem 2.5), using the cou-

pling (A,B) and metric φ defined above. Metric φ satisfies the path requirement of The-

orem 2.5 with U being the set of all pairs of tilings that are adjacent in Ωn, and by

Lemma 3.10 φ takes on values in {0} ∪ [1, S] for S = n log(n)λ−n. AdditionallyMedge
k is

lazy (Lemma 3.7). We have also demonstrated (Lemma 3.11) that when At and Bt differ

by a single flip there is a constant c such that E[φt+1] ≤ (1− qc)φt whenever λ < 3−1/
√
n.
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By Theorem 2.5, recalling that q = 1/4n we conclude that

tmix(ε) ≤ ln(n log nλ−nε−1)

qc
=

4n

c

(
lnn+ ln log n+ n lnλ−1 + ln ε−1

)
= O

(
n2 + n ln

(
ε−1
))
.

When we assume ε = 1/4, as is standard practice, we see tmix = tmix(1/4) = O(n2).

Now that we know the mixing time whenever λ < 3−1/
√
n, it only remains to consider

sufficiently large n to extend this result to all λ < 1.

Theorem 3.13. For any constant λ < 1, the edge-flip Markov chain Medge
k on dyadic

tilings of size n = 2k has mixing time at most O(n2).

Proof. For any constant 0 < λ < 1, there is an n0 such that for all n > n0, 3−1/
√
n > λ. By

Theorem 3.12, this implies that for all n > n0, the mixing time ofMedge
k is O(n2), which

suffices to prove the claim.

We briefly remark that this mixing time upper bound is within a factor of n/ log n

of the true mixing time. We show this by presenting a lower bound on the mixing time

of (n log n)/4. This proof holds for Markov chain Medge
k and all values of λ, though

better lower bounds when λ ≥ 1 will be presented in the next sections. We use the well-

known result that half the diameter of the state space is a lower bound on mixing time

(Theorem 2.7).

Theorem 3.14. For any λ, the edge-flip Markov chain Medge
k on dyadic tilings of size

n = 2k has mixing time at least (n log n)/4.

Proof. Let σv denote the tiling consisting entirely of 1/n× 1 vertical rectangles and let σh

denote the tiling consisting entirely of 1 × 1/n horizontal rectangles. Starting at σv, the

number of edge-flips required to move to σh is at least (n log n)/2: one edge-flip at most

doubles the width of two rectangles, and n rectangles must have their width doubled at least
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log n times each to reach σh. This implies the diameter of Ωn under edge-flip moves is at

least (n log n)/2, which by Theorem 2.7 gives the claimed mixing time lower bound.

We can also use Lemma 3.11 to give a relaxation time upper bound forMedge
k .

Theorem 3.15. For any constant λ < 1, the edge-flip Markov chain Medge
k on dyadic

tilings of size n = 2k has relaxation time at most O(n).

Proof. We will use a coupling argument, applying Theorem 2.3 with the same coupling

and distance metric φ on dyadic tilings as above. To begin, we assume λ < 3−1/
√
n.

Let At and Bt be the marginal dyadic tilings at some time t in the coupling; we do

not assume that At and Bt differ by an edge flip. By the definition of this distance met-

ric φ, we know that there is some path from At to Bt in Ωk that includes, in order, states

X1
t , X

2
t , ..., X

m
t for some m ≥ 1, where

φ(At, Bt) = φ(At, X
1
t ) +

m−1∑
i=1

φ(X i
t , X

i+1
t ) + φ(Xm

t , Bt)

For simplicity, we let At = X0
t and Bt = Xm+1

t . Because all pairs X i
t , X

i+1
t differ by an

edge flip, if we suppose the coupling has these marginal tilings and let it evolve for one

step, by Lemma 3.11 we know that, for q = 1/4n and c a constant, for each i = 0, 1, ...,m,

E[φ(X i
t+1, X

i+1
t+1) | X i

t , X
i+1
t ] ≤ (1− gc)φ(X i

t , X
i+1
t )

Because φ(At+1, Bt+1) is bounded above by the sum of distances along any path fromAt+1

to Bt+1, in particular by the distances along the path X1
t+1, X

2
t+1, ..., X

m
t+1, then

E[φ(At+1, Bt+1) | At, Bt] ≤
m∑
i=0

E[φ(X i
t+1, X

i+1
t+1) | X i

t , X
i+1
t ]

≤ (1− gc)
m∑
i=0

φ(X i
t , X

i+1
t )

≤ (1− qc)φ(At, Bt).
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Setting β = 1 − qc, we see that we have satisfied the hypotheses of the coupling theorem,

Theorem 2.3. We conclude that the spectral gap γ ofMedge
k satisfies

γ ≥ 1− β = qc =
c

4n

We conclude the relaxation time of Medge
k for n = 2k whenever λ < 3−1/

√
n is at most

O(n).

For any constant 0 < λ < 1, there is an n0 such that for all n > n0, 3−1/
√
n > λ. This

implies that for all n > n0, the relaxation time ofMedge
k is O(n), which suffices to prove

the claim.

This result will be used to show the behavior of Medge
k is different when λ < 1 and

when λ = 1: Section 3.5 establishes a super-linear lower bound on the relaxation time

when λ = 1. The implications of this will be discussed more in Section 3.6.

3.4 Exponential Convergence when λ > 1

In contrast to the fast mixing results for λ < 1 in the previous section, here we show that

whenever λ > 1 the mixing time ofMedge
k is exponential in n = 2k. Combined with the

results of the previous section, this shows the existence of a phase transition for Medge
k

at the critical point λc = 1. Sharp phase transitions such as these are conjectured for

many systems, especially from statistical physics, but are often hard to rigorously confirm.

Because of this it is remarkable that for dyadic tilings we were able to pin down the exact

point at which the phase transition occurs.

We begin by rewriting |σ|, the sum of the lengths of all edges of σ, in way that will be

more useful for our purposes. Let R be a rectangle of σ, and let w(R) be its width and l(R)

be its length (height). All edges in σ, except for its left boundary and bottom boundary, are

either part of the top boundary of some rectangle or the right boundary of some rectangle.
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Using this logic, we can write

|σ| = 2 +
∑
R∈σ

(l(R) + w(R)) .

To showMedge
k takes exponential time to converge when λ > 1, we consider the tilings

with at least one 1× 1/n rectangle and those with at least one 1/n× 1 rectangle. In order

to go between these sets we must go through a tiling where all rectangles have width and

length both at least 2/n and thus each has length plus width at most 1/2 + 2/n. We show

these tilings are exponentially unlikely and thus our state space forms a bottleneck.

Theorem 3.16. For any constant λ > 1, the edge-flip chainMedge
k on the set Ωk of dyadic

tilings of size n = 2k requires time exp(Ω(n2)) to mix.

Proof. We first partition the state space into three sets: A, the set of tilings with at least

one 1/n × 1 vertical rectangle; B, the set of tilings with at least one 1 × 1/n horizontal

rectangle; and C, the remainder, the set of tilings with no 1/n × 1 or 1 × 1/n rectangles.

We first calculate the stationary probabilities of each of these sets.

Notice that A contains the tiling σv where all rectangles are 1/n × 1 and B contains

the tiling σh where all rectangles are 1× 1/n. Tiling σv consists of n rectangles, each with

length plus width summing to 1 + 1/n, as does σh, so we see that

|σv| = |σh| = n

(
1 +

1

n

)
+ 2.

We conclude that

π(A) ≥ π(σv) =
λn

2(1+1/n)+2n

Z
=
λn

2+3n

Z
,

π(B) ≥ π(σh) =
λn

2(1+1/n)+2n

Z
=
λn

2+3n

Z
.

For set C, every rectangle in every tiling has length and width both at least 2/n and at

most 1/2. Each rectangle has length times width equal to 1, and we see that subject to this
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constraint, length plus width is maximized at the extremal points when one is 1/2 and the

other is 2/n, that is, when l(R) + w(R) = 1/2 + 2/n. For any σ ∈ C, we see that

|σ| ≤ n

(
1

2
+

2

n

)
+ 2 =

n

2
+ 4

As the number of tilings in set C is at most the total number of tilings in Ωk, and |Ωk| < 2n

by Lemma 3.3, we conclude that

π(C) ≤ |C| · λ
n2/2+4n

Z
≤ 2nλn

2/2+4n

Z

Using these bounds, we next bound the conductance of the Markov chain and then the

mixing time using Theorem 2.8. We consider set S = A, and its complement S = B ∪ C.

As π(A) = π(B), because there is a length-preserving bijection between A and B given by

rotations of 90 degrees, we conclude π(S) = π(A) < π(B ∪ C) = π(S), so in particular

π(A) < 1/2. We see that, because there are no moves that transition from A directly into

B, we must go through C first, implying

Φ ≤ 1

π(A)

∑
s1∈A,s2∈B∪C

π(s1)P (s1, s2) =
1

π(A)

∑
s1∈A,s2∈C

π(s1)P (s1, s2).

Furthermore, using detailed balance and that fact that all entries in transition matrix P are

at most one, we see that

Φ ≤ 1

π(A)

∑
s1∈A,s2∈C

π(s2)P (s2, s1)

<
1

π(A)

∑
s2∈C

π(s2) =
π(C)

π(A)
≤ 2nλn

2/2+4n

λn2+3n
= 2nλ−n

2/2+n.

We conclude there exists a constant c1 > 0 such that for sufficiently large n, Φ < λ−c1n
2 .

Applying Theorem 2.8, which relates the conductance and mixing time of a Markov
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chain, proves that for all ε > 0, the mixing time ofMedge
k satisfies

tmix(ε) ≥
(
λc1n

2

4
− 1

2

)
log

(
1

2ε

)
= Ω(λc1n

2

log ε−1).

Letting ε = 1/4 we have that tmix = Ω(λc1n
2
), as desired.

This concludes our proofs showing the existence of a phase transition at critical point

λc = 1 for Markov chainMedge
k on dyadic tilings of size n = 2k. In the next section, we

investigate the behavior ofMedge
k at this critical point λ = 1.

3.5 Polynomial Convergence when λ = 1

The work in the previous two sections has characterized the mixing time of the biased

edge-flip Markov chainMedge
k whenever λ 6= 1, as polynomial in n = 2k when λ < 1 and

exponential in n when λ > 1. In this section we give a polynomial upper bound ofO(n5.09)

on the mixing time ofMedge
k when λ = 1, resolving the open question of Janson, Randall,

and Spencer [67] that had remained open from 2002 until we answered it in 2016. We also

give a nontrivial lower bound on the mixing time when λ = 1 of Ω(n1.38); the implications

of such a lower bound in statistical physics are discussed in 3.6.

3.5.1 Proof Ideas

In addition to answering a long-standing open question and giving mixing time bounds

for the last remaining value of λ, this result is also of more general interest because of its

proof techniques. Building on similar work within the statistical physics community, this

bisection/block moves approach has to potential to give (or improve) polynomial mixing

time upper bounds for local Markov chains on other self-reducible structures. Using this

technique to improve the mixing time upper bound for the edge-flip Markov chain for

convex triangulations [87] is one focus of current work.
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We identify a certain block structure on dyadic tilings that allows us to relate the spectral

gap of the edge-flip Markov chain to that of another, simpler Markov chain. In the simpler

Markov chain, which we refer to as the block dynamics, for each transition a large region

of the tiling is selected and retiled uniformly at random, if possible. At the smallest scale,

n = 4, these correspond to exactly the moves of the (lazy) edge-flip Markov chain. The

structure of these block moves allows us to set up a recursion that relates the spectral gap

of the edge-flip Markov chain for tilings of size n with that of sizes smaller than n and that

of the block dynamics. This produces an inverse polynomial lower bound on the spectral

gap of the edge-flip Markov chain.

Specifically, we adapt a bisection approach inspired by spin system analysis [86, 28].

We bound the spectral gap γk of the Markov chainMedge
k for dyadic tilings of size n = 2k

by the product of the spectral gap γblock of the block dynamics Markov chain and the spec-

tral gap γk−1 ofMk−1, and then use recursion to obtain

γk ≥ γk−1 · γblock ≥ (γblock)
k = (γblock)

logn.

To obtain a polynomial relaxation time and thus a polynomial mixing time, we com-

plete our argument by showing that γblock is constant using a coupling argument as in, e.g.,

Chapter 13 of [76]. The distance metric we use is a carefully weighted average of two

different notions of distance between tilings. We do a case analysis and show this distance

metric contracts by a factor of at least 1−1/17 in each step, implying the spectral gap γblock

is at least 1/17. This gives a relaxation time of at most O(nlog 17) =)(n4.09), and a mixing

time of at most O(nlog 17+1) = O(n5.09).

For our lower bound, we use a distinguishing statistic to show the mixing time and

relaxation time of the edge-flip Markov chainMedge
k for dyadic tilings are at least Ω(n1.38);

again, see Chapter 13 of [76]. That is, we define a function f on the state space Ωk of all

dyadic tilings of size n = 2k. By considering the variance and Dirichlet form of f , and
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using combinatorial properties of dyadic tilings, we can give an upper bound on the spectral

gap and thus a lower bound on the relaxation and mixing times ofMedge
k .

3.5.2 The Transition Matrix ofMedge
k

In this section we will considerMedge
k as stated in Algorithm 1. As opposed to previous

sections, we will be exploring spectral properties ofMedge
k ’s transition matrix Pk,edge. We

briefly examine what Pk,edge looks like. For every valid edge flip ofMedge
k , there are two

choices of a rectangle R and an edge e that propose it. Since in each iteration Medge
k

chooses each rectangle with probability 1/n and one of its fours sides with probability

1/4, this implies every move between two tilings differing by an edge flip occurs with

probability 2/(4n) = 1/(2n) = 2−k−1, so all nonzero off-diagonal entries of Pk,edge are

2−k−1. We let γk denote the spectral gap ofMedge
k ; we omit the subscript edge from our

notation γk for brevity. We will get an inverse polynomial lower bound on γk, which gives

a polynomial upper bound on the relaxation and mixing times ofMedge
k .

3.5.3 The Block Dynamics Markov ChainMblock
k

To analyze the spectral gap of Markov chainMedge
k , we will appeal to a different Markov

chain that uses larger block moves instead of single edge flips. While this Markov chain is

not efficiently implementable because each step requires generating a large random dyadic

tiling, it still plays an important role in our proofs. To define this new chain we depend

critically on the bijection between tilings in Ωk−1 and the left or right (resp. top or bottom)

half of a tiling in Ωk that has a vertical (resp. horizontal) bisector, as discussed in the proof

of Proposition 3.2. For k ≥ 2, the block dynamics Markov chainMblock
k on the state space

Ωk of all dyadic tilings of size 2k is given by Algorithm 3.

Let Pk,block be the transition matrix of this Markov chain and let γk,block be its spectral

gap. Any valid nonstationary transition of Mblock
k occurs with probability 1/(4|Ωk−1|).

This Markov chain is not lazy, but it is aperiodic, irreducible, and reversible; this implies
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Algorithm 3 Block dynamics Markov chainMblock
k on unbiased (λ = 1) dyadic tilings of

size n = 2k

Beginning at any σ0 ∈ Ωk, repeat:
1: Uniformly at random choose a tiling ρ ∈ Ωk−1.
2: Uniformly at random choose Left , Right , Top, or Bottom.
3: if Left was chosen and σi has a vertical bisector then
4: To obtain σi+1, retile σi’s left half with ρ, under the mapping x→ x/2.
5: else if Right was chosen and σi has a vertical bisector then
6: To obtain σi+1, retile σi’s right half with ρ, under the mapping x→ (x+ 1)/2.
7: else if Bottom was chosen and σi has a horizontal bisector then
8: To obtain σi+1, retile σi’s bottom half with ρ, under the mapping y → y/2.
9: else if Top was chosen and σi has a horizontal bisector then

10: To obtain σi+1, retile σi’s top half with ρ, under the mapping y → (y + 1)/2.
11: else σi+1 = σi.

it is ergodic and thus has a unique stationary distribution which is uniform on Ωk. To

prove these facts, we first recall from Section 3.1 the notion of half-bisectors. We say

that a tiling x has a left half-bisector if the line segment from (0, 1/2) to (1/2, 1/2) does

not intersect the interior of any dyadic rectangle. In an analogous way we can define a

right half-bisector using the line segment from (1/2, 1/2) to (1, 1/2), a top half-bisector

using the line segment from (1/2, 1) to (1/2, 1/2), and a bottom half-bisector using the

line segment from (1/2, 1/2) to (1/2, 0).

Lemma 3.17. Mblock
k is aperiodic, irreducible, and ergodic, and it converges to a unique

stationary distribution that is the uniform distribution on Ωk.

Proof. We first show thatMblock
k is irreducible. For any tiling σ, to reach a tiling τ 6= σ

the following steps suffice. First, because σ must have a horizontal or vertical bisector, we

can retile the appropriate halves of σ to introduce any missing half-bisectors and reach a

tiling with both a horizontal and a vertical bisector. Then, because τ has at least one of

these bisectors, we can retile the appropriate halves as necessary to obtain τ . ThusMblock
k

is irreducible.

To seeMblock
k is aperiodic, we note that for any σ, Pk,block(σ, σ) ≥ 1/(2|Ωk−1|): each

tiling σ has at least one bisector, and choosing one side of this bisector and the tiling of
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Ωk−1 that is already present in that half of σ results in a stationary transition.

We concludeMblock
k is ergodic, which means it converges to a unique stationary distri-

bution over Ωk. For all σ 6= τ we have that either

Pk,block(σ, τ) = Pk,block(τ, σ) =
1

4|Ωk−1|
or Pk,block(σ, τ) = Pk,block(τ, σ) = 0.

We conclude, via detailed balance, that the stationary distribution of Mblock
k is uniform

over Ωk.

We now bound the spectral gap ofMblock
k from below by a constant using coupling.

Theorem 3.18. There exists a positive integer k0 such that for all k ≥ k0, γk,block ≥ 1/17.

Proof. At a high level, we introduce a distance metric on dyadic tilings, and then give a

coupling where the distance between two tilings decreases in expectation after one iteration

by a multiplicative factor of at least 1− 1
17

for all k sufficiently large. Using Theorem 2.3,

this implies the theorem.

We start defining the distance between two dyadic tilings x, y ∈ Ωk. For each of the

four possible half-bisectors, let `1 be the number of such half-bisectors that are present in

either x or y, but not in both of them. Also, for each of the four possible quadrants (top-

left, top-right, bottom-left and bottom-right) of x and y, let `2 denote the number of such

quadrants for which the rectangles in x intersecting that quadrant are not the same as the

rectangles in y intersecting that quadrant. Then, introducing a parameter b > 0 that we will

take to be sufficiently large later, we define the distance between x and y as

d(x, y) = b`1 + `2.

For instance, consider the two dyadic tilings in Figures 3.1a and 3.1b. In this case we have

`1 = 1 due to the left half-bisector that is present in (b) but not in (a), and `2 = 3 for

top-left, top-right and bottom-left quadrants. The distance between these two tilings is then
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b+ 3.

Our goal is to couple two instances of the block dynamics Mblock
k , one starting from

a state At = x ∈ Ωk and the other from a state Bt = y ∈ Ωk, such that the distance

between x and y contracts after one step of the chains. More precisely, letting Ex,y denote

the expectation with respect to the coupling, and if At+1 = x′ and Bt+1 = y′ are the dyadic

tilings obtained after one step of each chain, respectively, we want to obtain a coupling and

a value ∆ > 0 such that

Ex,y[d(x′, y′)] ≤ (1−∆)d(x, y) for all x, y ∈ Ωk. (3.1)

Once we have the above inequality, then Theorem 2.3 implies that γk,block ≥ ∆.

We will use the simple coupling between At = x and Bt = y that, in Steps 1 and 2 of

Algorithm 3, chooses the same values for ρ and for the half to consider retiling, respectively.

When we update the left (resp., right) half of x and ρ contains a horizontal bisector, note

that x′ will contain a left (resp., right) half-bisector. Similarly, if we update the top (resp.,

bottom) half of x and ρ contains a vertical bisector, then x′ will contain a top (resp., bottom)

half-bisector. In any of these cases, we say that the retiling yields a half-bisector of x.

Recall that fk := |Ωk−2|2/|Ωk−1| is the number of ways to tile the left half of a tiling

σ ∈ Ωk with a vertical bisector such that a left half-bisector is present; fk has the same

value and is defined similarly for the top, bottom, and right halves of dyadic tilings.

The remainder of the proof is devoted to showing that we can set b large enough so

that (3.1) holds with ∆ = 1
17

. In order to see this, we will split into three cases, and show

that (3.1) holds with ∆ = 1
17

for each case.

Case 1: x and y have no common bisector.

The maximum number of common half-bisectors of x and y in this case is two. Figure 3.7

illustrates the three possible configurations for the number of common half-bisectors of x

and y. Consider first that x and y have no common half-bisector, which is illustrated in
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4b+ 4 3b+ 4 2b+ 4− id(x, y) =

(a) (b) (c)

Figure 3.7: Possible configurations for the half-bisectors of x and y in Case 1 of the proof
of Theorem 3.18. In figure (c), i ∈ {0, 1} denotes how many grey quadrants are tiled
identically in x and y.

Figure 3.7a and has d(x, y) = 4b + 4. Then, whichever half (left, right, top or bottom)

is chosen to be retiled, note that either x or y is actually retiled, but never both. With

probability
|Ω2
k−2|
|Ωk−1| = fk the retiling yields a half-bisector, which increases the number of

common half-bisectors between x and y, and thus decreases their distance by b. Hence,

using that fk ≥ 1/2, we have

Ex,y[d(x′, y′)] = d(x, y)− fkb ≤ 4b+ 4− b

2
<

(
1− 1

17

)
(4b+ 4),

where the last step is true by setting b large enough (in this case, b ≥ 1 suffices).

Now consider that x and y have one common half-bisector, and use Figure 3.7b as a

reference, with x being the left tiling and y being the right tiling. We have d(x, y) = 3b+4.

If we retile the left or right halves, so only x gets retiled, and the retiling yields a half-

bisector, then the number of common half-bisectors of x and y decreases by 1. A similar

behavior happens if we retile the top half. However, if we retile the bottom half, and the

retiling does not yield a half-bisector, then the number of common half-bisectors decreases

by 1. Hence, using that fk ≥ 1/2, we obtain

Ex,y[d(x′, y′)] ≤ d(x, y)− 3fkb

4
+

(1− fk)b
4

≤ 3b+ 4− b

4
<

(
1− 1

17

)
(3b+ 4),

where the last step is true by setting b large enough (in this case, b ≥ 4 suffices).

Finally, suppose x and y have two common half-bisectors, as illustrated in Figure 3.7c,
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where they may or may not be tiled the same in the quadrant bounded by these common

half-bisectors. In this case d(x, y) = 2b+ 4− i, where i = 1 if they agree on this quadrant

and i = 0 otherwise. Retiling the left and top halves can yield a new common half-bisector,

while retiling the right and bottom halves may remove a common half-bisector. Moreover,

if i = 1 and we retile the right or bottom halves, the tilings of the bottom-right quadrant

of x and of y may become different, increasing the distance between x and y by 1. Putting

these together, we have

Ex,y[d(x′, y′)] ≤ d(x, y)− 2fkb

4
+

2(1− fk)b
4

+ i
2

4

≤ 2b+ 4− i

2
− (2fk − 1)b

2

=
(5− 2fk)b

2
+ 4− i

2
.

Since fk →
√

5−1
2

as k → ∞, the right-hand side above goes to
(

6−
√

5
2

)
b + 4 − i

2
. In

particular, for k ≥ 10, the coefficient of b above satisfies 5−2fk
2

< 2
(
1− 1

17

)
, and so we

can set b large enough so that Ex,y[d(x′, y′)] ≤
(
1− 1

17

)
(2b + 4 − i). We note this is the

tight case, as 6−
√

5
2

> 2
(
1− 1

16

)
, so this particular coupling and distance metric cannot be

used to show the spectral gap is at least 1/16. This concludes the first case.

Case 2: x and y have a common bisector, but neither x nor y has both bisectors.

Without loss of generality we assume x and y both have a vertical bisector and neither has

a horizontal bisector. Each of x and y has at least 2 and at most 3 half-bisectors. Figure 3.8

illustrates the four possible configurations for the number of half-bisectors of x and y; the

shaded quadrants are those where x and y could have the same tiling. In all the situations

of Figure 3.8, if we retile the left or right halves, then we match up the configuration of x

and y in that half. In particular, if x and y don’t agree on the presence of a left half-bisector,

then they also do not have the same tiling of the top left or bottom left quadrants, so the

decrease in distance due to a retiling of the left half, a move that occurs with probability

1/4, is (b + 2). If x and y agree on the presence of a left half-bisector and have the same
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4− i b+ 4− i 2b+ 4 4− id(x, y) =

(a) (b) (c) (d)

Figure 3.8: Possible configurations for the half-bisectors of x and y in Case 2 of the proof
of Theorem 3.18. The value of i ∈ {0, 1, 2, 3} denotes the number of grey quadrants which
are tiled identically in x and y.

d(x, y) =

(a) (b) (c)

2b+ 4 b+ 4− i 4− i

Figure 3.9: Possible configurations for the half-bisectors of x and y in Case 3 of the proof
of Theorem 3.18. The value of i ∈ {0, 1, 2, 3} denotes the number of grey quadrants which
are tiled identically in x and y.

tiling on i′ ∈ {0, 1, 2} of the two left quadrants, then the decrease in distance due to a

retiling of the left half is (2 − i′). The same holds for right half-bisectors and retilings of

the right half. As there are no moves of the coupling that can increase the distance between

x and y, it can be shown that in all of the cases shown in Figure 3.8 the distance decreases

by 1/4 in expectation. Hence,

Ex,y[d(x′, y′)] ≤ d(x, y)− d(x, y)

4
≤
(

1− 1

17

)
d(x, y),

which concludes the second case.

Case 3: y has both vertical and horizontal bisectors.

Here there are three situations, depending on whether x has two, three or four half-bisectors;

see Figure 3.9. In the situation of Figure 3.9a, if the left or right halves are retiled, then

we match up x and y in that half, decreasing the distance by b + 2. But if we retile the top

or bottom halves, then we may increase the distance by b if the retiling does not yield a
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half-bisector. Hence,

Ex,y[d(x′, y′)] ≤ d(x, y)− 2(b+ 2)

4
+

2(1− fk)b
4

=
(4− fk)b

2
+ 3.

Since 4−fk
2
→ 9−

√
5

4
<
(
1− 1

17

)
, the right-hand side above is smaller than

(
1− 1

17

)
(2b+4)

when k and b are large enough. A similar situation occurs in Figure 3.9b, but the distance

increases a bit more when the top or bottom half is retiled as quadrants that were equal in x

and y may become different. In this case, we have

Ex,y[d(x′, y′)] ≤ d(x, y)− (b+ 4− i)
4

+
2(1− fk)b

4
+

2

4
=

(5− 2fk)b

4
+

6− i
4

.

Since 5−2fk
4
→ 6−

√
5

4
<
(
1− 1

17

)
, the right-hand side above is smaller than the value of(

1− 1
17

)
(b+ 4− i) when k and b are large enough; this is the second tight case, where

we see contraction by a factor of 1 − 1
17

but not by 1 − 1
16

. Finally, for the situation in

Figure 3.9c, regardless of which half we choose to retile, the distance will not increase; if

we choose a half containing a quadrant on which x and y differ, the distance will decrease.

Each quadrant on which x and y differ is contained in two halves and thus is retiled so

that x and y agree there with probability 1/2. That is,

Ex,y[d(x′, y′)] ≤ d(x, y)− d(x, y)

2
≤
(

1− 1

17

)
d(x, y).

This concludes the third case. We have shown that for all possible tilings x and y, it

holds that Ex,y[d(x′, y′)] ≤
(
1− 1

17

)
d(x, y). By Theorem [thm:coupling], this implies

γk,block ≥ 1
17

for all k sufficiently large, as desired.

This concludes our proof that the spectral gap γk,block ofMblock
k is bounded below by

a constant. In the next section we used this result to give a lower bound that is an inverse

polynomial in n = 2k on γk, the spectral gap of Medge
k , which yields polynomial upper

bounds on the mixing and relaxation times of this chain.
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3.5.4 A Polynomial Upper Bound on the Mixing and Relaxation Times ofMedge
k

Recall we wish to show the mixing time ofMedge
k is polynomial in n = 2k, not polynomial

in k. We show the spectral gap γk ofMedge
k and the spectral gap γk−1 ofMedge

k−1 differ by

a multiplicative constant (specifically, 1/17) by appealing to the Dirichlet forms of both of

these Markov chains as well as the block dynamics Markov chain Mblock
k . We can then

use recursion to show γk is bounded below by (1/17)k, which, because k = log n, gives a

polynomial upper bound on the relaxation time and thus on the mixing time ofMedge
k .

For any function f : Ωk → R, we will denote the Dirichlet form of f with respect to

transition matrix Pk,edge and the uniform stationary distribution as Ek,edge(f). The Dirichlet

form of f with respect to transition matrix Pk,block and the uniform stationary distribution

will be Ek,block(f). We will let the variance of function f on Ωk with respect to the uni-

form stationary distribution be vark(f). Here the k indicates which state space Ωk we are

considering, rather than which distribution on Ωk the variance is taken with respect to; all

variances we consider will be with respect to the uniform distribution.

Because we consider two different Markov chains on the same state space Ωk, there are

two different notions of adjacencies on this state space, each corresponding to the moves of

one of these Markov chains. For x, y ∈ Ωk, we say x ∼e y if x and y differ by a single edge

flip move ofMedge
k and x ∼b y if x and y differ by a single move of the block dynamics

chainMblock
k . More specifically, if x and y differ by a retiling of their left half (implying

x and y both have a vertical bisector and are the same on their right half), we say x ∼L y;

then x ∼R y, x ∼T y, and x ∼B y are defined similarly for the right, top, and bottom

halves.

Theorem 3.19. For any k ≥ 2, the spectral gap γk of the edge-flip Markov chainMedge
k

satisfies

γk ≥ γk,block · γk−1

59



Proof. We begin by relating the Dirichlet forms for block dynamics and for the edge-flip

dynamics, which will allow comparison of their spectral gaps. Recall that for any function

f : Ωk → R,

Ek,block(f) =
1

2

∑
x∼by∈Ωk

π(x)Pk,block(x, y) (f(x)− f(y))2 .

This sum can be split into four terms, corresponding to the type of block move (left, right,

top, or bottom) transforming x into y. If x and y differ only in their top-left quadrants,

then x could transition to y via either a left block move or a top block move; each of these

moves occurs with probability 1
4|Ωk−1| , and the total probability of Pk,block(x, y) = 1

2|Ωk−1|

will be split correspondingly between the terms for left block moves and top block moves.

We now analyze the first of these terms, containing all x, y differing by a retiling of their

left halves. For xL, xR ∈ Ωk−1, by xLxR below we mean the tiling in Ωk with a vertical

bisector whose left half is xL under the map x→ x/2 and whose right half is xR under the

map x→ (x+ 1)/2.

ELk,block =
1

2

∑
x∼Ly

1

|Ωk|
1

4|Ωk−1|
(f(x)− f(y))2

=
1

8

∑
xR∈Ωk−1

∑
xL,yL∈Ωk−1

1

|Ωk|
1

|Ωk−1|
(f(xLxR)− f(yLxR))2

=
1

4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

1

2

∑
xL,yL∈Ωk−1

1

|Ωk−1|2
(f(xLxR)− f(yLxR))2

 .

We note that the second sum above is over all pairs of tilings in Ωk−1. While the Dirichlet

form of a function sums over all pairs of states that differ by a transition of a Markov chain,

the variance of a function sums over all pairs of states, regardless of the local structure

imposed on the state space by the Markov chain. In fact, we have written the second sum

above suggestively, and note that it is in fact a variance of a function over the state space

Ωk−1. For each xR ∈ Ωk−1, the function f |xR : Ωk−1 → R given by f |xR(z) = f(zxR)
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has variance vark−1(f |xR) (with respect to the uniform distribution) that is exactly equal to

the term in parentheses above. Because the variance of a function is the same regardless

of which transitions on the state space we are considering, it is through this variance we

can relate Ek,block, which we have calculated above, to a Dirichlet form for edge-flip moves.

