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SUMMARY

This thesis consists of three chapters on various topics in discrete geometry. The

main theme of the first chapter is about lattice points, while the second and third

chapters are on the subject of oriented matroids.

In the first chapter, we analyse the distribution of lattice points in a half-open

parallelepiped. In particular, we give an explicit presentation of the linear span of

the lattice points inside of a half-open integral parallelepiped, in terms of the edges

which generate the parallelpiped.

In the second chapter, we study polyhedral realizations of oriented matroids. In

particular, we study a polyhedral fan which plays the role of the Bergman fan for

oriented matroids. We show that this fan is a subfan of the normal fan of a certain

naturally defined polytope which we call the signed matroid polytope. We study the

cones of this fan, and describe their extreme rays explicitly. In the case when the ori-

ented matroid is uniform, we show that the face lattice of this fan is anti-isomorphic

to the face poset of the cellular decomposition of a pseudosphere arrangement repre-

senting the oriented matroid.

In the third chapter, we revisit the problem of tilings of zonotopes by zonotopes.

We give a new proof of one direction of the Bohne-Dress theorem, which states that

zonotopal tilings of a zonotope arise from single element liftings of the oriented ma-

troid associated to the zonotope. This proof is topological in nature, and the chirotope

plays a central role. We also speculate on generalizations of the Bohne-Dress theorem

to the nonrealizable setting.

x



Part I

Lattice points
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CHAPTER 1

LATTICE POINTS IN A PARALLELEPIPED

Introduction

Let n be a positive integer and let Λ denote a lattice in Rn that contains the integer

lattice Zn. We are interested in understanding the combinatorics of the lattice points

of Λ inside the half-open cube

[0, 1)n := {(x1, . . . , xn) ∈ Rn : 0 ≤ xi < 1 for all i = 1, 2, . . . , n} .

In general, questions about these points are difficult. For instance, if Λ = 1
2Zn and

u = (u1, . . . , un) ∈ Rn has integral coordinates, then the problem of deciding if there

exists a nonzero point in Λ ∩ [0, 1)n on the hyperplane {x ∈ Rn : 〈u, x〉 = 0} is NP-

complete. Indeed, it is straightforward to reduce subset-sum to this problem; such

a point exists if and only if some integers in the multiset {u1, . . . , un} sum to zero. As

pointed out by Sebő in [1, p. 401], the well-known Lonely Runner Conjecture [2] can

be stated as a problem about the existence of a lattice point in Λ ∩ [0, 1)n satisfying

certain linear inequalities where the lattice Λ is generated by Zn plus a rational vector

v ∈ Rn encoding the speeds of the runners.

Our approach to understanding the lattice points in Λ∩ [0, 1)n begins with a result

that is commonly attributed to G. K. White [3] but was discovered independently by

several others [4, 5]. It says that a tetrahedron T in R3 which has integral vertices

but no other integral points must be “sandwiched” between two parallel lattice hy-

perplanes. More precisely, there exists an integral normal vector u = (u1, u2, u3) and

an integer δ such that two of the vertices of T lie on the plane 〈u, x〉 = δ and the

other two lie on the plane 〈u, x〉 = δ + 1. We may assume that one of the vertices
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of the tetrahedron lies at the origin, so that there are three integral vectors v, v′, v′′

corresponding to the three edges of the tetrahedron incident to the origin. The tricky

part of White’s theorem is to show that, after applying a unimodular transformation

(i.e. a linear transformation of Rn which fixes Zn), we may further assume that

v = (1, 0, 0), v′ = (0, 1, 0), and v′′ = (1, a, r) where a and r are positive integers

such that a < r and a is coprime to r. From there, the normal vector u = (1, 0, 0)

establishes the conclusion of the theorem.

The triples λ = (λ1, λ2, λ3) ∈ R3 such that λ1v + λ2v
′ + λ3v

′′ ∈ Z3 form a lattice

Λ ⊂ R3 which contains the integer lattice Z3. Moreover, T contains a non-vertex

integral point if and only if there exists some nonzero λ ∈ Λ ∩ [0, 1)3 such that

λ1 + λ2 + λ3 ≤ 1. Indeed, such a λ corresponds to a proper convex combination of at

least two vertices of T . A short exercise shows that there are exactly r lattice points in

Λ∩ [0, 1)3 and they are of the form ({k/r}, {ka/r}, {−k/r}) for k = 0, 1, 2, . . . , d− 1.

Here {x} denotes the fractional part of the real number x, the unique real number

in [0, 1) congruent to x mod 1. In particular, we can view the emptiness of T as a

consequence of the fact that the first two components of every nonzero λ ∈ Λ∩ [0, 1)3

sum to 1 and therefore the sum λ1 + λ2 + λ3 exceeds 1.

More generally, if Λ ⊂ Rn is a lattice that contains Zn, then we can think of the

presence of such complementary pairs of coordinates as a restriction on the extent to

which the nonzero points in Λ∩ [0, 1)n can deviate from the hyperplane x1 + · · ·+xn =

n/2. Sebő asks in [1] about the most restrictive case, where all the nonzero lattice

points in Λ∩ [0, 1)n lie on this hyperplane. He conjectures that this can only happen

if the coordinates can be grouped into n/2 pairs of complementary coordinates as

above. More precisely, suppose Λ is a lattice in Rn generated by Zn and the point
1
r

(a1, . . . , an), where the ai’s are positive integers coprime to a positive integer r. Note

that for every (λ1, . . . , λn) ∈ Λ ∩ [0, 1)n, there exists an integer 0 ≤ k < r such that

λi = {kai/r} for each i = 1, 2, . . . , n. Sebő asks if the following statement is true:
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Conjecture 1.1.1. The equality

λ1 + λ2 + · · ·+ λn = n/2

holds for all nonzero λ ∈ Λ ∩ [0, 1)n if and only if n is even and (after possibly

reordering) ai + ai+1 = r for i = 1, 3, 5, . . . , n− 1.

In [1], Sebő proves the case n = 4 of his conjecture and uses it to deduce White’s

theorem.

It turns out, however, that Sebő’s conjecture had already been established some

years earlier by Morrison and Stevens in their paper [6] (see also [7]). Although

they were also primarily interested in the case n = 4, their proof stands out as

it easily extends to all positive even integers n. In [6], Morrison and Stevens use

this result to derive a complete classification of three dimensional isolated terminal

cyclic quotient singularities and four dimensional isolated Gorenstein terminal cyclic

quotient singularities. The survey paper of Borisov [8] provides a nice description and

some interesting number-theoretic applications of this problem.

In [9, Theorem 5.4], Reid proves a stronger version of Conjecture 1.1.1 that does

not require the ai’s to be coprime to r. Given a lattice Λ ⊂ Rn generated by Zn

and a point 1
r
(a1, . . . , an) where the ai’s are positive integers less then r, he finds a

characterization for when all lattice points in Λ ∩ [0, 1)n lie in a given hyperplane

through the origin. We show in Section 1.3 how to deduce Sebő’s conjecture from

Reid’s result, known as the Terminal Lemma. In [9, Section 6], Reid shows how the

Terminal Lemma can be systematically applied to obtain Mori’s classification results

on three dimensional terminal singularities found in [10].

Other variations of Conjecture 1.1.1 have found application in Ehrhart theory;

in particular the problem of classifying lattice polytopes with a given h∗-polynomial.

In [11], Batyrev and Hofscheier give a classification of all lattice polytopes whose
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h∗-polynomial is of the form h∗ (t) = 1 + ctk for some positive integers c, k in terms

of particular linear codes. This work was further developed by Higashitani, Nill,

and Tsuchiya in [12] in order to obtain a combinatorial description of Gorenstein

polytopes with a trinomial h∗-polynomial. A key ingredient of these results is a

version of Conjecture 1.1.1 applicable to lattices Λ ⊂ Rn containing Zn with the

property that the quotient group Λ/Zn is isomorphic to the additive group of a finite

field.

In this paper, we establish of a variation of Conjecture 1.1.1 which imposes no

restrictions on the lattice Λ ⊂ Rn except that it must contain the integer lattice

Zn. The paper is organized into six sections. Following the introduction, Section 1.2

outlines the basic notation and concepts we use. In Section 1.3, we state our main

theorem, which directly generalizes Reid’s Terminal Lemma by dropping the assump-

tion Λ/Zn must be cyclic. From our theorem we deduce a formula for the dimension

of the linear span of the points in Λ ∩ [0, 1)n. We also state a natural generalization

of Conjecture 1.1.1 when there are no assumptions on the group structure of Λ/Zn.

Finally, we state the two main technical tools needed to prove our main theorem.

Section 1.4 outlines the proof of our main theorem using these two tools, both of

which are statements about an arbitrary additive finite abelian group G. Section 1.5

contains the proof of the first technical tool, which asserts that a specific collection of

indicator functions defined on G is linearly independent. In Section 1.6 is the proof

of the second technical tool, which gives a specific spanning set for the space of func-

tions f : G→ C satisfying f(−a) = −f(a) for all a ∈ G. At a high level, we mostly

follow the path laid out by Reid in [9]. We differ somewhat in the details, however,

by making liberal use of the results in [13, Section 9.2].
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Background and notation

Notation

For u = (u1, . . . , un) ∈ Rn and v = (v1, . . . , vn) ∈ Rn, we let 〈u, v〉 = u1v1 + · · · +

unvn denote the usual dot product. If v is a vector in a vector space with specified

coordinates, then supp (v) denotes the set of coordinates i for which vi 6= 0. For

x ∈ R, we define {x} to be the unique real number in the half-open interval [0, 1) in

which x− {x} is an integer. We frequently make use of the fact that for any x ∈ R,

{x}+{1−x} equals 1 if x /∈ Z and 0 otherwise. We define the first periodic Bernoulli

function B1 : R → R by

B1 (x) :=


{x} − 1/2, x /∈ Z

0, x ∈ Z.

For x+ Z ∈ R/Z, we also define B1 (x+ Z) := B1 (x).

For a finite group G, we denote the space of complex functions f : G → C by

L2(G) which forms a vector space under pointwise addition and comes with the inner

product

〈f, h〉 = 1
|G|

∑
g∈G

f(g)h(g).

Character theory of finite abelian groups

We refer the reader to [14] and [15] for an introduction to the character theory of finite

abelian groups, and record some key facts here. For a finite abelian group G, let Ĝ

denote the multiplicative group of homomorphisms G → C× from G to the nonzero

complex numbers. The group operation of Ĝ is given by pointwise multiplication:

(χψ) (g) := χ (g)ψ (g) for each g ∈ G and for each χ, ψ ∈ Ĝ. The inverse of χ ∈ Ĝ

satisfies χ−1(g) = χ(g) for all g ∈ G; we therefore denote χ−1 by χ. Elements in Ĝ
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are called characters of G, and they form an orthonormal basis of L2(G). There is

an isomorphism G ' Ĝ and we identify G with ̂̂G via the natural isomorphism which

takes g ∈ G to the point evaluation map (χ 7→ χ(g)) ∈ ̂̂G. For a subgroup K of G,

let

K⊥ := {χ ∈ Ĝ : χ (k) = 1 for all k ∈ K}

which is a subgroup of Ĝ. With the above identification of G and ̂̂G, we have K⊥⊥ :=

(K⊥)⊥ = K.