That is, by Proposition 2.2, we can bound this variance with the Dirichlet form of f |xR
associated to Pk−1,edge and the spectral gap γk−1 ofMk−1. Thus,

ELk,block =
1

4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

vark−1(f |xR) ≤ 1

4

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

Ek−1,edge(f |xR)

γk−1

We now see that the Dirichlet form for the edge-flip Markov chain on Ωk−1 is

Ek−1,edge(f |xR) =
1

2

∑
xL,yL∈Ωk−1
xL∼eyL

π(xL)P (xL, yL) (f(xLxR)− f(yLxR))2

=
∑

xL,yL∈Ωk−1
xL∼eyL

1

|Ωk−1|
1

2n
(f(xLxR)− f(yLxR))2

Using this expression, we see that

ELk,block(f) ≤ 1

4γk−1

∑
xR∈Ωk−1

|Ωk−1|
|Ωk|

 ∑
xL,yL∈Ωk−1
xL∼eyL

1

|Ωk−1|
1

2n
(f(xLxR)− f(yLxR))2


=

1

4γk−1

∑
x,y∈Ωk
x∼ey
x∼Ly

1

|Ωk|
1

2n
(f(x)− f(y))2 .

We now compare this to the Dirichlet form for the edge flip Markov chain on Ωk, which we

recall is

Ek,edge(f) =
1

2

∑
x,y∈Ωk
x∼ey

1

|Ωk|
1

2n
(f(x)− f(y))2 .

We note for every x, y ∈ Ωk such that x ∼e y, at least one of and at most two of x ∼L y,
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x ∼R y, x ∼T y, and x ∼B y hold. Thus each summand of Ek,edge(f) appears at most

twice as a summand of

Ek,block(f) = ELk,block(f) + ERk,block(f) + ETk,block(f) + EBk,block(f).

It follows that

Ek,block(f) ≤ 1

4γk−1

· 2 · (2Ek,edge(f)) =
Ek,edge(f)

γk−1

.

This implies that for any f , first by Proposition 2.2 and then using the above equation, that

vark(f) ≤ Ek,block(f)

γk,block
≤ Ek,edge(f)

γk,block · γk−1

.

Let f be chosen to be the function achieving equality in vark(f) ≤ Ek,edge(f)

γk
. We conclude

γk =
Ek,edge(f)

vark(f)
≥ γk,block · γk−1.

Recall Theorem 3.18 states that γk,block is at least 1/17 for sufficiently large k. This can

be used to bound the spectral gap, the relaxation time, and finally the mixing time ofMedge
k .

Theorem 3.20. The relaxation time of the edge-flip Markov chain for dyadic tilings of

size n is at most O(nlog 17). As a consequence, the mixing time of this chain is at most

O(n1+log 17).

Proof. By Theorems 3.18 and 3.19, the spectral gap ofMedge
k satisfies

γk ≥
1

17
γk−1 ≥ 17−(k−k0)γk0 ,

where k0 is the constant value from Theorem 3.18. Since γk0 is a constant that does not
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depend on n,

γk = Ω
(
17−k

)
= Ω

(
n− log 17

)
= Ω

(
n−4.09

)
.

BecauseMedge
k is a lazy Markov chain (Lemma 3.7), its relaxation time satisfies

trel = O
(
nlog 17

)
= O

(
n4.09

)
.

To use this to bound the mixing time of Medge
k , we appeal to Proposition 2.1, though

we first must calculate πmin. For π the uniform distribution, minx∈Ωk π(x) = 1/|Ωk|. By

Lemma 3.3, the number of dyadic tilings of size n = 2k satisfies |Ωk| < 2n, implying

1/πmin = |Ωk| < 2n. We conclude

tmix = O
(
n1+log 17

)
= O(n5.09).

This result resolves the open question of [67] from 2002 and gives the first polynomial

upper bound on the mixing time ofMedge
k .

3.5.5 A Nontrivial Lower Bound on Convergence when λ = 1

In this section we provide lower bounds on the mixing and relaxation times ofMedge
k when

λ = 1 that complement the upper bounds given in the previous section. The trivial lower

bound for the mixing time is Ω(n log n), which, as proved in Theorem 3.14, is a simple

consequence of the fact that the diameter of the Markov chain is of order n log n. In the

theorem below we improve this bound to Ω(n1.38) for both relaxation and mixing times.

The implications of this result and what is says about statistical physics are then discussed

in Section 3.6.
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To begin, we define the following subsets of Ωk:

Ω+
k = {x ∈ Ωk : x has both a horizontal and a vertical bisector} ,

Ω
|
k = {x ∈ Ωk : x has a vertical bisector} , and

Ω−k = {x ∈ Ωk : x has a horizontal bisector} .

By definition, we have Ω+
k = Ω

|
k ∩ Ω−k . We start with the following simple lemma.

Lemma 3.21. For all k ≥ 2, we have

|Ωk|
|Ω+

k |
=

2

f 2
k

− 1 ≥ 2φ+ 1.

Furthermore, limk→∞
|Ωk|
|Ω+
k |

= 2φ+ 1, where φ =
√

5+1
2

is the golden ratio.

Proof. Using that |Ω+
k | = |Ωk−2|4, and Proposition 3.2, we have

|Ωk|
|Ω+

k |
=

2|Ωk−1|2 − |Ωk−2|4
|Ωk−2|4

=
2

f 2
k

− 1.

By Lemma 3.5, fk ≤
√

5−1
2

= 1
φ

, and using the identity φ2 = 1 + φ we see that

|Ωk|
|Ω+

k |
=

2

f 2
k

− 1 ≥ 2φ2 − 1 = 2 + 2φ− 1 = 2φ+ 1.

Furthermore, because limk→∞ fk = 1/φ, we conclude

lim
k→∞

|Ωk|
|Ω+

k |
= lim

k→∞

2

f 2
k

− 1 =
2

(limk→∞ fk)
2 − 1 =

2

(1/φ)2 − 1 = 2φ− 1.

We will also require the following technical estimate.
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Figure 3.10: The construction of a tiling to count
∏k−2

i=0 |Ωi|2. A rectangle with number a
indicates that we tile it with a tiling from Ωk−a.

Lemma 3.22. For any k ≥ 2, we have

1

|Ωk|
k−2∏
i=0

|Ωi|2 ≤ φ−2k+2

Proof. We will show how to estimate
∏k−2

i=0 |Ωi|2 via the construction of a tiling in Ωk. We

start with a tiling with both a horizontal and a vertical bisector, as in Figure 3.10(a). Then

we inductively do the following. Both quadrants of the left half are tiled independently with

a uniformly random tiling from Ωk−2. In the top-right quadrant, we add a vertical bisector

and complete the two halves of this quadrant with independent, uniformly random tilings

from Ωk−3. Finally, in the bottom-right quadrant, we create a horizontal and a vertical

bisector, reaching the tiling in Figure 3.10(b). Then we take this bottom-right quadrant, and

iterate the procedure above; see Figure 3.10(c,d) for the configurations after one and two

more iterations. This iteration continues until creating a bisector will result in rectangles

of area less than 2−k. In the case where an attempt is made to divide a rectangle of area

2−k+1 into four rectangles of equal area by adding both a horizontal and vertical bisector,

we instead add just a horizontal bisector, resulting in two rectangles each of area 2−k.

Let Υk ⊂ Ωk be the set of tilings obtained in this way. Note that the number of tilings

in Υk is exactly
∏k−2

i=0 |Ωi|2. Since Υk ⊂ Ω+
k , we have that |Υk||Ωk| ≤

|Ω+
k |
|Ωk| , where the first

expression is exactly the value we wish to bound. Using the construction above until Fig-
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ure 3.10(b), we obtain that
|Υk|
|Ωk|

≤ |Ω
+
k |
|Ωk|
|Ω|k−2|
|Ωk−2|

,

where the second factor stands for the fact that the top-right quadrant must contain a vertical

bisector. Iterating this in the bottom-right quadrant, we obtain

|Υk|
|Ωk|

≤ |Ω
+
k |
|Ωk|
|Ω|k−2|
|Ωk−2|

|Ω+
k−2|
|Ωk−2|

|Ω|k−4|
|Ωk−4|

... (3.2)

Proposition 3.2 gives that

|Ω|k|
|Ωk|

=
|Ωk|+ |Ωk−2|4

2|Ωk|
=

1

2

(
1 +
|Ω+

k |
|Ωk|

)
≤ 1

2

(
1 +

1

2φ+ 1

)
=

φ2

2φ+ 1
,

where the inequality follows from Lemma 3.21. For even k, because |Ω|0| = 0 the last term

we can obtain in (3.2) is |Ω
+
2 |
|Ω2| , so we can write

|Υk|
|Ωk|

≤

k/2−2∏
i=0

|Ω+
k−2i|
|Ωk−2i|

· |Ω
|
k−2i−2|
|Ωk−2i−2|

 |Ω+
2 |
|Ω2|

≤ 1

2φ+ 1

(
1

2φ+ 1
· φ2

2φ+ 1

) k
2
−1

=
φ−2k+4

2φ+ 1

≤ φ−2k+2,

where the last two expressions come from, respectively, identities for φ and the easily-

checked inequality 2φ + 1 > φ2. When k is odd, the last term in (3.2) is |Ω
|
1|

|Ω1| because

|Ω+
1 | = 0, so we can write

|Υk|
|Ωk|

≤

(k−3)/2∏
i=0

|Ω+
k−2i|
|Ωk−2i|

· |Ω
|
k−2i−2|
|Ωk−2i−2|

 ≤ ( 1

2φ+ 1
· φ2

2φ+ 1

) k−1
2

≤ φ−2k+2,

where again the last expression is the result of applying identities for φ and simplifying.
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To prove our lower bound result, we will use a distinguishing statistic (Section 2.3.3).

In particular, as our distinguishing statistic we consider the function f : Ωk → {0, 1} such

that

f(x) =

 1 if x ∈ Ω
|
k

0 otherwise
(3.3)

For a function f on Ωk, recall that varkf denotes the variance of f with respect to the

uniform measure on Ωk.

Lemma 3.23. With f : Ωk → {0, 1} as in (3.3), we have that

lim
k→∞

vark(f) =
√

5− 2.

Proof. We start by applying the definition of the variance of a function taken with respect

to the uniform distribution π(x) = 1/|Ωk|.

vark(f) =
∑
x,y∈Ωk

π(x)π(y)(f(x)− f(y))2

=
∑
x,y∈Ωk

1

|Ωk|
· 1

|Ωk|
· (f(x)− f(y))2

=
∑
x∈Ω

|
k

∑
y∈Ωk\Ω|k

1

|Ωk|2

=
|Ω|k| · |Ωk \ Ω

|
k|

|Ωk|2
.

Since |Ω|k| = |Ωk−1|2, using Proposition 3.2 we obtain

|Ω|k| =
|Ωk|+ |Ωk−2|4

2
=
|Ωk|+ |Ω+

k |
2

, (3.4)

and

|Ωk \ Ω
|
k| = |Ωk| − |Ω|k| =

|Ωk| − |Ω+
k |

2
. (3.5)
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Plugging in (3.4) and (3.5) to our above expression for the variance, we see that

vark(f) =
|Ω|k| · |Ωk \ Ω

|
k|

|Ωk|2
=

1

4

(
1 +
|Ω+

k |
|Ωk|

)(
1− |Ω

+
k |
|Ωk|

)
=

1

4

(
1−

( |Ω+
k |
|Ωk|

)2
)
.

Then Lemma 3.21 yields

lim
k→∞

vark(f) =
1

4

(
1− 1

(2φ+ 1)2

)
.

Plugging in the value of φ = (
√

5 + 1)/2 and simplifying completes the proof of the

claim.

Theorem 3.24. The relaxation time and mixing time of the edge-flip Markov chain for

dyadic tilings of size n are both at least Ω(n2 log φ), where φ =
√

5+1
2

is the golden ratio.

Proof. We will derive a upper bound on the spectral gap γk using the distinguishing statistic

f : Ωk → {0, 1} given in Equation 3.3. We will apply this function to the characterization

of the spectral gap in Proposition 2.2.

Because we have already shown that that the variance of f is bounded away from 0 as

k →∞ (Lemma 3.23), it only remains to obtain an upper bound for E(f). Let ∂Ω
|
k be the

set of tilings in Ωk \Ω
|
k which can be obtained from a tiling in Ω

|
k via one edge flip. Recall

for two tilings x, y ∈ Ωk, we write x ∼e y if x can be obtained from y by one edge flip.

Hence,

E(f) =
∑
x∈∂Ω

|
k

∑
y∈Ω

|
k : y∼ex

1

|Ωk|
1

2n
.

Note that each tiling in ∂Ω
|
k has a horizontal bisector and is not in Ω+

k . This means that it

has exactly one edge flip that can bring it into Ω
|
k, which is the flip that creates a vertical

bisector. Then, we have

E(f) =
|∂Ω

|
k|

2n · |Ωk|
.

Now we need to describe the set ∂Ω
|
k. It is a set of tilings with no vertical bisector, but with
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one edge flip that creates a vertical bisector; see Figure 3.11. Note that the edge whose flip

Figure 3.11: A tiling in ∂Ω
|
k, with the red edge being the flip that brings the tiling into Ω

|
k.

creates a vertical bisector must be a horizontal edge of length 1 which flips to a vertical

edge of length 2/n. From now on we will refer to this edge as the pivotal edge.

In order to estimate the cardinality of ∂Ω
|
k, we will describe a procedure to construct

a tiling x ∈ ∂Ω
|
k, observing the position of the pivotal edge. Note that x must have a

horizontal bisector, which splits [0, 1]2 into its top and bottom halves. Assume that the

pivotal edge is in the top half of x. This implies that the bottom half of x must itself

contain a vertical bisector since the pivotal edge must be the only edge that forbids a vertical

bisector to exist, see Figure 3.12(a). The two quadrants in the bottom half are simply any

tilings of Ωk−2. Note also that the top half of xmust contain a horizontal bisector, otherwise

x 6∈ ∂Ω
|
k, see Figure 3.12(b). Then we iterate the above construction: among the two halves

of the top half, one must contain the pivotal edge, say the bottom one, while the other

contains a vertical bisector, each side of which being completed with a tiling from Ωk−3,

which gives the configuration in Figure 3.12(c). Continuing this for k − 2 steps concludes

the construction.

To estimate the cardinality of ∂Ω
|
k, note that in each step of the construction we have

two choices for where the pivotal edge is: either in the top half or the bottom half of the
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(a)
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(b)
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(c)
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Ωk-4 Ωk-4

(d)

Figure 3.12: The construction of a tiling in ∂Ω
|
k. The grey areas represent the part that

contains the pivotal edge.

corresponding region. Therefore, the number of tilings in ∂Ω
|
k is

|∂Ω
|
k| =

k∏
i=2

(
2|Ωk−i|2

)
= 2k−1

k−2∏
i=0

|Ωi|2 =
n

2

k−2∏
i=0

|Ωi|2.

Hence,

E(f) =
1

4|Ωk|
k−2∏
i=0

|Ωi|2 ≤
1

4
φ−2k+2

where the last step follows from Lemma 3.22. Therefore, because varkf converges to a

positive constant (Lemma 3.23), there exists a constant c > 0 such that

γk ≤
E(f)

varkf
≤ cφ−2k.

This implies that the relaxation time and mixing time satisfy

trel, tmix ≥
1

c
φ2k =

1

c
φ2 logn =

1

c
n2 log φ = Ω(n2 log φ) = Ω(n1.38).

This complete the proof of the theorem.

3.6 Weighted Dyadic Tilings and Statistical Physics

It is a general principle in statistical physics that in systems with some bias parameter

(temperature) that induces different phases, the mixing time of natural heat-bath dynam-
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ics should be as fast as possible (the diameter of the state space) at high temperature, a

larger polynomial at the critical temperature, and exponential at low temperature. How-

ever, there are very few instances for which this behavior has been rigorously confirmed.

Exceptions are the Ising model on complete graphs [77, 48], regular trees [47], and the

two-dimensional lattice [78], and the Potts model on the complete graph [33] and the two-

dimensional lattice [60], all of which required significant effort to analyze. The edge-flip

Markov chain for dyadic tilings is an example of heat-bath dynamics, and our parameter

λ can be viewed as a function of inverse temperature. The work in Sections 3.3 and 3.4

confirms exponential mixing at low temperature (λ > 1) and polynomial mixing at high

temperature (λ < 1). Our work in Section 3.5 shows that the mixing time at the criti-

cal point (λ = 1) is indeed polynomial but strictly larger than the diameter of the state

space (which is n log(n)/2), providing further evidence for the general statistical physics

principle above.

Another aspect of this general statistical physics principle is that the behavior at the

critical point differs from the behavior near the critical point. We can demonstrate this is

the case forMedge
k by appealing to relaxation times. We showed the relaxation time when

λ < 1 is O(n) and when λ = 1 it is Ω(n1.38) and O(n4.09) (Theorems 3.15, 3.24, and 3.20).

It is a simple consequence of Theorem 2.5 and the relation between mixing and relaxation

times (Proposition 2.1) that the relaxation time is at least exponential in n2 when λ > 1. We

expect this this separation between the behavior at the critical point and behavior nearby

also exists for mixing times, but our current results do not provably guarantee this.

3.7 Rectangular Dissections

In [24], we also considered rectangular dissections, tilings of the n × n square with n

rectangles, each of area n, whose corners lie in Z2. When scaled down by a factor of n,

rectangular dissections are a generalization of dyadic tilings, with the dyadic constraint

removed. We expected to see the same behavior for the edge-flip Markov chain for rectan-
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gular dissections as we do for dyadic tilings, but the picture turned out to be significantly

more complicated.

To begin, even showing that edge-flip moves connect the state space of all rectangular

dissections required significant effort; this proof occupies about 10 pages in [24]. In fact,

for a given rectangular dissection, it is not even obvious that a single valid edge-flip move

exists. In contrast to our results for dyadic tilings, we proved this chain mixes in exponential

time both when λ > 1 and when λ < 1, though the reasons for slow mixing in the two

regimes are different. It remains an open problem to bound the mixing time of this chain

when λ = 1; simulations seem to suggest it is possible this chain mixes in polynomial time

at this isolated point.

All of this provides evidence that the dyadic constraint we place on our rectangles plays

a critical role in determining the behavior ofMedge
k . We depended on properties of dyadic

tilings in our proofs when λ ≤ 1, and this complementary work on rectangular dissections

supports the notion that this is necessary, at least when λ < 1.
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CHAPTER 4

FREE BOUNDARY PLANAR LATTICE PROBLEMS

Many statistical physics models are defined on an infinite lattice by taking appropriate lim-

its of finite lattice regions, where a key consideration is how the boundaries are defined.

For several models on finite planar lattices, such as 3-colorings and lozenge tilings, effi-

cient sampling algorithms are known for regions with fixed boundary conditions, where the

colors or tiles around the boundary are pre-specified [79], but much less is known about

how to sample when these regions have free boundaries, where we want to include all con-

figurations one could see within a finite window. It is widely believed that these chains are

fast mixing on finite regions for any boundary conditions – that is, the emergent behavior

has no dependence on the boundary conditions and there is only one phase – but previous

proof techniques have been insufficient to rigorously verify this.

In this chapter, we introduce the new method of randomized extensions [25] and use it

to extend the class of regions and boundary conditions for which efficient sampling is prov-

ably possible. At a high level, we relate sampling problems on regions with free boundaries

or mixed boundaries, where some boundary colors might be fixed but others are allowed to

vary, to a constant number of sampling problems on larger regions with fixed boundaries

(for which efficient sampling processes are already known [79]). We use this principled

approach to sample 3-colorings of a larger class of regions of Z2 than was previously pos-

sible (Section 4.2) and show that the same approach can also give new results for sampling

lozenge tilings of regions of the triangular lattice (Section 4.3). Sampling for these new

types of regions is significant because it allows us to establish self-reducibility and gain

a new ability to approximately count. We can then use these approximate counting algo-

rithms as subroutines to enable sampling from an even larger class of regions. This makes

progress towards the goal of showing that the emergent behavior (specifically, the mix-
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ing time) of the sampling processes for planar lattice problems that we consider has no

dependence on its boundary conditions.

At a high level, our new randomized extensions approach takes a free or mixed bound-

ary planar region R and samples using a Markov chain that at each iteration:

• extendsR three units in every direction to get a larger (fixed boundary, locally planar)

region R′;

• sets the configuration in R′ \ R by choosing uniformly at random among a constant

number of choices;

• makes a move of the (well-studied) related fixed boundary Markov chain in R′; and

• restricts the resulting configuration back to R.

We make this principled approach concrete by applying it first to 3-colorings of finite sub-

sets of Z2 and then to lozenge tilings of finite planar regions. That this same approach

yields new sampling results for different structures speaks to its generality.

4.1 Background on Grid 3-colorings

A grid 3-coloring is an assignment of one of three colors to each vertex in a subset of Z2

such that no adjacent vertices are given the same color. We are interested in questions of

sampling grid 3-colorings of finite, simply connected regions subject to various boundary

constraints. Throughout we will label the three colors as {0, 1, 2}.

4.1.1 Related Work: Sampling k-colorings

Colorings of the Cartesian lattice are of interest in statistical physics to study phase transi-

tions of the k-state anti-ferromagnetic Potts model, a basic model of anti-ferromagnetism.

In this model, vertices are assigned “spins” from {1, . . . , k}; in the anti-ferromagnetic case,
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neighbors have a preference for unequal spins. At zero temperature this preference be-

comes required, mapping the valid configurations precisely to the set of proper k-colorings,

each occurring with equal probability.

Sampling proper k-colorings uniformly, from grids and from other graphs, has been

the focus of much research. Given a graph G = (V,E) and an integer k, a k-coloring is

an assignment of colors [k] = {1, . . . , k} to the vertices so that all pairs of neighboring

vertices have distinct colors. A natural local Markov chain known as Glauber dynamics

starts with any valid coloring, chooses (v, c) ∈ V × [k] uniformly, and recolors v with color

c if this yields a valid coloring.

Glauber dynamics have been extensively studied, primarily in the case when k, the

number of colors/spins, is large compared to ∆, the maximum degree of G. If k ≥ ∆ + 2

the chain is known to connect the state space. Vigoda [114] showed that the chain mixes

in polynomial time when k ≥ 11∆/6. For graphs with large girth and large ∆, this degree

constraint can be reduced [65, 75, 91]. Bubley et al. [17] showed that the chain is rapidly

mixing when k ≥ 5 whenever ∆ = 3 or when k ≥ 7, ∆ = 4 and G is triangle free, notable

because this includes the Cartesian lattice Z2. See [59] for a survey on efficiently sampling

k-colorings.

4.1.2 Sampling Grid 3-Colorings

For a small number of colors, Glauber dynamics has proven more challenging to analyze.

Despite this, some results are known for 3-colorings on Z2, which map bijectively to Eu-

lerian orientations of the grid graph, well-known in the statistical physics community as

the “ice model.” This structure allows more analysis, and Luby et al. [79] showed that a

related Markov chain based on “tower moves” that can at once update a linear collection

of sites is rapidly mixing on any simply connected region of Z2, provided the configuration

on the boundary is fixed in advance (known as fixed boundary conditions). Randall and

Tetali [97] subsequently showed polynomial convergence of Glauber dynamics itself could
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be inferred from the comparison method of Diaconis and Saloff-Coste [43]. Though the

results of [79] and [97] are presented in the context of Eulerian orientations, fast mixing

of Glauber dynamics for 3-colorings of finite simply connected subsets of Z2 with fixed

boundary colors is an immediate corollary.

There remain basic open questions about the convergence of Glauber dynamics for

sampling 3-colorings in Z2, particularly in the context of free boundary conditions. This

question is computationally interesting because for some related models the convergence

rates are known to depend significantly on the types of boundaries (see, e.g., [11, 84, 85]).

Goldberg, Martin and Paterson [61] extended the Markov chain studied by Luby et al. to

the case of free boundary conditions on rectangular subregions of Z2, but their argument

does not seem to extend to other simply connected regions. While rectangular regions

are of the most significance in physics, the restriction to this class of graphs precludes,

for instance, “L-shaped” regions that are necessary for the self-reducibility that allows us

to approximately count using a well-known reduction between sampling and approximate

counting due to Jerrum, Valiant and Vazirani [71]. Moreover, the proof of Goldberg et

al. [61] identifies a set of weights for towers moves (to be defined in Section 4.1.4) near

or intersecting the boundary, and shows that these weights allow the coupling proof of

Luby et al. [79] to extend to rectangular regions with free boundary conditions. There is

no explanation for why their weights work or why a similar approach apparently fails for

more general lattice regions.

4.1.3 Problem Statement and Assumptions

Formally, we assume we are given as input a simply connected finite subset R of Z2 with

some (possibly zero) colors adjacent to the boundary fixed such that R admits a 3-coloring.

We want to generate, uniformly at random, one such 3-coloring ofR that respects the values

of these fixed cells. For simplicity, we assume R is a subset of the Cartesian grid and we

are assigning colors to faces (rather than to vertices). For example, see Figure 4.1a for
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Figure 4.1: (a) A sample input: a mixed boundary regionR for which we want to efficiently
generate a uniformly random 3-coloring, and (b) one such proper 3-coloring of R.

an example of an input we will consider, and Figure 4.1b for a sample we might generate

given this input. Throughout we will let |R| denote the number of cells inR without a fixed

color; in Figure 4.1, |R| = 27. We assume all cells ofR without fixed colors are connected.

By a convex corner cell of a grid region R, we mean a cell where two of its adjacent

sides are part of ∂R, the boundary of R. By a reflex cell, we mean a cell of R where

exactly one corner but no sides are in ∂R; equivalently, a reflex cell has all horizontal and

vertical neighbors in R but at least one diagonal neighbor not in R. In Figure 4.1a, the cells

given color 2 are convex corner cells and the cell given color 0 is a reflex cell. While not

necessary, we assume throughout that R has width at least two everywhere, e.g., there are

no cells where two opposite sides are both included in different segments of ∂R. Because

we will always assume that any reflex cells of R have fixed colors, any such channel of

width 1 must end at either a fixed color cell or at a boundary of R. Sampling 3-colorings

of a 1 × k region that has no influence on the coloring elsewhere is easy to do, so we

eliminate this case to simplify our analysis. Specifically, by eliminating 1× k regions from

consideration, we assume that all cells of R are interior cells, adjacent to one boundary

segment, adjacent to two boundaries at a convex corner, or are reflex cells. Throughout,

by a grid region R we will mean a simply connected finite region of Z2 that satisfies this

condition.
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4.1.4 Glauber Dynamics and Tower Moves

Glauber dynamics is a type of local update Markov chain that has been widely studied,

particularly in statistical physics. For 3-colorings, Glauber dynamics pick a random cell

v ∈ R (that does not have a fixed color) and a random color c ∈ {0, 1, 2}, and recolors v

with c if doing so yields a valid 3-coloring. We call such an update of one cell to a new color

a flip move. It has proven difficult to construct direct proofs bounding the convergence times

of Glauber dynamics on various planar lattice structures such as 3-colorings and lozenge

tilings.

Luby et al. [79] instead introduced “tower-based Markov chains” that sample from

these structures efficiently by updating multiple locations at once. Fast mixing of this chain

implies fast mixing of Glauber dynamics [97]. We take the same approach, bounding the

mixing time of a tower Markov chain which, by the comparison method [43], gives bounds

on Glauber dynamics. We begin by defining tower moves.

Definition 4.1. A tower in a 3-coloring of a region R is a set of contiguous cells in a row

or column that can be labelled in order (right to left, left to right, top to bottom, or bottom

to top) as v1, v2, ..., vh for some h ≥ 2 such that:

• For all i = 1, 2, ...h− 1, vi’s neighbors except for vi+1 are the same color

• vh has all neighbors of the same color.

We say that v1 is the start of the tower, vh is the end of the tower, and the height of the tower

is h.

Definition 4.2. A tower move recolors a tower such that for i = 1, 2, ..., h− 1, vi receives

the color of vi+1, and vh receives the color distinct from its original color and its neighbors.

The start color of a tower move is the color of v2, the color v1 is given after the tower move.

A tower move can be though of as attempt to change the tower’s start cell to its start

color c that, at the same time, forces other cells to also change their colors so that this
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Figure 4.2: A 3-coloring of a rectangle R and three tower moves, each of height 3. The top
right tower abuts the boundary, the bottom tower is adjacent to the boundary, and the top
left tower does both. The arrow drawn in each tower goes from the start cell to the end cell.

recoloring of the start cell is valid. See Figure 4.2 for examples of different towers of

height 3. Note that if a tower includes a fixed boundary cell, a tower move is not possible

because fixed color boundary cells cannot be given a different color.

We will denote the boundary of region R by ∂R. A tower abutting a segment ` of ∂R

stretches perpendicular to ` such that its start or end cell is adjacent to `. A tower adjacent

to a segment ` of ∂R stretches parallel to ` and has all of its cells next to `. Figure 4.2 shows

towers that are abutting a boundary (top right), adjacent to a boundary (bottom), and both

(top left). We consider 3-colorings of a variety of non-convex regions, but the conditions

we impose ensure these remain the only types of towers we need to consider.

4.1.5 Height Functions

It is well-known [61, 79] that grid 3-colorings can be mapped to height functions. A height

function for a 3-coloring of a grid region R is an assignment of an integer (a height) to each

cell in R such that two adjacent cells in R differ in height by exactly one and the height of

a cell (modulo 3) is its color.

More formally, let σ be a 3-coloring of R, where for each cell b ∈ R, σ(b) ∈ {0, 1, 2}.

We can define a height function hσ : R → Z by picking any cell a ∈ R that has color

σ(a) = i and setting hσ(a) = i, and (uniquely) completing the heights for all remaining
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Figure 4.3: (a) a valid 3-coloring of a 7× 5 rectangle, and (b) the height function obtained
from it when fixing the height of the lowest leftmost cell to be its color.

cells subject to the rules

hσ(x, y)− hσ(x− 1, y) =

 1 σ(x, y)− σ(x− 1, y) ≡ 1(mod 3)

−1 σ(x, y)− σ(x− 1, y) ≡ −1(mod 3)

hσ(x, y)− hσ(x, y − 1) =

 1 σ(x, y)− σ(x, y − 1) ≡ 1(mod 3)

−1 σ(x, y)− σ(x, y − 1) ≡ −1(mod 3)

There may be many height functions depending on the chosen a starting cell a, but for

any two hσ and h′σ there is a constant k such that hσ(b) − h′σ(b) = 3k for all b ∈ R. A

3-coloring and the height function obtained from it when fixing the height of the lowest

leftmost cell to be its color are shown in Figure 4.3.

The most important use of height functions for 3-colorings has been in understanding

how to move from one 3-coloring of a region to another using flip moves. We use height

functions in Section 4.2.6 to characterize when our Markov chain MC for sampling 3-

colorings is irreducible, and in Section 4.2.7 in our path coupling proof of fast mixing

forMC to give an upper bound on the number of flip moves required to move from one

coloring to another. We now present some preliminaries about height functions that will be

useful in these two contexts.

Definition 4.3. Given a grid region R with mixed boundary conditions, we say that the

boundary conditions are height consistent if the heights of all fixed cells in any valid 3-
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Figure 4.4: (a) Three regions with height consistent mixed boundary conditions, where
gray cells have fixed colors. (b) A region whose mixed boundary conditions are not height
consistent; in the two colorings shown, the fixed cells have different heights.

coloring can be uniquely determined from the height of any one such cell.

For example, when the fixed color cells are contiguous along the boundary of R, these

mixed boundary conditions are necessarily height consistent. If there are zero or one fixed

color cells on the boundary of R, vacuously there is height consistency. Figure 4.4 gives

more examples of height consistent and non-height consistent boundaries. Note that mixed

boundary conditions must be height consistent if Glauber dynamics connects the state

space, because Glauber dynamics cannot change the heights associated to any fixed cells;

we’ll later prove these two conditions are in fact equivalent.

We now use height functions to give an upper bound on the number of flips needed to

move between any two 3-colorings of a mixed boundary region R; these upper bounds will

be used in our path coupling argument in Section 4.2.7.

Lemma 4.4. Let R be a mixed boundary region with at least one fixed color cell, and let Ω

be the set of valid 3-colorings of R reachable by flips from some initial 3-coloring σ. The

number of flips required to move between any two 3-colorings of R is at most |R|2, where

|R| is the number of cells in R without fixed colors.

Proof. Pick one fixed boundary cell a of R, and suppose its color is c. For each 3-coloring

σ in Ω, let hσ be the height function for σ that sets hσ(a) = c. For any two height functions

hσ and hτ in Ω, define the area between them to be
∑

b∈R |hσ(b) − hτ (b)|. If b is a fixed

color cell of R then because Ω is connected by flips it must be that hσ(b) = hτ (b) because

flip moves do not change heights of fixed boundary cells, so only free cells contribute to
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the area between two height functions. We note that free cells b at distance i from a have

|hσ(b) − hτ (b)| ≤ 2i. Each of the |R| free cells of R is at distance at most |R| from a, so

we have that the area between hσ and hτ is at most 2|R|2. It is a well-known fact that for

any two 3-colorings that are connected by flips, as all tilings in Ω must be, there exists at

least one flip move that decreases the area between their associated height functions. Each

such flip move in fact decreases this area by two. This implies the number of flip moves

needed to move between any two tilings of Ω is at most 2|R|2/2 = |R|2.

We note effort could be made to improve the bound in this lemma to about |R|2/2, but this

has no asymptotic effect on our results.

The above lemma requires the presence of at least one fixed boundary cell. Because

we will assume all reflex cells of R have fixed colors, the only case not yet addressed is

free boundary regions with no reflex cells, which are necessarily rectangles. Free boundary

rectangles are exactly the case considered by [61], and we briefly present their similar

result.

Lemma 4.5 ([61]). Let R be a free boundary rectangle. Then the number of flips needed

to get from any 3-coloring of R to any other 3-coloring of R is at most |R|2.

Proof. The authors of [61] prove that for n × m rectangles with m ≥ n, the number of

flips required to get from any 3-coloring to any other 3-coloring is at most 2nm2. Since

|R| = mn, and by assumption (Section 4.1.3) grid region R has length and height both at

least 2, then |R|2 is an upper bound on this number.

4.2 A Markov Chain for Grid 3-colorings using Randomized Extensions

In this section we present and analyze a tower-based Markov chain for uniformly sampling

3-colorings of finite simply connected subsets of the Cartesians grid with mixtures of free

and fixed boundaries; using standard techniques [43], one can extend rapid mixing results

for this tower chain to Glauber dynamics. Our tower Markov chains uses randomized
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extensions to generate, from a mixed boundary region R, a larger fixed boundary region

R′, does a move of the tower Markov chain from [79] for fixed boundary 3-colorings onR′,

restricts the resulting configuration back to R, and repeats; we formally define this chain in

Section 4.2.2.

We will show for 3-colorings on any simply connected subset of the Cartesion grid

with height consistent mixed boundary conditions that this tower-based Markov chain using

randomized extensions converges to the uniform distribution in polynomial time, provided

all reflex cells have fixed colors. For example, if first we flip a coin to determine the color

of the single reflex cell in any “L-shaped” region of Z2, and then run Glauber dynamics on

the remaining cells, our proof shows this chain will converge quickly; this is the first result

to efficiently sample uniformly from free boundary 3-colorings of any non-convex region.

Another important class for which our work shows fast convergence is L-shaped regions

with mixed boundaries, where the fixed part is contiguous and includes the unique reflex

cell. This class of regions is precisely what is required to establish self-reduciblity of the

sampling problem. We can thus use sampling to, for the first time, efficiently approximately

count the number of 3-colorings of any rectangular region with free boundary conditions

utilizing the technique of Jerrum, Valiant, and Vazirani [71]. In fact, these approximate

counting results hold for any height-consistent mixed boundary regions where all reflex

cells have fixed colors.

4.2.1 Techniques

Our proofs follow a similar strategy as Goldberg et al. [61]; however, rather than checking

whether there are probabilities for tower moves near free boundaries that enable a path

coupling argument, we derive these probabilities using randomized extensions. At each

iteration, we embed the region of interest with free or mixed boundaries into a larger region

with fixed boundaries by extending every boundary segment by three cells. The colors

within this extension are randomized so that, at each iteration, for any valid move near a
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free boundary there is at least one coloring of the extension in which this move is valid for

the extended region. While it is possible to guarantee that this occurs by considering all

(exponentially many) colorings of the extended reason, perhaps surprisingly we show that

randomly choosing from merely a constant number of colorings of the extension suffices.

We then use path coupling arguments regarding tower Markov chains for fixed boundary

regions [79] to bound the mixing time of our Markov chain on free and mixed boundary

regions. A comparison argument allows us to infer that Glauber dynamics also mixes in

polynomial time. Because handling extensions near reflex corners is more challenging, we

require that the color at any reflex corner is fixed before sampling occurs.

An interesting feature of this new approach is that we don’t need to know a priori the

probabilities of moves within R occurring near free boundaries. Instead, we derive these

probabilities as a result of the randomized extensions we generate. For 3-colorings on

rectangular regions of Z2 with free boundaries, the probabilities we derive exactly coincide

with those used by [61]. While the authors of [61] simply stated, without justification,

the probabilities of moves near free boundaries and showed they enabled fast mixing, our

principled approach of deriving these probabilities allows us to generalize our arguments

to more regions and mixed boundary conditions, as well as to lozenge tilings.

4.2.2 A Sampling Algorithm using Randomized Extensions

We now state our Markov chain algorithmMC for sampling from 3-colorings of a simply

connected Cartesian grid region R that has some (possibly zero) boundary cells with fixed

colors. We assume the color at any reflex corner of R is fixed. This Markov chain is stated

as Algorithm 4, where Step 1 – how random extensions are generated – is purposefully

vague; in the next sections we will explore this step in more detail.

Throughout we let PC denote the transition matrix of this Markov chain. That is, by

PC(σ, τ) we mean the probability, if at 3-coloring σ, of going to τ in one step. We note that

the probability of proposing a given move in R′ is 1/|R′| · 1/3, where |R′| is the number of
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Algorithm 4 Markov ChainMC on grid region R with mixed boundary conditions
Starting at any initial 3-coloring χ0 of R, repeat:

1: Choose, uniformly at random, an extension of coloring χi of R to a coloring χ′i of
larger region R′.

2: Choose, uniformly at random, a cell a of R′ that does not have a fixed color; a color
c ∈ {0, 1, 2}; and a probability p ∈ (0, 1).

3: if χ′i(a) 6= c and no neighbors of a have color c in χ′i then
4: recolor a with color c.
5: else if a starts a tower of color c that doesn’t include any fixed cells and whose inter-

section with R has size h ≥ 1 then
6: make this tower move if p < 1/2h.
7: Let χi+1 be the resulting coloring of R.

cells in R′ without fixed colors. We now explore Step 1 of this algorithm, how to generate

and color the random extension R′, in more detail.

4.2.3 Extending One Boundary Segment

Consider any straight line segment ` of the boundary ∂R of R. Some colors along ` may

be fixed, and some may not be. In this section we explore how to randomly extend the

boundary of R past ` to form R′; subsequent sections will deal with extensions near where

two boundary segments of R meet at either a convex or reflex corner.

Throughout, fixed color cells extend to fixed color cells and free color cells extend to

free color cells. It is superfluous to extend fixed color cells, except when they are adjacent

to free color cells, because no moves can ever occur in fixed color regions. For simplicity

we describe extensions for entire segments of ∂R, even though it suffices to only extend

free color cells and any fixed color cells adjacent to them.

Without loss of generality, we suppose ` is vertical and the interior of R lies to its left.

To obtain R′ near `, we extend R to the right three units (See Figure 4.5). For now we

assume this extension does not intersect any other portions of R; exceptions to this will be

discussed later. Given a coloring χ of the cells ofR adjacent to `, we extend it in one of two

ways, each with equal probability, to a coloring χ′ of the extended portion of R′ beyond `

as follows. WithinR, χ′ = χ. Along the right side of `, the colors in the additional columns
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Figure 4.5: (a) A portion ` of the boundary of a region R lined by free boundary cells (with
no fixed colors). (b) To obtain R′ we extend R three units past `. We will fix the colors
adjacent to the boundary of this new region R′. (c) R’s up-up-down (UUD) coloring of
the extended region R′. (d) R’s down-down-up (DDU) coloring of the extended region R′.
Throughout gray cells have fixed color.

will each be a copy of the values of χ in the column C of R adjacent to `, denoted χ(C),

with the values incremented or decremented by 1 (mod 3). With probability 1/2, the colors

of the first column to the right of ` are χ(C) + 1(mod 3), the colors of the second column

are χ(C) + 2(mod 3), and the colors of the third column are χ(C) + 1(mod 3); see Fig-

ure 4.5c. The colors in these columns can be seen as χ(C) incremented, then incremented

again, and then decremented; we will refer to such a configuration as “up-up-down,” or

UUD for short. With the remaining probability 1/2, the columns right of C will have

a “down-down-up” (DDU) configuration, consisting of, left to right, χ(C) − 1(mod 3),

χ(C) − 2(mod 3), and χ(C) − 1(mod 3); see Figure 4.5d. We then treat the colors along

the boundary of this new region R′ as fixed.

We now examine moves that occur in R′ near a boundary segment, and how probabili-
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ties of moves in R′ translate into probabilities of moves when looking only within R. We

focus on moves where each cell whose color is updated is adjacent to at most one boundary

segment, as moves near corners where boundary segments meet will be considered in the

next two sections.

Lemma 4.6. Let σ and τ be 3-colorings of a free or mixed boundary region R where any

reflex cells have fixed colors. Suppose τ can be obtained from σ in one iteration ofMC via

a move that changes cell(s) that touch most one segment of ∂R. Then, PC(σ, τ) = PC(τ, σ).

Proof. We define q := 1/(3|R′|) to be the probability of proposing a move by picking a

location in R′ (without a fixed color) and a desired update color. We briefly note that for

every extension of R, the number |R′| of cells in R′ without a fixed color is the same - all

free boundaries are always extended three units, and the only differences between different

random extensions are the colors used.

To begin, if all cells that change from σ to τ are in the interior of R, then the extensions

chosen play no role in the move and moves occur with exactly the probability they do in the

original fixed boundary tower Markov chain of [79]. That is, if σ and τ differ by a single

interior flip, then

PC(σ, τ) = PC(τ, σ) =
1

3|R′| = q

If σ and τ differ by a single interior tower of height h, then

PC(σ, τ) = PC(τ, σ) =
1

3|R′| ·
1

2h
=

q

2h

For moves from σ to τ that satisfy the hypotheses of the theorem but are not in the

interior of R, because we assume reflex cells have fixed colors and cannot be included in

any move then there are only four cases to consider: flips changing the color of a cell next

to one boundary segment `; towers abutting one boundary segment `; towers abutting two

boundary segments `1 and `2, one at each of its start and end cells; or towers adjacent to

one boundary segment `. Avoiding towers with some intermediate number of cells adjacent
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to a free boundary segment ` is a main reason we require all reflex cells to have fixed colors

throughout this section.

We first consider towers abutting one boundary as a detailed illustrative case, and then

continue to analyze the remaining three cases.

Case 1: Tower abutting one free boundary, height h > 2. Suppose τ can be obtained

from σ via a tower move of height h ≥ 2 that abuts `; see Figure 4.6a which shows a sample

configuration σ and a tower move of height h = 3 that yields τ (shown in Figure 4.6b). We

will calculate the probability of such a tower move transforming σ into τ in one iteration of

MC , as well as the probability of the reverse tower move transforming τ into σ. Without

loss of generality, let the tower’s leftmost cell (x1, y) be its start cell, where σ(x1, y) = 0

and τ(x1, y) = 1, and suppose the tower’s colors increase (mod 3) from left to right (all

other cases can be obtained by permuting the colors or permuting σ and τ in all arguments

below). Let (x2, y) denote the tower cell abutting `, (x2 + 1, y) its right neighbor (in the

random extension) and (x2 + 2, y) the cell two units to its right. Let c2 be the color of cell

(x2, y); in Figure 4.6, c2 = 2.

From coloring σ, the transitions ofMC yielding coloring τ are tower moves that begin

at (x1, y) with start color c = 1 and p < 1/2h; in one coloring of the extension beyond

` the tower ends at ` and in the other it continues to (x2 + 2, y) (see the top row of Fig-

ure 4.6c). Due to the nature of our extensions, all tower moves beginning in the interior

of R always terminate before the fixed boundary of R′ and thus do not contain one of R′’s

fixed boundary cells. Even though this tower has a different height in R′ depending on

what the coloring of the extension is, both towers’ intersection with R is the same height,

h. We see that

PC(σ, τ) =
1

|R′| ·
1

3
· 1

2h
=

q

2h
.

From τ , there are two tower transitions yielding σ, each occurring when the extension

is up-up-down (UUD) but with different starting points; when the extension is down-down-

up (DDU), cell (x2, y) has two neighbors of each color distinct from its own and cannot be
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Figure 4.6: Colorings (a) σ and (b) τ differ by a tower of height 3 (grey) abutting boundary
segment `. (c) The indicated tower moves for the random colorings of the extended region
R′ transition between σ and τ .

part of any tower (see the bottom row of Figure 4.6c). Specifically, the transitions ofMC

yielding σ correspond to choosing cell (x2, y) and color c2, or choosing cell (x2 + 1, y)

and color c2 + 1(mod 3). Both of these towers have the same height h within R, which is

also the same height of the towers used to go from σ to τ . To transform τ into σ, we must

choose the correct coloring of the extension beyond `, choose the correct starting point and

color for one of the two towers, and have p < 1/2h:

PC(τ, σ) =
1

2
· 2

3|R′| ·
1

2h
=

q

2h
.

We conclude that PC(σ, τ) = PC(τ, σ) = q/2h when σ and τ differ by a tower abutting
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one boundary segment `.

Case 2: Tower abutting two boundaries, height h > 2. If a tower abuts two boundaries,

one at each end, then the configuration at each end of the tower is as described in Case 1.

There are four possible extensions to consider, two for the boundary at each end of the

tower. Suppose in σ the tower’s start cell is adjacent to a boundary `1. Then, just as in

Case 1 for τ , across the two extensions for `1 there are two possible choices of a start cell

and a start color that would begin this tower move; it will be a valid tower move whose

intersection with R is height h no matter the extension of `2, the boundary adjacent to the

tower’s end cell; and the move will occur with probability 1/2h. Thus, we get

PC(σ, τ) =
1

2
· 2

3|R′| ·
1

2h
=

q

2h
.

Similarly, in τ this tower’s start cell will be adjacent to `2; across the two extension for `2

there are two possible start cell, start color pairs that can initiate the tower move; the tower

move is valid for any extension of `1 and always has the same height within R; and each

move will occur with probability 1/2h. That is,

PC(τ, σ) =
1

2
· 2

3|R′| ·
1

2h
=

q

2h
.

We conclude that PC(σ, τ) = PC(τ, σ) = q/2h for any towers abutting two boundaries.

Case 3: Free boundary flip. Consider two 3-colorings σ and τ ofR, differing at a single

location (x, y) in R adjacent to `. Without loss of generality, suppose σ(x, y) = 1 and

τ(x, y) = 2; all other cases can be obtained by permuting the colors in all arguments

below. Note this implies all three neighbors within R of location (x, y) have color 0; see

Figure 4.7.

We first consider moves that transform σ into τ . When the extension for σ is up-up-

down, cell (x, y)’s neighboring location (x + 1, y) outside of R is given color 2. Picking

cell (m − 1, y) and color 2 then begins a right-going tower whose intersection with R is
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Figure 4.7: Colorings (a) σ and (b) τ differ at a single cell (grey) next to a boundary
segment `. (c) The indicated tower moves (dark gray, and indicated by arrows) and flip
moves (indicated by circles) for the random colorings of the extended region R′ transition
between σ and τ .

of height 1, so this tower move occurs and produces τ with probability 1/2. When the

extension for σ is down-down-up, picking cell (x, y) and color 2 initiates a valid flip move

that results in τ . In this DDU case there is also an additional tower move with start color 1

beginning in R′ at (x + 1, y) that ends at (x, y) and changes σ into τ ; because this tower’s

intersection with R is height 1, this tower move occurs with probability 1/2 if selected. We

see that:

Pc(σ, τ) =
1

2
· 1

3|R′| ·
(

1

2
+ 1 +

1

2

)
= q.

Similarly, there exist three moves that can transform τ to σ: In τ ’s DDU extension, a

tower beginning at (x, y) with start color 1 that happens with probability 1/2; in τ ’s UUD
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extension, a tower beginning at (x + 1, y) with start color 2 that occurs with probability

1/2; and again in τ ’s UUD extension, a flip move at (x, y) to color 1. We see that

Pc(τ, σ) =
1

2
· 1

3|R′| ·
(

1

2
+

1

2
+ 1

)
= q.

We conclude that PC(σ, τ) = PC(τ, σ) = q.

Case 4: Tower adjacent to the free boundary, height h > 2. Lastly, consider two 3-colorings σ

and τ of R, differing by a tower of height h > 1 for which every cell is next to a boundary

segment `. In one extension, this tower will be a valid tower move; in the other, it will not.

Without loss of generality, suppose this tower stretches down from (x, y) to (x, y− h+ 1),

with σ(x, y) = 0, τ(x, y) = 1, σ(x, y + h− 1) = c1 and τ(x, y + h− 1) = c1 + 1(mod 3).

See Figure 4.8, where this tower is of height 3 and c1 = 2.

From σ, the only move that produces τ requires picking the correct extension of `, the

correct start location and color of the tower, and p < 1/2h:

PC(σ, τ) =
1

2
· 1

3|R′| ·
1

2h
=

q

4h
.

Similarly, from τ , the only move that produces σ requires picking the correct extension of

`, the correct start location and color of the tower, and p < 1/2h:

PC(τ, σ) =
1

2
· 1

3|R′| ·
1

2h
=

q

4h
.

We conclude that PC(σ, τ) = PC(τ, σ) = q/4h.

Let σ and τ be 3-colorings of a free or mixed boundary region R where any reflex cells

have fixed colors. Suppose τ can be obtained from σ in one iteration ofMC via a move

that changes .

This completes our case analysis, proving that whenever σ and τ differ by a move that

changes cell(s) that touch most one segment of ∂R, then PC(σ, τ) = PC(τ, σ).

92



1
1

2
1

0

0
0

1 0

0

2
2
2

2 1

2

1
0

21
2
1

0
0

0
2

2 0

0
1

2

2

11

0
0...

...

...

...

...

...

...

...



(a) Configuration σ

1
1

2
1

0

0
0

1 0

0

2
2
2

2 2

2

1
0

10
2
1

0

0
2

2 0

0
1

2

2

11

1
0...

...

...

...

...

...
...

0

...

(b) Configuration τ
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Figure 4.8: Colorings (a) σ and (b) τ differ by a tower of height 3 (grey) adjacent to
a boundary segment `. (c) The indicated tower moves for the random colorings of the
extended region R′ transition between σ and τ .

This result will be critical to showing thatMC converges to the uniform distribution,

the distribution we’d like to be able to generate samples from.

4.2.4 Where Two Boundary Segments Meet: Convex Corner

While the previous subsection describes how to extend region R beyond a single free

boundary, in this section we begin to consider the relationships between extensions of dif-

ferent sides of R. In particular, we’ll choose the extension of each side of R independently:

the random extension chosen for one boundary segment of R will have no effect on the

random extension chosen for a different boundary of R.

Care must be taken with regards to compatibility of random extensions of different

93



1
1
1

1
1

0

0
0

0 0

0

2
2
2

2 2

2

2
0

01
1
1

1
0

0

0
2

2 2

00

2

2
1

2

2

11
1

1
0 0

2
0
1
0
1

0
2
0
1
0
1

1

1

1
2

2

0

2 2

2 2
2 2

22
2

2

2

2
222

0 0
0

0

0

0

0

0

00
0
00

00
0

0
0

0
0
0

0
0
0

0 2

1
1

1

1
11

11

1

11

11
1

1

1

1

11

(a)

1
1
1

1
1

0

0
0

0 0

0

2
2
2

2 2

2

2
0

01
1
1

1
0

0

0
2

2 2

00

2

2
1

2

2

11
1

1
0 0

2
0
1
0
1

0
2
0
1
0
1

1

1

1
2

2

0

2 2

2 2
2 2

22
2

2

2

2
222

0 0
0

0

0

0

0

0

00
0
00

00
0

0
0

0
0
0

0
0
0

0 2

0

1
1 1

1
1

1
11

11

1

11

11
1

1

1

1

11

2

2 0

0
1

1

1
1

0

0 0

0
0
21

1

1
1
1

1
11

1

1

0

0
0

0

0

0
0
0
0

(b)

Figure 4.9: (a) A free boundary 3-coloring and the sides of one of its 16 extensions: the
top and right sides are extended UUD, while the left and bottom sides are extended DDU.
(b) The corners of the extension R′ and the deterministic colors given to them based on the
random extension chosen.

boundary segments of R. In the next section we discuss what to do when the random

extensions of different sides of R overlap, as they would, for instance, when two boundary

segments meet at a reflex corner. Here, we focus on what occurs when two boundary

segments meet at a convex corner, with each having been extended independently and

uniformly either UUD or DDU. At each convex corner we also include in R′ the nine cells

between the extensions of the two sides that meet at the corner (so thatR′ also has a convex

corner). Given coloring χ′ on the sides of the extension, the coloring within this corner is

completed deterministically. If the two sides meeting at a corner have opposite UUD and

DDU configurations, four colors within the corner are uniquely determined because χ′ must

be a valid 3-coloring. In other cases, the cell in this corner of R′ that is closest to R should

be given the unique color different from the color in R’s convex corner cell that still yields

a valid 3-coloring. In both cases, the remaining colors in the corners will not affect any

Markov chain moves intersectingR, so can be completed arbitrarily; we choose to complete

them canonically by repeatedly giving each cell with at least two colored neighbors the

lowest admissible color. See Figure 4.9 for one example of how the four convex corners of
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the extension R′ of a free boundary rectangle R are colored.

We now examine moves that occur inR′ near a convex corner, and how the probabilities

of these moves in R′ translate into probabilities of moves when looking only within R. As

above, the following lemma will be critical in showing thatMC converges to the uniform

distribution.

Lemma 4.7. Let σ and τ be 3-colorings of a free or mixed boundary region R where any

reflex cells have fixed colors. Suppose τ can be obtained from σ in one iteration ofMC via

a move that changes a convex corner cell. Then PC(σ, τ) = PC(τ, σ).

Proof. For such moves from σ to τ that change the color of a cell at a convex corner where

boundaries `1 and `2 meet, there are three cases to consider: Flips of the corner cell; tower

moves that include one convex corner cell; and tower moves that include two convex corner

cells, one at each end.

Case 1: Corner flip. Suppose τ can be obtained from σ by flipping the color of a cell at

a convex corner of R. Without loss of generality, suppose the boundary segments that meet

at this corner are above and right of this corner cell (x, y); σ(x, y) = 0; and τ(x, y) = 1.

Adjacent cells (x−1, x) left of (x, y) and (x, y−1) below (x, y) necessarily have color 2 in

both tilings. There are four possible random extensions in the neighborhood of this corner

cell (x, y), given by the particular extensions chosen (independently) for each of the two

free boundaries that meet at (x, y). Across these four random extensions, there are 5 valid

moves that transform σ into τ , four towers whose intersection with R is of height 1 and one

flip move; see Figure 4.10. Each occurs only if the correct of the four possible extensions,

the correct start location, and the correct start color are chosen and, in the case of the tower

moves, if p < 1/2. This means

PC(σ, τ) =
1

4
· 1

3|R′| ·
(

1 + 4 · 1

2

)
=

3

4
q.

It is simple to see, by permuting colors in the argument above, that there exist the same
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Figure 4.10: (a) A region R with a coloring σ that has a convex corner and the region R′

we extend to near this convex corner. The four possible colorings of this extension in the
neighborhood of this corner are shown in (b,c,d,e). Moves changing σ into τ , which is the
same as σ except for its corner color, are shown in dark gray; tower moves are indicated by
arrows, and flips are circled.

number and types of moves transforming τ into σ. We conclude that PC(σ, τ) = PC(τ, σ) =

3q/4.

Case 2: Tower including one convex corner cell. Suppose σ and τ differ by a tower of

height h ≥ 2 that contains a convex corner of R. Because reflex cells have fixed colors and

cannot be in any tower move, this tower is adjacent to one of the two boundary segments

that meet at the convex corner and abuts the other. Without loss of generality, suppose this

tower stretches in the vertical direction from location (x, y − h+ 1) up to corner location

(x, y), the colors of the tower cells increase from bottom to top (mod 3), σ(x, y) = 1,

τ(x, y) = 2, σ(x, y + h − 1) = c1 and τ(h − 1, 0) = c1 + 1(mod 3). See Figures 4.11

and 4.12, where h = 3 and c1 = 0. Across the four possible random extensions at the

corner, there are two moves for σ that yield τ , and both are towers whose intersection with

R is height 3. The same is true for moves for τ yielding σ. Any such move requires picking

the correct extension, the correct start location, the correct start color, and p < 1/2h. We
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Figure 4.11: (a) A region R with a coloring σ that has a tower move including a convex
corner of R, and the region R′ we extend to near this convex corner. The four possible
colorings of this extension in the neighborhood of this corner are shown in (b,c,d,e). Moves
changing σ into τ (Figure 4.12a) are shown in dark gray and indicated by arrows.

see that

PC(σ, τ) = PC(τ, σ) = 2 · 1

4
· 1

3|R′| ·
1

2h
=

q

4h
.

Case 3: Tower including two convex corner cells. We first note that it must be the case

that the tower stretches the entire length of some boundary segment `1 of ∂R, meaning

the start and end of the tower are the convex corner cells and every cell of the tower is

adjacent to `1; this is because all reflex cells have fixed colors and cannot be in any valid

tower move. Without loss of generality, we suppose this tower stretches vertically in σ

from start cell (x, y) up to end cell (x, y+h−1). Furthermore, suppose the colors increase

(modulo 3) from bottom to top, with σ(x, y) = 0, τ(x, y) = 1, σ(x, y + h − 1) = c1 and

τ(x, y+h− 1) = c1 + 1(mod 3). Just as in the previous case, for one extension of `1 tower

moves from σ to τ are possible, and in the other extension of `1 they are not. Across the

two possible random extensions of each of the two other boundaries touching this tower at
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Figure 4.12: (a) A region R with a coloring τ that has a tower move including a convex
corner of R, and the region R′ we extend to near this convex corner. The four possible
colorings of this extension in the neighborhood of this corner are shown in (b,c,d,e). Moves
changing τ into σ (Figure 4.11a) are shown in dark gray and indicated by arrows.

its two ends, there are four moves for σ that yield τ , and all are towers whose intersection

with R is height h; the moves locally near each end of the tower are just as in Figures 4.11

and 4.12. The same is true for moves for τ yielding σ. Any such moves require picking

the correct extension for each of the three boundaries touching this tower, the correct start

location, the correct start color, and p < 1/2h. We see that

PC(σ, τ) = PC(τ, σ) = 4 · 1

8
· 1

3|R′| ·
1

2h
=

q

4h
.

This concludes our proof that when σ and τ differ by a move that changes the color of

a convex corner cell, PC(σ, τ) = PC(τ, σ) = q/4h.

This concludes our exploration of random extensions near convex corners, and we now

move on to our final consideration: random extensions near reflex corners.
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4.2.5 Where Two Boundary Segments Meet: Reflex Corner

When two boundary segments ofR, in particular boundary segments with free colors, meet

at a reflex vertex, the extensions of both of these segments will overlap. It is unclear how

one might resolve or otherwise consistently merge the extensions of both segments. We

deal with this by considering combinatorial extensions, rather than planar extensions, and

our requirement that every reflex cell has a fixed color plays a crucial role.

For a boundary segment ending at a reflex corner, we include the (fixed color) reflex

cell as part of the boundary when making the extension. Extending this fixed reflex cell

gives a fixed boundary on the side of the extension, ensuring the larger region R′ is indeed

a fixed boundary region. Extending reflex cells does cause overlaps with other cells of R,

however.

In the case of reflex corners, our extended region R′, while locally planar, will not

have a global embedding into the plane. When extensions of different boundary segments

overlap, they are simply considered as different layers and they do not interact. We fix

reflex cells, whose neighborhood could be made locally-nonplanar by such overlapping

extensions, to ensure that the neighborhood of any cell without a fixed color is locally

planar. See Figure 4.13, which shows how two free boundaries, which meet at a fixed color

reflex cell, are independently extended in this way; these extensions overlap, meaning R′

is not planar, but locally near every free color cell planarity is preserved.

This combinatorial approach conceptually enables random extensions near (fixed color)

reflex corners, but would be challenging to actually implement due to its non-planarity.

However, in proving reversibility for flips and tower moves near free boundaries (Lem-

mas 4.6 and 4.7), we’ve already calculated the probabilities of all possible moves when

restricting our view to the original region R; see the first two columns of Table 4.1. Using

these probabilities, we can rewriteMC in a simpler way: instead of generating random ex-

tensions in each iteration, we make moves within R with the probabilities with which these

moves would occur if we did generate random extensions. This is given as Algorithm 5.
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Figure 4.13: (a) Two boundary segments of R meeting a a reflex corner, where the reflex
cell (dark grey) has fixed color 0. (b) The extension of the vertical boundary segment,
which includes extending the reflex cell. (c) The extension of the horizontal boundary
segment, which includes extending the reflex cell. The extensions in (b) and (c) overlap,
but are locally planar in the neighborhood of any free color cells.

Algorithm 5 Markov ChainMC on grid region R with mixed boundary conditions
Starting at any initial 3-coloring χ0 of R, repeat:

1: Choose, uniformly at random, a cell a of R that does not have a fixed color, a color
c ∈ {0, 1, 2}, and a value p ∈ (0, 1).

2: if χi(a) 6= c and no neighbors of a have color c in χi then
3: if a is a convex corner of R then
4: Recolor a with color c with probability 3/4.
5: else Recolor a with color c with probability 1.
6: else if a starts a tower with start color c, height h ≥ 2, and no fixed color cells then
7: if All cells of the tower are adjacent to a common boundary segment of R then
8: Make the tower move if p < 1/4h.
9: else Make the tower move if p < 1/2h.

When looking at the changes made to the 3-coloring of R in each iteration, this algo-

rithm varies fromMC as stated in Algorithm 4 only in the probability of proposing a move:

now we pick a cell of R with probability 1/|R| instead of 1/|R′|, where |R| is the number

of cells in R without a fixed color. This has no effect on the asymptotic behavior of the

chain, and in fact speeds it up. Additionally, Algorithm 5 doesn’t need to generate random

extensions in each iteration, providing even more computational savings. It is important

to emphasize that while we’ve simplifiedMC into a Markov chain that makes updates to

colors only within R, without considering random extensions at all, it was our approach

of random extensions that allowed us to derive and verify the probabilities with which the

moves of Algorithm 5 should be made. Furthermore, it was our insights into randomized
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Type of move Prob. inMC Prob. in M̃[61]

Interior flip q s

Boundary flip q s

Corner flip 3q
4

3s
4

Interior tower, height h > 1 q
2h

s
2h

Tower abutting one boundary, height h > 1 q
2h

s
2h

Tower abutting two boundaries, height h > 1 q
2h

s
2h

Tower adjacent to one boundary, height h > 1 q
4h

s
4h

Tower including one corner cell, height h > 1 q
4h

s
4h

Tower including two corner cells, height h > 1 q
4h

s
4h

Table 4.1: Types of moves for regions with some free boundaries, and the probability with
which they occur inMC and, specifically for rectangular regions, in M̃ from [61]. Here
q = 1

3|R′| and s = 1
12mn

.

extensions that allowed us to realize sampling from mixed boundary regions was possible,

determine what the conditions on non-convex regions must be to allow such sampling to

be efficient, and decide the probabilities of different types of moves. Despite this, it is

the formulation of MC given in Algorithm 5 that we will use throughout the rest of this

section.

When specifically considering free boundary rectangles, Algorithm 5 is identical to

Algorithm M̃ of [61], up to the probability of proposing a move (that is, of picking a cell

and a color); see the third column of 4.1. In M̃, in an m× n rectangle a move is proposed

with probability 1/(12mn); in Algorithm 5, that probability would be 1/(3mn).1

4.2.6 Properties of Markov ChainMC .

Now that we have defined Markov chainMC , we can discuss its properties.

1Algorithm M̃ of [61] has a stationary probability of 3/4 in each iteration for technical reasons, to ensure
that all eigenvalues of the transition matrix are at least 1/2, which is helpful when applying the comparison
technique [43] to obtain mixing results for Glauber dynamics.
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Lemma 4.8. Markov chainMC is aperiodic.

Proof. Each state σ has stationary probability PC(σ, σ) ≥ 1/3; whenever the color c picked

is the same as the color of the cell selected, no move occurs.

Unlike most Markov chains considered in this thesis,MC may not be irreducible, and

for many regions R with mixed boundary conditions it is not. However, wheneverMC is

not irreducible, we will still be able to study its behavior on each piece of its state space. We

now characterize on which state spacesMC is irreducible by appealing to height functions

of tilings (Section 4.1.5).