We define e : R/Z → C× to be the injective group homomorphism x + Z 7→

exp (2πix). Since the additive group R/Z embeds into the multiplicative group C×

of nonzero complex numbers via the map x + Z 7→ e (x), it follows that the additive

group H := HomZ (G,R/Z) is isomorphic to the multiplicative group Ĝ via the map

φ 7→ e ◦ φ. In this paper it will typically be more convenient to state results and

proofs in terms of H rather than Ĝ. However, we will sometimes take advantage of

both the multiplicative and additive structure offered by C and work with Ĝ instead.

Overview of results

We begin with our generalization of Reid’s Terminal Lemma as claimed in the ab-

stract. Let Λ ⊂ Rn be a lattice containing Zn. For i = 1, 2, . . . , n, let πi : Λ/Zn →

R/Z denote the coordinate projection map sending (λ1, . . . , λn) + Zn to λi + Z. Ob-

serve that these maps are homomorphisms in the additive group HomZ (Λ/Zn,R/Z)

under pointwise addition; thus, it makes sense to talk about −πi for each i. By re-

stricting to the appropriate subspace of Rn, we assume without loss of generality that

kerπi 6= Λ/Zn for any i.

Theorem 1.3.1 (Terminal Lemma, cf. [9, Theorem 5.4]). Let u = (u1, . . . , un) ∈ Rn.

7



Then 〈u, λ〉 = 0 for every λ ∈ Λ ∩ [0, 1)n if and only if

n∑
i=1
πi=πj

ui =
n∑
i=1

πi=−πj

ui (1.1)

and
n∑
i=1

kerπi=kerπj

ui = 0 (1.2)

for each j = 1, 2, . . . , n.

From this theorem several corollaries can be deduced. The first shows that the

dimension of the span of the lattice points of Λ in the half-open unit cube [0, 1)n can be

computed explicitly in terms of the coordinate projection functions πi : Λ/Zn → R/Z.

Let I denote the equivalence classes of the equivalence relation on the coordinates

{1, 2, . . . , n} in which i ∼ j in I if and only if πi = πj or πi = −πj. Let K denote

the equivalence classes of the equivalence relation on the coordinates {1, 2, . . . , n}

where i ∼ j in K if and only if ker(πi) = ker(πj). Note that K coarsens I since

ker(πi) = ker(−πi) for all i.

Corollary 1.3.2. The dimension of span(Λ ∩ [0, 1)n) is equal to ι+ κ, where

ι := |{I ∈ I : πi 6= −πi for some (and hence all) i ∈ I}|

and

κ := |{I ∈ K : πi = −πj for some (possibly equal) i, j ∈ I}| .

Proof. The distinct relations of the form (1.1) are in 1-1 correspondence with the

equivalence classes [i] ∈ I such that πi 6= −πi. Note that in case πi = −πi, the

relation (1.1) is trivial. Similarly, the distinct relations of the form (1.2) are in 1-1

correspondence with the equivalence classes of K . The collection of all these relations

are linearly independent except in the case when some J ∈ K does not contain any
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Table 1.1: An illustration of Theorem 1.3.1 and Corollary 1.3.2 for the lat-
tice Λ generated by Z8 and the two points λ = 1

10(1, 9, 3, 7, 1, 1, 3, 5) and λ′ =
1
10(2, 8, 6, 4, 1, 1, 3, 0). The coordinate projection maps πi : Λ/Z8 → R/Z are uniquely
determined by the two numbers λi and λ′i. In this example, ι = 4 (corresponding to
the classes I1, I2, I3, I4 in I ) and κ = 2 (corresponding to the classes J1, J3 in K ).
By Corollary 1.3.2, the dimension of the linear span of Λ ∩ [0, 1)8 is 6.

K J1 J2 J3

I I1 I2 I3 I4 I5

i 1 2 3 4 5 6 7 8

λi 0.1 0.9 0.3 0.7 0.1 0.1 0.3 0.5

λ′i 0.2 0.8 0.6 0.4 0.1 0.1 0.3 0.0

(1.1) relations u1 −u2 = 0 u5 +u6 = 0 u8 − u8 = 0

u3 −u4 = 0 u7 = 0

(1.2) relations u1 +u2 +u3 +u4 = 0 u5 +u6 +u7 = 0 u8 = 0

coordinates i, j for which πi = −πj. In this situation, the relation (1.2) corresponding

to J is already implied by the relations (1.1) corresponding to the equivalence classes

I ∈ I contained in J . Thus, after excluding the relations corresponding to such

J ∈ K , we conclude that the space of u ∈ Rn in which 〈u, λ〉 = 0 for all λ ∈ Λ∩[0, 1)n

has dimension n − ι − κ and hence the dimension of the span of Λ ∩ [0, 1)n equals

ι+ κ.

Observe that it is always true that

λ1 + · · ·+ λn + µ1 + · · ·+ µn = |supp (λ)| = |supp (µ)|

for every pair λ, µ ∈ Λ ∩ [0, 1)n for which λ + Zn = −µ + Zn. This follows from the

fact that for every i = 1, 2, . . . , n, we have either λi = 1 − µi if both λi and µi are

nonzero, or λi = µi = 0 otherwise. The next corollary characterizes the situation

where the “mass” of λ + µ is distributed as equally as possible between λ and µ for

all such pairs λ, µ. It is a direct generalization of Sebő’s Conjecture 1.1.1:
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Corollary 1.3.3 (cf. [1, Conjecture 4.1], [7, Proposition 1.8]). The equality

λ1 + · · ·+ λn = |supp (λ)|
2 (1.3)

holds for all λ = (λ1, . . . , λn) ∈ Λ ∩ [0, 1)n if and only if there exists an involution σ

of {1, 2, . . . , n} (i.e. a bijection satisfying σ = σ−1) such that λi + λσ(i) is an integer

for all i = 1, 2, . . . , n and λ ∈ Λ.

Example 1.3.4. If the coordinates of the points in Λ are all half-integral (i.e. Λ ⊂
1
2Zn), then Corollary 1.3.3 is trivial. Indeed, both the hypothesis and the conclusion

always hold; for the conclusion we may take σ to be the identity map.

Example 1.3.5. If Λ is generated by Zn and the point 1
r
(a1, a2, . . . , an), where the

ai’s are positive integers coprime to r, then we recover Conjecture 1.1.1. Indeed, in

this case |supp(λ)| = n for every nonzero λ ∈ [0, 1)n ∩ Λ, and λi + λσ(i) ∈ Z for all

i = 1, 2, . . . , n and λ ∈ Λ if and only if ai + aσ(i) = r for all i = 1, 2, . . . , n. This

follows from the fact that for every nonzero λ ∈ Λ∩ [0, 1)n there exists 1 ≤ k ≤ r− 1

such that λi = {kai/r} 6= 0 for each i = 1, 2, . . . , n.

Example 1.3.6. If ∆ ⊆ Rn−1 is a lattice polytope, then the Ehrhart series of ∆ is

given by

Ehr∆(t) =
∑
m≥0

∣∣∣m∆ ∩ Zn−1
∣∣∣ tm = 1 + h∗1t+ · · ·+ h∗n−1t

n−1

(1− t)n

and the numerator of the right-hand side is called the h∗-polynomial of ∆. If further-

more ∆ = conv(v1, . . . , vn) is a simplex, where each vi ∈ Zn−1, then it is known that

h∗k equals the number of λ ∈ Λ∆ ∩ [0, 1)n such that λ1 + · · · + λn = k [16, Corollary

3.11]. Here Λ∆ ⊂ Rn denotes the dual lattice of the lattice generated by (vi, 1) ∈ Zn

for i = 1, 2, . . . , n; equivalently, the lattice of points λ ∈ Rn such that 〈λ, (vi, 1)〉 ∈ Z

for all i.

Polytopes ∆ with h∗-polynomial of the form 1 + h∗kt
k for some positive k have

been completely classified by Batyrev and Hofscheier [11]. They show that such

10



a polytope ∆ must be a simplex; therefore, the corresponding lattice Λ∆ has the

property that λ1 + · · · + λn = k for all nonzero λ ∈ Λ∆ ∩ [0, 1)n. It follows that the

hypothesis of Corollary 1.3.3 applies to Λ∆, and the resulting involution σ appears

in their classification. They also describe some properties of Λ∆/Zn ; for instance,

Λ∆/Zn is isomorphic to the additive group of Fr
p for some prime p and integer r, and

the integer k satisfies (pr − pr−1)n = 2k(pr − 1).

Proof of Corollary 1.3.3. The “if” direction is an immediate consequence of the fact

that, for every x ∈ R, {x}+ {−x} equals 1 if x /∈ Z and 0 otherwise.

For the “only if” direction, consider the lattice Λ′ ⊂ R2n which is generated by

Z2n and the image of the map Λ→ R2n defined by

(λ1, . . . , λn) 7→ (λ1, . . . , λn,−λ1, . . . ,−λn).

Let λ ∈ Λ∩ [0, 1)n and let λ′ ∈ Λ′ ∩ [0, 1)2n be the unique integral translate in [0, 1)2n

of the image of λ under this map. Let µ ∈ Λ ∩ [0, 1)n the the unique lattice point in

[0, 1)n which satisfies λ+ Zn = −µ+ Zn. Then

λ′1 + · · ·+ λ′n = λ′n+1 + · · ·+ λ′2n

since by assumption we have

λ′1 + · · ·+ λ′n = λ1 + · · ·+ λn = |supp(λ)|
2

and

λ′n+1 + · · ·+ λ′2n = µ1 + · · ·+ µn = |supp(µ)|
2

11



and we know by the preceding discussion that |supp(µ)| = |supp(λ)|. If we let

u′ = (1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n

) ∈ R2n,

we get 〈u′, λ′〉 = 0 for each λ′ ∈ Λ′ ∩ [0, 1)2n. We may therefore apply Theorem 1.3.1

to obtain the equality

 n∑
i=1
πi=πj

1

−
 n∑

i=1
πi=−πj

1

 =

 n∑
i=1

πi=−πj

1

−
 n∑

i=1
πi=πj

1



for each j ∈ {1, 2, . . . , n}, which simplifies to

|{i : πi = πj}| = |{i : πi = −πj}| .

We now construct our involution σ : {1, 2, . . . , n} → {1, 2, . . . , n}. For each i such

that πi = −πi, we set σ(i) = i. For each coordinate projection map π such that

π 6= −π, we pair up each coordinate i such that πi = π with a unique coordinate j

such that πj = −π. Then, for each such pair (i, j), we set σ(i) = j and σ(j) = i.

Now let λ ∈ Λ and let i ∈ {1, 2, . . . , n}. Then

λi + λσ(i) + Z = πi(λ) + (−πi)(λ) = 0 + Z,

and hence λi + λσ(i) is an integer.

The proof of Theorem 1.3.1, specifically the “only-if” direction, depends on the

following two claims. The first is used to establish the relations (1.2) assuming the

hypotheses of Theorem 1.3.1. The proof given in the next section relies on the Poisson

summation formula for finite abelian groups.