Lemma 4.9. Let Ω be the set of all 3-colorings of some grid regionR with mixed boundary

conditions where at least one cell has a fixed color and all reflex cells have a fixed color.

Pick any fixed boundary cell a, and for each configuration σ ∈ Ω, define hσ(·) to be the

unique height function for σ that has hσ(a) = i. Let Ω be a maximal subset of Ω such that

for all fixed boundary cells b, hσ(b) is constant for all σ ∈ Ω. Then,M is ergodic on Ω.

Proof. It is straightforward to show, using a standard height function argument, that if σ

and τ are both in some Ω ⊆ Ω, meaning for all fixed boundary cells b that hσ(b) = hτ (b),

then there exists a sequence of flip moves that transforms σ into τ and vice versa. Because

this is the same approach that has already been used to show irreducibility of Markov

chains on fixed and free boundary 3-colorings in both [79] and [61], we do not reproduce

the details here. It is precisely the fact that every 3-coloring in Ω has the same height values

at all fixed boundary locations that enables this proof to go through; flip moves and tower

moves are insufficient to change the height of fixed color cells.

Because flip moves are a subset of the moves ofMC , this is enough to showMC is ir-

reducible on Ω. BecauseMC is aperiodic (Lemma 4.8), it is also ergodic on Ω, completing

the proof.

This lemma addresses all of our regions of interest except those without any fixed color

cells. Because we assume that any reflex cells have fixed colors, the only remaining case is
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free boundary regions without any reflex cells, which are precisely free boundary rectan-

gles, as considered in [61]. Their work gives us the following result.

Lemma 4.10 ([61]). Let Ω be the set of all 3-colorings of some grid rectangle R with free

boundary conditions. ThenMC is ergodic on Ω.

Proof. Our chainMC and tower Markov chain M̃ of [61] are identical up to the probability

of proposing a move. Because M̃ is ergodic, so isMC .

For mixed boundary conditions, in the special case where all σ ∈ Ω map to height

functions hσ that are constant on all fixed boundary cells (where Ω = Ω), recall that these

mixed boundary conditions are height consistent. We note that height consistency can

depend on the values of the fixed boundary cells; the example in Figure 4.4b is not height

consistent, but if one of its fixed cells had a different value it would be.

Corollary 4.11. Markov chainMC on a grid regionR with height-consistent mixed bound-

ary conditions and all reflex cells fixed is ergodic.

Proof. This follows immediately from Lemma 4.9 when R has at least one fixed cell, be-

cause in this case Ω = Ω. When no boundary cells have fixed colors, the region is vacuously

height-consistent and must be a rectangle, and ergodicity follows from Lemma 4.10.

Lemma 4.12. IfMC on a mixed boundary grid regionR with all reflex cells fixed is ergodic

on some state space Ω ⊆ Ω, then it converges to the uniform distribution over Ω.

Proof. BecauseMC is ergodic and finite, it converges to a unique stationary distribution.

By Lemmas 4.6 and 4.7, for any σ, τ in Ω that differ by a single move – a flip or a tower,

interior or touching boundary segment(s) – we have that PC(σ, τ) = PC(τ, σ). No other

types of moves exist, other than those considered in these two lemmas, because reflex cells

have fixed colors and so cannot be part of any move. We can then verify that the uniform

distribution over Ω isMC’s stationary distribution using detailed balance:

π(σ)P (σ, τ) =
1

|Ω|P (σ, τ) =
1

|Ω|P (τ, σ) = π(τ)P (τ, σ).
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Corollary 4.13. Markov chainMC on a mixed boundary grid region R with height con-

sistent boundary conditions and all reflex cells fixed converges to the uniform distribution

over Ω.

Proof. MC is ergodic on Ω by Corollary 4.11, so this follows immediately from Lemma 4.12.

4.2.7 Mixing Time of Markov ChainMC .

Our final consideration for MC is its convergence time. Because of our randomized ex-

tensions approach, a path coupling argument showing fast mixing comes almost for free:

for a tower Markov chain on fixed boundary 3-colorings, previous work has already shown

that if two configurations differ by a single cell then in expectation they get no farther apart

after one iteration [79]. R′ is a fixed boundary region, and after generating the random

extension we are almost exactly making a move of the fixed boundary tower-based chain

on R′. Based on this, one might expect that two configurations differing at a single location

in expectation get no farther apart in each random extension, and thus get no farther apart

overall in one iteration ofMC . Two small considerations must be taken into effect: tower

moves in R′ are made with probability 1/2h, where h is the size of the tower’s intersection

with R, not its overall height; and when two configurations differ at a boundary cell, this

difference permeates into the random extension as well, meaning the colorings of R′ no

longer differ only at a single cell.

However, despite these concerns, we are able to adapt the path coupling argument

of [79] to prove that MC is rapidly mixing whenever it is ergodic. A full proof of fast

mixing for MC as stated in Algorithm 4, via path coupling across all possible random

extensions, can be found in [25]. Here, for the sake of simplicity and clarity, we prove

fast mixing for the essentially equivalent statement of MC as Algorithm 5, which only
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looks within R. This approach was also used by [61] to show rapid mixing of their tower-

based Markov chain on free boundary 3-colorings, and instead of proving fast mixing from

scratch we use some of their intermediate results.

We use a path coupling argument (Theorem 2.4) to show that wheneverMC is ergodic,

it is rapidly mixing. Consider a joint process (A,B) on Ω×Ω, where each of A and B is a

copy of Markov chainMC . Let At and Bt, respectively, be their marginal distributions at

iteration t. We couple by making the same choice of cell a ∈ R, color c ∈ {0, 1, 2}, and

probability p ∈ (0, 1) for both A and B in Step 1 in each iteration of Algorithm 5.

We define the distance Φ between two 3-colorings of R to be the minimum number of

flips needed to transform one 3-coloring into the other. Our goal is to show, over time, that

At and Bt get closer together in expectation according to metric Φ. Because we use the

path coupling approach, we only have to consider the change in Φ after one iteration for At

and Bt differing at exactly one cell.

In the next two lemmas, we consider this case where At and Bt differ by a single flip,

and we analyze the change in distance ∆Φt := Φ(At+1, Bt+1) − Φ(At, Bt). Because of

the wayMC can be simply stated in Algorithm 5, we are able to leverage previous work

in [61] to prove our results without significant additional effort.

Lemma 4.14. If marginal 3-colorings At and Bt differ by a single flip, then E[∆Φt] ≤ 0.

Proof. Marginal 3-colorings At and Bt must differ by an interior flip, a boundary flip, or a

convex corner flip; because of the assumptions that we make about regionR (Section 4.1.3),

these are the only possible cases.

Coalescence of a coupling of a tower Markov chain where the marginal 3-colorings

differ by interior flips was analyzed in [79]; inMC , all moves coalescing two chains dif-

fering by a single flip occur with the same probabilities as in [79] (up to the probability of

proposing a move), but moves moving the two marginal chains farther apart may happen

with less probability, for instance if a tower near the interior flip is adjacent to a boundary

or includes fixed cells. We conclude that for interior flips, E[∆Φt] ≤ 0.
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Coalescence of a coupling where the marginal 3-colorings differ by boundary and cor-

ner flips was analyzed in [61] for a tower Markov chain on free boundary rectangles, which

uses the same probabilities that we’ve derived (up to the probability of proposing a move).

Even though we consider a much larger class of regions, locally any flip next to a free

boundary looks the same regardless of whether we’re considering a free boundary rectan-

gle or some other mixed boundary region, up to the presence of fixed color cells. However,

the presence of fixed color cells does not decrease the probability that two chains differing

by a boundary or corner flip coalesce, it only potentially decreases the probability that the

two chains move farther apart. We thus conclude, based on the work of [61], that in this

case as well E[∆Φt] ≤ 0.

As previously mentioned, a proof of this result by appealing directly to randomized

extensions can be found in [25]; we reuse previous work here for the sake of simplicity,

clarity, and length.

Lemma 4.15. For marginal 3-colorings At and Bt, it holds that

P(∆Φt 6= 0) ≥ 1

6|R|2 .

Proof. We must prove this lemma for all possible At and Bt, not just those differing by a

flip move, because, unlike expected changes in distance, variances cannot be added along

paths. Since a proof of this fact would be nearly identical to that of the same result in [61],

we do not include the detailed case analysis. Following the exact argument in Section 6.2

of [61] and using the fact that the length of any tower is at most |R| gives the bound in the

lemma.

Using the above lemmas, we now show that wheneverMC is ergodic, it mixes in polyno-

mial time.

Theorem 4.16. If Markov chainMC on a mixed boundary region R where all reflex cells

have fixed colors is ergodic on a state space Ω ⊆ Ω, it mixes over this state space in
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polynomial time, at mostO(|R|6) where |R| is the number of cells inR without fixed colors.

Proof. We apply the path coupling theorem (Theorem 2.4) using the same distance func-

tion Φ as above: for two configurations σ and τ , Φ(σ, τ) is the minimum number of flips

necessary to transform σ into τ .

To verify the hypotheses of Theorem 2.4, we first note that metric Φ takes on integer

values in [0, |R|2] (Lemmas 4.4 and 4.5). Metric Φ also satisfies the stated path condition:

for U the set of all pairs of colorings differing by a single flip, the distance between any

two configurations is exactly the shortest path distance between them along edges in U .

If At and Bt differ on a single flip, then by Lemma 4.14 we have E[∆Φt|At, Bt] ≤ 0.

Furthermore, by Lemma 4.15, we see that P(∆Φt 6= 0) ≥ 1/6|R|2. By Theorem 2.4,

where S = |R|2 and α = 1/6|R|2, we conclude that the mixing time ofMC satisfies

tmix(ε) ≤
⌈
eS2

α

⌉
dlog(ε−1)e ≤ O

(
|R|6 log(ε−1)

)
.

Theorem 4.17. Markov chainMC , on a region R that has height-consistent mixed bound-

ary conditions and all reflex cells fixed, mixes in polynomial time at most O(|R|6).

Proof. By Corollary 4.11,MC is ergodic on the state space Ω of all valid 3-colorings of R

subject to its height consistent mixed boundary constraints. Applying Theorem 4.16 then

completes the proof.

Corollary 4.18. If Glauber dynamics on a mixed boundary region R where all reflex cells

have fixed colors is ergodic on a state space Ω ⊆ Ω, it mixes over this state space in

polynomial time.

Proof. This follows directly from the comparison argument in [97] and is very similar to

the comparison argument given for free-boundary 3-colorings in [61].
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It is also possible to use MC to sample from L-shaped regions with free boundary

conditions. This is the first such sampling result for any non-rectangular region with free

boundary conditions.

Corollary 4.19. Let consider grid region R with exactly one reflex cell and free boundary

conditions. It is possible, in polynomial time, to generate a uniformly random sample for

R.

Proof. Uniformly at random fix the color of the cell at the reflex corner ofR; in a uniformly

random 3-coloring of R, this cell is equally likely to be any of the three colors. Now, R is

a region with height-consistent mixed boundary conditions where all reflex cells are fixed,

and by Theorem 4.17 we can useMC to generate a random sample from R in polynomial

time.

The above results only allow efficient sampling when any mixed boundary conditions

are height consistent, which is a restrictive and slightly unnatural set. In the next subsection

we appeal to the dichotomy between approximate sampling and approximate counting,

which will enable us to push past this barrier.

4.2.8 Self-reducibility and Approximate Counting withMC .

We have thus far focused only on sampling. Seminal work of Jerrum, Valiant and Vazi-

rani [71] shows how efficient algorithms for sampling can be used to construct efficient

algorithms to approximately count, provided the underlying problem is self-reducible. Al-

gorithms that require regions to have a specific shape, such as a rectangle in Z2, typically

fail to be self-reducible. The reduction requires incrementally fixing parts of a configura-

tion and sampling from the remainder subject to these constraints. For 3-colorings, this

means incrementally fixing cells to have their most likely color and sampling from nearly

rectangular regions where the colors of some of the boundary cells have been fixed. Fig-

ure 4.14 gives a typical step of the reduction from sampling to approximate counting. Our
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Figure 4.14: (a) An intermediate step of the reduction between sampling and approximate
counting, where the colors of some cells of a free boundary rectangle have been fixed.
(b) The resulting mixed boundary region we sample from in one step in the approximate
counting process.

mixed boundary Markov chains allow us to sample from exactly those regions that appear

in the reduction from sampling to counting. Any reflex corners on the boundary will be

fixed, and all fixed boundary cells will be contiguous. This means Theorem 4.16 applies

andMC can be used to sample from such regions, and we can use such samples iteratively

to approximately count.

This approach based on random extensions yields the first efficient algorithm for ap-

proximately counting 3-colorings on rectangles with free boundaries. This is possible

precisely because sampling from the set of height-consistent mixed boundary regions is

exactly what is needed for self-reducibility. In fact, we can approximately count the num-

ber of 3-colorings of any grid region with height consistent mixed boundary constraints and

all reflex cells fixed.

4.2.9 Using Approximate Counts to Sample from More Regions.

Because sampling from height-consistent mixed boundary regions enables approximate

counting, it is possible to use this approximate counting algorithm as a subroutine to get

an efficient sampling process for a much larger class of mixed boundary and free bound-

ary regions. For non-height consistent mixed-boundary regions, the only barrier to efficient

sampling is that the state space isn’t connected;MC still converges to the uniform distribu-
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tion and mixes rapidly on each component of Ω. Counting enables us to know the relative

sizes of the components of Ω, and thus known the probability at uniformity of being in a

particular component. To generate a uniform sample over Ω, we can pick a component of

Ω with probability proportional to its size, and then generate a uniform sample within that

component.

This gives an efficient sampling algorithm whenever the number of components in Ω

is polynomial. For example, this includes any regions with a constant number of fixed

boundary components, or a logarithmic number of fixed boundary components that can be

joined by constant-length paths. For free boundary regions with multiple reflex corners,

as long as there are at most a polynomial number of ways to set the relative heights at the

reflex corners, the same approach enables efficient sampling.

It is clear that, while being able to sample from height-consistent mixed boundary con-

ditions is only a modest improvement over previous work, it includes exactly the cases

necessary to enable much broader sampling algorithms via approximate counting.

4.3 Lozenge Tilings

As was the case for 3-colorings, sampling lozenge tilings on the triangular lattice has been

known to be possible for fixed boundary regions [79], but techniques do not extend to sam-

pling for free boundaries. A lozenge tiling is a covering of a region of the triangular lattice

with rhombus shaped lozenges, each covering exactly two adjacent triangles, so that ev-

ery triangle is covered by a unique lozenge (it is dual to perfect matchings on hexagonal

lattice regions). This 2-dimensional tiling problem has received a lot of attention because

of its remarkable properties: each lozenge tiling seems to jump out of the page to form a

3-dimensional structure comprised of supported boxes, and indeed this “height function”

has allowed many deep mathematical discoveries, most notably the “Arctic circle theo-

rem” [31].

Luby et al. [79] showed a tower chain mixes in polynomial time for lozenge tilings in
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Figure 4.15: (a) A free boundary lozenge tiling of a triangular region E, and (b - c) the two
possible random extensions for its top-right side.

any simply connected region with fixed boundary conditions, where lozenges are required

to remain entirely within the region. The comparison argument of Randall and Tetali [97]

again shows Glauber dynamics also converge quickly. There has also been some interest

in the free boundary case, where lozenges may overlap the boundary arbitrarily (see Fig-

ure 4.15a). This was studied by Martin and Randall [82] using a correspondence between

tilings and non-intersecting lattice paths, dynamic programming, and an approach based on

determinants. Their results include an algorithm for approximately counting the number of

lozenge tilings of hexagonal regions with free boundaries, but their method does not seem

to generalize to other regions so we cannot, for instance, use self-reducibility to construct

an algorithm for efficient sampling.

Just as for 3-colorings, we can define randomized extensions for lozenge tilings; the ran-

dom extensions for one side of a free boundary lozenge tilings are shown in Figures 4.15b

and 4.15c, and one completed random extension is shown in Figure 4.16. Using these

randomized extensions we can efficiently sample from a larger class of free and mixed

boundary lozenge tilings than was previously possible. This new class includes precisely

those mixed boundary conditions we need for self-reducibility, which we can use to approx-

imately count the free boundary lozenge tilings of triangular regions. In turn, this ability

to approximately count certain lozenge tilings can be used to sample from even more re-

gions, as above. More details about lozenge tilings were omitted due to length but can be
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Figure 4.16: A random extension, including all sides and completed corners, of a free
boundary lozenge tiling of an equilateral triangle E.

found in [25]. Such results about lozenge tilings provide evidence that this technique of

randomized extensions is not limited to the specific case of grid 3-colorings but is in fact

more generally applicable.
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CHAPTER 5

MARKOV CHAIN ALGORITHMS FOR PROGRAMMABLE MATTER

In this section we consider algorithmic foundations for programmable matter, a material

or substance that utilizes user input or stimuli from its environment to change its physical

properties in a programmable fashion. We are motivated by a desire to better understand

the capabilities and limitations of such systems, where simple components collectively

self-organize to solve system-wide problems in a decentralized way. Towards this goal,

rather than focusing on specific instances of programmable matter, we instead consider an

abstraction, self-organizing particle systems, that captures many features common across

different active programmable matter systems. This abstraction allows rigorous exploration

of general algorithmic capabilities and limitations free from the particular nuances and

constraints of certain instantiations.

In this chapter, we present a new method to using Markov chains to develop robust

distributed algorithms for self-organizing particle systems. By harnessing the interplay

between local moves and emergent behavior of Markov chains, we can achieve a variety

of desired objectives, including compression, described in Sections 5.3-5.5, and shortcut

bridging, described in Sections 5.6-5.8.

5.1 The Stochastic Approach to Self-Organizing Particle Systems

In a self-organizing particle system, a collection of simple computational elements (to be

referred to as particles) with limited computational power each perform fully distributed,

local, asynchronous algorithms to solve system-wide problems such as movement, config-

uration, and coordination. We focus on the geometric amoebot model [39], where particles

occupy the vertices and move along the edges of the infinite triangular grid graph Γ. We

are interested in what these simple particles can collectively accomplish without any cen-
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tralized control.

In [21], we initiated the stochastic approach to developing programmable matter algo-

rithms. By harnessing our knowledge of the relationship between local moves of Markov

chains and their emergent behavior, we can accomplish remarkable objectives with dis-

tributed algorithms. The motivation underlying the use of Markov chains to accomplish

objectives in programmable matter comes from statistical physics, where ensembles of

particles represent physical systems and demonstrate that local micro-behavior can induce

global macro-scale changes to the system [7, 12, 100]. Like a spring relaxing, physical

systems favor configurations that minimize energy. Each configuration σ has energy de-

termined by a Hamiltonian H(σ) and weight w(σ) = e−B·H(σ)/Z, where B = 1/T is

inverse temperature and Z =
∑

τ e
−B·H(τ) is the normalizing constant known as the parti-

tion function. Markov chains have been well-studied as a tool for sampling configurations

of these systems proportional to their energy function w(σ), where the configurations with

the lowest values of H(σ) are most likely to be sampled.

In the stochastic approach to programmable matter, we introduce a Hamiltonian H(σ)

over particle configurations σ that assigns the lowest values to desirable configurations; we

then design a Markov chain algorithm to favor these configurations with small Hamilto-

nians. For example, in Sections 5.3 to 5.5, we consider the compression problem, where

desirable configurations have short perimeter. In this case, we use we use as a Hamiltonian

H(σ) = p(σ), the perimeter of σ. Given a Hamiltonian capturing our desired objective,

and setting λ = eB, we get w(σ) = λ−H(σ), where w(σ) is the relative likelihood of

configuration σ in the stationary distribution of our Markov chain. As λ gets larger (by in-

creasing B, effectively lowering temperature), we increasingly favor configurations where

H(σ) is small.

By harnessing our knowledge of how the probabilities of local moves induce global

emergent behavior, we can design a Markov chainM that uses only local moves and even-

tually reaches a distribution that favors configurations proportional to their weight w(σ),
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so particle configurations with smaller H(σ), which have our desired property, are more

likely. Rather than terminating the process at some point and using the configuration at

that time step as a random sample, we instead run the Markov chain indefinitely, moving

among different configurations but remaining at the stationary distribution ofM, which for

the applications we consider we prove meets our desired objectives with high probability.

In each iterationM changes the position of one particle by at most one unit, and only

local information is used to decide with what probability to make each such move. Because

of these careful considerations in the design of our Markov chainM, it can be implemented

in a distributed fashion by a particle system without centralized control, yielding a fully

distributed, local, asynchronous algorithm, as desired. Because the distributed algorithms

we develop for particle systems come from carefully-designed Markov chains, they have

several nice features:

• we can use the many Markov chain analysis tools available to us to provide guaran-

tees about their behavior;

• they are the first algorithms for self-organizing particle systems to be robust to a

variety of types of particle failures; and

• the time-independence of Markov chains guarantees near-obliviousness, with parti-

cles only having to remember one bit of persistent memory over time.

The latter two features are particularly important for developing distributed algorithms that

are implementable in real world settings, where failures are common and maintaining per-

sistent memory is difficult [56].

We begin by formalizing the model we consider, and then present our Markov chain

algorithms and their associated distributed implementations for two biologically-inspired

problems: compression and shortcut bridging.
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Figure 5.1: (a) A section of the triangular lattice Γ; (b) expanded particles (each denoted
by its two occupied adjacent locations in Γ and a thick line in between) and contracted par-
ticles (occupying one location); (c) two non-neighboring contracted particles with different
offsets for their labels of the lattice edges leading to neighboring locations.

5.2 Background on Self-Organizing Particle Systems

We begin by describing our model, the geometric amoebot model for programmable matter

and define some properties of particle systems.

5.2.1 The Geometric Amoebot Model

The Geometric Amobeot Model, inspired by the behavior of amoeba, was first proposed in

2014 [39] to model interacting computational particles, and has since served as the under-

lying model for a number of papers on algorithmic foundations of self-organizing particle

systems and programmable matter. This includes work on problems such as shape forma-

tion [38], object coating [36, 41], and leader election [35].

In the amoebot model, programmable matter consists of particles whose properties we

now detail. An infinite undirected graph G = (V,E) represents the set of relative locations

that the particles can occupy (given by V ) and the set of all possible atomic transitions

between locations in V (given by E). We further assume the geometric variant of the

amoebot model, which imposes an underlying geometric structure G = Γ, where Γ is the

triangular lattice shown in Figure 5.1a (also called the infinite regular triangular grid graph,

and denoted by Geqt in earlier work).

Each particle occupies either a single location (i.e., it is contracted) or a pair of two
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adjacent locations on the graph (i.e., it is expanded); Figure 5.1b illustrates expanded and

contracted particles on Γ. Each location can be occupied by at most one particle (that

is, the particles follow an exclusion process). Particles achieve movement via a series of

expansions and contractions: a contracted particle may expand into an adjacent unoccupied

location to become expanded, and completes its movement by contracting to once again

occupy only one location.

Two particles occupying adjacent nodes are said to be neighbors. Particles are anony-

mous, but can uniquely identify each one of their possible neighboring locations and check

which of those neighboring locations are occupied by particles. We assume particles have

a common chirality, meaning they share the same notion of clockwise direction, allowing

them to label their neighboring locations in clockwise order.1 However, particles do not

share a global orientation and thus may have different offsets for their labels of neighbor-

ing locations (Figure 5.1c).

Every particle has a constant-size, shared, local memory which both it and its neigh-

bors can read from and write to for communication. Because of the limitation on memory

size, particles can know neither the total size of the system nor an estimate of it. Particles

execute a sequence of atomic actions, in each of which they do some local computation

(in our case, this may involve checking which of its adjacent locations are occupied with

particles) and an expansion or contraction. We assume a fully asynchronous system, where

particles perform atomic actions concurrently and at different, possibly variable speeds;

conflicts, which in our context arise when two particles attempt to expand into the same

location, are resolved in an arbitrary manner. In order to analyze such systems, we use the

standard asynchronous model from distributed computing (see, e.g., [80]), allowing us to

evaluate the progress of the system through a sequential series of individual particle acti-

vations, where every time a particle is activated, it performs an atomic action. A classical

1Formally, particles assign labels to the lattice edges leaving the location(s) they occupy, meaning an
expanded particle assigns two labels to the each of the two locations adjacent to both its head and its tail. We
do not require this level of detail in the results we present here.
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result under this model states that for any concurrent asynchronous execution of atomic

actions, there is a sequential ordering of actions producing the same end result, provided

conflicts that arise in the concurrent execution are resolved. Thus, while in reality many

particles may be active concurrently, it suffices when analyzing our algorithms to consider

a sequence of activations where only one particle is active at a time.

5.2.2 Terminology for Particle Systems

We introduce notation and terminology that will be used throughout this paper. We call the

collection of locations in Γ that are occupied by particles an arrangement; note two arrange-

ments are the same even if different particles occupy the locations within the arrangement.

We can define an equivalence relation on arrangements, where two arrangements are equiv-

alent if one is a translation of the other. We define a configuration to be an equivalence class

of arrangements. If configuration σ is a rotation of configuration τ , we still consider σ and

τ to be distinct configurations. That is, for the purpose of monitoring the particle system

we maintain a global orientation of the particles, even though each individual particle has

no sense of global orientation.

We will let capital letters refer to particles and lower case letters refer to locations on

the triangular lattice Γ, e.g., “particle P at location `.” For a particle P , we use N(P )

to denote the set of particles adjacent to P , where by adjacent we mean connected by a

lattice edge. Similarly, for a location `, let N(`) denote the set of particles adjacent to `,

excluding any particle at location `. For a particle P , we will use n(P ) to denote the six

locations in the neighborhood of P , excluding the location P occupies; for a location `,

n(`) similarly denotes the six locations adjacent to `, excluding ` itself. For locations `

and `′, by N(` ∪ `′) we mean (N(`) ∪ N(`′)) \ {`, `′}; the same holds for n(` ∪ `′). In

an abuse of notation, we occasionally write N(·) \ {`}, which removes a location from a

set that only contains particles; as one might expect, this notation refers to removing any

particle that is at location ` from the set of particles N(·).
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By an edge of a configuration σ we mean an edge of Γ such that both incident vertices

are occupied by particles. Similarly, by a triangle of σ we mean a triangular face of Γ with

all three vertices occupied by particles. We denote the number of edges of σ is e(σ) and the

number of triangles by t(σ) Throughout, by a path or a cycle we mean a path or cycle in the

underlying graph Γ where all vertices are occupied by particles, and in the case of a cycle,

at least one location inside the cycle is unoccupied. Two particles are connected if there

exists a path between them, and a configuration is connected if all pairs of particles are.

A hole in a configuration is a maximal finite component of adjacent unoccupied locations.

A configuration has a hole if and only if it has a cycle. We define the perimeter p(σ) of a

particle configuration σ to be the sum of the lengths of the walks along all portions of its

boundary, including the boundaries of holes.

In general, the configurations we consider are those with all particles contracted. These

will be the states of our Markov chain, and in Section 5.4.2 we extensively discuss how to

implement our Markov chain for compression in an asynchronous distributed way where

particle expansions and contractions may not be consecutive. In particular, when calculat-

ing the perimeter of a particle configuration we will ignore any heads of expanded particles

and only consider the locations occupied by their tails and by contracted particles. This is

for technical reasons that will become clear later.

We specifically focus on connected particle configurations. Because the particles we

consider can only communicate with immediate neighbors, if a particle configuration is

separated into multiple components there is no way for those components to communicate,

interact, or find each other in any reliable way. Furthermore, our current proof techniques

require hole-free configurations. Our algorithm doesn’t allow new holes to form, and if it

begins at a connected configuration with holes we guarantee existing holes will be elimi-

nated.
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5.2.3 Related Work: Particle Exclusion Processes

As opposed to earlier work in the amoebot model, we use randomization to determine

particle movements. When we couple a particle’s expansion and contraction steps into one

move, the resulting random dynamics are an example of a particle exclusion process, where

some fixed number of particles on a graph move among vertices, never occupying the same

vertex at the same time. There has been a significant body of work analyzing Markov chains

that are particle exclusion processes. In fact, the widely-used Comparison Theorem for

bounding the mixing time of Markov chains (Theorem 2.6) was first presented in a paper in

which it was used to analyze the mixing time of an unbiased exclusion process [43]. There

are also close connections between exclusion processes and card shuffling (e.g., [9], and

between exclusion processes and statistical physics models (e.g. [111]).

Our setting of the geometric amoebot model requires us to diverge from many common

assumptions made about exclusion processes. In order to accomplish desired objectives, the

probabilities of particle moves are not fixed ahead of time but are calculated anew in each

iteration based on the configuration in the neighborhood of the move. Our random particle

dynamics are also constrained to ensure the particle configuration remains connected. This

is necessary because the amoebot model limits communication to immediate neighbors,

and furthermore on infinite graphs like the one we consider typical exclusion processes

will simply result in the diffusion of particles away from each other. These divergences

from previous work on exclusion processes are necessary to accomplish our objectives and

to be able to translate our Markov chains processes into useful distributed algorithms.

5.3 Compression: Overview, Problem Definition, and Preliminaries

We now focus on the compression problem, in which the particle system gathers as tightly

together as possible. This phenomenon is often found in natural systems from fire ants [89]

to honeybees [19]. While each individual ant or bee cannot view the group as a whole when
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soliciting information, it can take cues from its immediate neighbors to achieve coopera-

tion. It is with this motivation that we present a distributed algorithm for compression in

the amoebot model of programmable matter.

Specifically, the compression problem seeks to reorganize the configuration of a particle

system (via movements of particles) such that the system converges to a configuration with

small perimeter. We say a particle system is α-compressed, for α > 1, if the perimeter

of the particle configuration is at most α times the minimum possible perimeter for those

particles.

We present a Markov chainM for particle compression under the geometric amoebot

model that can be directly translated into a fully distributed, local, asynchronous compres-

sion algorithmA, executed by each particle independently without any centralized control.

Both A andM take as input a bias parameter λ (where λ > 1 favors smaller perimeter)

and start from an arbitrary initial configuration for the particles that is connected. In our

amoebot model, we assign each configuration σ a Hamiltonian H(σ) = p(σ), the perime-

ter of the particle configuration; M is designed to converge to a distribution that favors

small Hamiltonians, proportional to e−BH(σ) = λ−p(σ). As λ gets larger (by increasing B,

effectively lowering temperature), we favor configurations with smaller perimeter, causing

increasingly compressed configurations.

Markov chainM is carefully designed according to the distributed and local nature of

the system, so that the particles always stay connected and holes are eliminated and don’t

reform. Furthermore, we proveM is reversible and ergodic, meaning many of the standard

tools of Markov chain analysis can be applied. While most of these proofs rely only on

first principles, we emphasize they are far from trivial; working in a distributed setting

necessitates carefully defined protocols for local moves that make proofs challenging.

When the particles execute the local moves ofM (by each runningA) for long enough,

the configuration of the particles converges to the stationary distribution ofM. We prove

for all large enough λ there is a constant α = α(λ) > 1 such that at stationarity, with all but
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exponentially small probability, the particles are α-compressed, meaning the perimeter of

the particle configuration is at most α times the minimum perimeter (which is Θ(
√
n) for

systems of n particles). We additionally show the counterintuitive result that λ > 1 is not

enough to guarantee compression, even though when λ > 1 configurations with smaller

perimeters have more weight. In fact, for all 0 < λ < 2.17, there is a constant β < 1 such

that at stationarity with all but exponentially small probability the perimeter is at least a β

fraction of the maximum perimeter, which is Θ(n) for systems of n particles. We call such

a configuration β-expanded. This implies that for any 0 < λ < 2.17, the probability that

the particles are α-compressed is exponentially small for any constant α.

The key tool used to establish compression is a careful Peierls argument, used in sta-

tistical physics to study non-uniqueness of limiting Gibbs measures and to determine the

presence of phase transitions (see, e.g., [49]), and in computer science to establish slow

mixing of Markov chains (see, e.g., [14]).

5.3.1 Related Work

Our work on compression was originally inspired in part by the Ising model of statistical

physics [66], which has been widely studied. In this model, all vertices of some graph

are assigned a positive or negative spin, and a temperature parameter governs how likely

it is for neighboring particles to have the same spin. For certain temperatures, we see

clustering, where large regions of the graph have the same spin. In our model, the graph

we consider is the infinite triangular lattice Γ, we can view locations occupied by particles

as having positive spin, unoccupied locations as having negative spin, and our parameter

λ, correlated with inverse temperature, governs the likelihood of adjacent positive spins

(adjacent particles). Solving the compression problem for particles corresponds to forming

a cluster of positive spins in the Ising model with fixed magnetization, where the total

number of vertices with each spin does not change. Our work diverges from the fixed

magnetization Ising model by requiring that particles only move to adjacent locations and

122



the particle configuration remains connected, constraints not typically considered for Ising

models but necessary for distributed implementations in self-organizing particle systems.