Lemma 1.3.7. Let G be a finite abelian group. For a subgroup K of G, let 1K ∈

12



L2(G) denote the indicator function of K. Then

{1K : K⊥ is a cyclic subgroup of Ĝ}

is linearly independent in L2(G).

We remark that this statement is quite easy to prove in the case when G is cyclic.

The second claim is used to establish the relations (1.1) assuming the hypotheses

of Theorem 1.3.1. Suppose G is a finite abelian group and let H = HomZ(G,R/Z).

Consider the space L2
odd(H) consisting of functions f : H → C which satisfy f(−φ) =

−f(φ) for all φ ∈ H. For each g ∈ G, define the function Sg ∈ L2(H) by

Sg(φ) = B1(φ(g)) for all φ ∈ H.

Note that these functions lie in L2
odd(H) since B1 is an odd function. Crucially,

however, much more is true:

Theorem 1.3.8 (cf. [6, Proposition 1.2]). The space L2
odd(H) is spanned by the

functions Sg for g ∈ G.

We remark that these functions are closely related to the Stickelberger distribution

associated with B1 described in [17, Chapter 2]. As in [6, 9], the proof of this theorem

relies on Dirichlet’s theorem that L(1, χ) 6= 0 for a nontrivial Dirichlet character χ

where L(s, χ) denotes the Dirichlet L-function associated with χ.

13



Proof of Theorem 1.3.1

Wemake some preliminary observations before stating the proof. LetH = HomZ (Λ/Zn,R/Z).

Given u = (u1, . . . , un) ∈ Rn, define hu ∈ L2(H) to be the function

hu(φ) =

 n∑
i=1
πi=φ

ui

−
 n∑

i=1
πi=−φ

ui

 for all φ ∈ H.

Also define as above, for each λ ∈ Λ ∩ [0, 1)n, the function Sλ : H → C:

Sλ(φ) = B1(φ(λ+ Zn)) =


{φ(λ+ Zn)} − 1/2, φ(λ+ Zn) 6= 0 + Z

0, φ(λ+ Zn) = 0 + Z

The most important property about these functions is that they are odd functions;

we have Sλ(−φ) = −Sλ(φ) for each φ ∈ H and λ ∈ Λ ∩ [0, 1)n.

Observe that for any λ ∈ Λ ∩ [0, 1)n, we have

n∑
i=1

uiλi =
(

n∑
i=1

uiSλ(πi)
)

+ 1
2

 n∑
i=1
λi 6=0

ui

 .

Since φ 7→ −φ is a permutation of H, we may write the first term as

∑
φ∈H

n∑
i=1
πi=φ

uiSλ(φ) = 1
2
∑
φ∈H


 n∑

i=1
πi=φ

uiSλ(φ)

+

 n∑
i=1

πi=−φ

uiSλ(−φ)




= 1
2
∑
φ∈H


 n∑

i=1
πi=φ

ui

−
 n∑

i=1
πi=−φ

ui


Sλ(φ)

= |H|2 〈hu, Sλ〉

where the second-to-last equality follows from the fact that Sλ is an odd function. So
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we conclude that for any u ∈ Rn with corresponding hu ∈ L2(H) as defined above,

and for any λ ∈ Λ ∩ [0, 1)n, we have

n∑
i=1

uiλi = 1
2

|H| 〈hu, Sλ〉+
n∑
i=1
λi 6=0

ui

 . (1.4)

Proof of the if direction of Theorem 1.3.1. We start with the easier direction. As-

sume u ∈ Rn satisfy the relations (1.1) and (1.2) and let λ ∈ Λ ∩ [0, 1)n. The

relations (1.1) imply that hu is the zero function, so by (1.4) we may therefore write

n∑
i=1

uiλi = 1
2

n∑
i=1
λi 6=0

ui = 1
2
∑
K

n∑
i=1
λi 6=0

kerπi=K

ui = 1
2

∑
K

λ+Zn /∈K

n∑
i=1

kerπi=K

ui

where the outer sums are over all subgroups K ∈ {kerπi : i = 1, 2, . . . , n}. By (1.2),

the inner sums of the double sum on the right always vanish, and therefore the whole

expression equals zero.

Proof of the only if direction. Let u ∈ Rn with corresponding hu ∈ L2(H) as defined

above, and assume that 〈u, λ〉 = 0 for every λ ∈ Λ ∩ [0, 1)n. For every pair λ, µ ∈

Λ ∩ [0, 1)n such that λ+ Zn = −µ+ Zn, we have

n∑
i=1
λi 6=0

ui =
(

n∑
i=1

uiλi

)
+
(

n∑
i=1

uiµi

)
= 0 (1.5)

by our assumption that both the terms in the middle vanish. Hence

|H|
2 〈hu, Sλ〉 =

n∑
i=1

uiλi = 0

for every λ ∈ Λ ∩ [0, 1)n by equation (1.4). So by Theorem 1.3.8, hu is orthogonal

to every odd function in L2(H) and therefore must be an even function. But hu is

an odd function by definition. It follows hu must be the zero map, and therefore the
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relations (1.1) hold.

We next show that the relations (1.2) hold as well. From (1.5), we have

(
n∑
i=1

ui

)
−

n∑
i=1
λi=0

ui = 0

for all λ ∈ Λ ∩ [0, 1)n which implies

(
n∑
i=1

ui

)
1Λ/Zn −

n∑
i=1

ui1kerπi = 0

where 1K ∈ L2(Λ/Zn) denotes the indicator function of the subgroup K of Λ/Zn and

0 denotes the zero map. We may rewrite this sum as

(
n∑
i=1

ui

)
1Λ/Zn −

∑
K

 n∑
i=1

kerπi=K

ui

1K = 0

where the second sum is over all subgroups K ∈ {kerπi : i = 1, 2, . . . , n}.

Let e : R/Z → C× be the map x + Z 7→ exp (2πix). Then e ◦ πi ∈ Λ̂/Zn and,

moreover, kerπi = 〈e ◦ πi〉⊥ for each i = 1, 2, . . . , n. We also have Λ/Zn = 〈χ0〉⊥,

where χ0 denotes the identity of Λ̂/Zn. It follows that (kerπi)⊥ for i = 1, 2, . . . , n and

(Λ/Zn)⊥ are all cyclic subgroups of Λ̂/Zn. By Lemma 1.3.7, then, the set of indicator

functions in the above linear combination are linearly independent. We conclude

each of the coefficients of the indicator functions above are zero, and therefore the

relations (1.2) hold. Note that there is no 1Λ/Zn term among the sum of 1K ’s due to

the assumption that kerπi 6= Λ/Zn for every i.
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Proof of Lemma 1.3.7

Let G be a finite abelian group. If f ∈ L2(G), we define the Fourier transform

f̂ ∈ L2(Ĝ) by

f̂(χ) = 〈f, χ〉 = 1
|G|

∑
g∈G

f (g)χ (g)

for every χ ∈ Ĝ. Since the characters of G form an orthonormal basis of L2(G), we

have in particular that

ψ̂(χ) = 〈ψ, χ〉 =


1, ψ = χ

0, ψ 6= χ

(1.6)

for every ψ, χ ∈ Ĝ.

Lemma 1.3.7 is essentially a consequence of the Poisson summation formula for

finite abelian groups, stated below. We refer the reader to [14, Exercise 4.6] or

[18, Chapter 12] for an exposition of this statement, noting the slight difference in

presentation resulting from the 1/ |G| factor in our definition of the inner product of

L2(G).

Proposition 1.5.1 (Poisson summation formula). Let G be a finite abelian group,

let f ∈ L2(G), and let K be a subgroup of G. Then

1
|G|

∑
k∈K

f (k) = 1
|K⊥|

∑
χ∈K⊥

f̂ (χ) .

Lemma 1.5.2. Let K be a collection of subgroups of G with the property that {1K⊥ :

K ∈ K} is linearly independent in L2(Ĝ). Then {1K : K ∈ K} is linearly independent

in L2(G).
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Proof. Let K be such a collection, and suppose

∑
K∈K

αK1K = 0

for some complex numbers αK for K ∈ K. Thus for any character ψ ∈ Ĝ, we obtain

∑
K∈K

αK
|K⊥|

∑
χ∈K⊥

ψ̂ (χ) =
∑
K∈K

αK
|G|

∑
k∈K

ψ (k) =
〈∑
K∈K

αK1K , ψ
〉

= 0

by the Poisson summation formula. On the other hand, by (1.6), the left hand side

simplifies to ∑
K∈K
ψ∈K⊥

αK
|K⊥|

=
∑
K∈K

αK
|K⊥|

1K⊥(ψ).

It follows that the linear combination of functions

∑
K∈K

αK
|K⊥|

1K⊥ ∈ L2(Ĝ)

is the zero function. Since the functions {1K⊥ : K ∈ K} are assumed to be linearly

independent, we get that each αK = 0 which is what we wanted to show.

Recall Lemma 1.3.7, which claims {1K : K⊥ is a cyclic subgroup of Ĝ} is linearly

independent in L2(G).

Proof of Lemma 1.3.7. Let K = {〈χ〉⊥ : χ ∈ Ĝ}. By the preceding lemma, it suffices

to show that set of functions

{1K⊥ : K ∈ K} = {1〈χ〉 : χ ∈ Ĝ}

is linearly independent in L2(Ĝ).

The cyclic subgroups of Ĝ form a partially ordered set with respect to inclusion.

Hence, by taking any linear extension of this poset, we enumerate these subgroups as
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〈χ1〉 , 〈χ2〉 , . . . , 〈χn〉 in such a way that i < j implies there is an element of 〈χj〉 not

in 〈χi〉. This implies that the matrix

Ai,j =


1, χi ∈ 〈χj〉

0, otherwise,

where 1 ≤ i, j ≤ n, is upper triangular with ones along the diagonal. It follows

that the functions in {1〈χ〉 : χ ∈ Ĝ} are linearly independent, as they are linearly

independent when restricted to {χ1, . . . , χn}.

Proof of Theorem 1.3.8

Let G be a finite abelian group written additively, and let H = Hom(G,R/Z). We

wish to show that the space L2
odd(H) of odd functions f : H → C is spanned by the

functions Sg : H → C defined by Sg(φ) = B1(φ(g)) for each g ∈ G. The proof of this

statement is outlined in this section, and follows the methods of [9, 6] by explicitly

finding dim(L2
odd(H)) many linearly independent vectors in span(Sg : g ∈ G).

Some preliminaries

By the structure theorem for finitely generated abelian groups, G ' H is isomorphic

to an additive group of the form
m⊕
i=1

Z/ri

where r1, r2, . . . , rm are positive integers such that m ≥ 1 and r1 | r2 | · · · | rm.

Now fix a minimal set of generators {g1, . . . , gm} of G, so that every element g ∈ G

can be written uniquely as a1g1 + · · · + amgm for some integers a1, . . . , am satisfying
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0 ≤ ai < ri for i = 1, 2, . . . ,m. Then the maps φi ∈ H for i = 1, 2, . . . ,m defined by

φi(gj) =


0 + Z i 6= j

1
ri

+ Z i = j

are a minimal generating set for H in that every φ ∈ H can be written uniquely as

c1φ1 + · · ·+cmφm for some integers c1, . . . , cm satisfying 0 ≤ ci < ri for i = 1, 2, . . . ,m.

Moreover, given g ∈ G and φ ∈ H, if g = a1g1 + · · ·+amgm and φ = c1φ1 + · · ·+cmφm,

then

φ (g) = a1c1

r1
+ · · ·+ amcm

rm
+ Z.

Now let R denote the ring Z/r1 ⊕ · · · ⊕ Z/rm with componentwise multiplication, so

that the additive group of R is isomorphic to G. For each a = (a1, . . . , am) ∈ R,

define the function Sa : R→ C by

Sa (c) = B1

(
a1c1

r1
+ · · ·+ amcm

rm

)

for each c = (c1, . . . , cm) ∈ R.

As before, let L2
odd(R) denote the space of functions f : R→ C satisfying f(−a) =

−f(a) for all a ∈ R. Theorem 1.3.8, then, is established by proving the following

proposition:

Proposition 1.6.1. The functions in {Sa : a ∈ R} span L2
odd(R).

Before proceeding with the proof of Proposition 1.6.1, we review the notion of

Dirichlet characters and establish the notation to be used in the remainder of this

section. A reference can be found in [13, Section 9.1].
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Dirichlet characters

Let G = (Z/r)× for some positive integer r. Then each character χ : G→ C× extends

to a completely multiplicative function χ : Z→ C by setting

χ (n) :=


χ (n+ rZ) , gcd (n, r) = 1

0, otherwise

for each integer n. A function χ : Z → C is called a Dirichlet character if it is

constructed in this manner for some r ≥ 1 and some χ ∈ ̂(Z/r)×. The number r is

called the modulus of χ. We define an equivalence relation ∼ on Dirichlet characters

by declaring χ1 ∼ χ2 if and only if they agree on their mutual support. A Dirichlet

character χ is called primitive if the support of χ contains the support of every other

Dirichlet character in the equivalence class [χ]. Given a Dirichlet character χ, there

exists a unique primitive Dirichlet character in the equivalence class [χ] and it is

denoted χ∗. A primitive character χ∗ is said to induce a Dirichlet character ψ if

ψ ∈ [χ∗]. If χ is a Dirichlet character, then the modulus of χ∗ is called the conductor

of χ.

Notation

We outline the notation used in the remainder of this section.

Arithmetic functions

Let N denote the positive integers.

• νp : N → Z denotes the p-adic valuation: νp(k) is the largest exponent α such

that pα | k.

• d : N → N counts the number of divisors of an integer: we have d(k) =∏
p (νp(k) + 1) for all k ≥ 1 where the product is over all primes p.
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• µ : N→ Z is the Möbius function.

• ϕ : N→ N is the Euler-phi function.

• We write (k, k′) for the greatest common divisor of k and k′.

For a = (a1, . . . , am) ∈ Nm, we also define

• d(a) := d(a1)d(a2) · · · d(am).

• µ(a) := µ(a1)µ(a2) · · ·µ(am).

• ϕ(a) := ϕ(a1)ϕ(a2) · · ·ϕ(am).

Dirichlet characters

Let R = ⊕mi=1Z/ri be the ring defined above. The multiplicative group of units of R

is given by

R× =
m⊕
i=1

(Z/ri)× .

Let R̂× denote the group of characters of R×. Each χ ∈ R̂× corresponds uniquely to

a tuple (χ1, . . . , χm) for which χi ∈ ̂(Z/ri)× for i = 1, 2, . . . ,m, and

χ (a) = χ1 (a1) · · ·χm (am)

for each a = (a1, . . . , am) ∈ R×. For a character χi : (Z/ri)× → C×, we denote the

corresponding Dirichlet character by χi : Z → C. For χ = (χ1, . . . , χm) ∈ R̂×, we

define

• χ : Zm → C by χ (a1, . . . , am) = χ1 (a1)χ2 (a2) · · ·χm (am) .

• χ∗ : Zm → C by χ∗(a1, . . . , am) = χ∗1 (a1)χ∗2 (a2) · · ·χ∗m (am) .

Here we are denoting by χ∗i : Z → C the primitive Dirichlet character inducing

χi : Z→ C.
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Parameters associated with R.

For the ring R defined above, and for each χ = (χ1, . . . χm) ∈ R̂×, we define

• r := (r1, . . . , rm).

• fχ := (fχ1 , . . . , fχm) where fχi is the conductor of χi : Z→ C.

• qχ := (r1/fχ1 , . . . , rm/fχm).

Everything else.

For two tuples of integers a = (a1, . . . , am) , c = (c1, . . . , cm) ∈ Zm, we write ac

to denote the componentwise product (a1c1, . . . , amcm). If a and c have positive

components, then we write a | c and say a divides c if ai | ci for all i = 1, 2, . . . ,m.

If a divides c, then we let c/a := (c1/a1, . . . , cm/am). Thus, for instance, qχ = r/fχ

where r, qχ, fχ are as above.

If g, h : Nm → C, then let ∗ denote Dirichlet convolution over Nm:

(g ∗ h) (a) :=
∑
d|a
g (d)h (a/d) for all a ∈ Nm.

A decomposition of R

The group of units R× of the ring R acts on L2(R) as follows: for a given f ∈ L2(R),

c ∈ R×, the function c · f ∈ L2(R) is defined so that

(c · f)(a) = f(ca)

for each a ∈ R. An eigenvalue, eigenfunction pair (χ,w) of the action consists of a

function χ : R× → C and a nonzero function w ∈ L2(R) such that for every c ∈ R×,

c · w = χ (c)w.
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The vector space L2(R) can be decomposed into a direct sum

L2(R) =
⊕
χ∈R̂×

εχ (1.7)

where, for each χ ∈ R̂×, we denote the subspace of eigenfunctions corresponding to

χ by εχ.

Proposition 1.6.2. Let χ ∈ R̂×. Then

εχ =

 1
|R×|

∑
b∈R×

χ(b)(b · w) : w ∈ L2(R)

 .
Proof. If w is an eigenfunction with eigenvalue χ, then w equals the average of χ(b)(b·

w) over all b ∈ R×. Conversely, if w ∈ L2(R), then

c ·
∑
b∈R×

χ(b)(b · w) =
∑
b∈R×

χ(b)(cb · w) = χ(c)
∑
b∈R×

χ(cb)(cb · w)

= χ(c)
∑
b∈R×

χ(b)(b · w).

We say that a character χ ∈ R̂× is even if χ (−1, . . . ,−1) = 1 and odd if

χ (−1, . . . ,−1) = −1; note that these are the only two possible values for χ (−1, . . . ,−1)

since

(χ (−1, . . . ,−1))2 = χ((−1, . . . ,−1)2) = χ (1, . . . , 1) = 1.

Observe that the functions in εχ are odd if and only if χ is odd.

For a given χ ∈ R̂× and a′ ∈ R, let

wχ,a′ :=
∑
b∈R×

χ(b)Sa′b ∈ εχ.

If a ∈ Zm and a′ ∈ R is the image of a under the canonical map Zm → R, then we
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also define wχ,a := wχ,a′ .

The next theorem, proved by Reid in [9] for the case when m = 1, finds a basis of

εχ in terms of these wχ,a when χ is odd.

Proposition 1.6.3 (cf. [9, Theorem 5.13]). For each odd character χ ∈ R̂×, there

are d(qχ) functions in {wχ,a : a ∈ Nm, a | qχ} and they are linearly independent.

With this proposition, we can prove Proposition 1.6.1 and hence Theorem 1.3.8.

Proof of Proposition 1.6.1. For a tuple f = (f1, . . . , fm) ∈ Nm, let ϕ̂odd (f) denote

the number of odd characters χ ∈ R̂× such that f = fχ. Using Proposition 1.6.3

and the decomposition (1.7), we take the union of the sets {wχ,a : a | qχ} over all odd

characters χ to obtain (ϕ̂odd ∗ d) (r) linearly independent functions in L2
odd(R). We

would therefore like to show that this number is equal to dim (L2
odd (R)).

Since ∗ is associative, we get

(ϕ̂odd ∗ d) (r) = (ϕ̂odd ∗ 1 ∗ 1) (r) =
∑
f |r

(ϕ̂odd ∗ 1) (f) .

Now each term (ϕ̂odd ∗ 1) (f) in the sum is equal to the total number of odd characters

of the group Gf := ⊕mi=1 (Z/fi)×. This number is equal to zero if Gf is the trivial

group, which is the case if and only if fi equals one or two for every i = 1, 2, . . . ,m.

Otherwise, {ψ ∈ Ĝf : ψ(−1, . . . ,−1) = 1} is an order two subgroup of Ĝf and hence

there are 1
2

∣∣∣Ĝf

∣∣∣ = 1
2 |Gf | = 1

2ϕ (f) odd characters in Ĝf .

If we let δ (f) = 1 whenever every component of f is either 1 or 2 and zero

otherwise, then we obtain

(ϕ̂odd ∗ d) (r) = 1
2
∑
f |r

(ϕ (f)− δ (f)) = 1
2 (r1 · · · rm − 2s)

where s equals the number of i ∈ {1, 2, . . . ,m} such that ri is even. Hence we obtain

that the dimension of span(Sa : a ∈ R) is at least 1
2 (|R| − 2s).
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It remains to show that dim (L2
odd(R)) = 1

2 (|R| − 2s). Observe that the functions

{1a − 1−a : a ∈ R} span L2
odd (R), where 1a ∈ L2(R) denotes the indicator function

of the element a ∈ R. Indeed, for any h ∈ L2
odd (R) we have

h = 1
2
∑
a∈R

h(a) (1a − 1−a) .

The dimension of span (1a − 1−a : a ∈ R) is equal to one-half the number of elements

a ∈ R such that a 6= −a. But the elements a ∈ R for which a = −a are precisely the

elements (ε1r1/2, . . . , εmrm/2) ∈ R where each εi = 0 or 1 but εi = 0 for all i such

that ri is odd. That is to say, the number of elements a ∈ R such that a = −a is

exactly 2s. We therefore conclude

dimL2
odd (R) = dim span (1a − 1−a : a ∈ R)

= 1
2 (|R| − 2s)

≤ dim span(Sa : a ∈ R)

≤ dimL2
odd (R) .

and hence equality holds throughout. Since Sa ∈ L2
odd(R) for each a ∈ R, we conclude

that L2
odd(R) = span(Sa : a ∈ R).

Finding a basis for each eigenspace

It therefore remains to prove Proposition 1.6.3. For the rest of the paper, we fix some

odd χ ∈ R̂× and let q := (q1, . . . , qm) := qχ and f := (f1, . . . , fm) := fχ.

We start by finding an alternate representation for wχ,a(c) given a, c ∈ R. This

representation is based on [13, Theorem 9.9], which expresses the generalized Bernoulli

number B1,χ in terms of the Dirichlet L-function L (s, χ) evaluated at s = 1.
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Proposition 1.6.4. Let a = (a1, . . . , am), c = (c1, . . . , cm) ∈ R. Then

wχ,a (c) = i

π

∑
k≥1

1
k

m∏
i=1

(
χ∗i

(
kaici

(ri, kaici)

)
Fχi((ri, kaici))

)

where Fχi(β) = 0 if β does not divide qi, and otherwise

Fχi(β) = χ∗i

(
qi
β

)
µ

(
qi
β

)
ϕ(ri)τ(χ∗i )
ϕ(ri/β) . (1.8)

The factor τ (χ∗i ) above denotes the Gauss sum of the primitive character χ∗i :

τ (χ∗i ) :=
∑

t∈(Z/fi)×
χ∗i (t) e (t/fi) .