In distributed computing, the rendezvous (or gathering) problem seeks to gather mobile

agents together on some node of a graph (see, e.g., [5] and the references within). In

comparison, our particles follow the exclusion principle, and hence would not be able to

gather at a single node, and are computationally simpler than the mobile agents considered.

Nature offers a variety of examples in which gathering and cooperative behavior are

apparent. For example, social insects often exhibit compression-like characteristics in

their collective behavior: fire ants form floating rafts [89], cockroach larvae perform self-

organizing aggregation [68, 101], and honey bees choose hive locations based on a decen-

tralized process of swarming and recruitment [19].

Lastly, in [38, 42], algorithms for hexagon shape formation in the amoebot model were

presented. Although a hexagon satisfies our definition of compression, the Markov chain-

based algorithm we present takes a fully decentralized and local approach. This is naturally

self-stabilizing, forgoing the need for a seed particle that may coordinate or initiate some

underlying organization of the set of particles, as required in [38] and even more critically

in [42].

5.3.2 Formalizing Compression: Perimeter and Edges

Our objective is to find a solution to the particle compression problem. There are many

ways to formalize what it means for a particle system to be compressed. For example,

one could try to minimize the diameter of the system, maximize the number of edges, or

maximize the number of triangles. We choose to define compression in terms of minimizing

the perimeter. We prove that for connected configurations with no holes (the states we

eventually reach), minimizing perimeter, maximizing the number of edges, and maximizing

the number of triangles are all equivalent and are stronger notions of compression than

minimizing the diameter.
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Recall we define the perimeter p(σ) of a connected particle configuration σ to be the

sum of the lengths of the walks along all portions of its boundary, including the boundaries

of holes. Furthermore, we ignore the heads of any expanded particles when calculating

perimeter; this constraint and the reasons for it are discussed in Section 5.4.2. In an abuse of

notation, we use the term perimeter to refer both to the total length p(σ) of these walks and

the walks themselves. By outer perimeter we mean the unique portion of the perimeter that

encloses all particles. If a configuration has no holes, then the perimeter and outer perimeter

are the same. We assume any walkW along the outer perimeter of a configuration is in the

clockwise direction. Note an edge may appear twice in a perimeter walkW; in this case,

its length is counted twice in p(σ).

For a connected configuration of n particles, the perimeter ranges from a maximum

value of 2n−2 when the particles are in their least compressed state (a tree with no induced

triangles) to some minimum value pmin(n) = Θ(
√
n) when the particles are in their most

compressed state. It is easy to see pmin(n) ≤ 4
√
n, and we now prove any configuration σ

of n particles has p(σ) ≥ √n; this bound is not tight but suffices for our proofs.

Lemma 5.1. A connected configuration with n ≥ 2 particles has perimeter at least
√
n.

Proof. We argue by induction on n. A connected particle system with two particles nec-

essarily has perimeter 2 ≥
√

2, as claimed. Let σ be any particle configuration with n

particles where n > 2, and suppose the lemma holds for all configurations with less than n

particles.

First, suppose there is a particle Q ∈ σ not incident to any triangles of σ. This implies

Q has one, two, or three neighbors, none of which are adjacent. If Q has one neighbor, re-

movingQ from σ yields a configuration σ′ with n−1 particles and, by induction, perimeter

at least
√
n− 1. Thus

p(σ) = p(σ′) + 2 ≥
√
n− 1 + 2 ≥ √n.
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If Q has two neighbors, removing Q from σ produces two connected particle configura-

tions σ1 and σ2, where σ1 has n1 particles, σ2 has n2 particles, and n1 + n2 = n − 1.

Thus,

p(σ) ≥ √n1 +
√
n2 + 4 >

√
n− 1 + 4 >

√
n.

Similarly, if Q has three neighbors its removal produces three particle configurations with

n1, n2, and n3 particles, where n1 + n2 + n3 = n− 1, and we conclude

p(σ) ≥ √n1 +
√
n2 +

√
n3 + 6 >

√
n− 1 + 6 >

√
n.

Now, suppose every particle in σ is incident to some triangle of σ, implying there are

at least dn/3e triangles in σ. An equilateral triangle with side length 1 has area
√

3/4,

so the perimeter of σ encloses an area of at least A = dn/3e
√

3/4 ≥
√

3n/12. By the

isoperimetric inequality, the minimum perimeter way of enclosing this area, without regard

to lattice constraints, is with a circle of radius r and perimeter p, where

r =

√
A

π
=

√
n
√

3

12π
, p = 2πr =

√
πn√

3
>
√
n.

As the perimeter of σ also encloses an area of at least
√

3n/12, it is of length at least
√
n.

When n is clear from context we omit it and refer to pmin = pmin(n) and pmax = pmax(n).

We now define what it means for a particle system to be compressed.

Definition 5.2. For any α > 1, a connected configuration σ with no holes is α-compressed

if p(σ) ≤ α · pmin.

We prove in Section 5.5.2 that our algorithm, when executed for a sufficiently long time,

achieves α-compression with all but exponentially small probability for any constant

α > 1, provided n is sufficiently large. We note α-compression implies the diameter of
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the particle system is also O(
√
n), so our definition of α-compression is stronger than

defining compression in terms of diameter.

In order to minimize perimeter using only simple local moves, we exploit the following

relationship. Because we will show that our algorithm eventually reaches, and remains, in

the set of particle configurations with no holes, our statement and proof only consider that

case.

Lemma 5.3. For a connected particle configuration σ with no holes, e(σ) = 3n−p(σ)−3.

Proof. We count particle-edge incidences, of which there are 2e(σ). Counting another

way, every particle has six incident edges, except for those on the perimeter. Consider any

traversalW of the perimeter; at each particle, the exterior angle is 120, 180, 240, 300, or

360 degrees. These correspond to the particle “missing” 1, 2, 3, 4, or 5 of its possible six

incident edges, or degree/60 − 1 missing edges. If W visits the same particle multiple

times, we count the appropriate exterior angle, and the corresponding missing edges, each

timeW visits. From a well-known result about simple polygons with p(σ) sides, the sum

of exterior angles along W is 180p(σ) + 360 degrees. Summing up the ‘missing’ edges

across all particles on the boundary of σ, we see that there are

(180p(σ) + 360)/60− p(σ) = 2p(σ) + 6

total missing edges. This implies there are 6n− 2p(σ)− 6 total particle-edges incidences,

so 2e(σ) = 6n− 2p(σ)− 6.

We briefly note that minimizing perimeter is also equivalent to maximizing triangles.

Lemma 5.4. For a connected particle configuration σ with no holes, t(σ) = 2n−p(σ)−2.

Proof. The proof is nearly identical to that of Lemma 5.3, counting particle-triangle in-

cidences instead, of which there are 3t(σ). Counting another way, every particle has six

incident triangles, except for those on the perimeter. Consider any traversal W of the

126



perimeter; at each particle, the exterior angle is 120, 180, 240, 300, or 360 degrees. These

correspond to the particle “missing” 2, 3, 4, 5, or 6 of its possible six incident triangles, or

degree/60 missing triangles. IfW visits the same particle multiple times, count the appro-

priate exterior angle at each visit. The sum of exterior angles alongW is 180p(σ) + 360,

so in total particles on the perimeter are missing 3p(σ) + 6 triangles. This implies there are

6n− 3p(σ)− 6 particle-triangle incidences, so 3t(σ) = 6n− 3p(σ)− 6.

The above lemmas give the following corollary.

Corollary 5.5. A connected particle configuration σ with no holes and minimum perimeter

is also a configuration with the maximum number of edges and the maximum number of

triangles.

Because these three notions of compression are equivalent, for simplicity we state our

algorithm in terms of minimizing the number of edges but prove our compression results

in terms of perimeter. When we originally presented these results [21], we stated our

algorithm in terms of triangles, but do not do so here.

5.4 Algorithms for Compression

Our objective is to demonstrate how stochastic algorithms can provably achieve compres-

sion, focusing on self-organizing particle systems on the triangular lattice Γ. Our algorithm

is based on Markov chain principles that will enable us to prove rigorous results about its

behavior. Remarkably, it does not even require the particles to communicate more than

one bit of information to each other, even though the amoebot model allows for such ex-

changes; at any activation, a particle only needs to know which of its neighboring locations

are occupied and which, if any, of those neighbors are expanded.

Our algorithm achieves compression by making a particle more likely to move into a

position where it has more neighbors, that is, where it forms more edges with neighboring

particles. Specifically, a bias parameter λ controls how strongly the particles favor having
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neighbors; λ > 1 corresponds to favoring more neighbors, while λ < 1 corresponds to

disfavoring neighbors. As Lemma 5.3 shows, locally favoring more neighbors is equivalent

to globally favoring a shorter perimeter; this is the relationship we exploit to obtain particle

compression.

5.4.1 The Markov ChainM

We start with two key properties that enable a particle to move from location ` to adjacent

location `′ without disconnecting the particle system or forming a hole. Let S = N(`) ∩

N(`′) be the set of particles adjacent to both ` and `′; note |S| ∈ {0, 1, 2}.

Property 1. |S| ∈ {1, 2} and every particle in N(` ∪ `′) is connected to a particle in S by

a path through N(` ∪ `′).

Property 2. |S| = 0, ` and `′ each have at least one neighbor, all particles in N(`) \ {`′}

are connected by paths within this set, and all particles in N(`′) \ {`} are connected by

paths within this set.

These properties capture precisely the structure required to maintain particle connec-

tivity and prevent new holes from forming. Additionally, both are symmetric for ` and `′,

necessary for reversibility. However, they are not so restrictive as to limit the movement of

particles and prevent compression from occurring. That is, we will see that after a burn-in

phase to eliminate any holes that moves satisfying these properties suffice to transform any

configuration into any other.

We now define our Markov chainM for compression. The state space Ω ofM is the

set of all connected configurations of n contracted particles, and the rules and probabilities

given in AlgorithmM define the transitions between states. Later, in Section 5.4.2, we will

show how to view this Markov chain as a local, distributed, asynchronous algorithm A.

BothM and A take as input a bias parameter λ > 1 and begin at an arbitrary connected

starting configuration σ0 ∈ Ω.
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AlgorithmM: Markov Chain for Compression
Beginning at any connected configuration σ0 of n contracted particles, repeat:

1: Select particle P uniformly at random from among all particles; let ` be its location.
Choose a neighboring location `′ and q ∈ (0, 1) uniformly at random.

2: if `′ is unoccupied then
3: P expands to simultaneously occupy ` and `′.
4: else Return to Step 1.
5: Let e = |N(`)| be the number of neighbors P had when it was contracted at `, and let
e′ = |N(`′)| be the number of neighbors P would have if it contracts to `′.

6: if (1) location ` does not have five neighboring particles, (2) locations ` and `′ satisfy
Property 1 or Property 2, and (3) q < λe

′−e then
7: P contracts to `′.
8: else P contracts back to `.

In Markov chainM, note that a constant number of random bits suffice to generate q,

as only a constant precision is required (given that e′ − e is an integer in [−3, 3] and λ

is a constant). In Step 6, Condition (1) ensures no holes form, Condition (2) ensures the

particle system stays connected andM is reversible, and Condition (3) ensures the particle

moves happen with probabilities such thatM converges to the desired distribution.

5.4.2 The Local Algorithm A

We now present the local, distributed, asynchronous algorithm that each particle runs. Re-

call from Section 5.2.1 that during a single activation of a particle P , P can perform an

arbitrary amount of computation and at most one expansion or contraction. In particular, P

cannot do both an expansion and a contraction in one activation asM does in a single state

transition. Thus, in A, we decouple a single state transition ofM into two (not necessar-

ily consecutive) particle activations and carefully handle the way in which the particle’s

neighborhood may change between its two activations.

Each particle P continuously runs AlgorithmA, executing Steps 1–7 if P is contracted,

and Steps 8–12 if P is expanded. Conditions (1)–(3) in Step 10 of A are the same as those

in Step 6 ofM, considering the set N∗, which treats expanded particles as if they are still

contracted at their tail location, rather than the set N of occupied neighboring locations.
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Algorithm A: Local, Distributed, Asynchronous Algorithm for Compression Run Inde-
pendently by each Particle P

If P is contracted:
1: Let ` denote P ’s current location.
2: Particle P chooses neighboring location `′ uniformly at random from the six possible

choices, and generates a random number q ∈ (0, 1).
3: if `′ is unoccupied and P has no expanded neighboring particle at ` then
4: P expands to simultaneously occupy ` and `′.
5: if there are no expanded particles adjacent to ` or `′ then
6: P sets flag = TRUE in its local memory.
7: else P sets flag = FALSE.

If P is expanded:
8: Let N∗(·) ⊆ N(·) be the set of neighboring particles excluding any heads of expanded

particles.
9: Let e = |N∗(`)| be the number of neighbors P had when it was contracted at `, and let
e′ = |N∗(`′)| be the number of neighbors P would have if it contracts to `′.

10: if (1) e 6= 5, (2) locations ` and `′ satisfy Property 1 or Property 2 with respect toN∗(·),
(3) q < λe

′−e, and (4) flag = TRUE then
11: P contracts to `′.
12: else P contracts back to `.

Note only a constant number of bits are needed to produce q, as λ is a constant and a

particle move changes the number of edges by at most a constant amount. The additional

Condition (4) ensures P is the only particle in its neighborhood potentially moving to a

new position since it last expanded. If condition 4 is satisfied, then any expanded particles

in n(`∪`′) must have expanded after P did; this means they have flag = FALSE and will

contract to their original location in their next activation, justifying our use of N∗ which

ignores heads of adjacent expanded particles.

Any conflicts arising from two particles concurrently attempting to expand into the

same location are assumed to be resolved arbitrarily. Hence, any concurrent movements

will cover pairwise disjoint neighborhoods and the respective actions will be mutually in-

dependent. Following the classical asynchronous model [80], for any starting configuration

σ0 and any concurrent execution of A that reaches an arbitrary configuration σ, there is a

sequence of atomic actions that also reaches σ. So it suffices to consider particle expansions
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and contractions as atomic actions instead of being executed in parallel.

We now formally explore the connection between Markov chain M and distributed

algorithmA, which decouples a single transition ofM into a pair of consecutive expansion

and contraction particle actions. Let P be a particle that eventually moves from location `

to `′ by expanding to occupy both positions at some time t and contracting to `′ at some

time t′ > t according to an execution of A. Since P eventually completes its movement

to `′, there must have been no expanded particles adjacent to ` or `′ at time t (by Step 6 and

Condition (4) of Step 10 inA). Any other particle Q which expands into the neighborhood

of P in the time interval (t, t′) will see that P is expanded and set its flag to FALSE in

Step 7. Recall from Section 5.2.1 that a particle can differentiate between a neighbor’s head

and tail. By ignoring the heads of any such expanded particle Q in Steps 8–10, P can make

decisions as ifQ had never moved whileQ eventually contracts back to its original position

during its next activation. Thus, the neighborhood of P remains effectively undisturbed in

the interval (t, t′), allowing A to faithfully emulateM.

Local algorithm A and Markov chainM are very closely related. First, consider any

sequential execution of atomic actions that leads to configuration σ′ in A, in which some

particles may be expanded and some particles may be contracted. Let configuration σ

be obtained from σ′ by preserving the locations of all contracted particles and consider-

ing every expanded particle to be contracted at its tail (heads of expanded particles are

discounted because they are considered ‘exploratory’). Then there exists a sequence of

transitions inM that reaches σ. The perimeter p(σ′) ignores heads of expanded particles,

and so p(σ) = p(σ′). Conversely, every sequence of transitions inM that reaches a config-

uration σ directly corresponds to a sequence of atomic actions in A also leading to σ′ = σ,

where again p(σ) = p(σ′). This means that proving α-compression for σ also implies α-

compression for σ′, and vice-versa. Hence, we can use M and respective Markov chain

tools and techniques in order to analyze the correctness of algorithm A. In particular, be-

cause we show α-compression forM for all α > 1, this also then implies α-compression
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for A for all α > 1. For this reason, in the subsequent sections, we focus on analyzingM.

We note that, under the assumptions of the asynchronous model of distributed comput-

ing, one cannot typically assume the next particle to be activated is equally likely to be any

particle, as we do in Step 1 ofM. We make this assumption in order to be able to explicitly

calculate the stationary distribution ofM so that we can provide rigorous guarantees about

its structure, but do not expect the behavior of the system would be substantially different

if this requirement was relaxed.

To justify this random activation assumption, we note that random sequences of particle

activations can be approximated using Poisson clocks with mean 1 (the analysis can be

modified to accommodate each clock having its own constant mean; however, for ease of

presentation, we assume here that they are all identically distributed). That is, each particle

activates and executes Algorithm A at a random real time drawn from the exponential

distribution e−t. After each action, the particle then computes another random time drawn

from the same distribution e−t and activates again after that amount of time has elapsed.

The exponential distribution is unique in that, if particle P has just activated, it is equally

likely that any particle will be the next particle to activate, including particle P (see, e.g.,

[55]). Moreover, the particles update without requiring knowledge of any of the other

particles’ clocks. Similar Poisson clocks are commonly used to describe physical systems

that perform updates in parallel in continuous time.

While this shows our Markov chainM can be translated into a fully local, distributed

algorithm with the same behavior, such an implementation is not always possible in general.

Any Markov chain for particle systems that inherently relies on non-local moves of particles

or has transition probabilities relying on non-local information cannot be executed by a

local, distributed algorithm. Moreover, most distributed algorithms for amoebot systems

are not stochastic and thus cannot be meaningfully described as Markov chains; see, e.g.,

the mostly deterministic algorithms in [40, 41].
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5.4.3 Obliviousness and Robustness ofM and A

Our algorithm for compression is the first (nearly) oblivious algorithm for self-organizing

particle systems; that is, whenever a particle is activated, it remembers no information from

past activations and decides what to do based only on its observation of the current envi-

ronment. Obliviousness in mobile robots has been considered in a large number of settings,

and a summary of this work can be found in [57]. In practical settings, oblivious robots

are desirable because they do not require persistent memory and often are self-stabilizing

and fault-tolerant; theoretically, they are of great interest because they are computationally

weak at an individual level but can still collectively accomplish sophisticated goals.

Previous works on self-organizing particle systems under the amoebot model (e.g., [42,

36, 35]) make heavy use of particle memory and communication between particles to

achieve their tasks. In our Markov chain algorithm for compression, however, if we con-

sider an activation of a particle to be an expansion followed by a contraction (as in M),

then our algorithm is oblivious; particles depend only on the current configuration of their

neighborhood to make decisions. Even if an activation of a particle is defined to include

at most one expansion or contraction (as in A and Section 5.2.1), our algorithm is nearly

oblivious; particles need only store the value of their flag variable as one bit of information

between their expansion and subsequent contraction activations. Furthermore, communi-

cation between particles is also limited to at most this one bit: a particle simply needs to

check for flags among neighbors and more complicated message do not need to be relayed.

Moreover, our algorithm for compression is the first for self-organizing particle systems

to meaningfully consider fault-tolerance. A distributed algorithm’s fault-tolerance has to

do with its ability to achieve its goals despite possible crash failures or Byzantine failures.

In a crash failure, an agent abruptly ceases functioning and may never be resuscitated.

These failures are particularly problematic for systems with a single point of failure, as

there is no guarantee the critical agent will remain non-faulty and no guarantee that its

memory and role could be assumed by another agent if it crashes. In a Byzantine failure,
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some fraction of the agents are malicious and execute arbitrary behavior in an effort to stop

the non-faulty portion of the system from achieving its task.

Previous works on self-organizing particle systems have not addressed either type of

possible faults, and many of the proposed algorithms are susceptible to complete failure

if even a single particle crashes. In contrast, if one or more particles were to crash in

our algorithm for compression, they would cease moving and act as fixed points around

which the remaining particles would simply continue to compress. For the more adversarial

setting of Byzantine failures, we speculate that the malicious particles could affect the

overall compression of the system by trying to expand away from where the system is

aggregating; however, if the fraction of malicious particles is small, this will not have

a large effect. Furthermore, since our algorithm is (nearly) oblivious and does not use

particle communication, other than particles checking the flags of neighbors, the malicious

particles are unable to “lie” or otherwise try to corrupt healthy particles’ behaviors.

All of these features – obliviousness, limited communication, and robustness – mark

a significant step in algorithmic foundations for self-organizing particle systems towards

processes that are more practically realizable. Real-world programmable matter systems

are prone to faults, which can be amplified by imperfect communication or memory, and

our algorithm minimizes opportunities for such errors to occur and propagate.

5.4.4 Invariants for Markov ChainM

Now that we have described and discussed algorithm A and shown that it is a distributed

implementation of Markov chainM, we will perform the rest of our analysis directly on

M. We begin by showing thatM maintains certain invariants.

Lemma 5.6. If the particle system is initially connected, during the execution of Markov

chainM it remains connected.

Proof. Consider one iteration ofMwhere a particle P moves from location ` to location `′.

Let σ be the configuration before this move, and σ′ the configuration after. We show if σ is
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connected, then so is σ′.

A move of particle P from ` to `′ occurs only if ` and `′ are adjacent and satisfy Prop-

erty 1 or Property 2. First, suppose they satisfy Property 1. If σ is connected, then for every

particle Q there exists some path P = (P = P1, P2, . . . , Pk = Q) from P to Q in σ. By

Property 1, since P2 ∈ N(`), there exists a path from P2 to a particle S ∈ S that is entirely

contained in N(`). After P moves to location `′, it remains connected to particle Q by a

(not necessarily simple) walk that first travels to S, then travels through N(`) to P2, and

finally follows P to Q. This implies P is connected to all particles from location `′, so σ′

is connected via paths through P .

Next, assume locations ` and `′ satisfy Property 2. LetQ,Q′ 6= P be particles; we show

that if σ is connected, then Q and Q′ must be connected by a path not containing P . If σ is

connected, then Q and Q′ are connected by some path P = (Q = Q1, Q2, . . . , Qk = Q′).

If this path doesn’t contain P we are done, so suppose this path contains P , that is, Qi = P

for some i ∈ {2, . . . k − 1}. Both Qi−1 and Qi+1 are neighbors of `, and by Property 2

all neighbors of ` are connected by a path in N(`). Thus P can be augmented to form a

(not necessarily simple) walk W by replacing P with a path from Qi−1 to Qi+1 in N(`).

As P 6∈ W , this walk connects Q and Q′ in σ′ without going through P , as desired.

Additionally, because `′ has at least one neighbor by Property 2, P remains connected to at

least one particle, and via that particle to all other particles in σ′. Thus σ′ is connected.

Lemma 5.7. Once reaching a connected configuration with no holes, all subsequent con-

figurations of the execution of Markov chainM will remain hole-free.

Proof. Consider one iteration ofMwhere a particle P moves from location ` to location `′.

Let σ be the configuration before this move, and σ′ the configuration after. We show if σ is

hole-free, then so is σ′. Recall we assume, by definition, that a cycle in σ encircles at least

one unoccupied location; a configuration has a hole if and only if it has a cycle. Throughout

this proof, we will argue about the existence of cycles rather than the existence of holes.

We first show that any cycle introduced in σ′ must contain P . Suppose, for the sake
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of contradiction, this is not the case and σ′ has a cycle C with P 6∈ C. If P is removed

from location `′, then cycle C still exists in σ′ \ P . If P is then placed at `, yielding σ,

then C still exists unless it had enclosed exactly one unoccupied location, `. However, this

is not possible as any cycle in σ′ − P encircling ` would also necessarily encircle neigh-

boring unoccupied location `′. This implies cycle C exists in cycle-free configuration σ, a

contradiction. We conclude every cycle in σ′ must contain P .

Because particle P moved from location ` to location `′ in a valid step of Markov chain

M, it must be true (by the conditions checked in Step 6 ofM) that ` has fewer than five

neighbors and locations ` and `′ satisfy Property 1 or Property 2. First, suppose they satisfy

Property 2. While P might momentarily create a cycle when it expands to occupy both

locations ` and `′, it will then contract to location `′. Suppose P is part of some cycle

C = (P = P1, P2, . . . , Pk−1, Pk = P ) in σ′. By Property 2, P2 and Pk−1 are connected by

a path in N(`′) that doesn’t contain P . Replacing path (Pk−1, P, P2) in cycle C by this path

in N(`′) yields a (not necessarily simple) cycle C ′ in σ′ not containing P , a contradiction.

Next, suppose ` and `′ satisfy Property 1. Because particle P moved from ` to `′

in a valid step of M, location ` must at most four neighbors in σ. This means that

in σ′, location ` has at most 5 neighbors – its original neighbors plus P at location `′

– and thus is adjacent to at least one unoccupied location. Suppose there exists some

cycle C = (P = P1, P2, . . . , Pk−1, Pk = P ) in σ′. This cycle encircles at least one occu-

pied location, and in fact it encircles at least one unoccupied location `′′ 6= `: since `

is adjacent to another unoccupied location in σ′, it cannot be the case that ` is the only

unoccupied location inside C. If there exists a path between P2 and Pk−1 in N(`′), the

argument from the first case applies and we are done. Otherwise, without loss of gener-

ality, it must be that |S| = 2 and there exist paths in N(` ∪ `′) from Pk−1 to S1 ∈ S and

from P2 to S2 ∈ S, with S1 6= S2. There then exists a (not necessarily simple) cycle C∗

in σ obtained from C by replacing path (Pk−1, P, P2), where P is in location `′, with path

(Pk−1, . . . , S1, P, S2, . . . , P2), where P is in location `. C∗ is a valid cycle in σ because it
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encircles unoccupied location `′′ 6= `. This is a contradiction because σ has no cycles. We

conclude that, in all cases, σ′ has no cycles, and thus has no holes.

5.4.5 Eventual Ergodicity of Markov chainM

The state space Ω of our Markov chainM is the set of all connected configurations of n

contracted particles, and Lemma 5.6 ensures that we always stay within this state space.

The initial configuration σ0 of M may or may not have holes. By Lemma 5.7, once a

hole-free configuration is reached, M remains in the part of the state space consisting of

all hole-free connected configurations, which we call Ω∗. In this section, we prove that

from any starting stateM always reaches Ω∗. Furthermore, we prove that Ω∗ is connected,

that is, once M reaches Ω∗, M is irreducible on this smaller state space. As M is also

aperiodic, we can conclude it is eventually ergodic on Ω∗, a necessary precondition for all

of the Markov chain analysis to follow.

We emphasize the details of these proofs are far from trivial. However, they have been

substantially simplified and clarified from the originally published conference version of

these results [21], where the proof of ergodicity required over 10 single-spaced pages of

detailed analysis. Figure 5.2 illustrates one difficulty. It depicts a hole-free particle con-

figuration for which there exist no valid moves satisfying Property 1; the only valid moves

satisfy Property 2. Thus if moves satisfying Property 2 are not included, neither Ω nor Ω∗

is connected.

At a high level, we prove that for any configuration σ there exists a sequence of valid

particle moves transforming σ into a straight line. Since a straight line is hole-free, this

shows that from any initial configuration in Ω, there exists a sequence of moves with non-

zero probability reaching Ω∗, as desired. We then prove M is reversible on Ω∗. This

implies that for any τ ∈ Ω∗ there exists a sequence of valid particle moves transforming

a straight line into τ . Altogether, this shows for any σ, τ ∈ Ω∗ there exists a sequence of

valid moves (within Ω∗) transforming σ into τ , as desired.
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Figure 5.2: A particle configuration for which all valid moves of Markov chainM satisfy
Property 2; no particle has a valid move satisfying Property 1. This demonstrates the
subtlety of the Markov chain rules we have defined.

We will let m1 be the vertical lattice line containing the leftmost particle(s) in σ. We

label the subsequent vertical lattice lines asm2,m3,m4, and so on. The process for moving

the particles into one straight line is a sweep line algorithm, an approach often used in com-

putational geometry [58, 105]. We first consider the particles in leftmost vertical line m1,

then the particles in m2, and so on. When considering line mi, we maintain the following

invariants:

Invariants:

1. All particles left of mi form lines stretching down and left.

2. Each such line stretches down and left from a particle inmi that has an empty location

directly below it.

Figure 5.3a gives an example of a particle configuration and a line mi satisfying these in-

variants. In the remainder of this subsection, we describe how to, starting in a configuration

in which the invariants are satisfied for mi, find a sequence of valid particle moves after

which mi+1 satisfies the invariants. For the configuration in Figure 5.3a, the configura-

tion obtained after first ensuring mi+1 satisfies Invariant 1 is shown in Figure 5.3b, and the

configuration after ensuring mi+1 also satisfies Invariant 2 is shown in Figure 5.3c.

Throughout this subsection, a component of line mi will refer to a maximal collection

of particles in mi that are connected via paths in mi. For example, in Figure 5.3a, mi has

four components (from top to bottom: of one, two, three, and one particles, respectively).
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(a)

mi mi+1

(b)

mi+1

(c)

Figure 5.3: (a) An example of a particle configuration and a line mi that satisfies both in-
variants. (b) After a sequence of moves described in Lemma 5.9, mi+1 satisfies Invariant 1.
(c) After a sequence of moves described in Lemma 5.10, mi+1 also satisfies Invariant 2.

We begin with a lemma about particle movements that will play a key role.

Lemma 5.8. Suppose particle P has exactly two neighbors, Q1 below it and Q2 above-

right of it, and let ` be the unoccupied location below-right of P . There exists a sequence

of valid moves, occurring strictly below and right of P , after which either it is now valid

for P to move to ` or some other particle has already moved to `.

Proof. We induct on the number of particles strictly below and right of P . If there are

no such particles, then it is valid (satisfying Property 1) for P to move from its current

location `0 to `. This is because N(`0) ∩ N(`) = {Q1, Q2}, and either these are the only

two particles inN(`0∪`) (Figure 5.4a) or there is exactly one other particle inN(`0∪`) and

it is adjacent to Q2 (Figure 5.4b). Thus the conclusions of the lemma are already satisfied

with an empty set of moves.

Suppose there are k > 0 particles strictly below and right of P , and for all 0 ≤ k′ < k

the lemma holds. If it is already valid for P to move to `, we are done; an example is given

in Figure 5.4c. Otherwise, since P has fewer than five neighbors, it must be that neither

Property 1 nor Property 2 is satisfied. Note S = N(P ) ∩ N(`) contains two particles, Q1

and Q2. Because Property 1 doesn’t hold, and N(P ) doesn’t contain any particles other

than those of S, it must be that there is a particle P ′ in N(`) that is not connected to a

particle in S by a path within N(`). Then P ′ must occupy the location below-right of `,
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Figure 5.4: Particle positions from the base case (top row) and inductive step (bottom row)
of the proof of Lemma 5.8. Particles are represented by black circles, and unoccupied
locations are represented by dashed circles. Neighboring particles have a black line drawn
between them.

and both locations in n(`) ∩ n(P ′) must be unoccupied; see Figure 5.4d. We now consider

N(P ′), which is of size at least one and at most three.

First, we suppose N(P ′) is not connected; see Figure 5.4e. In this case, P ′ must have

exactly two neighbors, one below P ′ and the other above-right of P ′, while location `′

below-right of P ′ is unoccupied. There are fewer than k particles below and right of P ′

because this is a proper subset of the k particles below and right of P . By the induction

hypothesis, we conclude there is a sequence of moves occurring entirely below and right

of P ′ after which either it is valid for P ′ to move to `′ or another particle has moved to `′.

In the first case, we let P ′ move to `′ and afterwards it is valid (satisfying Property 1) for P

to move to `, becauseN(`) now contains onlyQ1 andQ2. In the second case, a particle has

moved to `′ but N(P ′) otherwise remains unchanged, causing N(P ′) to now be connected,

the case we consider next.

Suppose N(P ′), which is of size at least one and at most three, is connected; see Fig-

ure 5.4f. Note the current location of P ′ and location ` satisfy Property 2, so particle P ′

can move to `. As P ′ and ` are below and right of P , this move satisfies the conclusions of

the lemma.
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Figure 5.5: If P is the topmost particle in a component of mi of size at least 2 and its
neighborhood is connected, then (a)–(c) are the three possibilities for N(P ). In all three of
these cases, moving P down-left satisfies Property 1. (d) and (e) show the two cases for
subsequently moving P to a new position such that the invariants still hold for mi.

If mi satisfies the invariants, we want to give a sequence of moves after which mi+1

also satisfies the invariants. The following lemma will be used towards that goal.