For our purposes, the only thing we need to know about this quantity is that it is

nonzero [13, Theorem 9.7].

Proof. Consider the quantity

A :=
∑
b∈R×
θacb /∈Z

χ(b) log (1− e (θacb))

where e (x) := exp (2πix), the logarithm is the principal branch, and

θacb := a1c1b1

r1
+ · · ·+ amcmbm

rm
.

In the sum, we replace log (1− e (θacb)) with its real and imaginary parts:

log (1− e (θacb)) = log |2 sin (πθacb)|+ iπ ({θacb} − 1/2) ,

then distribute to obtain two sums. The first of these is zero which can be seen by

noting that |sin (πθacb)| = |sin (πθ−acb)| and therefore we can replace each χ(b) with
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1
2(χ(b) + χ(−b)) which is zero since χ is odd. The second sum is therefore equal to

A, and from it we recover wχ,a(c):

A = iπ
∑
b∈R×
θacb /∈Z

χ(b)({θacb} − 1/2) = iπwχ,a(c).

On the other hand, we use the Taylor expansion of the logarithm to obtain

A =
∑
b∈R×
θacb /∈Z

χ(b)
∑
k≥1
−e(kθacb)

k
= −

∑
k≥1

1
k

∑
b∈R×

χ(b)e(kθacb).

Since the double sum on the left is a finite sum of convergent series, we may inter-

change the sums. The second equality holds since, after interchanging, the terms of

the inner sum for which θacb ∈ Z sum to zero. Indeed, over such terms we may pull

out e (kθacb) = 1 and replace each χ(b) with 1
2(χ(b) + χ(−b)) which is zero as before.

We may therefore write the inner sum as the product

m∏
i=1

 ∑
bi∈(Z/ri)×

χi (bi) e
(
kaicibi
ri

) .

Now let βi,k := (ri, kaici). Applying [13, Theorem 9.12], each factor above can be

written

χi
∗
(
kaici
βi,k

)
χ∗i

(
qi
βi,k

)
µ

(
qi
βi,k

)
ϕ (ri)

ϕ (ri/βi,k)
τ (χ∗i )

if βi,k | qi. Otherwise it is zero.

Following Reid in [9, Theorem 5.16], it is more convenient to prove Proposition

1.6.3 by showing that the functions

vχ,a :=
∑
d|a
µ (d)χ∗ (d)wχ,a/d

over all a ∈ Nm which divide q are linearly independent in L2(R). We can accomplish
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this by showing that the matrix

(vχ,a(c))a,c

is nonsingular, where the rows and columns of the matrix are indexed by tuples

a, c ∈ Nm such that a | q and c | q, and vχ,a(c) := vχ,a(c′) where c′ is the image of

c under the canonical map Zm → R. This is done over the next three propositions.

Proposition 1.6.5 finds an ordering of the divisors of q so that:

1. the indices (a, c) of the antidiagonal entries of the matrix satisfy ac = q.

2. The indices (a, c) to the right of the antidiagonal entries satisfy ac - q.

Proposition 1.6.6 shows that vχ,a(c) = 0 for all a | q and c | q satisfying ac - q.

Finally, this paper concludes with Proposition 1.6.7, which shows that vχ,a(c) 6= 0 for

all a, c ∈ Nm satisfying ac = q and hence the matrix is indeed nonsingular.

Proposition 1.6.5. There exists a linear ordering

a(1) < a(2) < · · · < a(N)

of tuples in Nm which divide q, so that:

1. For all i, j = 1, 2, . . . , N , i < j implies a(j) - a(i).

2. For all i = 1, 2, . . . , N , a(i)a(N−i+1) = q.

Proof. The tuples in Nm which divide q form a graded poset with rank function given

by rank (a1, . . . , am) = ∑m
i=1

∑
p νp (ai) where the inner sum is over all primes p. To

construct our ordering, we first specify that a < b whenever rank (a) < rank (b).

Then, we arbitrarily order the elements within each level set rank−1 (j) for each j in

the range 0 ≤ j < rank (q) /2. If rank (q) is even, we further take the elements a

with rank equal to rank (q) /2 which do not satisfy a2 = q, group them into pairs of
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the form (a, q/a), choose a unique representative from each such pair, and arbitrarily

order these representatives. Next, we set q/a > q/b whenever a < b and rank (a) =

rank (b) ≤ rank (q) /2. Finally, we set a((N+1)/2) = a if there exists a which satisfies

a2 = q. The result is a linear ordering satisfying (1) and (2).

Proposition 1.6.6 (cf. [9, Proposition 5.17(i)], [19, Lemma 4.18]). If a, c ∈ Nm

divide q but ac - q, then vχ,a(c) = 0.

Proof. Assume a | q and c | q but ac - q. Then there exists some i ∈ {1, 2, . . . ,m},

α ≥ 0, and prime pi such that pα+1
i | aici and pαi | qi but pα+1

i - qi. The key insight

(taken from the above two references) is that are two different possible reasons why

vχ,a(c) must equal zero, depending on whether or not pi | fi.

First suppose pi | fi. Let d | a and assume that di is coprime to fi. Then pi does

not divide di and therefore pα+1
i divides aici/di. We also have pαi | qi and pi | fi which

means pα+1
i | ri. It follows that pα+1

i divides (ri, aici/di) and hence pα+1
i | (ri, kaici/di)

for every k ≥ 1. Since pα+1
i does not divide qi, it follows that (ri, kaici/di) does not

divide qi for any k ≥ 1. By Proposition 1.6.4, then, we conclude wχ,a/d(c) = 0 for

every d | a such that di is coprime to fi. But the only terms in the sum

vχ,a(c) =
∑
d|a
µ (d)χ∗ (d)wχ,a/d(c)

which can be nonzero are the ones for which d is coprime to f in every component,

including component i. This is due to the presence of the χ∗ (d) term which vanishes

if this is not the case. It follows that vχ,a(c) = 0 in the case pi | fi.

Now suppose pi - fi. Since pα+1
i | aici, it follows that pi must divide both ai and

ci since both ai and ci are divisors of qi and pα+1
i - qi. In particular, pi must divide

ai. Now let p := (1, . . . , 1, pi, 1, . . . , 1) and let p′ = pνpi (ai) so that the ith component

of a/p′ is not divisible by pi. Because the presence of the µ(d) term ensures that

the sum vχ,a(c) is only over d with squarefree components, we can group the sum as
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follows: ∑
d| a
p′

(
µ (d)χ∗ (d)wχ,a/d(c) + µ (pd)χ∗ (pd)wχ,a/pd(c)

)
. (1.9)

Since µ(pd) = −µ(d) for every d | a
p′
, it suffices to show

χ∗ (d)wχ,a/d(c) = χ∗ (pd)wχ,a/pd(c)

for every d | a
p′

in order to establish vχ,a(c) = 0. By Proposition 1.6.4, it suffices to

show that

χ∗i (di)χ∗i
(

kaici/di
(ri, kaici/di)

)
Fχi((ri, kaici/di))

= χ∗i (pidi)χ∗i
(

kaici/pidi
(ri, kaici/pidi)

)
Fχi((ri, kaici/pidi))

for every d | a
p′

and every k ≥ 1. But since pi - fi and pi - di, we have pα+1
i - ri while

pα+1
i | kaici/di. It follows that (ri, kaici/di) = (ri, kaici/pidi), and hence the above

equality indeed holds for all d | a
p′

and all k ≥ 1.

Proposition 1.6.7 (cf. [9, Proposition 5.17(ii)]). Let a, c ∈ Nm be divisors of q such

that ac = q. Then vχ,a(c) 6= 0.

Proof. Suppose d | a and each component di of d is squarefree and coprime to fi.

From Proposition 1.6.4 we can write

µ(d)χ∗(d)wχ,a/d(c) = i

π

∑
k≥1

1
k

m∏
i=1

(
µ(di)χ∗i

(
kqi
βi,k

)
Fχi(βi,k)

)

where βi,k := (ri, kqi/di) = (ri, k(ai/di)ci). Now consider the factor

µ(di)χ∗i
(
kqi
βi,k

)
Fχi(βi,k). (1.10)

which appears in the above expression. We start by showing that, regardless of
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whether or not βi,k divides qi, expression (1.10) simplifies to

τ (χ∗i ) ·
ϕ (ri)
ϕ (difi)

· µ ((di, k))ϕ ((di, k))χi∗ (k) . (1.11)

Observe that βi,k divides qi if and only if the last equality of

qi
βi,k

= qi
(ri, kqi/di)

= di
(difi, k) = di

(di, k) (1.12)

holds, as di is coprime to fi by assumption. Therefore, if βi,k | qi, then plugging in

di/(di, k) for qi/βk,i in (1.10) quickly yields (1.11). On the other hand, if βi,k - qi,

then (1.10) also simplifies to (1.11). Indeed, in this case (1.10) just equals zero since

Fχi(βk,i) is zero by definition. Since βi,k - qi, the last equation in (1.12) fails to hold.

This implies k shares a factor with fi, and hence χ∗i (k) = 0. So (1.11) is zero as well.

We therefore can write

µ (d)χ∗ (d)wχ,a/d(c) =
C ′a,χ
ϕ (d)

∑
k≥1

χ (k) gd (k)
k

where:

• C ′a,χ is a nonzero constant that depends only on a and χ

• χ : Z→ C is an odd Dirichlet character defined by

χ (k) :=
m∏
i=1

χi
∗ (k)

(Note: we do not put a star since this Dirichlet character may not be primitive).

• gd : Z→ Z is the function given by

gd (k) =
m∏
i=1

µ ((di, k))ϕ ((di, k)) .
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We now further simplify the right hand side above. Let hd : Z→ C be the function

hd (k) = χ (k) (µ ∗ gd) (k) = χ (k)
∑
`|k
µ (`) gd (k/`) ,

where ∗ denotes Dirichlet convolution. For k ≥ 1, hd (k) is zero unless k is square-free.

Indeed, if p is a prime such that pα is the highest power of p dividing k and α ≥ 2,

then

hd (k) = χ (k)
∑
`| k
pα

(
µ (`) gd

(
k

`

)
+ µ (p`) gd

(
k

p`

))
,

and since gd (`) depends only on the square-free part of `, the terms in each summand

cancel each other out as in (1.9). Thus we may write

hd (k) = χ (k)
∑
`|k
µ (k/`) gd (`) = χ (k)µ (k)

∑
`|k
µ (`) gd (`) .

If nd(p) denotes the number of indices i ∈ {1, 2, . . . ,m} such that p | di, then

gd (`) =
∏
p|`

(1− p)nd(p)

and so

∑
k≥1

hd (k)
k

=
∑
k≥1

χ (k)µ (k)
k

∏
p|k

(
1− (1− p)nd(p)

)

=
∏
p

(
1− χ (p)

p

(
1− (1− p)nd(p)

))

where the first product appearing above is over all primes p dividing k, and the

second product is over all primes p. From the first equality we see that the series on

the left converges absolutely (and is in fact finite) since only finitely many primes p

satisfy nd(p) ≥ 1. It is a basic fact of number theory [13, Theorem 4.9] that the sum

L (1, χ) = ∑
k≥1 χ (k) /k converges and is nonzero, and since hd = χ(µ ∗ gd) we have
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χgd = χ ∗ hd and therefore

∑
k≥1

χ (k) gd (k)
k

=
∑
k≥1

χ (k)
k

∑
k≥1

hd (k)
k

 .
Moreover, since the components of d are squarefree and ϕ(p) = p− 1 for every prime

p, we have

ϕ (d) =
∏
p

(p− 1)nd(p)

and therefore

µ (d)χ∗ (d)wχ,a/d(c) = Ca,χ
∏
p

γ (p, nd(p))

where Ca,χ is nonzero and depends only on a and χ and

γ (p, k) := 1
(p− 1)k

(
1− χ (p)

p

)
+ (−1)k χ (p)

p
.

Now we find an expression for vχ,a (c). We have

vχ,a (c) = Ca,χ
∑
d|a′

∏
p

γ (p, nd(p)) = Ca,χ
∑
t

N (t)
∏
p

γ (p, tp) ,

where the sum on the right hand side is over all tuples of nonnegative integers

t = (t2, t3, t5, . . .) indexed by the primes, a′ = (a′1, . . . , a′m) where a′i is the largest

squarefree divisor of ai coprime to fi for i = 1, 2, . . . ,m, and N (t) counts the number

of d | a′ such that nd(p) = tp for all primes p. For a given tuple t, we have

N (t) =
∏
p

(
na′(p)
tp

)
,

thus

vχ,a (c) = Ca,χ
∑
t

∏
p

(
na′(p)
tp

)
γ (p, tp) = Ca,χ

∏
p

∑
k≥0

(
na′(p)
k

)
γ (p, k)

 .
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For a given prime p, by the binomial theorem, the inner sum is equal to 1 if na′(p) = 0,

and otherwise equal to

(
1− χ (p)

p

)(
1 + 1

p− 1

)na′ (p)
.

So we conclude that

vχ,a (c) = Ca,χ
∏
p

na′ (p)≥1

(
1− χ (p)

p

)(
p

p− 1

)na′ (p)
6= 0.
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Part II

Oriented matroids
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CHAPTER 2

THE REAL BERGMAN FAN OF AN ORIENTED MATROID

Introduction

In tropical geometry one studies tropical varieties, or polyhedral complexes which

are combinatorial counterparts to classical complex varieties. The most basic kind of

tropical variety is a tropical linear space, which is the tropical analogue of a linear

subspace of a complex vector space. In the simplest (“trivially-valued”) case, all of

the polyhedra in a tropical linear space are cones, and such a complex is also called a

Bergman fan. Bergman fans are equivalent to matroids, in the sense that a Bergman

fan canonically determines a matroid and vice-versa.

In the theory of oriented matroids, an important class of oriented matroids come

from zonotopes. A zonotope is a polytope given by a Minkowski sum of line segments,

and the face lattice of a zonotope is equivalent to the data of an oriented matroid [20].

While it may be the case that there are many zonotopes which determine the same

oriented matroid, or none at all (the so-called “nonrealizable” oriented matroids),

one might ask to what extent zonotopes play the role of Bergman fans in the context

of oriented matroids, beyond simply “polyhedral representations of combinatorial

objects.”

It turns out that there is a close analogy between zonotopes and Bergman fans,

and the aim of this paper is make it more explicit. We do this not by considering

a zonotope directly, but rather a fan we call the real Bergman fan which projects

onto the face fan of a zonotope in the realizable case. This fan can be defined for

any oriented matroid, realizable or not, and shares many of the same features of a

Bergman fan. For example, the Bergman fan of a matroid M on the ground set
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E actually has multiple fan structures. One, called the fine subdivision in [21], is a

geometric realization of the order complex of the lattice of flats ofM . Another, which

also appears in [21], is called the coarse subdivision of M and arises as a subfan of

the normal fan of matroid base polytope of M :

PM := conv
∑
f∈B

ef : B is a basis of M
 ⊆ RE.

Analogously, the real Bergman fan of an oriented matroid M on the ground set E,

which we denote by ΣM, also admits multiple fan structures. Our version of the fine

subdivision of ΣM is a geometric realization of the order complex of the poset of

vectors of M, while our version of the coarse subdivision of ΣM is a subfan of the

outer normal fan of the polytope

P±M := conv
∑
f∈B
±ef : B is a basis of M

 ⊆ RE

where M is the underlying matroid ofM.

Our aim in this paper is to understand the cones in the coarse subdivision of ΣM.

In the process we describe all the normal cones of P±M for any loop-free matroid M ,

realizable or not. In some sense this work has been completed already to various

degrees in the literature, for instance in the work of Ardila and Klivans on Bergman

fans in [21]; the work of Ardila, Klivans, Reiner, and Williams on positive Bergman

fans in [22, 23]; Fujishige’s work on faces of submodular base polyhedra [24]; and

Kim’s work on flag enumerations of base polytopes [25]. The main contribution

of this paper is to bring the ideas in these references together to give an intrinsic

characterization of the faces of P±M , and use it to give an extreme ray description of

the cones in the coarse subdivision of ΣM.

As an illustration of this work, we work out the case whenM is uniform. Here,

the coarse subdivision of ΣM takes on a very simple form. It behaves like the face

38



fan of a zonotope in the following sense: excluding the origin, the face lattice of the

coarse subdivision of ΣM is anti-isomorphic to the poset of nonzero vectors ofM.

Preliminaries

We assume the reader is familiar with the basic theory of matroids and oriented

matroids; especially the notions of vectors and covectors of oriented matroids. See

Oxley’s text [26] for a standard reference on matroids, and [27] or [28] for a reference

on oriented matroids. We state many of our results in terms of polytopes and normal

fans of polytopes. For a reference on these topics, we refer the reader to Ziegler’s text

[29].

Throughout this paper, unless otherwise indicated, M will denote an oriented

matroid of rank r on the ground set E = {1, 2, . . . , n}. The vector space RE has the

canonical basis {ef : f ∈ E}. Given a vector ω ∈ RE, the support of ω is denoted

by supp(ω). We reserve the letters X, Y, Z for signed subsets of E; that is, elements

of {−1, 0, 1}E. We follow the usual notation of [27] regarding signed sets. We reserve

the letters F,R, S, T for ordinary subsets of E. For a signed subset X of E, we also

write

eX :=
 ∑
f∈X+

ef

−
 ∑
f∈X−

ef

 ∈ RE

to emphasize the fact that X lives in RE.

Main results and examples

Statement of the main theorem

LetM be an oriented matroid. The main invariant associated toM that we consider

in this paper is the polyhedral fan ΣM defined as follows:

ΣM := {cone(F ) : F is a flag of conformal vectors ofM}
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where

cone(F ) := cone(eX1 , eX2 , . . . , eXk)

for each flag F : X1 < X2 < · · · < Xk of conformal vectors inM. We call this fan

the fine subdivision of ΣM. Note that M can be recovered from ΣM; one can see

this by observing that the rays in this fan determine the vectors ofM, which in turn

determineM.

The main goal of this paper is to make explicit a very intricate combinatorial

structure underlying this polyhedral complex, one which is not immediately apparent

from this definition. To do this we require a few defintions.

Let LN be the lattice of flats of a loop-free matroid N on the ground set S. Recall

that a pair of flats F1, F2 in LN form a modular pair if

rkN(F1) + rkN(F2) = rkN(F1 ∪ F2) + rkN(F1 ∩ F2).

Definition 2.3.1. A sublattice D of LN is initial if ∅, S ∈ D and for all F1, F2 ∈ LN

we have

F1, F2 ∈ D ⇐⇒

F1 ∪ F2 ∈ D

F1 ∩ F2 ∈ D

F1, F2 form a modular pair.

Note that the above definition relies on the interpretation of the elements of LN

as subsets of the ground set S. Sublattices of this type have been studied in the more

general context of submodular functions by Fujishige in [24, Section 3.3 (d)].

Definition 2.3.2. Let M be a matroid on the ground set E. Let X ∈ {−1, 0, 1}E,

and let S denote the support of X. Let D be an initial sublattice of the restriction
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M |S. Define σ(X,D) ⊆ RE to be the cone with extreme ray description

cone

ρ ∈ RE : for some F ∈ D†,

ρe = Xe if e ∈ F

ρe = ±1 if e ∈ clM(F ) r F

ρe = 0 if e ∈ E r clM(F )

 (2.1)

where D† is the set of nonempty F ∈ D such that clM(F ) is connected in M .

By a signed basis of M , we mean a signed set X ∈ {−1, 0, 1}E whose support is

equal to some basis of M .

Definition 2.3.3. Let M be a matroid on the ground set E. The signed matroid

polytope P±M of M is the polytope

P±M := conv (eX : X is a signed basis of M) ⊆ RE.

We are now ready to state our main theorem.

Theorem 2.3.4 (Main theorem). Let M denote the underlying matroid ofM. There

is a subfan of the outer normal fan of P±M whose support is exactly the support of ΣM.

The cones σ(X,D) in this fan are of the form (2.1) above, and are in bijection with

pairs (X,D) such that X ∈ {−1, 0, 1}E is a sign vector in which X ∩F is a vector of

M for each F ∈ D, and D is an initial sublattice of M |S where S := supp(X). 1

We call this fan structure the coarse subdivision of ΣM. WhenM is uniform, this

fan structure behaves exactly like the face fan of a zonotope:

Corollary 2.3.5. SupposeM is uniform. Then the poset (with respect to inclusion)

of nonzero cones in the coarse subdivision of ΣM is anti-isomorphic to the poset of

nonzero vectors ofM.
1The signed set X ∩ F satisfies (X ∩ F )+ = X+ ∩ F and (X ∩ F )− = X− ∩ F .
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Examples

We give three examples to illustrate the coarse subdivision of ΣM.

Example 2.3.6. LetM be the oriented matroid corresponding to the matrix

A =
(

1 1 1
)
.

The underlying matroid M is U1,3. The polytope P±M ⊆ R3 is an octahedron, and the

maximal cones in the coarse subdivision of ΣM consist of six two-dimensional cones.

The polytope P±M∗ is a cuboctahedron, and ΣM∗ consists of two antiparallel rays. See

Figure 2.1.

Example 2.3.7. Fix an orientation of the complete graph of K4, and letM be the

corresponding oriented matroid. Intersecting the coarse subdivision of ΣM with the

boundary of the 0-symmetric cube [−1, 1]6, we obtain a polyhedral complex that is

linearly isomorphic to the subdivision of the boundary of the permutahedron shown

in Figure 2.2.

Example 2.3.8. LetM be the oriented matroid dual to Ringel’s nonrealizable uni-

form oriented matroid: M∗ = Rin(3, 9). The intersection of the coarse subdivision of

ΣM with the boundary of [−1, 1]9 is shown in Figure 2.3.