Lemma 5.9. If mi satisfies both invariants and has a component of size at least two, there

exists a sequence of valid moves that decreases the number of particles in mi after which

mi still satisfies the invariants.

Proof. Consider any component ofmi of size at least two, and let P be the topmost particle

in this component. P has a particle below it, no particle above it, and by Invariants 1 and 2

has no particle above-left or below-left of it. The two locations right of P may or may not

be occupied. We consider two cases: when N(P ) is connected, and when it is not.

When N(P ) is disconnected, we invoke Lemma 5.8. It must be that P has two neigh-

bors that satisfy the conditions of the lemma, and so there exists a sequence of valid moves

after which either location ` below-right of P is occupied by another particle or it is valid

for P to move to `. All moves in this sequence occur right of P , and thus don’t affect the

invariants for mi. If it is now valid for P to move to `, we make this move and the number

of particles in mi has decreased, as desired. If another particle has moved to `, then N(P )

is now connected, the next case we consider.

When N(P ) is connected, it must look as in Figure 5.5a, 5.5b, or 5.5c. In all cases,

particle P moving down-left is a valid move that decreases the number of particles in mi.
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However, Invariant 1 no longer holds for mi after this move, so we continue to move

particle P down until it is adjacent to the bottom particle Q in this component of particles

in mi. If there is not already a line stretching down and left from Q, then move P down

once more to start such a line (Figure 5.5d), which is valid because of the invariants for mi.

If this line stretching down and left fromQ already exists, we note the locations at distances

one and two above this line must all be unoccupied. This follows from Invariants 1 and 2

for mi: all particles left of mi must extend down and left from the bottom particle of some

component inmi, and the first such particle above Q is at least two units above P ’s original

location and thus at least three units above Q. Thus, it is valid (satisfying Property 1) to

move P along this line and add it to the end (Figure 5.5e). In all cases, the number of

particles in mi decreases while the invariants for mi remain satisfied, as desired.

Lemma 5.9 can be applied iteratively until all components of mi are of size one, and

all particles left of mi form lines stretching down-left from these components of size

one. Thus, all particles left of mi+1 form lines stretching down-left, satisfying Invariant 1

for mi+1. We now consider how to also satisfy Invariant 2 for mi+1.

Lemma 5.10. Ifmi satisfies both invariants andmi+1 satisfies Invariant 1, then there exists

a sequence of valid moves after which mi+1 satisfies both invariants.

Proof. Because our particle configuration is connected, each line left of mi+1 is connected

to some particle inmi+1. However, the line may not stretch down and left from this particle

or this particle may not have an empty location below it, as is required by Invariant 2. Con-

sider any component of mi+1 which is adjacent to at least one line left of mi+1 stretching

down-left. To satisfy Invariant 2, we merge all such lines into one, stretching down-left

from the bottom particle Q in this component. First, we move the lowest line so that it is

stretching down-left from Q. An entire line can be moved down one unit by first moving

the rightmost particle in this line (the particle in line mi) down one unit, and then by subse-

quently moving the remaining particles down one unit from right to left (for an example of
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mi+1

1
2

3

Q

(a)

mi+1

1
2

3 Q

(b)

mi+1

Q

(c)

mi+1

Q

(d)

mi+1

Q

(e)

Figure 5.6: The process of merging two lines stretching down-left from the same compo-
nent of mi+1 in order to satisfy Invariant 2. In (a) and (b), the moves must occur in the
order listed.

this downward movement of a line, see Figure 5.6a). This can be repeated until this lowest

line is in the desired position, stretching down and left from Q.

Iteratively consider the next lowest line. As before, we move this line down one unit

at a time by moving the particles each down once from right to left until the line is flush

with the bottommost line (Figures 5.6a–5.6c). The particles in this line can then easily be

added to the bottommost line one at a time, from left to right, as in Figures 5.6c–5.6e. We

repeat this line merging process until all particles stretching down-left from this component

ofmi have been reorganized into one line stretching down-left fromQ. After repeating this

process for all components in mi+1, Invariant 2 is satisfied for mi+1. Invariant 1 still holds

for mi+1, so mi+1 now satisfies both invariants, as claimed.

We now combine the previous two lemmas to get the main inductive step for our sweep-

line procedure.

Lemma 5.11. If mi satisfies both invariants, then there exists a sequence of valid particle

moves after which mi+1 also satisfies both invariants.

Proof. Suppose mi satisfies both invariants. If there are connected components of two or

more particles contained in mi, we can iteratively apply Lemma 5.9 to reduce the number

of particles in mi without affecting the invariants. After this, all components of mi consist

of one particle. Now all particles left of mi+1 are in lines (possible consisting of just one

particle) stretching down-left, satisfying Invariant 1. Next, we can apply Lemma 5.10 to
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ensure that mi+1 also satisfies Invariant 2, merging any lines stretching down-left from the

same component of mi+1. Thus, there exists a sequence of valid moves after which mi+1

satisfies both invariants, as claimed.

Lemma 5.12. There exists a valid sequence of moves transforming any configuration into

a line.

Proof. Initially,m1 trivially satisfies the invariants because there are no particles left ofm1.

Repeatedly using Lemma 5.11, we obtain a sequence of moves after which the invariants

hold for some line mk to the right of which there are no particles.

We next note that all particles in mk must be in a single component. If this was not the

case, then the configuration would not be connected: particles left of mk only form lines

that are insufficient to connect multiple components of mk, and there are no particles right

of mk. We know that the particle configuration must be connected because we have only

made valid particle moves (Lemma 5.6), so this is a contradiction, and mk must have a

single component.

We repeatedly apply Lemma 5.9 until there is only one particle left in mk and line mk

still satisfies the invariants. At this point the particles form a single line stretching down-left

from the single particle in mk, and we have given a sequence of valid moves transforming

an arbitrary configuration into a line.

In particular, this shows that for any configuration there exists a valid sequence of moves

transforming it into a configuration with no holes.

Lemma 5.13. EventuallyM reaches a configuration with no holes, after which no holes

are ever introduced again.

Proof. Let σ0 ∈ Ω be the initial (connected) particle configuration given as input to Markov

chain M. By Lemma 5.12, there is positive probability that M will reach Ω∗ ⊂ Ω, the

set of hole-free connected particle configurations. Because Lemma 5.12 holds for any

configuration, this is also true of each subsequent state σi. Since Ω is finite, M must
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eventually reach Ω∗, as desired. Finally, by Lemma 5.7, the particle system will remain

hole-free for the remainder ofM’s execution.

We present one more lemma before provingM is irreducible on Ω∗ once it reaches Ω∗.

Recall P (σ, τ) is the probability of moving from state σ to state τ in one step ofM.

Lemma 5.14. OnceM reaches Ω∗, it is reversible on Ω∗. That is, for any two configura-

tions σ, τ ∈ Ω∗, if P (σ, τ) > 0 then P (τ, σ) > 0.

Proof. Let σ, τ ∈ Ω∗ be any two configurations such that P (σ, τ) > 0. Then σ and τ differ

by one particle P that is at location ` in σ and at adjacent location `′ in τ .

Note in τ , particle P at location `′ has at most four neighbors. It cannot have six

neighbors because location `, which was previously occupied by P in σ, is now unoccupied.

It cannot have five neighbors because otherwise `′ would have been a hole in σ when P

was at `, a contradiction to our assumption that σ ∈ Ω∗. Because P (σ, τ) > 0, Property 1

or Property 2 must hold for ` and `′. Both properties are symmetric with regard to the

role played by ` and `′. Thus, if Markov chainM, in state τ , selects particle P , location

` ∈ n(P ), and sufficiently small probability q in Step 1, then because Conditions (1)–(3)

of Step 6 are satisfied, particle P moves to location `. This proves P (τ, σ) > 0.

Lemma 5.15. Once Markov chain M reaches Ω∗, it connects Ω∗, the state space of all

connected configurations without holes.

Proof. Let σ and τ be any two connected configurations of n particles with no holes. By

Lemma 5.12, there exists a sequence of valid moves transforming σ into a line. By Lem-

mas 5.12 and 5.14, there exists a sequence of valid moves transforming this line into τ .

Corollary 5.16. OnceM reaches Ω∗, it is ergodic on Ω∗.

Proof. By Lemma 5.15,M is irreducible on Ω∗. As long as n > 1 then every particle has

at least one neighbor, soM is aperiodic because at each iteration there is a probability of

at least 1/6 that a particle proposes moving into an occupied neighboring location so no

move is made. Thus, onceM reaches Ω∗, it is ergodic on Ω∗.
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We note that M is not irreducible on Ω, and thus not ergodic on Ω, because it is not

possible to get from a hole-free configuration to a configuration with a hole. Ergodicity is

necessary to apply tools from Markov chain analysis, as we do in the next subsection.

5.4.6 The Stationary Distribution π ofM

In this section we determine the stationary distribution ofM.

Lemma 5.17. If π is a stationary distribution ofM, then for any σ ∈ Ω \ Ω∗, π(σ) = 0.

Proof. For any configuration σ ∈ Ω\Ω∗, there is a positive probability of moving into Ω∗ in

some later time step (Lemma 5.13). For any configuration τ ∈ Ω∗, there is zero probability

of reaching a configuration with holes (Lemma 5.7). If a stationary distribution π were to

put any probability mass on states in Ω \ Ω∗, over time the total probability mass within

Ω \ Ω∗ would decrease as it leaks into Ω∗ with no possibility of returning. Thus such

a distribution could not be stationary, a contradiction. We conclude that any stationary

distribution π has π(σ) = 0 for all σ ∈ Ω \ Ω∗, as claimed.

Lemma 5.18. M has a unique stationary distribution π given by

π(σ) =


λe(σ)

Z
σ ∈ Ω∗

0 σ ∈ Ω \ Ω∗

where Z =
∑

σ∈Ω∗ λ
e(σ) is the normalizing constant, also called the partition function.

Proof. Lemma 5.17 guarantees that any stationary distribution of M has π(σ) = 0 for

configuration σ 6∈ Ω∗. OnceM reaches Ω∗ (which it is guaranteed to by Lemma 5.13), it

is ergodic on Ω∗ (Lemma 5.16). We conclude, because Ω∗ is finite, that M on Ω∗ has a

unique stationary distribution, and thusM on Ω also has a unique stationary distribution.

We confirm that π as stated above is this unique stationary distribution by detailed

balance. Let σ and τ be configurations in Ω∗ with σ 6= τ such that P (σ, τ) > 0. By
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Lemma 5.14, also P (τ, σ) > 0. Suppose particle P moves from location ` in σ to neighbor-

ing location `′ in τ . Let e be the number of edges formed by P has when it is in location `,

and let e′ be that number when P is in location `′. This implies e(σ) − e(τ) = e − e′. If

λe
′ ≤ λe, then we see that

P (σ, τ) =
1

n
· 1

6
· λe′−e and P (τ, σ) =

1

n
· 1

6
· 1.

In this case we can verify that σ and τ satisfy the detailed balance condition:

π(σ)P (σ, τ) =
λe(σ)

Z
· λ

e′−e

6n
=

λe(τ)

Z · 6n = π(τ)P (τ, σ).

If λe′ > λe, we can similarly calculate these probabilities to verify detailed balance:

P (σ, τ) =
1

n
· 1

6
· 1 and P (τ, σ) =

1

n
· 1

6
· λe−e′ ,

π(σ)P (σ, τ) =
λe(σ)

Z · 6n =
λe(τ)

Z

λe−e
′

6n
= π(τ)P (τ, σ).

Since the detailed balance condition is satisfied for all σ, τ ∈ Ω∗, it only remains to verify

that π is in fact a probability distribution:

∑
σ∈Ω

π(σ) =
∑
σ∈Ω∗

λe(σ)

Z
+
∑

σ∈Ω\Ω∗
0 =

∑
σ∈Ω∗ λ

e(σ)∑
σ∈Ω∗ λ

e(σ)
= 1.

We conclude π is the unique stationary distribution ofM.

While it is natural to assume maximizing the number of edges in a particle configuration

results in more compression, here we formalize this. We prove π can also be expressed in

terms of perimeter.
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Corollary 5.19. The stationary distribution π ofM is also given by

π(σ) =


λ−p(σ)

Z
σ ∈ Ω∗

0 σ ∈ Ω \ Ω∗

where Z =
∑

σ∈Ω∗ λ
−p(σ) is the normalizing constant, also called the partition function.

Proof. This expression is clearly equal toM’s unique stationary distribution when σ 6∈ Ω∗,

so it only remains to verify the case σ ∈ Ω∗. We use Lemma 5.3 and Lemma 5.18:

π(σ) =
λe(σ)∑

σ∈Ω∗ λ
e(σ)

=
λ3n−p(σ)−3∑

σ∈Ω∗ λ
3n−p(σ)−3

=
λ3n−3

λ3n−3
· λ−p(σ)∑

σ∈Ω∗ λ
−p(σ)

=
λ−p(σ)∑

σ∈Ω∗ λ
−p(σ)

.

The the original publication of these results [21] also expressed the stationary distribu-

tion in terms of the number of triangles in a configuration, where a triangle is a face of Γ

that has all three of its vertices occupied by particles, and t(σ) is the number of triangles in

configuration σ. We include the following corollary for completeness, but will not use it in

subsequent sections.

Corollary 5.20. The stationary distribution π ofM is also given by

π(σ) =


λt(σ)

Z
σ ∈ Ω∗

0 σ ∈ Ω \ Ω∗

where Z =
∑

σ∈Ω∗ λ
t(σ) is the normalizing constant, also called the partition function.

Proof. This follows from Lemma 5.4 and Corollary 5.19:

π(σ) =
λ−p(σ)∑

σ∈Ω∗ λ
−p(σ)

=
λ−(2n−t(σ)−2)∑

σ∈Ω∗ λ
−(2n−t(σ)−2)

=
λ−2n+2

λ−2n+2
· λt(σ)∑

σ∈Ω∗ λ
t(σ)

=
λt(σ)∑

σ∈Ω∗ λ
t(σ)

.

148



5.4.7 Convergence Time of Markov ChainM

We prove in Section 5.5.2 that when λ > 2 +
√

2, if Markov chainM has converged to its

stationary distribution, then with all but exponentially small probability the particle system

will be compressed. However, we do not give explicit bounds on the time required for this

to occur. We give some experimental results for simulation runs beginning at hole-free

configurations in Section 5.5, but believe proving rigorous bounds will be challenging.

A common measure of convergence time of a Markov chain is its mixing time, the num-

ber of iterations until the distribution is within total variation distance ε of the stationary

distribution, starting from the worst initial configuration. Getting a polynomial bound on

the mixing time of M, which achieves compression using local moves in a lattice-based

system, is likely to be challenging because of its similarity to physical systems such as the

Ising and Potts models, common models of ferromagnetism from statistical physics. For

many of these models, Markov chain algorithms that perform local update steps are known

to have exponential mixing time, precisely because of a type of compression or clustering

that occurs (see, e.g., [110]).

However, mixing time most likely is not the correct measure of our algorithm’s conver-

gence. While we prove in later sections that compression occurs afterM has reached its

stationary distribution, we expect (based on simulations and intuition) that compression ac-

tually occurs much earlier. Thus, even if it takes exponential time forM to converge to its

stationary distribution, which is certainly plausible, it may be true that the particles achieve

compression after only a polynomial number of steps. When starting from a line of n par-

ticles, our simulations (presented in the next section) indicate that doubling the number of

particles consistently results in about a ten-fold increase in iterations until compression is

achieved. Based on this, we conjecture the number of iterations until compression occurs

is Ω(n3) and O(n4). Furthermore, we do not expect the presence of holes in the initial

configuration to significantly delay compression, even though this may increase the mixing

time.
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5.5 Achieving Compression and Expansion

In practice, Markov chain M yields good compression. We simulated M for λ = 4

on 100 particles that began in a line; the configurations after 1, 2, 3, 4, and 5 million

iterations of M are shown in Figure 5.7. In contrast, λ = 2, while still favoring having

more particle neighbors, does not yield compression; see Figure 5.8, where even after 20

million iterations ofM, the particles have not compressed. We conjecture there is a phase

transition in λ, i.e., a critical value λc such that for all λ > λc the particles compress and for

all λ < λc they do not compress. Such phase transitions exist for similar statistical physics

models (e.g., [14]).

(a) (b)

(c) (d) (e)

Figure 5.7: 100 particles in a line after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4
million, and (e) 5 million iterations of M with bias λ = 4. Edges have been drawn to
indicate adjacencies between particles.

In this section we prove that these compression and expansion behaviors occur, though

not all the way up to a critical point. Specifically, we show that for all λ > 2 +
√

2, there

is a constant α > 1 such that at stationarity with all but exponentially small probability

the particles are α-compressed, meaning the perimeter of the system configuration is at
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(a) (b)

Figure 5.8: 100 particles in a line after (a) 10 million and (b) 20 million iterations ofM
with bias λ = 2. Edges have been drawn to indicate adjacencies between particles.

most α · pmin, where pmin is the minimum possible perimeter of the particle system. We

additionally prove that the same algorithm can be used for expansion for small values of λ;

in particular, for all 0 < λ < 2.17, there is a constant β < 1 such that at stationarity, with

all but an exponentially small probability, the perimeter will be at least β ·pmax,where pmax

is the maximum possible perimeter. This is counterintuitive because λ > 1 corresponds to

particles favoring having more neighbors, but this is not enough to guarantee compression.

5.5.1 Preliminaries: Counting Particle Configurations by Perimeter

Before we prove our main results, we first present some crucial lemmas focusing on count-

ing the number of particle configurations with a given perimeter. Having good bounds on

these numbers will strengthen our results about compression and expansion.

Let Sα be the set of all hole-free particle configurations with perimeter at least α · pmin
for some constant α > 1, where pmin is the minimum possible perimeter for a configura-

tion of n particles. We only consider hole-free configurations because we are concerned

with behavior at stationarity and the stationary distribution π of M only gives positive

probability to hole-free configurations in Ω∗ (Corollary 5.19). We want an upper bound on

π(Sα) =
∑

σ∈Sα π(σ), the probability of being in a configuration with large perimeter, in
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order to argue that this stationary probability of a configuration having large perimeter is

exponentially small. Let ck denote the number of hole-free configurations with perimeter k

and recall that pmax = 2n− 2 is the maximum possible perimeter for a configuration of n

particles; using the expression for π given in Corollary 5.19, we can write π(Sα) as:

π(Sα) =
∑
σ∈Sα

π(σ) =
∑
σ∈Sα

λ−p(σ)

Z
=

∑pmax
k=dα·pmine ckλ

−k

Z
.

Recall Z was defined in Corollary 5.19 as Z =
∑

σ∈Ω∗ λ
−p(σ). In order to give an upper

bound on π(Sα), we establish an upper bound on ck and a lower bound onZ. The former we

do in Lemma 5.23, and for the latter a trivial bound suffices for compression: Z ≥ λ−pmin .

To give an upper bound on the number ck of hole-free configurations with perimeter k,

we turn to lattice duality and self-avoiding walks; for a more thorough treatment of self-

avoiding walks, see, e.g., [6].

Definition 5.21. A self-avoiding walk (SAW) in a graph is a walk that never visits the same

vertex twice.

Self-avoiding walks are most commonly studied for graphs that are planar lattices, and

we will focus on SAWs in the hexagonal lattice, also called the honeycomb lattice (Fig-

ure 5.9a). Examples of self-avoiding walks and non-self-avoiding walks in this lattice are

shown in Figures 5.9b and 5.9c, respectively. The hexagonal lattice is of interest because it

is dual to the triangular lattice Γ that particles occupy in our model. That is, by creating a

new vertex in every face of the triangular lattice and connecting two of these new vertices if

their corresponding triangular faces have a common edge, we obtain the hexagonal lattice;

see Figure 5.10a.

The number of self-avoiding walks of a certain length from a given fixed starting point

has been extensively studied for many planar lattices. This number is believed to grow

exponentially with the length of the walk, and the base of this exponent is known as the

connective constant of the lattice. More concretely, if Nl is the number of self-avoiding
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(a) (b) (c)

Figure 5.9: (a) The hexagonal lattice. (b) A self-avoiding walk in the hexagonal lattice. (c)
A walk that is not self-avoiding.

(a) (b)

Figure 5.10: (a) The duality between the triangular lattice and the hexagonal lattice. (b) An
example of a particle configuration σ, its corresponding polygon in the hexagonal lattice
(shaded), and the self-avoiding walk bounding that polygon (bold).

walks of length l in some planar lattice L, then the connective constant of that lattice is

defined as µL = liml→∞ (Nl)
1/l. For example, for the square lattice 2.625622 ≤ µsq ≤

2.679193, but an exact value has not been rigorously proved [70, 96]. The only lattice

for which the connective constant is exactly known is our lattice of interest, the hexagonal

lattice.

Theorem 5.22 ([51]). The lth root of the number of self-avoiding walks of length l starting

from a fixed vertex in the hexagonal lattice converges to µhex as l → ∞, where µhex =√
2 +
√

2 is the connective constant of the hexagonal lattice.

This theorem implies that the number of self-avoiding walks of length l in the hexagonal

lattice is f(l) · µlhex, for some subexponential function f .

To bound the number of hole-free particle configurations with some fixed perimeter,

we turn from self-avoiding walks to the closely related notion of self-avoiding polygons,
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where a self-avoiding polygon is a self-avoiding walk that starts and ends at the same

vertex (Figure 5.10b). The number of self-avoiding walks of length l is an upper bound on

the number of self-avoiding polygons of perimeter l.

Lemma 5.23. The number of connected hole-free particle configurations with n particles

and perimeter k is at most f(k) · (2 +
√

2)k for some subexponential function f .

Proof. To prove this theorem, we will consider the dual to the triangular lattice Γ, the

hexagonal lattice Γ′ (Figure 5.10a). For any connected particle configuration σ with n par-

ticles and no holes, consider the union Aσ of all the faces of Γ′ corresponding to vertices

of Γ that are occupied in σ. Whenever two particles are adjacent in Γ, their corresponding

faces in Γ′ share an edge. This union Aσ is a simply connected polygon because σ is con-

nected and has no holes. The perimeter of Aσ is a self-avoiding polygon in the hexagonal

lattice.

We next prove that if σ has perimeter k, then the perimeter of Aσ has 2k + 6 edges

(equivalently, 2k + 6 vertices). We first note that a particle P is on the perimeter of σ if

and only if its corresponding hexagon HP in Γ′ shares an edge with the perimeter of Aσ.

That is, if a particle P appears on the perimeter of σ once with exterior angle θP , where

θP ∈ {120◦, 180◦, 240◦, 300◦, 360◦}, thenHP has (θP/60◦)−1 of its edges contained in the

perimeter of Aσ. More generally, if a particle P appears on the perimeter mP ≥ 1 times,

with total exterior angles summing to θP , thenHP has (θP/60◦)−mP of its edges contained

in the perimeter of Aσ. For particle configurations σ with perimeter k, we conclude the

number of edges on the perimeter of Aσ is:

p(Aσ) =
∑
P∈p(σ)

(
θP
60◦
−mP

)
=

1

60

 ∑
P∈p(σ)

θP

− k =
1

60
(180k + 360)− k = 2k + 6.

The number of self-avoiding polygons of perimeter 2k + 6 in Γ′ is an upper bound on

the number of particle configurations with perimeter k. This value is itself less than the

number of self-avoiding walks of length 2k + 5 in Γ′. As the connective constant for the
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hexagonal lattice is µhex =
√

2 +
√

2, there is some subexponential function f1 such that

the number of these self-avoiding walks of length 2k + 5 is at most

f1(2k + 5) · (µhex)2k+5 = f1(2k + 5) · (2 +
√

2)k+5/2.

We conclude there is a subexponential function f(k) = f1(2k + 5) · µ5
hex such that the

number of particle configurations with perimeter k is at most f(k) · (2 +
√

2)k, the desired

result.

To prove our expansion results, we will also need some additional bounds on the num-

ber of particles configurations with certain perimeters. We will let Sβ be the set of all

hole-free configurations with perimeter at most β · pmax for some constant 0 < β < 1.

Analogous to the approach for compression, we want to show π(Sβ) =
∑

σ∈Sβ λ
−p(σ)/Z,

the stationary probability of being in a configuration with small perimeter, is exponentially

small. The critical component of this result is an improved lower bound on Z. We give our

first non-trivial lower bound on Z in Lemma 5.24, and this result is valid for all λ > 0. In

Lemma 5.27 we get an improved lower bound on Z that is valid for all λ ≥ 1. As above,

obtaining these bounds requires a good bound on the number of configurations with certain

perimeters.

We do this by giving a lower bound on the number of configurations with n particles

and a given perimeter (as opposed to the previous lemma, where we found upper bounds

for this quantity). To begin, we recall pmax = 2n− 2 and note:

Z =
∑
σ∈Ω∗

λ−p(σ) ≥
∑

σ ∈ Ω∗ :

p(σ) = pmax

λ−p(σ) = c2n−2λ
−(2n−2),

where c2n−2 is the number of configurations with perimeter exactly 2n − 2. Note if a

configuration σ with n particles has perimeter 2n− 2, then by Lemmas 5.3 and 5.4 it must
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be that σ has exactly n − 1 edges and no triangles; that is, σ is an induced tree in Γ. We

present a method for enumerating a subset of these trees, giving a lower bound on c2n−2.

Lemma 5.24. For any λ > 0, it holds that Z ≥ (
√

2/λ)pmax .

Proof. We enumerate n-vertex paths in Γ where every step is either down-right or up-right;

this is a subset of the trees contributing to c2n−2. Starting from the first particle, there are

2n−1 ways to place rest of the particles to form such a path, where each one is either up-

right or down-right from the previous one. This means there are at least 2n−1 such paths,

giving

c2n−2 ≥ 2n−1 =
√

2
2n−2

=
√

2
pmax

.

From this, it follows that

Z =
∑
σ∈Ω∗

λ−p(σ) ≥
∑

σ ∈ Ω∗ :

p(σ) = pmax

λ−pmax ≥
√

2
pmax

λ−pmax =

(√
2

λ

)pmax

.

This bound could be improved significantly with a better lower bound for c2n−2, though

this is eclipsed by the lower bound for Z when λ ≥ 1 given next. The key observation is

that for λ > 1, for any value k < 2n − 2, λ−k > λ−(2n−2). Thus as pmax = 2n − 2, it

follows that

Z =
∑
σ

λ−p(σ) ≥
∑
σ

λ−(2n−2).

Thus it suffices to find a lower bound on the total number of connected, hole-free con-

figurations with n particles and any perimeter, instead of only counting the number of

configurations with maximum perimeter. Exploiting this, we will be able to get a better

lower bound on Z than in the case above where λ was unrestricted.

Lemma 5.25. If λ ≥ 1, then Z ≥ 0.12 · (1.67/λ)pmax .
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Figure 5.11: All 11 connected hole-free configurations with three particles. In each the
highest leftmost particle is labeled H , and the lowest leftmost particle is labeled L; when
there is only one leftmost particle H = L.

Proof. We give a lower bound on the number of connected, hole-free configurations on n

particles by iteratively enumerating a subset of them. Note there are 11 connected hole-free

configurations with exactly 3 particles; all 11 are shown in Figure 5.11.

Given some hole-free configuration σ with 1 + 3j particles, j ≥ 0, we show how to

enumerate 22 distinct hole-free configurations of 4 + 3j particles. Let P be the highest

rightmost particle of σ and let Q be the lowest rightmost particle of σ; possibly P = Q.

Choose any of the 11 hole-free configurations with 3 particles, and let L be its lowest

leftmost particle and H be its highest leftmost particle as in Figure 5.11; possibly H = L.

Attach this configuration to σ either by placing H below and right of Q or by placing

L above and right of P ; see Figure 5.12 for two such examples. Note even if Q = P

and H = L, this still results in two distinct configurations. In the first case, all locations

directly below Q and all locations directly above H are unoccupied; this ensures the only

adjacency between σ and the newly added three particles is between Q and H , meaning no

holes have been created. Similarly in the second case, all locations above P or below L are

unoccupied, again ensuring no holes form.

Using this process and beginning with a single particle (as in Figure 5.12a), we can

enumerate 22j distinct configurations with 1 + 3j particles for all j ≥ 0. This does not

enumerate all configurations on 1 + 3j particles: for example, there are 42 configurations
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Figure 5.12: The iterative process of Lemma 5.25. (a) One of the 11 connected hole-free
configurations with three particle, and the two ways it can attach to the single particle with
which the iterative process begins. (b) Another of the 11 connected hole-free configurations
on three vertices, and the two ways it can attach to a configuration σ with four particles.
Particle adjacencies have be drawn as black lines, and dashed circles indicate unoccupied
locations that guarantee no hole exists in the constructed configurations.

on 4 particles and this process only enumerates 22 of them. However, this process iterates

nicely and produces reasonable lower bounds as the number of particles gets large.

To get a lower bound on the number of configurations of n particles when n 6≡ 1 (mod 3),

we can simply enumerate all configurations on 1 + 3j ≤ n particles for j =
⌊
n−1

3

⌋
, and

add one or two particles to each in some deterministic way. We conclude that for any n,

the number of hole-free connected configurations of n particles is at least

22bn−1
3 c ≥ 22

n−1
3 · 22−2/3 = 22−2/3(221/6)2n−2 > 0.12 · 1.672n−2.

Using this bound, it follows that

Z =
∑
σ

λ−p(σ) ≥
∑
σ

λ−(2n−2) > 0.12 · 1.672n−2 · λ−(2n−2) = 0.12 ·
(

1.67

λ

)pmax
.

This bound can be improved even further by iteratively adding hole-free configurations
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of 50 particles instead of three particles. A result of Jensen [69] will be essential. In that

paper, the author presents a parallel algorithm efficient enough to count the number of ben-

zenoid hydrocarbons containing h hexagonal cells up to h = 50. A benzenoid hydrocarbon

containing h hexagonal cells is exactly equivalent to a connected particle configuration

with no holes and h particles, implying the next lemma.

Lemma 5.26 ([69]). The number of connected particle configurations with no holes and 50

particles is

N50 = 2,430,068,453,031,180,290,203,185,942,420,933.

Lemma 5.27. If λ ≥ 1, then Z ≥ 0.13 · (2.17/λ)pmax .

Proof. We use the same approach as in Lemma 5.25, noting that 2.17 ∼ (2N50)1/100.

To get a lower bound on the number of configurations with n particles, first write n as

n = 1 + 50i + j, where i, j ∈ Z≥0 and j < 50; subject to these requirements, i and j are

unique. Iteratively construct one particle configuration σ with n particles by beginning with

a single particle and repeatedly attaching one of the N50 configurations with 50 particles to

the right as in the proof of Lemma 5.25: place its highest leftmost particle H below and

right of the existing configuration’s lowest rightmost particleQ, or place its lowest leftmost

particle L above and right of the existing configuration’s highest rightmost particle P . This

process, applied i times, yields a hole-free configuration on 1+50i = n−j particles. There

are then 2Nj ways, following the same procedure, to attach the remaining j particles to

form a hole-free configuration with n particles. In this way, we can enumerate (2N50)i ·2Nj

unique hole-free configurations on n particles. It follows that the number of connected

hole-free configurations on n particles is at least

(2N50)i · 2Nj = (2N50)
n−1−j

50 · 2Nj = (2N50)
n−1
50 · (2N50)−

j
50 · 2Nj.

Calculations show that for all 0 ≤ j < 50, (2N50)−j/50 · 2Nj ≥ 0.13. It follows that the

159



number of connected hole-free configurations with n particles is at least

0.13 ·
(

(2N50)1/100
)2n−2

= 0.13 ·
(

(2N50)1/100
)pmax

.

Noting that (2N50)1/100 > 2.17, it follows that

Z ≥
∑
σ

λ−(2n−2) ≥ 0.13 · (2.17)pmaxλ−pmax = 0.13 · (2.17/λ)pmax .

As we will see in Section 5.5.3, this will directly imply that the particle system will not

exhibit compression for any λ < 2.17. We expect this bound will improve given accurate

counts of the number of particle configurations for even larger n. Computationally this

seems infeasible, and a careful analysis of the work done in [69] suggests the best bound

achievable by this method would be expansion for all λ < 2.27, only a mild improvement

and still far from the known lower bound for compression, λ > 2 +
√

2.

5.5.2 Achieving Compression

We proved in Section 5.4.6 that Markov chainM converges to a unique stationary distribu-

tion, and we know that distribution exactly (Corollary 5.19). In this section, we show that

when parameter λ is large enough, this stationary distribution exhibits compression with

high probability. While we conjecture compression occurs even earlier, beforeM is close

to stationarity, our proofs rely on analyzing the stationary distribution ofM.