Further remarks

The fan ΣM is the oriented matroid analogue of the Bergman fan B(M) of a matroid

M , originally defined by Sturmfels [30, Ch. 4]. The fine and coarse subdivisions of

ΣM parallel similar fan structures on the Bergman fan observed by Ardila and Klivans

in [21]. IfM is totally cyclic, so thatM∗ is acyclic, then the all ones vector 1 ∈ RE

generates a ray in ΣM∗ . The local fan structure of ΣM∗ around this ray coincides

with the positive Bergman fan B+(M) of Ardila, Klivans, Reiner, and Williams [23,
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Figure 2.1: In this exampleM is uniform of rank 1 on 3 elements. On the left is the
polytope P±M together with ΣM. On the right is P±M∗ together with ΣM∗ .

Figure 2.2: The intersection of the coarse subdivision of ΣM with the boundary of
[−1, 1]6. HereM is the graphic matroid of the complete graph K4.
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22]:

starΣM∗ (1) := {σ ∈ ΣM∗ : 1 ∈ σ} = B+(M)

More generally, given any sign vector s ∈ {−1, 1}E corresponding to a tope ofM, we

can recover the signed Bergman fans of Jürgens [31]:

starΣM∗ (s) = Bs(M).

The intersection ΣM ∩ [−1, 1]E in RE yields a polyhedral complex which da Silva

and Moulton have called the crinkled zonotope of M∗ [32]. The boundary of this

polyhedral complex is a geometric realization of the order complex of the big face lat-

tice ofM, which is known to be a sphere by the Topological Representation Theorem

of Folkman and Lawrence [27, Theorem 5.2.1]. Within this sphere, the coordinate

hyperplanes xe = 0, e ∈ E form a piecewise linear arrangement of pseudospheres that

is represented byM∗ [27, Definition 5.1.3].

This fan ΣM can also be understood in the language of matroids over hyperfields

due to Baker and Bowler [33]. Every oriented matroid M can be interpreted as

a matroid MTR over the real tropical hyperfield TR defined by Viro in [34], with

trivial valuation. The set of vectors ofMTR, in the sense of Anderson in [35], coincides

exactly with the support of ΣM. This perspective suggests that it would be interesting

to study the set of vectors of an oriented matroidM with nontrivial valuation.

Finally, we remark that ΣM is defined in terms of vectors of M rather than

covectors ofM, going against what seems to be the more common convention in the

subject of oriented matroids. The reason is because it is ΣM, and not ΣM∗ , that is a

subfan of the outer normal fan of P±M .
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Figure 2.3: The intersection of the coarse subdivision of ΣM with the boundary
of [−1, 1]9. Here M is the oriented matroid dual to Rin(3, 9). In general, when
M is uniform, this intersection will always be a complex of parallelepipeds that is
homeomorphic to a sphere.

The outer normal fan of P±M

Let M be any loop-free matroid of rank r on the ground set E, orientable or not.

The goal of this section is to give a combinatorial interpretation to each cone in the

outer normal fan of P±M , and to use this interpretation to describe the extreme rays

of each cone in the fan:

Theorem 2.4.1. There is a canonical bijection between the cones σ of the outer

normal fan of P±M and pairs (X,D), where:

• X is a signed subset of E, and

• D is an initial sublattice of LM |S where S is the support of X.

Specifically, to such a pair (X,D), we associate the cone σ = σ(X,D) with extreme

ray description given below:

cone

ρ ∈ RE : for some F ∈ D†,

ρe = Xe if e ∈ F

ρe = ±1 if e ∈ clM(F ) r F

ρe = 0 if e ∈ E r clM(F )

 .

Here D† is the set of nonempty F ∈ D such that clM(F ) is connected in M .
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We remark that there is a fair bit of overlap with this section and Section 3.3 (d)

of Fujishige’s book [24], which considers similar questions regarding the structure of

base polyhedra of submodular functions. Similar ideas also appear in the work of

Kim in [25, Section 2]. Our context is different enough from these works that, except

for some known standard results, we have decided to include full proofs of all the

technical details.

Polytopes fixed by coordinate hyperplane reflections

Let P ⊆ RE be a polytope that is fixed by all hyperplane reflections. Before we

begin, we state some simple but important facts about P .

Definition 2.4.2. For a polytope τ ⊆ RE, let supp(τ) denote the set of all f ∈ E

such that τ is not contained in the hyperplane xf = 0.

Proposition 2.4.3. Let σ be a cone in the outer normal fan of P , let ω ∈ relint(σ),

and let τ = τω denote the face of P that is maximized by ω.

1. For all f ∈ supp(τ) we have

sign(ωf ) =



+1, if τ ⊆ {x : xf ≥ 0}

−1, if τ ⊆ {x : xf ≤ 0}

0, otherwise.

2. The vector ω′ ∈ RE defined by

ω′f =


ωf , f ∈ supp(τ)

0, otherwise

is a minimal-support element of relint(σ).
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Proof. First we show (1). Let f ∈ supp(τ), and let x ∈ τ so that xf 6= 0. By the

symmetry of P we also have x− 2xfef ∈ P , and so by definition of τ = τω we have

〈x− 2xfef , ω〉 ≤ 〈x, ω〉 .

Therefore, we have ωfxf ≥ 0, with equality only if x − 2xfef ∈ τ . Now, if τ ⊆

{x : sfxf ≥ 0} for some sf ∈ {±1}, then we cannot have x − 2xfef ∈ τ which

implies ωfxf > 0 and hence sign(ωf ) = sign(xf ) = sf . Otherwise, we may find

y ∈ τ ∩ {x : xf > 0} and z ∈ τ ∩ {x : xf < 0}. Hence ωfyf ≥ 0 and ωfzf ≥ 0, which

is only possible if ωf = 0.

Next, let ω′ be as in (2). To see that ω′ lies in relint(σ), we show that if x ∈ τ

then 〈ω′, x〉 = 〈ω, x〉 and if x′ ∈ P r τ , then 〈ω′, x′〉 < 〈ω′, x〉 for any x ∈ τ . The first

assertion follows from the definition of supp(τ) and the definition of ω′. For the second

assertion, let x ∈ τ and let x′ ∈ P r τ . Let y′ ∈ P be the point obtained from x′

by negating the components outside of supp(τ); that is, y′ = x′− 2∑f∈Ersupp(τ) x
′
fef .

We have

2 〈ω′, x′〉 = 〈ω′, x′〉+ 〈ω′, y′〉

= 〈ω, x′〉+ 〈ω′ − ω, x′〉+ 〈ω, y′〉+ 〈ω′ − ω, y′〉

< 〈ω, x〉+ 〈ω′ − ω, x′〉+ 〈ω, x〉+ 〈ω′ − ω, y′〉

= 2 〈ω, x〉+ 〈ω′ − ω, x′ + y′〉

= 2 〈ω, x〉

= 2 〈ω′, x〉

where the second-to-last equality holds since supp(ω′ − ω) ⊆ E r supp(τ) while

supp(x′ + y′) ⊆ supp(τ).

Let G be the subgroup of GL(RE) generated be coordinate hyperplane reflections;
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that is, diagonal matrices with ±1 entries along the diagonal. Observe that the group

G acts on the set of outer normal cones of P : for each g ∈ G and cone σ, we have

that

gσ := {gω : ω ∈ σ}

is also a cone in the outer normal fan of P .

Proposition 2.4.4. Let ω ∈ relint(σ) be a minimal-support element of a cone σ in

the outer normal fan of P .

1. The stabilizer of σ under this action, given by

stabG(σ) := {g ∈ G : gσ = σ} ,

is generated by reflections about xf = 0 where f ∈ E r supp(ω).

2. Let G · σ := {gσ : g ∈ G} denote the orbit of σ under G. The function

G · σ −→ {−1, 1}supp(ω)

gσ 7−→ sign(gω)

is a bijection, where we define (sign(gω))f to be the sign of (gω)f .

Proof. (1) Suppose f ∈ E r supp(ω), and suppose g ∈ G is the reflection about

xf = 0. Then gω = ω, which implies gσ = σ since ω lies in the relative interior of

exactly one normal cone of P . This shows that every such reflection is an element of

stabG(σ).

Conversely, suppose g ∈ G satisfies gσ = σ. Then gω and ω are both elements of

the relative interior of σ. In particular, the midpoint (ω + gω)/2 lies in the relative

interior of σ. Since both gω and ω are in fact minimal-support elements of relint(σ),

we must further have that ω and gω agree in sign since otherwise (ω + gω)/2 would
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have even smaller support. We therefore conclude that in any minimal representation

g = g1g2 · · · gk of g by a product of coordinate hyperplane reflections, each gi must

be a reflection about xf = 0 for some f ∈ E r supp(ω).

(2) It is immediate that this function is surjective. Injectivity follows from

|G · σ| = |G| / |stabG(σ)| = 2|E|/2|Ersupp(ω)| = 2|supp(ω)|.

The aspect of Proposition 2.4.4 that is used later in the paper is the following

corollary, which allows for some simplification of notation:

Proposition 2.4.5. The bijection of Proposition 2.4.4 (2) determines a bijection

between cones in the outer normal fan of P , and pairs (X, σ) where:

• The item X ∈ {−1, 0, 1}E is a signed subset of E, and

• The item σ is a cone in the outer normal fan of P with the property that

there exists a minimal-support element ω ∈ relint(σ)∩RE
≥0 satisfying supp(ω) =

supp(X).

Initial matroids

The next step is to attach a matroid to each face of P±M . These matroids include not

only the initial matroids of M as defined in Ardila-Klivans [21], but also the initial

matroids of M |S where S ranges over all subsets of E.

Definition 2.4.6. Let ω ∈ RE and let S = supp(ω). We define the flag of ω to be

the unique chain of strictly increasing subsets of S

∅ = E0 ( E1 ( E2 ( · · · ( Ek = S
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such that |ωe| is constant over all e ∈ Ei r Ei−1 for i = 1, 2, . . . , k, and

|ωe1| > |ωe2| > · · · > |ωek | > 0

whenever e1 ∈ E1 r E0, e2 ∈ E2 r E1, . . . , ek ∈ Ek r Ek−1.

We define the matroid Mω on S as follows:

Mω :=
k⊕
i=1

(M | Ei)/Ei−1. (2.2)

where ∅ = E0 ( E1 ( E2 ( · · · ( Ek = S is the flag of ω as in Defintion 2.4.6.

If ω ∈ RE is viewed as a linear objective function, we denote by τω the face of P±M

that is maximized by ω.

Proposition 2.4.7. Let B ⊆ S. The following are equivalent:

1. B is a basis of Mω.

2. B is a basis of M |S and ∑
f∈B
|ωf | ≥

∑
f∈B′
|ωf |

for all other bases B′ of M |S.

3. There exists a vertex v of τω such that B = supp(v) ∩ S.

Proof. The equivalence of (1) and (2) is well-known, see [21, Proposition 2].