Recall for any α > 1 we say a configuration σ with n particles is α-compressed if its

perimeter p(σ) < α · pmin, where pmin is the minimum possible perimeter of a config-

uration with n particles. We prove that, for any α > 1 and provided λ and n are large

enough, a configuration chosen at random according to the stationary distribution of M

is α-compressed with all but a probability that is exponentially small (in n). Values of α

closer to 1 simply require larger λ values. Conversely, we then prove (as a corollary) that
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for any λ > 2 +
√

2, there is a constant α such that with high probability α-compression

occurs at stationarity.

To simplify notation, we define the weight of a configuration σ to be w(σ) = π(σ) ·Z =

λ−p(σ). For a set S ⊆ Ω, we define w(S) as the sum of the weights of all configurations

in S. We now prove our main result.

Theorem 5.28. For any α > 1, let λ∗ =
(
2 +
√

2
) α
α−1 . There exists n∗ ≥ 0 and γ < 1 such

that for all λ > λ∗ and n > n∗, the probability that a random sample σ drawn according

to the stationary distribution π ofM is not α-compressed is exponentially small:

Pσ∼π (p(σ) ≥ α · pmin) < γ
√
n.

Proof. Let Sα be the set of configurations of perimeter at least α · pmin. We wish to show

that π(Sα) is smaller than some function that is exponentially small in n.

We first consider the normalizing constant Z of π; recall Z =
∑

σ∈Ω∗ λ
−p(σ). If σmin

is a configuration of n particles achieving the minimum possible perimeter pmin, then

w(σmin) = λ−pmin is a lower bound on Z. It follows that

π(Sα) =
w(Sα)

Z
<

w(Sα)

w(σmin)
.

The remainder of this proof will be spent finding an upper bound on w(Sα)/w(σmin)

that is exponentially small in n. To begin, we stratify Sα into sets of configurations that

have the same perimeter. Let Ak be the set of all configurations with perimeter k ∈ Z; then

Sα =
⋃pmax
k=dα·pmineAk. We can then write

w(Sα)

w(σmin)
≤
∑2n−2

k=dα·pminew(Ak)

λ−pmin
.

The weight of each element in the set Ak is the same, λ−k. Letting ν := 2 +
√

2 ∼ 3.42 for

simplicity, by Lemma 5.23 the number of elements in set Ak is at most f(k)νk for some
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subexponential function f . We see that

w(Sα)

w(σmin)
≤
∑2n−2

k=dα·pmine f(k)νkλ−k

λ−pmin
=

2n−2∑
k=dα·pmine

f(k)ν(1−logν λ)k+(logν λ)pmin .

Using the inequality pmin ≤ k/α and noting that λ > ν, it follows that

w(Sα)

w(σmin)
≤

2n−2∑
k=dα·pmine

f(k)ν(1−logν λ)k+(logν λ)(k/α) =
2n−2∑

k=dα·pmine
f(k)ν(1−(1−1/α) logν λ)k.

As λ > λ∗ = ν
α
α−1 , it follows that logν λ > α

α−1
. We then see that the exponent in the

previous expression satisfies

1−
(

1− 1

α

)
logν λ < 1− α− 1

α
· α

α− 1
= 0.

For simplicity, we let c be the negation of this expression, c := −1 + (1− 1/α) logν λ > 0.

By applying the inequality k ≥ α ·pmin and using Lemma 5.1 which states that pmin >
√
n,

we see that
w(Sα)

w(σmin)
≤

2n−2∑
k=dα·pmine

f(k)ν−ck ≤
2n−2∑

k=dα·pmine
f(k)ν−cα

√
n.

Let f1(n) =
∑2n−2

k=
√
n f(k); we note that this is also a function that is subexponential in n as

it is a sum of a linear number of subexponential terms. We can then say that

w(Sα)

w(σmin)
≤ f1(n)

(
ν−cα

)√n
.

As c > 0 and f1 is subexponential, we conclude that because ν−cα < 1 there exists γ

satisfying ν−cα < γ < 1 and an n∗ such that for all n ≥ n∗,

Pσ∼π (p(σ) ≥ α · pmin) = π(Sα) ≤ w(Sα)

w(σmin)
≤ f1(n)

(
ν−cα

)√n
< γ

√
n.
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While the above result shows thatM accomplishes α-compression for any α > 1, the

smaller we want α to be the larger λ needs to be. In practice, when λ is largeM takes a very

long time to reach any compressed configuration. Because of this, what happens when λ is

small is also of interest. We now show that provided λ > 2 +
√

2 there is some constant α

such that α-compression occurs. Of course, there is again a trade-off: the smaller λ is, the

larger α is.

Corollary 5.29. For any λ > 2 +
√

2 =: ν, for any constant α > logν λ/(logν λ− 1) there

exists n∗ ≥ 0 and γ < 1 such that for all n ≥ n∗, a random sample σ drawn according to

the stationary distribution π ofM satisfies

Pσ∼π (p(σ) ≥ α · pmin) < γ
√
n.

Proof. If α > logν λ
logν λ−1

, then solving for λ gives λ > ν
α
α−1 . Theorem 5.28 then gives the

desired result.

5.5.3 UsingM for Expansion

A nice feature of our algorithm is that it also provably achieves particle expansion for

different values of bias parameter λ. Analogous to our definition of α-compression, we

say a configuration σ is β-expanded for some 0 < β < 1 if p(σ) > β · pmax, where

pmax = 2n− 2.

For a configuration of n particles, pmax = Θ(n) and pmin = Θ(
√
n), so β-expansion

and α-compression for any constants β and α are mutually exclusive for sufficiently large n.

We prove in this section that, for all 0 < λ < 2.17 and provided n is large enough, there

is a constant β such that a configuration chosen at random according to the stationary dis-

tribution ofM is β-expanded with all but exponentially small probability. This is notable

because it implies that, counter-intuitively, λ > 1 (i.e., favoring more neighbors) is not

sufficient to guarantee particle compression as one might first guess.
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We first show that for any value of β it is possible to achieve β-expansion by simply

running M with input parameter λ sufficiently small. The closer β is to 1, the closer λ

must be to 0 in order to achieve β-expansion.

Theorem 5.30. For any 0 < β < 1, let λ∗ =
(√

2/(2 +
√

2)β
) 1

1−β . There exists n∗ ≥ 0

and γ < 1 such that for all λ < λ∗ and n ≥ n∗, the probability that a random sample σ

drawn according to the stationary distribution π ofM is not β-expanded is exponentially

small:

Pσ∼π (p(σ) ≤ β · pmax) < γ
√
n

Proof. We begin by rewriting λ∗ in a way that will be convenient:

λ∗ =

( √
2

(2 +
√

2)β

) 1
1−β

=
(√

2
) 1

1−β log√2

( √
2

(2+
√

2)β

)
=
(√

2
) 1−β log√

2
(2+
√

2)

1−β
.

As log√2(2 +
√

2) ∼ 1.356 > 1 and 0 < β < 1, then 1− β log√2(2 +
√

2) < 1− β so the

exponent in the above expression is always less than one. This means that λ∗ <
√

2, and

thus λ <
√

2, a fact we will use later.

Let Sβ be the set of configurations of perimeter at most β · pmax. We wish to show that

π(Sβ) is smaller than some function that is exponentially small in n.

Applying Lemma 5.24, which gives an upper bound on the normalizing constant Z of

stationary distribution π, we see that

π
(
Sβ
)

=
w
(
Sβ
)

Z
≤ w

(
Sβ
)(√

2
λ

)pmax = w
(
Sβ
)( λ√

2

)pmax
.

The remainder of this proof will be spent finding an upper bound on the right hand side

of the above equation that is exponentially small in n. To begin, we stratify Sβ into sets

of configurations that have the same perimeter. Let Bk be the set of all configurations with
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perimeter k; then Sβ =
⋃bβ·pmaxc
k=pmin

Bk. We can write

w
(
Sβ
)( λ√

2

)pmax
=

bβ·pmaxc∑
k=pmin

w(Bk)

(
λ√
2

)pmax
.

The weight of each element in the set Bk is the same, λ−k. By Lemma 5.23, the number of

elements in set Bk is at most f(k)(2 +
√

2)k for some subexponential function f . We see

that

w
(
Sβ
)( λ√

2

)pmax
≤
bβ·pmaxc∑
k=pmin

f(k)(2 +
√

2)kλ−k
(
λ√
2

)pmax
.

Recalling that k ≤ β · pmax, meaning pmax ≥ k/β, then as λ <
√

2 we see that

w
(
Sβ
)( λ√

2

)pmax
≤
bβ·pmaxc∑
k=pmin

f(k)(2 +
√

2)kλ−k
(
λ√
2

) k
β

=

bβ·pmaxc∑
k=pmin

f(k)

(
2 +
√

2

λ
·
(
λ√
2

) 1
β

)k

.

Let ξ = 2+
√

2
λ
·
(

λ√
2

) 1
β

; we see that as λ < λ∗, then

ξ =
2 +
√

2

λ
·
(
λ√
2

) 1
β

=
2 +
√

2
√

2
1/β
· λ

1−β
β <

2 +
√

2
√

2
1/β
·
(√

2/(2 +
√

2)β
) 1
β

= 1.

By applying the inequality k ≥ pmin and recalling that pmin >
√
n (Lemma 5.1), we see

that

w
(
Sβ
)( λ√

2

)pmax
≤
bβ·pmaxc∑
k=pmin

f(k)ξk <
2n−2∑
k=
√
n

f(k)ξ
√
n.

Let f1(n) =
∑2n−2

k=
√
n f(k). Because f1 has at most 2n summands and f is a subexponential

function, then f1(n) is a subexponential function. We conclude there exists a γ such that

ξ < γ < 1 and an n∗ such that for all n ≥ n∗,

Pσ∼π (p(σ) ≤ β · pmax) = π
(
Sβ
)
≤ w

(
Sβ
)( λ√

2

)pmax
< f1(n)ξ

√
n < γ

√
n.
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While the above result shows that M accomplishes β-expansion for any β < 1, the

larger we want β to be the smaller λ needs to be. However, larger values of λ are still

of interest. Just as for compression, we now show that provided λ <
√

2 there is some

constant β such that β-expansion occurs. Of course, there is again a trade-off: the larger λ

is, the smaller β is.

Corollary 5.31. For all 0 < λ <
√

2, for any constant β <
log√2 λ−1

log√2 λ−log√2(2+
√

2)
, there exists

n∗ ≥ 0 and γ < 1 such that for all n ≥ n∗, a random sample σ drawn according to the

stationary distribution π ofM satisfies

Pσ∼π (p(σ) ≤ β · pmax) < γ
√
n.

Proof. Theorem 5.30 holds whenever λ <
( √

2
(2+
√

2)β

) 1
1−β

. Solving for β, we see the theo-

rem applies whenever β <
log√2 λ−1

log√2 λ−log√2(2+
√

2)
, as desired.

When we know λ ≥ 1, the improved bounds in Lemma 5.27 can be used to show

β-expansion occurs for an even greater range of values for λ. Again, larger values of λ

necessitate smaller, but still constant, values of β.

Theorem 5.32. For all 1 ≤ λ < x := (2N50)1/100 ∼ 2.17, for any β < logx λ−1

logx λ−logx(2+
√

2)

there exists n∗ ≥ 0 and γ < 1 such that for all n ≥ n∗, a random sample σ drawn

according to the stationary distribution π ofM satisfies

Pσ∼π (p(σ) ≤ β · pmax) < γ
√
n.

Proof. Let Sβ be the set of configurations of perimeter at most β · pmax. We wish to show

that π(Sβ) is smaller than some function that is exponentially small in n.

Applying Lemma 5.27, which gives an upper bound on the normalizing constant Z of
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stationary distribution π, we see that

π
(
Sβ
)

=
w
(
Sβ
)

Z
≤ w

(
Sβ
)

0.13
(
x
λ

)pmax ≤ 8 w
(
Sβ
)(λ

x

)pmax
.

The remainder of this proof will be spent finding an upper bound on the right hand side

of the above equation that is exponentially small in n. To begin, we stratify Sβ into sets

of configurations that have the same perimeter. Let Bk be the set of all configurations with

perimeter k; then Sβ =
⋃bβ·pmaxc
k=pmin

Bk. We can then write

8 w
(
Sβ
)(λ

x

)pmax
=

bβ·pmaxc∑
k=pmin

8 w(Bk)

(
λ

x

)pmax

The weight of each element in the set Bk is the same, λ−k. By Lemma 5.23, the number of

elements in set Bk is at most f(k)(2 +
√

2)k for some subexponential function f . We see

that

8 w
(
Sβ
)(λ

x

)pmax
≤
bβ·pmaxc∑
k=pmin

8 f(k)(2 +
√

2)kλ−k
(
λ

x

)pmax
.

Recalling that k < β · pmax, meaning pmax ≥ k/β, then as λ < x we see that

8 w
(
Sβ
)(λ

x

)pmax
≤
bβ·pmaxc∑
k=pmin

8 f(k)(2 +
√

2)kλ−k
(
λ

x

) k
β

=

bβ·pmaxc∑
k=pmin

8 f(k)

(
2 +
√

2

λ
·
(
λ

x

) 1
β

)k

.

Let ξ = 2+
√

2
λ
·
(
λ
x

) 1
β . The condition β < logx λ−1

logx λ−logx(2+
√

2)
can be equivalently expressed as

λ <
(
x/(2 +

√
2)β
) 1

1−β . It follows that

ξ =
2 +
√

2

λ
·
(
λ

x

) 1
β

=
2 +
√

2

x1/β
· λ

1−β
β <

2 +
√

2

x1/β
·
(

x

(2 +
√

2)β

) 1
β

= 1.

By applying the inequality k ≥ pmin and recalling that pmin >
√
n (Lemma 5.1), we see
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that

8 w
(
Sβ
)(λ

x

)pmax
≤
bβ·pmaxc∑
k=pmin

8 f(k)ξk <
2n−2∑
k=
√
n

8 f(k)ξ
√
n.

Let f1(n) =
∑2n−2

k=
√
n 8 f(k). Because f1 has at most 2n summands and f is a subexponen-

tial function, then f1(n) is a subexponential function. We conclude there exists a γ such

that ξ < γ < 1 and an n∗ such that for all n ≥ n∗,

Pσ∼π (p(σ) ≤ β · pmax) = π
(
Sβ
)
≤ w

(
Sβ
)(λ

x

)pmax
< f1(n)ξ

√
n < γ

√
n

Combining Theorem 5.32 with Corollary 5.31 gives the following result.

Corollary 5.33. For all 0 < λ < 2.17, there exists a constant 0 < β < 1 such that with all

but exponentially small probability a sample drawn according to stationary distribution π

ofM is β-expanded.

Proof. By Corollary 5.31, this is true for 0 < λ <
√

2. By Theorem 5.32, this is true for

1 ≤ λ < 2.17.

5.6 Shortcut Bridging: Overview, Problem Definition, and Preliminaries

In this and subsequent sections, we consider a very different application of the stochastic

approach to algorithms for programmable matter: shortcut bridging. This work demon-

strates that many fundamental elements of this stochastic approach can be generalized to

applications beyond the specific context of compression.

We present an algorithm inspired by the work of Reid et al. [98], who found that army

ants continuously modify the shape and position of foraging bridges — constructed and

maintained by their own bodies — across holes and uneven surfaces in the forest floor.

These bridges appear to stabilize in a structural formation that balances the “benefit of

increased foraging trail efficiency” with the “cost of removing workers from the forag-

ing pool to form the structure” [98]. We attempt to capture this inherent trade-off in our
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algorithm for “shortcut bridging” in self-organizing particle systems (formally defined in

Section 5.6.2). Shortcut bridging is an attractive goal for programmable matter systems,

as many application domains envision deploying programmable matter on surfaces with

structural irregularities or dynamic topologies. For example, one commonly imagined ap-

plication of smart sensor networks is to detect and span small cracks in infrastructure such

as roads or bridges; dynamic bridging behavior would enable the system to remain con-

nected and shift position as cracks form.

Using the same Markov chain techniques as above, we rigorously analyze our algo-

rithm, show it achieves a near-optimal balance between the competing factors of path length

and bridge cost, and prove that it exhibits a dependence on the angle of the gap being “short-

cut” similar to that of the ant bridges. We also present simulation results that qualitatively

compare our algorithm with the army ant bridging behavior. Our work gives a plausible

explanation of how convergence to globally optimal configurations can be achieved via lo-

cal interactions by simple organisms (e.g., ants) with some limited computational power

and access to random bits. The proposed algorithm also demonstrates the robustness of the

stochastic approach to algorithms for programmable matter.

5.6.1 Related Work

The work of Reid et al. [98] showing that army ants of the genus Eciton can build bridges

whose structure seems to optimize a global trade-off is just one example of a simple natu-

ral system without centralized control finding a solution to an optimization problem. For

example, single-celled slime molds have famously exhibited an ability to find solutions to

mazes [95] and, more recently, to solve multi-arm bandit problems [99]. The phenomenon

of local interactions yielding emergent, collective behavior in natural systems comprised of

many individuals is also more general than just the ant behavior observed in [98]. For ex-

ample, honey bees choose hive locations based on decentralized recruitment [19]; fire ants,

when their nests are flooded, form floating rafts out of their own bodies [89]; and cockroach
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larvae perform self-organizing aggregation using pheromones with limited range [68].

In the molecular programming domain, simpler variations of bridging have been stud-

ied. Groundbreaking works in this area, such as that of Mohammed et al. [90], focus on

forming molecular structures that connect some fixed points; our work may offer insights

on further optimizing the quality and/or cost of the resulting bridges.

5.6.2 Problem Definition

Just as the uneven surfaces of the forest floor affect the foraging behavior of army ants,

the collective behavior of particle systems should change when Γ is non-uniform. Here,

we focus on system behaviors when the vertices of Γ are either gap (unsupported) or land

(supported) locations. A particle occupying some location in Γ can tell whether it is in the

gap or on land. We also introduce objects, or static particles that do not perform compu-

tation; these are used to constrain the particles to remain connected to certain fixed sites.

In order to analyze the strength of the solutions our algorithm produces, for any particle

configuration σ and parameter c > 1, we define the weighted perimeter p(σ, c) to be the

summed edge weights of edges on the external boundary of σ, where edges on land have

weight 1, edges in the gap have weight c > 1, and edges with one endpoint on land and one

endpoint in the gap have weight (1+c)/2. Stated another way, p(σ, c) = p(σ)+(c−1)g(σ),

where the gap perimeter g(σ) is the number of perimeter edges that are in the gap, where

edges with one endpoint in the gap and one endpoint on land count as half an edge in the

gap. Note that an edge may appear twice in a walk around the outer boundary of σ, and

thus may be counted twice in p(σ, c), p(σ) or g(σ).

In the shortcut bridging problem, we consider an instance (L,O, σ0, c, α),whereL ⊆ V

is the set of land locations, O is the set of (two) objects to bridge between, σ0 is the initial

configuration of the particle system, c > 1 is a fixed weight for gap edges, and α > 1

is a parameter capturing our error tolerance. An instance is valid if (i) the objects of O

and particles of σ0 all occupy locations in L, (ii) σ0 connects the objects, and (iii) σ0
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(a) (b)

Figure 5.13: (a) In this image from [98], army ants of the genus Eciton build a dynamic
bridge which balances the benefit of a shortcut path with the cost of committing ants to
the structure. (b) Our shortcut bridging algorithm also balances competing objectives and
converges to similar configurations.

is connected, a notion formally defined in Section 5.2.2. A (distributed) algorithm solves

an instance (L,O, σ0, c, α) if, beginning from σ0, it reaches and remains in (with high

probability) a set of configurations Σ∗ such that any σ ∈ Σ∗ has weighted perimeter p(σ, c)

within an α-factor of its minimum possible value.

The weighted perimeter balances the trade-off observed in [98] between the competing

objectives of establishing a short path between the fixed endpoints while not having too

many particles in the gap. We focus on gap perimeter instead of the number of particles in

the gap (which is perhaps a more natural analogy to [98]) because (i) the shortcut bridges

produced with this metric more closely resemble ant structures and (ii) only particles on

the perimeter can move, and thus recognize the potential risk of being in the gap.

In analogy to the apparatus used in [98] (see Figure 5.13a), we are particularly interested

in the special case where L forms a V-shape, O has two objects positioned at either base

of L, and σ0 lines the interior sides of L, as in Figure 5.14a. However, our algorithm is not

limited to this setting; for example, we show simulation results for an N-shaped land mass

(Figure 5.14b) in Section 5.5.
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(a) (b)

Figure 5.14: Example instances (L,O, σ0, c, α) of the shortcut bridging problem for which
we present simulation results (Section 5.5). Light (brown) nodes are land locations, large
(red) nodes are occupied by objects, and black nodes are occupied by particles.

5.6.3 The Stochastic Approach

In the previous sections we described and analyzed the stochastic, distributed algorithm for

compression in the amoebot model we introduced in [21]; here we extend that work to

show that this stochastic approach is in fact more generally applicable. As we described

above, the motivation underlying the use of simple Markov chains to model programmable

matter comes from statistical physics. Like a spring relaxing, physical systems favor con-

figurations that minimize energy. In the stochastic approach to programmable matter, we

introduce a Hamiltonian H(σ) over particle configurations σ that assigns the lowest energy

values to desirable configurations; we then design a Markov chain to favor these low energy

configurations. For compression, we used the Hamiltonian H(σ) = p(σ), the perimeter

of σ, because our desirable configurations had short perimeter. For shortcut bridging, we

use the Hamiltonian H(σ) = p(σ, c), the weighted perimeter of particle configuration σ.

We then let w(σ, c) = λ−p(σ,c) for some parameter λ. As λ gets larger, we increasingly

favor configurations where p(σ, c) is small and the desired bridging behavior is exhibited.

By harnessing our knowledge of how the probabilities of local moves induce global

emergent behavior, we can design a Markov chainM that uses only local moves and even-

tually reaches a distribution that favors configurations proportional to their weight w(σ).

This Markov chain M for shortcut bridging in the geometric amoebot model translates

directly to a fully distributed, local, asynchronous algorithm A. Rather than terminating
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the process at some point and using the configuration at that time step as a random sam-

ple, we instead run the Markov chain indefinitely, moving among different configurations

but remaining at the stationary distribution ofM, which we will prove meets our desired

objectives with high probability. That is, we prove that M (and by extension, A) solves

the shortcut bridging problem: for any constant α > 1, the long run probability that M

is in a configuration σ with p(σ, c) larger than α times its minimum possible value is ex-

ponentially small. More specifically, we prove (Theorem 5.40) that setting λ > 2 +
√

2

forces the low energy configurations with small p(σ, c) to dominate the state space. That

is, for λ > 2 +
√

2, low energy configurations have sufficiently large weight that these

configurations occur with high probability in the stationary distribution ofM. As above,

the key tool used to establish this is a careful Peierls argument, used in statistical physics

to study non-uniqueness of limiting Gibbs measures and in computer science to establish

slow mixing of Markov chains.

We also specifically consider V-shaped land masses with an object on each branch of

the V, and prove that the resulting bridge structures vary with the interior angle of the V-

shaped gap being shortcut — a phenomenon also observed by Reid et al. [98] in the army

ant bridges — and show in simulation that they are qualitatively similar to those of the ants

(e.g., Figure 5.13).

As discussed in Section 5.4.3, compared to other algorithms for programmable mat-

ter and self-organizing particle systems, this stochastic method produces distributed algo-

rithms that are nearly oblivious, more robust to failures, and require little to no commu-

nication between particles. Since these algorithms are derived from stochastic processes,

powerful tools developed to analyze Markov chains can be employed to rigorously under-

stand their behavior.
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5.7 Algorithms for Shortcut Bridging

Recall that for the shortcut bridging problem, we want our algorithm to achieve small

weighted perimeter, where boundary edges in the gap cost more than those on land. The

algorithm must balance the competing objectives of having a short path between the two

objects while not forming too large of a bridge. We capture these two factors by preferring

small perimeter and small gap perimeter, respectively. While these objectives may appear

to be aligned rather than competing, decreasing the length of the overall perimeter increases

the gap perimeter and vice versa in the problem instances we consider (e.g., Figure 5.14).

Specifically, our Markov chain algorithm incorporates two bias parameters: λ and γ.

The value of λ controls the preference for having small perimeter, while γ controls the

preference for having small gap perimeter. In this paper, we only consider λ > 1 and γ > 1,

which correspond to favoring smaller perimeter and smaller gap perimeter, respectively.

Using a Metropolis filter, we ensure that our algorithm converges to a distribution over

particle system configurations where the relative likelihood of the particle system being in

configuration σ is λ−p(σ)γ−g(σ), or equivalently, λ−p(σ,c) for c = 1 + logλ γ. We note λ

is the same parameter that controlled compression in Sections 5.3 to5.5, where particle

configurations converged to a distribution proportional to λ−p(σ). As we know that λ > 1

is not sufficient to ensure compression, we restrict our attention to λ > 2 +
√

2, the regime

where compression provably occurs.

To ensure our algorithm maintains some desired invariants throughout its execution, we

again require that each particle move satisfies Property 1 or Property 2 (see Section ??).

These properties maintain system connectivity2, prevent holes from forming, and ensure re-

versibility of the Markov chain; more details can be found above. These last two conditions

are necessary for applying established tools from Markov chain analysis.

We can now introduce the Markov chainM for an instance (L,O, σ0, c, α) of shortcut

2Since particles treat objects as static particles, the particle system may actually disconnect into several
components which remain connected through objects.
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bridging. For input parameter λ > 2+
√

2, set γ = λc−1. Markov chainMwith parameters

λ and γ is then as follows. We assume initial configuration σ0 is connected and hole-free.3

AlgorithmM: Markov Chain for Shortcut Bridging
Beginning at any connected configuration σ0 of n contracted particles, repeat:

1: Select particle P uniformly at random from among all particles; let ` be its location.
Choose a neighboring location `′ and q ∈ (0, 1) uniformly at random.

2: if `′ is unoccupied then
3: P expands to simultaneously occupy ` and `′.
4: else Return to Step 1.
5: Let σ be the configuration with P contracted at ` and σ′ the configuration with P

contracted at `′.
6: if (1) |N(`)| 6= 5, (2) locations ` and `′ satisfy Property 1 or Property 2, and (3)
q < λp(σ)−p(σ′)γg(σ)−g(σ′) then

7: P contracts to `′.
8: else P contracts back to `.

Although values p(σ) − p(σ′) and g(σ) − g(σ′) used to check Condition (3) in Step 6 of

M are values defined at system-level scale, we show these differences can be calculated

locally.

Lemma 5.34. An expanded particle P occupying adjacent locations ` and `′ in Γ can

calculate the values of p(σ)− p(σ′) and g(σ)− g(σ′) in Step 3(iii) ofM using only local

information involving `, `′, and N(` ∪ `′).

Proof. Observe that these values need only be calculated if Conditions (1) and (2) in Step 6

ofM hold. By our work above on compression,

p(σ)− p(σ′) = |N(`′)| − |N(`)|,

which can be calculated using only local information.

Recall that gap perimeter is defined as the number of perimeter edges in the gap, count-

ing edges between gap and land as half an edge; this is equal to the number of particles

3If σ0 has holes, our algorithm will eliminate them and they will not reform, as discussed at length for our
compression algorithm above; here we focus only on the behavior of the system after this occurs.
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that are on the perimeter and in the gap, counted with appropriate multiplicity if a particle

appears on the perimeter more than once. Given a particle Q and a configuration τ , let

G(Q, τ) be equal to 1 if Q occupies a gap location in τ and 0 otherwise. Let δ(Q, τ) be the

number of times Q appears on the perimeter of τ . Then the desired difference is:

g(σ)− g(σ′) =
∑
Q

[G(Q, σ)δ(Q, σ)−G(Q, σ′)δ(Q, σ′)] .

Define ∆(Q) = δ(Q, σ) − δ(Q, σ′). For particle P , since Conditions (1) and (2) in

Step 6 hold, ∆(P ) = 0. For any particle Q 6∈ {P} ∪ N(` ∪ `′), ∆(Q) = 0 since its

neighborhood is not affected by the movement of P . Moreover, for any particle Q 6= P ,

G(Q, σ) = G(Q, σ′) since it does not move. So:

g(σ)− g(σ′) = δ(P, σ) [G(P, σ)−G(P, σ′)] +
∑

Q∈N(`∪`′)
G(Q, σ)∆(Q).

The first term is easily calculated locally. For the summation, it remains to show that

P can locally calculate ∆(Q) for any Q ∈ N(` ∪ `′). First suppose that Q is occupies a

location adjacent to ` but not `′. Then:

∆(Q) =


−1 if Q has two neighbors in N(`),

1 if Q has no neighbors in N(`), and

0 otherwise.

The opposite is true if Q occupies a location adjacent to `′ but not `. Lastly, suppose Q

occupies a location adjacent to both ` and `′. Then:

∆(Q) =


0 if Q has zero or two neighbors in N(` ∪ `′),

−1 if Q shares a neighbor with ` but not `′, and

1 if Q shares a neighbor with `′ but not `.
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In all cases, P can calculate ∆(Q), and thus also g(σ)−g(σ′), using only local information.

The state space Ω ofM is the set of all configurations reachable from σ0 via valid tran-

sitions ofM. We conjecture that when σ0 is a connected hole-free configuration that this

includes all connected, hole-free configurations of n particles connected to both objects,

but proving all such configurations are reachable from σ0 is not necessary for our results.

The proof of the corresponding result for compression (Section 5.4.5) does not generalize

due to the presence of static objects.

While M is a Markov chain with centralized control of the particle system, using

Lemma 5.34 one can transform M into a distributed, local, asynchronous algorithm A

that each particle runs individually. The full details of this construction are identical to

those given in Section 5.4.2 for compression, so we do not repeat them here.

5.7.1 Properties of Markov ChainM

We now show some useful properties of the Markov chainM. Our first two claims follow

from work on the compression problem above, and basic properties of Markov chains and

our particle systems.

Lemma 5.35. If σ0 is connected and has no holes, then at every iteration ofM, the current

configuration is connected and has no holes.

Proof. For compression, we proved that no valid moves could introduce holes or disconnect

the particle system; this is Lemmas 5.6 and 5.7. Since the moves allowed by our shortcut

bridging algorithm M are a subset of those allowed in the compression algorithm (since

the local properties checked at each iteration are the same),M cannot introduce holes or

disconnect the system.

Lemma 5.36. For any σ and τ in Ω, P (σ, τ) > 0 if and only if P (τ, σ) > 0.
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Proof. The proof is nearly identical to that of Lemma 5.14 for compression, above. Be-

cause σ and τ are both hole-free configurations, Properties 1 and 2 ensure that particle P

moving from location ` to location `′ is valid if and only if P moving from `′ to ` is.

Lemma 5.37. If σ0 has no holes, thenM is ergodic.

Proof. We defined Ω to be precisely those configurations reachable by valid transitions

ofM starting from σ0. By Lemma 5.36, from every state the initial state σ0 is reachable.

Altogether, this impliesM is irreducible on its state space Ω. M is aperiodic because at

each iteration there is a probability of at least 1/6 that no move occurs, as each particle has

at least one neighbor. Thus, the chainM is ergodic.

AsM is finite and ergodic, it converges to a unique stationary distribution, and we can

find that distribution using detailed balance.

Lemma 5.38. The stationary distribution ofM is

π(σ) =
λ−p(σ)γ−g(σ)

Z
,

where Z =
∑

σ∈Ω λ
−p(σ)γ−g(σ).

Proof. Using Lemma 5.36, we verify the claim via detailed balance. Let σ, τ ∈ Ω be

distinct configurations that differ by one valid move of a particle P from location ` to

neighboring location `′, and let n be the number of particles in the system. Then,

P (σ, τ) =
1

n
· 1

6
·min{λp(σ)−p(τ)γg(σ)−g(τ), 1}, and

P (τ, σ) =
1

n
· 1

6
·min{λp(τ)−p(σ)γg(τ)−g(σ), 1}.

If λ and γ satisfy λp(σ)−p(τ)γg(σ)−g(τ) ≤ 1, then

π(σ)P (σ, τ) =
λ−p(σ)γ−g(σ)

Z
· λ

p(σ)−p(τ)γg(σ)−g(τ)

6n
=
λ−p(τ)γ−g(τ)

Z
· 1

6n
= π(τ)P (τ, σ).
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Otherwise, it must hold that λp(σ)−p(τ)γg(σ)−g(τ) > 1, and we see that

π(σ)P (σ, τ) =
λ−p(σ)γ−g(σ)

Z
· 1

6n
=
λ−p(τ)γ−g(τ)

Z
· λ

p(τ)−p(σ)γg(τ)−g(σ)

6n
= π(τ)P (τ, σ).

In both cases detailed balance is satisfied. Using definition of Z, we see that π satisfies∑
σ∈Ω π(σ) = 1, so π is a valid probability distribution and we conclude π is the unique

stationary distribution ofM.

We can also express this stationary distribution using weighted perimeter.

Lemma 5.39. For c = 1 + logλ γ, the stationary distribution ofM is given by

π(σ) = λ−p(σ,c)/Z,

where Z =
∑

σ∈Ω λ
−p(σ,c).

Proof. This follows from the definition of p(σ, c).

Theorem 5.40. Consider an execution of Markov chainM on state space Ω, starting at

configuration σ0 with n particles, where λ > 2 +
√

2 =: c and γ > 1. For any constant α

satisfying

α >
log λ

log λ− log c
> 1,

the probability that particle configuration σ drawn at random fromM’s stationary distri-

bution π satisfies p(σ, 1 + logλ γ) > α · pmin is exponentially small in n, where pmin is the

minimum weighted perimeter of a configuration in Ω.

Proof. This proof mimics that of α-compression in [21], but additional insights and care

were necessary to accommodate the difficulties introduced by considering weighted perime-

ter. Throughout we consider weighted perimeter p(σ) = p(σ, 1 + logλ γ).

Define the weight of a configuration σ ∈ Ω to be:

w(σ) := π(σ) · Z = λ−p(σ)γ−g(σ) = λ−p(σ).
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For a set of configurations S ⊆ Ω, we define its weight w(S) =
∑

σ∈S w(σ). Let σmin ∈ Ω

be a configuration of n particles with minimal weighted perimeter pmin, and let Sα be the

set of configurations with weighted perimeter at least α · pmin. We show:

π(Sα) =
w(Sα)

Z
<

w(Sα)

w(σmin)
≤ f2(n)ζ

√
n,

where ζ < 1 and f2(n) is a function that is subexponential in n. The first equality and

inequality follow directly from the definitions of Z, w, and σmin. We focus on the last

inequality.

Stratify Sα into sets of configurations that have the same weighted perimeter; there are

at most O(n2) such sets, as the total perimeter and gap perimeter can each take on at most

O(n) integer values. Label these sets as A1, A2, ..., Am in order of increasing weighted

perimeter, where m is the total number of distinct weighted perimeters of configurations in

Sα. Let pi be the weighted perimeter of all configurations in set Ai; since Ai ⊆ Sα, then

pi ≥ α · pmin.

Note w(σ) = λ−pi for every σ ∈ Ai, so to bound w(Ai) it suffices to bound |Ai|.

A configuration with weighted perimeter pi has perimeter p ≤ pi, and Lemma 5.23 im-

plies the number of connected, hole-free particle configurations with perimeter p is at most

f(p)cp, for some subexponential function f . Letting pmin denote the minimum possible

(unweighted) perimeter of a configuration of n particles, we conclude that:

w(Ai) = λ−pi |Ai| ≤ λ−pi ·
pi∑

p=pmin

f(p)cp ≤ λ−pif1(pi)c
pi ,

where f1(pi) =
∑pi

p=pmin
f(p) is necessarily also a subexponential function because it is a

sum of at most a linear number of subexponential terms. So,

w(Sα) =
m∑
i=1

w(Ai) ≤
m∑
i=1

f1(pi)

(
c

λ

)pi
≤ f2(n)

(
c

λ

)α·pmin
,
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where f2(n) =
∑m

i=1 f1(pi) is a subexponential function because pi = O(n), m = O(n2),

and f1 is subexponential. The last inequality above holds as λ > c and pi ≥ α · pmin
because Ai ⊆ Sα. Then, since w(σmin) = λ−pmin ,

π(Sα) <
w(Sα)

w(σmin)
≤ f2(n)

(
c

λ

)α·pmin
λpmin = f2(n)

[
λ

(
c

λ

)α]pmin
.

The constant ζ = λ(c/λ)α is less than one whenever α > log λ
log λ−log c

. We have pmin ≥
√
n

because any n particles must have perimeter at least
√
n by Lemma 5.1. This suffices to

show there is a constant ζ < 1 and a subexponential function f2(n) such that π(Sα) <

f2(n)ζ
√
n, which proves the theorem.

The following corollary shows that our algorithm solves any instance (L,O, σ0, c, α) of

the shortcut bridging problem when parameters λ and γ are chosen accordingly.

Corollary 5.41. The distributed, local algorithm A associated with Markov chain M

solves any valid instance of the shortcut bridging problem.

Proof. Given any valid instance (L,O, σ0, c, α) of the shortcut bridging problem, it suffices

to run A starting from configuration σ0 with parameters λ > (2 +
√

2)
α
α−1 and γ = λc−1.

Then α > log(λ)

log(λ)−log(2+
√

2)
> 1, so by Theorem 5.40 the system reaches and remains with

all but exponentially small probability in a set of configurations with weighted perimeter

p(σ, c) ≤ α · pmin, where pmin is the minimum weighted perimeter of a configuration

in Ω.

5.7.2 Simulations

We can see the performance of our algorithm from simulation results on a variety of in-

stances. Figure 5.15 shows snapshots over time for a bridge shortcutting a V-shaped gap

with internal angle θ = π/3 and biases λ = 4, γ = 2. Qualitatively, this bridge matches

the shape and position of the army ant bridges in [98]. Figure 5.16 shows the resulting

bridge structure when the land mass is N-shaped. Lastly, Figure 5.17 shows the results of
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(a) (b) (c) (d)

Figure 5.15: A particle system using biases λ = 4 and γ = 2 to shortcut a V-shaped
land mass with θ = π/3 after (a) 2 million, (b) 4 million, (c) 6 million, and (d) 8 million
iterations of Markov chainM, beginning in configuration σ0 shown in Figure 5.14a.

(a) (b)

Figure 5.16: A particle system using biases λ = 4 and γ = 2 to shortcut an N-shaped land
mass after (a) 10 million and (b) 20 million iterations of Markov chain M, beginning in
configuration σ0 shown Figure 5.14b.

an experiment that held λ, γ, and the number of iterations ofM constant, varying only the

internal angle of the V-shaped land mass. The particle system exhibits behavior consistent

with the theoretical results to come in Section 5.8 and the army ant bridges in [98], short-

cutting closer to the bottom of the gap when θ is small and staying almost entirely on land

when θ is large.

These simulations demonstrate the successful application of our stochastic approach to

shortcut bridging. Moreover, experimenting with variants suggests this approach may be

useful for other related applications in the future.
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(a) (b)
(c)

Figure 5.17: A particle system using biases λ = 4 and γ = 2 to shortcut a V-shaped land
mass with angle (a) π/6, (b) π/3, and (c) π/2 after 20 million iterations of Markov chain
M. For a given angle, the land mass L and initial configuration σ0 were constructed as
described in Section 5.8.

5.8 Dependence of Bridge Structure On Gap Angle

To understand the relationship between bridging and shape, we consider V-shaped land

masses of various angles (e.g., Figure 5.14a). We prove our shortcut bridging algorithm

has a dependence on the internal angle θ of the gap similar to that of the army ant bridges

studied by Reid et al. [98]. We show that when θ is sufficiently small, with all but expo-

nentially small probability the bridge constructed by the particles stays close to the bottom

of the gap (away from the apex of angle θ). On the other hand, we show that for some

large values of θ, when λ and γ satisfy certain conditions, with all but exponentially small

probability the bridge stays close to the top of the gap. We prove these results with a Peierls

argument and careful analysis of the geometry of the gap. Throughout this section we will

measure angles in radians, rather than degrees.

We first formalize our V-shaped land mass L for any θ ∈ (0, π); see Figure 5.18a

(θ ∼ π/6) and Figure 5.18b (θ ∼ π/2). Let e ∈ E be any edge of the triangular lattice

and label its endpoints as v1 and v2. Extend line segment `1 from v1 such that it forms an

angle of π/2 + θ/2 with e. Similarly extend line segment `2 from v2, of the same length

and on the same side of e as `1, also forming an angle of π/2 + θ/2 with e. Segments `1

and `2 then differ in their orientation by angle θ. Without loss of generality, we assume `1 is

clockwise from `2 around e. The land mass consists of v1, v2, and all vertices of Γ outside
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Figure 5.18: The land mass L of constant width 5 for (a) a small value of θ ∼ π/6 and
height 8 and (b) a large value of θ ∼ π/2 and height 9. Point m is the midpoint of the
segment between the midpoints of `1 and `2, and b is shown as a dashed line.

of `1 and `2 up to some constant width; e.g., in Figure 5.18 that width is five. This careful

definition involving edge e is necessary to ensure there are no adjacent land locations on

opposite sides of the gap, as could happen for small θ if the land mass is not constructed

carefully.

From now on we will, in a slight abuse of notation, refer to the gap locations between `1

and `2 as the gap. By the bottom of the gap, we mean the line b through `1 and `2’s other

endpoints (not v1 and v2). We may assume b is a line of the triangular lattice by truncating `1

and `2 so that both end on a lattice line; this does not change the land mass L. We also

assume b ∩ `1 and b ∩ `2 are not vertices of the triangular lattice Γ; if they are, we can

perturb `1 and `2 slightly, without changing the land mass. Note b is always parallel to e.

The height of land mass L is the length of a shortest path in Γ from v1 or v2 to b that

only visits land locations; the land mass in Figure 5.18a has height 8, while the land mass in

Figure 5.18b has height 9. Let m be the midpoint of the segment connecting the midpoints

of `1 and `2; m is in the center of the gap, halfway between e and b.

The initial configuration σ0 we consider is a path of width 2 lining the interior sides of

the land mass L; see Figure 5.19. We position the two fixed objects of O in line b at the
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Figure 5.19: The initial configuration σ0, with particles shown in black and objects enlarged
and red, for (a) a small value of θ ∼ π/6 and (b) a large value of θ ∼ π/2. Point m is the
midpoint of the segment between the midpoints of `1 and `2, and b is shown as a dashed
line.

second vertices outside `1 and `2, anchoring the particles on either side of the gap. Note the

height of L is exactly the number of particles in σ0 next to `1 (or `2), excluding v1 and v2.

Lemma 5.42. Let L be a V-shaped land mass of height k and angle θ. The initial configu-

ration σ0 has 4k + 5 particles and two objects.

Proof. First, suppose θ ≤ π/3, as in Figure 5.19a. Each lattice line parallel to e and

intersecting `1 and `2, up to but not including b, contains exactly four particles. There are

k such lattice lines. Line b contains two particles. In the lattice line above and parallel to e,

there are three particles. In total, this gives 4k + 2 + 3 = 4k + 5 particles and two objects.

Now, suppose θ > π/3, as in Figure 5.19b; a different counting approach is necessary.

Consider the lattice line through v1 and the gap location adjacent to v1 and v2; this line and

all lines parallel to it intersecting `1 contain exactly two particles, and there are k such lines.

The same is true for v2 and `2. Uncounted by this approach are five additional particles:

the two particles adjacent to each of the two objects, and the particle adjacent to v1 and v2.

In total, this gives 2k + 2k + 4 + 1 = 4k + 5 particles and two objects.
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For a given σ, let x be the particle or object contained in line b farthest outside of `1, and

let y be the particle or object in line b farthest outside of `2. We will refer to the perimeter

of σ traversed counterclockwise from x to y as the inner perimeter of σ, and the perimeter

of σ traversed clockwise from x to y as the outer perimeter of σ. We say the inner perimeter

is above a point p if p is to the right of the inner perimeter traversed from x to y; it is below

a point p if p is to its left.

We can partition Ω into two sets S1 and S2, where S1 contains all configurations whose

inner perimeter is strictly above midpoint m of the gap and S2 contains all configurations

whose inner perimeter goes through or below m. We first prove that for λ > 2 +
√

2 (i.e.,

in the range of compression) and γ > 1, there is an angle θ1 such that for all θ < θ1, π(S1)

is exponentially small. We then prove that for λ > 2 +
√

2 and γ > λ4(2 +
√

2)4, there is

a θ2 such that for all θ ∈ (π/3, θ2), π(S2) is exponentially small. We expect much better

bounds θ1 and θ2 can be obtained with more effort, and that these results generalize to all

λ > 2 +
√

2 and γ > 1, but here we simply demonstrate it is possible to give rigorous

results about the dependence of the bridge structure on θ.

5.8.1 Proofs for Small θ

We begin with some structural lemmas.

Lemma 5.43. Let L be a V-shaped land mass of height k and angle θ ≤ π/3. Then any

path in Γ that starts and ends at the bottom of gap and goes strictly above the midpoint m

of the gap has length at least k + 1.

Proof. For θ ≤ π/3, there are k − 1 lattice lines parallel to b strictly between b and e.

Of these lines exactly d(k − 1)/2e are below or contain m. Any path from b to a location

above m and back to b must contain at least two vertices in each of these lattice lines,

two vertices in b, and one vertex strictly above m, giving a total of 3 + 2d(k − 1)/2e ≥

3+2((k−1)/2) = k+2 vertices. As the length of a path is the number of edges it contains,

the path must have length at least k + 1.
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Figure 5.20: Figures from proofs in Section 5.8.1. (a) A depiction of the notation used in
the proof of Lemma 5.44; the intersection of b8 and the gap is depicted as a solid segment,
which is of length 8

√
3 tan(θ/2)+1 and contains 4 gap locations. (b) The configuration σ∗

used in Lemma 5.45 for θ = π/6 and k = 8.

Lemma 5.44. The i-th lattice line below and parallel to e contains h(i) gap locations

between `1 and `2, where

i
√

3 tan
θ

2
≤ h(i) ≤ i

√
3 tan

θ

2
+ 2.

Proof. Let bi be the i-th lattice line below and parallel to e. We use trigonometry to analyze

the length of bi between `1 and `2; see Figure 5.20a. Consider the triangle formed by bi, `1,

and the line perpendicular to e at v1, which we call `∗. Lines `1 and `∗ form an angle of

θ/2, and the distance between e and bi along `∗ is i
√

3/2. It follows that the length of bi

between `1 and `∗ is i
√

3 tan(θ/2)/2. Altogether, this implies bi between `1 and `2 is of

length i
√

3 tan(θ/2) + 1. As each edge of the triangular lattice is length 1, this means there

are between i
√

3 tan(θ/2) and i
√

3 tan(θ/2) + 2 gap locations in bi, as claimed.

Lemma 5.45. Let L be a V-shaped land mass of height k and angle θ ≤ π/3. Then the

normalizing constant Z of the stationary distribution π ofM satisfies

Z ≥ C
[
(λγ)−2

√
3 tan θ

2

]k
,
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for a constant C that depends on θ, λ, and γ but not on k.

Proof. Observe that Z =
∑

σ∈Ω λ
−p(σ)γ−g(σ) satisfies Z ≥ λ−p(σ

∗)γ−g(σ
∗) for any σ∗ ∈ Ω.

We now construct a particular σ∗ (Figure 5.20b) and calculate its perimeter and gap perime-

ter. Let σ∗ contain a straight line of particles along b connecting the two objects, and let u

be the number of objects and particles in this line. By Lemma 5.44, since b = bk and u

includes two particles on land as well as two objects,

k
√

3 tan
θ

2
+ 4 ≤ u ≤ k

√
3 tan

θ

2
+ 6.

Continue constructing σ∗ by placing rows of u particles above this initial row such that

the row starts and ends on opposite sides of the gap. By Lemma 5.42, there are 4k + 7

total objects and particles, so there will be v = d(4k + 7)/ue such rows, with the last row

possibly incomplete. We note that v satisfies:

v =

⌈
4k + 7

u

⌉
≤ 4k + 7

u
+ 1 ≤ 4k + 7

k
√

3 tan θ
2

+ 4
+ 1 ≤ 4√

3 tan θ
2

+
7

4
+ 1 ≤ 4√

3 tan θ
2

+ 3

v =

⌈
4k + 7

u

⌉
≥ 4k + 7

u
≥ 4k + 7

k
√

3 tan θ
2

+ 6
≥ 4k

k
√

3 tan θ
2

+ 6k
≥ 4√

3 tan θ
2

+ 6

Configuration σ∗ has perimeter at most 2u+2v−4 and gap perimeter at most u−4+z,

where z is the number of particles occupying gap locations in the upper perimeter of σ∗.

These z remaining particles must be in either the (k − v + 1)-th or (k − v + 2)-th lattice

lines below e, so we can bound z by again applying Lemma 5.44:

z ≤ (k − v + 1)
√

3 tan
θ

2
+ 2.
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Altogether, this implies:

p(σ∗) ≤ 2u+ 2v − 4

≤ 2k
√

3 tan
θ

2
+ 12 +

8√
3 tan θ

2

+ 6− 4

≤ k

(
2
√

3 tan
θ

2

)
+

(
8√

3 tan θ
2

+ 14

)
,

and

g(σ∗) ≤ u− 4 + z

≤ k
√

3 tan
θ

2
+ 6− 4 + (k − v + 1)

√
3 tan

θ

2
+ 2

≤ 2k
√

3 tan
θ

2
+

(
− 4√

3 tan θ
2

+ 6
+ 1

)
√

3 tan
θ

2
+ 4

≤ k

(
2
√

3 tan
θ

2

)
+

(
√

3 tan
θ

2
− 4

√
3 tan θ

2√
3 tan θ

2
+ 6

+ 4

)
.

We note that the second parentheses in the final bounds above for p(σ∗) and g(σ∗) are

constants that only depend on θ. This implies that there is a constant

C = λ
−
(

14+ 8√
3 tan θ2

)
γ
−
(√

3 tan θ
2
− 4
√

3 tan θ2√
3 tan θ2 +6

+4

)

such that

Z ≥ λ−p(σ
∗)γ−g(σ

∗) ≥ C
[
(λγ)−2

√
3 tan θ

2

]k
.

As claimed, C depends only on λ, γ, and θ, and is independent of k.

Theorem 5.46. Let λ > 2 +
√

2 =: c and γ > 1. Then there exists a constant θ1 such that

for all V-shaped land masses with angle θ < θ1, the probability that the inner perimeter is

above midpoint m is exponentially small in k, the height of the gap. In particular,

θ1 = 2 tan−1

(
logλγ (λ/c)√

3

)
.
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Proof. Recall that S1 ⊆ Ω is the set of configurations for which the inner perimeter is

strictly above m. We show that S1 has exponentially small weight at stationarity; in partic-

ular, we show π(S1) is bounded above by f2(k)ξk, where f2(k) is a subexponential function

and ξ < 1 is a constant.

If σ ∈ S1, then by Lemma 5.43 we have p(σ) ≥ 2k + 2, as both its inner and outer

perimeters must go above m. Furthermore, because the perimeter by definition includes

both objects and particles, which number 4k + 7 by Lemma 5.42, any configuration σ ∈ Ω

has p(σ) ≤ 2(4k + 7)− 2 = 8k + 12. Lemma 5.23 shows the number of connected, hole-

free particle configurations with perimeter p is at most f(p)(c)p for some subexponential

function f . This is certainly also an upper bound on the number of configurations in S1

with perimeter p. Because γ−g(σ) < 1, we have:

π(S1) =
∑
σ∈S1

λ−p(σ)γ−g(σ)

Z
<

8k+12∑
p=2k+2

f(p)cpλ−p

Z
.

Let f1(k) =
∑8k+12

p=2k+2 f(p), and note that this function is subexponential in k because its

number of summands is linear in k. Because λ > c and p ≥ 2k + 2, we have that:

π(S1) ≤ f1(k)
(
c
λ

)2k+2

Z
.

By Lemma 5.45, there is a constant C1 = c2/(λ2C) such that:

π(S1) ≤ f1(k)
(
c
λ

)2k+2

C
[
(λγ)−2

√
3 tan θ

2

]k = C1f1(k)

(
c(λγ)

√
3 tan θ

2

λ

)2k

.

For all θ < 2 tan−1
(
logλγ(λ/c)/

√
3
)
, the term in parentheses above is less than one:

ξ :=
c(λγ)

√
3 tan θ

2

λ
<
c(λγ)

logλγ

(
λ

2+
√

2

)
λ

= 1.
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Figure 5.21: The path of length k (bold) from vertex v1 to the first land location in line b
considered in the proof of Lemma 5.47; this path is used to calculate the gap height k in
terms of the gap depth q. By also considering the reflection of this path from v2 (solid line),
we can calculate the distance between the two objects to be q + 2dwe+ 3 (Lemma 5.48).

It follows that there exists a constant ξ < 1 and a subexponential function f2(k) = C1f1(k)

such that π(S1) < f2(k)ξk, proving the theorem.

Since n = 4k + 5 by Lemma 5.42, the probability that the inner perimeter is above

point m is also exponentially small in n, the number of particles.

As an example, for λ = 4 and γ = 2 (the parameters of the simulation in Figure 5.15),

our methods give θ1 = 0.0879 ∼ 5.03◦. However, simulations suggest this bound is far

from tight. In general, as λ increases, so does the angle θ1: a stronger bias towards a shorter

perimeter means the bridge forms closer to the bottom of the gap and at even larger angles

the bridge remains below m. Similarly, as γ decreases the bridge moves down towards the

bottom of the gap and at even larger angles remains below m.

5.8.2 Proofs for Large θ

We now consider the set S2 = Ω \ S1, which consists of all configurations where the inner

perimeter goes through or below m. We will show that for some large angles θ, for all

λ > 2+
√

2 and γ > (2+
√

2)4λ4, π(S2) is exponentially small. While a lower bound on γ

is necessary for the proofs presented below, we believe this is an artifact of our proof rather

191



than the problem itself and suspect this requirement can be loosened or removed altogether.

For θ ≥ π/3, it is no longer true that a V-shaped land mass of height k has exactly k−1

lattice lines between b and e. We define a new quantity q, the gap depth, as the length of a

shortest path from e to b in Γ; unlike in the definition of the height k of a gap, this shortest

path is not required to stay on land locations. The Euclidean distance between e and b is

then
√

3q/2. Furthermore, q can be expressed as a function of k and θ.

Lemma 5.47. For a V-shaped land mass of height k and angle θ ≥ π/3, the gap depth q

satisfies

k =

⌈(
1

2
+

√
3

2
tan

θ

2

)
q

⌉
.

Proof. Consider the path from v1 to line b that leaves v1 forming an angle of 2π/3 with e,

and then proceeds along b until it reaches a land location; see Figure 5.21, where this path is

shown in bold. The total length of this path is k, and its first segment from v1 to b is length q.

Let w be the length of b between this path’s turning point and `1; then k = q + dwe. This

path and `1 form an obtuse triangle where two sides have lengths q and w, respectively.

The angle opposite the side of length w is θ/2 − π/6, while the angle opposite the side of

length q is π − 2π/3− (θ/2− π/6) = π/2− θ/2. Length w can be calculated in terms of

length q with the law of sines:

w =
sin
(
θ
2
− π

6

)
sin
(
π
2
− θ

2

) q =
sin θ

2
cos π

6
− cos θ

2
sin π

6

cos θ
2

q =

√
3

2
sin θ

2
− 1

2
cos θ

2

cos θ
2

q =
q
√

3

2
tan

θ

2
− q

2
.

Because q is an integer, it follows that

k = q + dwe =

⌈
q +

q
√

3

2
tan

θ

2
− q

2

⌉
=

⌈(
1

2
+

√
3

2
tan

θ

2

)
q

⌉
,

which is the desired result.

For simplicity, we do the bulk of our analysis using q instead of k. The previous lemma

shows that proving an expression is exponentially small in q implies it is also exponentially
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Figure 5.22: From the proof of Lemma 5.49: (a) An example of a shortest path between
land locations on opposite sides of the gap passing through midpoint m. (b) The four
possible locations for midpoint m for which a shortest path passing through or below m
contains m′, and a shortest path from m′ to a land location (solid line).

small in k.

Lemma 5.48. For any V-shaped land mass of gap depth q and angle θ ≥ π/3, any config-

uration σ has perimeter at least

p(σ) ≥
(

2
√

3 tan
θ

2

)
q + 6.

Proof. We first bound the distance between the two objects on either side of the gap. Using

the length w from the proof of Lemma 5.47, the distance between the two objects in any

configuration is q+2dwe+3 ≥ q+2w+3 (see Figure 5.21). The perimeter of any particle

configuration is at least twice this distance, so for any σ,

p(σ) ≥ 2q + 4w + 6 = 2q + 4

(
q
√

3

2
tan

θ

2
− q

2

)
+ 6 =

(
2
√

3 tan
θ

2

)
q + 6,

which is the desired bound.

Lemma 5.49. For any V-shaped land mass of gap depth q and angle θ > π/3, any con-

figuration σ ∈ S2 (passing below or through midpoint m of the gap) has gap perimeter

g(σ) ≥ q
2
.

Proof. If σ ∈ S2, i.e., if its inner perimeter passes through or belowm, then it must contain
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a path that starts and ends at land locations and also passes through or below m. We

consider all such paths and give a lower bound on the number of gap locations they must

contain. The shortest such paths start and end on opposite sides of the gap, so we focus on

paths of this type.

If m is a vertex of Γ, one shortest path between land locations passing through m

leaves m along the two lattice lines not parallel to e and follows them until reaching the

land mass, as in Figure 5.22a. If m is on a lattice edge, a shortest path passing below m

is constructed in the same way, beginning from each of the edge’s endpoints. Otherwise,

if m is neither a lattice point nor on a lattice edge, the same procedure is followed for the

first lattice point or lattice edge below m. In all cases, let m′ be the point of intersection

between this path and `∗, the line perpendicular to e through v1. Figure 5.22b shows all

the possible locations of m producing a particular m′. Inspection shows that in all of these

cases, m′ is contained in the 2b q+1
4
c-th lattice line below e.

Let `1 be the line from v1 to b forming an angle of 2π/3 with e; see Figure 5.22b.

Because θ > π/3, all vertices of Γ contained in `1, except v1, are gap locations. Any

shortest path fromm′ to a land location must share a vertex of Γ with line `1. Becausem′ is

in the 2b q+1
4
c-th lattice line below e, any path from m′ to `1 is of length at least b q+1

4
c and

contains at least b q+1
4
c + 1 gap locations, including both of its endpoints. By symmetry,

this means any path between land locations passing below m, and thus any inner perimeter

of a particle configuration passing below m, contains at least

2

(⌊
q + 1

4

⌋
+ 1

)
≥ 2

(
q − 2

4
+ 1

)
≥ q

2

gap locations, as claimed.

Theorem 5.50. Let λ > 2+
√

2 =: c and γ > (λc)4. Then there exists a constant θ2 > π/3

such that for all V-shaped land masses with angle θ ∈ (π/3, θ2), the probability that the

inner perimeter goes through or below midpoint m is exponentially small in k, the height
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of the gap.

Proof. Recall S2 is the set of all configurations whose inner perimeter goes through or

below m. We show that π(S2) is exponentially small in k, the height of the gap. By

definition,

π(S2) =

∑
σ∈S2

λ−p(σ)γ−g(σ)

Z
.

By Lemma 5.42, the number of particles and objects in σ0 for a land mass of height

k is 4k + 7. Since σ0 is a path of width 2 and every particle occupies a land location,

p(σ0) = 4k + 7 and g(σ0) = 0. Thus,

Z =
∑
σ∈Ω

λ−p(σ)γ−g(σ) ≥ λ−p(σ0)γ−g(σ0) = λ−4k−7.

It is simpler to work with gap depth q instead of gap height k. By Lemma 5.47, k satisfies

k ≤
(

1
2

+
√

3
2

tan θ
2

)
q + 1, so

Z ≥ λ−4k−7 ≥ λ
−4

(
1
2

+
√

3
2

tan θ
2

)
q−4−7

= λ−(2+2
√

3 tan θ
2)q−11.

Combining this with Lemma 5.49,

π(S2) =
∑
σ∈S2

λ−p(σ)γ−g(σ)

Z
≤ λ(2+2

√
3 tan θ

2)q+11
∑
σ∈S2

λ−p(σ)γ−
q
2 .

Let pmin (resp., pmax) be the minimum (resp., maximum) possible perimeter for a valid

particle configuration in S2. By Lemma 5.48, pmin ≥ 2
√

3 tan(θ/2)q. As shown in the

proof of Theorem 5.46, pmax = 8k + 12; in terms of q, by Lemma 5.47,

pmax ≤ 8

(
q

2
+
q
√

3

2
tan

θ

2
+ 1

)
+ 12 = 4q + 4q

√
3 tan

θ

2
+ 20.

Using the result from [21] which upper bounds the number of particle configurations

with perimeter p by the expression f(p)cp, for some subexponential function f , we have
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that:

π(S2) ≤ λ(2+2
√

3 tan θ
2)q+11

pmax∑
p=pmin

f(p)cpλ−pγ−
q
2

≤ λ(2+2
√

3 tan θ
2)q+11

(
pmax∑
p=pmin

f(p)

)(
c

λ

)pmin
γ−

q
2

≤
(
λ11

pmax∑
p=pmin

f(p)

)(
λ(2+2

√
3 tan θ

2)
(
c

λ

)2
√

3 tan θ
2

γ−
1
2

)q

=

(
λ11

pmax∑
p=pmin

f(p)

)(
λ2c2

√
3 tan θ

2γ−
1
2

)q
.

The first parentheses is a function f1(q) that is subexponential in q, as it has a polyno-

mial number of summands based on our calculations of pmin and pmax (which are expres-

sions in terms of q), and each summand is subexponential. When the term in the second

set of parentheses above is less than one, this whole expression is exponentially small in q,

the gap depth, and thus exponentially small in the gap height k. This holds whenever θ

satisfies:

θ < 2 tan−1

(
1

2
√

3
logc

(
γ1/2λ−2

))
= 2 tan−1

(
1√
3

logc

(
γ1/4

λ

))
=: θ2.

Whenever γ1/4/λ > c — i.e., whenever γ > (λc)4 — the argument of tan−1 above is

at least 1/
√

3, and thus θ2 > π/3. It follows that whenever γ > (λc)4 and θ ∈ (π/3, θ2),

π(S2) < f1(q)ψp,

where f1(q) is a function that is subexponential in q and ψ < 1. We conclude that under

these conditions the weight of set S2 at stationarity is exponentially small in q, and thus

also exponentially small in k, the gap height.

This concludes our work on the shortcut bridging problem, which we have provably

solved with a Markov chainM that can be directly translated to a stochastic, distributed,
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local, asynchronous algorithm A. Furthermore, in the special case of bridging over the

gap in a V-shaped land mass, we rigorously analyzed the effect of the gap’s internal angle,

showing that below one threshold angle the bridge will shortcut near the bottom of the

gap, and above another threshold angle the bridge will remain close to land, with high

probability.

The successful application of our stochastic approach to shortcut bridging suggests that

this approach may be useful for other types of bridging problems as well; one related be-

havior of particular interest is “exploration bridging”, where a particle system first explores

its environment to discover sites of interest, and then converges to a bridge-like structure

between these sites. We are also interested in formulating alternative local rules for shortcut

bridging which result in bridges that appear more “structurally sound”, though we suspect

that the information needed for doing so may be difficult to encode in our particle systems

due to the constant-size memory constraint of the amoebot model.

5.9 Further Applications of the Stochastic Approach to Programmable Matter

Beyond bridging, compression, and expansion, there exists a plethora of other problems

within programmable matter for which the stochastic approach seems promising; we be-

lieve we have so far only scratched the surface. For example, in more recent applied work

in swarm robotics, we use a Markov chain algorithm for a self-organizing particle system

to provide a theoretical explanation of a behavior our physicist collaborators were observ-

ing in their robot swarm [23]. Current work includes applying the stochastic approach to

the separation problem, where particles of different colors either intermingle or segregate

based on the values of bias parameters.

More broadly, for any objective that can be described by a global energy function,

where changes to the energy function when one particle moves one unit can be calculated

with local information, our approach offers a method for developing a distributed algorithm

that converges to a distribution that favors configurations with the lowest energy. However,
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entropy concerns must also be taken into account. If there are many more configurations

with high energy than with low energy, even though the low energy configurations are most

favorable a configuration drawn from the stationary distribution may be more likely to have

high energy. This is why, for instance, we don’t see compression for all λ > 1, even though

λ > 1 corresponds to favoring smaller perimeter configurations. For this reason, chains

must be biased enough to guarantee low energy configurations dominate the state space,

even if there are many high energy configurations. We used Peierls arguments to analyze

this energy/entropy trade-off for compression, expansion, and the dependence of bridge

structure on gap angle, and expect similar approaches may work for future problems.
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