(2) implies (3): Let B be a basis of M |S as in (2), and let v be a vertex of P±M

such that sign(vf ) = sign(ωf ) for all f ∈ S, and B ⊆ supp(v). Such a v exists because

any basis of M |S can be extended to a basis of M . We have B ⊆ S, and equality

must hold in the containment B ⊆ supp(v)∩ S since otherwise B would be too small

to be a basis of M |S. It therefore remains to show that v is a vertex of τω. Choose

any other vertex w of P±M . Then supp(w) ∩ S is an independent set in M |S, which
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can be extended to a basis B′ of M |S, so that by (2) we have

〈v, ω〉 =
∑
f∈B
|ωf | ≥

∑
f∈B′
|ωf | ≥

∑
f∈supp(w)∩S

|ωf | ≥ 〈w, ω〉 .

(3) implies (2): Write B = supp(v) ∩ S for some vertex v of τω. Let B′ be a basis

of M |S. Then we can find a vertex w of P±M such that B′ = supp(w) ∩ S and

sign(wf ) = sign(ωf ) for all f ∈ B′. Hence

∑
f∈B′
|ωf | = 〈w, ω〉 ≤ 〈v, ω〉 =

∑
f∈B
|ωf | .

Proposition 2.4.8. The non-loops of Mω are precisely those f ∈ E such that the

image of the projection

πf : {vertices of τω} → {−1, 0, 1}

v 7→ vf

contains 1 or −1 but not both. Furthermore, for each such non-loop f , the unique

nonzero element in the image of πf is equal to sign(ωf ).

Proof. First, suppose that f ∈ E is such that the image of πf contains 1 or −1 but

not both. Denote this sign by sf . This means τω ⊆ {x : sfxf ≥ 0} and there exists

a vertex v of τω for which sign(vf ) = sf . By Proposition 2.4.3 we must also have

sign(ωf ) = sf 6= 0 and therefore f lies in the ground set of Mω. By Proposition 2.4.7,

supp(v) ∩ S is a basis of Mω containing f , and hence f is not a loop of Mω.

Conversely, assume that f is a non-loop of Mω. Proposition 2.4.7 then implies

that f ∈ supp(τω). Since ωf 6= 0, we must have by Proposition 2.4.3 that τω ⊆

{x : sign(ωf )xf ≥ 0}. In other words, the image of πf contains sign(ωf ) but not

−sign(ωf ).
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Proposition 2.4.9. For any two ω, ω′ ∈ RE, we have τω = τω′ if and only if the

loop-free part of Mω equals the loop-free part of Mω′, and sign(ωf ) = sign(ω′f ) for all

non-loops f of Mω.

Proof. The forward implication is equivalent to the assertion that for any ω ∈ RE,

the data (
Mω r (loops of Mω), (sign(ωf ))f∈{non-loops of Mω}

)
depends only on τω. The equivalence of (1) and (3) in Proposition 2.4.7 implies that

the set of bases of Mω equals

{supp(v) ∩ {non-loops of Mω} : v is a vertex of τω} .

Proposition 2.4.8 shows how to recover the set of non-loops of Mω from τω, as well

as sign(ωf ) for each non-loop f of Mω.

Now suppose the loop-free part of Mω equals the loop-free part of Mω′ , and

sign(ωf ) = sign(ω′f ) whenever f is a non-loop ofMω. By Propositions 2.4.7 and 2.4.8,

we recover the face τω by taking the convex hull of all lattice points v ∈ {−1, 0, 1}E

such that supp(v) ∩ S is a basis of Mω which extends to a basis supp(v) of M , and

sign(vf ) = sign(ωf ) whenever both are nonzero (in which case f is a non-loop ofMω).

Since this procedure is the same for both ω and ω′, we conclude τω = τω′ .

We finish off this section by showing that if ω ∈ relint(σ) has minimal support,

then Mω is loop-free.

Proposition 2.4.10. Let σ be a cone in the outer normal fan of P±M , and let ω ∈

relint(σ) have minimal support. Then Mω is loop-free.

Proof. Suppose ω ∈ relint(σ) has minimal support. If f ∈ supp(ω), then we must

have τω ⊆ {x : sign(ωf )xf ≥ 0} by Proposition 2.4.3 (1), and, furthermore, we must

also have f ∈ supp(τω) because if not then we could find an even-smaller-support
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element of relint(σ) by Proposition 2.4.3 (2). This implies, by Proposition 2.4.8, that

f is a non-loop of Mω.

Details of the bijection

In light of Proposition 2.4.5, in order to establish the bijection of Theorem 2.4.1 it

suffices to establish, for each S ⊆ E, the following restricted bijection between:

• Initial sublattices D of LM |S, and

• Outer normal cones σ of P±M such that there exists ω ∈ relint(σ)∩RE
≥0 with the

property that ω is a minimal-support element of relint(σ) and S = supp(ω).

The map D 7→ σD Let ∅ ( E1 ( · · · ( Ek be a maximal chain in D, and choose

any ω ∈ relint(cone(eE1 , eE2 , . . . , eEk)). Then let σD be the unique cone in the outer

normal fan of P±M such that ω ∈ relint(σD).

The map σ 7→ Dσ Choose ω ∈ relint(σ) ∩ RE
≥0, which, by Proposition 2.4.3 (2),

we may assume to be a minimal-support element of relint(σ). Define Dσ to be the

collection of all unions F = S1 ∪ S2 ∪ · · · ∪ Sm such that each Si is the ground set of

a connected component of Mω, and rkMω(F ) = rkM(F ).

Lemma 2.4.11. These maps are well-defined and are inverses of eachother.

The proof of this lemma is carried out over the next four subsections.

Sublattices of a boolean lattice, posets, and linear extensions

Let D be a sublattice of the boolean lattice 2S, where S is some finite set. Here we

collect some standard facts (without proofs) about posets and sublattices of a boolean

lattice. We refer the reader to [36] for a general introduction to the topic.

53



Proposition 2.4.12. [24, Corollary 3.10] The partition

ΠC = {Ei r Ei−1 : i = 1, 2, . . . , k}

of S is the same for every maximal chain C : ∅ = E0 ( E1 ( · · · ( Ek = S of D.

Furthermore, every element of D can be written as a union of parts from ΠC .

We may therefore write ΠC appearing in the above proposition as ΠD.

Definition 2.4.13. We define the poset PD as follows: the ground set of this poset

is ΠD, and two parts Si, Sj ∈ ΠD satisfy Si ≤ Sj in PD if and only if every element

of D containing Si also contains Sj.

Note that antisymmetry holds for PD because if 1 ≤ i < j ≤ k and Si = Ei r

Ei−1 ∈ ΠD and Sj = Ej rEj−1 ∈ ΠD, then Ej−1 is an element of D containing Si but

not Sj.

Definition 2.4.14. A linear extension L of PD is a total ordering

L : Si1 < Si2 < · · · < Sik

of the elements of ΠD such that Si < Sj in PD implies Si < Sj in L .

Proposition 2.4.15. If L : Si1 < Si2 < · · · < Sik is a linear extension of PD, then

∅ ( E1 ( E2 ( · · · ( Ek = S

is a maximal chain of D, where Ej := Si1 ∪ · · · ∪Sij for j = 1, 2, . . . , k. Furthermore,

every maximal chain of D arises this way.

Definition 2.4.16. We say that two linear extensions L ,L ′ of PD are adjacent if

there exists a unique pair Si, Sj ∈ ΠD such that Si < Sj in L and Si > Sj in L ′.
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Proposition 2.4.17. Let L ,L ′ be two linear extensions of PD. Then there exists a

sequence of linear extensions L = L0,L1,L2, . . . ,Lt = L ′ such that Li−1 and Li

are adjacent for all i = 1, 2, . . . , t.

The map D 7→ σD is well-defined.

We remark that much of the work that appears in this section is based on [25, Section

2].

Let D be an initial sublattice of LM |S for some S ⊆ E. Given a linear extension

L : Si1 < Si2 < · · · < Sik of PD, define the cone

cone(L ) := cone(eE1 , eE2 , . . . , eEk)

where Ej := Si1 ∪ · · · ∪ Sij for j = 1, 2, . . . , k.

Proposition 2.4.18. Given such a linear extension L , the matroid Mω is the same

for all ω ∈ relint(cone(L )).

Proof. This holds since the flag of ω is ∅ ( E1 ( E2 ( · · · ( Ek = S, and it is the

flag of ω which determines Mω.

Proposition 2.4.19. Let L be a linear extension of PD and let ω ∈ relint(cone(L )).

Then Mω is loop-free.

Proof. Let ∅ = E0 ( E1 ( E2 ( · · · ( Ek = S be the flag of ω. Then by Proposition

2.4.15, each Ei ∈ D and is therefore is a flat of M |S. In the decomposition

Mω =
k⊕
i=1

(M |Ei)/Ei−1,

each component is loop-free since M is loop-free and the Ei’s are flats. Therefore,

Mω is loop-free.
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Proposition 2.4.20. Let S ⊆ E. Two flats F1, F2 of M |S form a modular pair in

M |S if and only if the matroid N := M |(F1 ∪ F2)/(F1 ∩ F2) admits a decomposition

N = N1 ⊕N2

where N1 = N |(F1 r (F1 ∩ F2)) and N2 = N |(F2 r (F1 ∩ F2)).

Proof. The equality N = N1 ⊕N2 holds if and only if

rkN((F1 ∪ F2) r (F1 ∩ F2)) = rkN(F1 r (F1 ∩ F2)) + rkN(F2 r (F1 ∩ F2)),

which is equivalent to

rkM(F1 ∪ F2)− rkM(F1 ∩ F2) = rkM(F1)− rkM(F1 ∩ F2) + rkM(F2)− rkM(F1 ∩ F2)

or just

rkM(F1 ∪ F2) + rkM(F1 ∩ F2) = rkM(F1) + rkM(F2).

Proposition 2.4.21. Let L ,L ′ be two linear extensions of PD such that L and L ′

are adjacent. Let ω ∈ relint(cone(L )) and let ω′ ∈ relint(cone(L ′)). ThenMω = Mω′.

Proof. Let

∅ = E0 ( E1 ( · · · ( Ei−1 ( Ei ( Ei+1 ( · · · ( Ek = S

∅ = E0 ( E1 ( · · · ( Ei−1 ( E ′i ( Ei+1 ( · · · ( Ek = S

be the flags of ω and ω′, respectively, so that Ei 6= E ′i. These are maximal chains of
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D by Proposition 2.4.15. In particular, we must have

Ei ∩ E ′i = Ei−1

Ei ∪ E ′i = Ei+1

since otherwise we could make either of these chains even longer. Now, the procedures

for obtaining bases of Mω and Mω′ are as follows. In both cases, a basis of M |E1

is extended to a basis of M |E2, then to a basis of M |E3, and so on, until a basis of

M |Ei−1 is reached. This basis is then extended to M |Ei in the case of Mω, or M |E ′i

in the case of Mω′ . From there, for both Mω and Mω′ , the result is then extended to

a basis ofM |Ei+1, then to a basis ofM |Ei+2, and so on, until a basis ofM |Ek = M |S

is reached. These two procedures yield the same bases if and only if the matroid

N := M |Ei+1/Ei−1 admits a decomposition

N = N1 ⊕N2,

where N1 = N |(EirEi−1) and N2 = N |(E ′irEi−1) This happens if and only if Ei, E ′i

form a modular pair of flats in M |S by Proposition 2.4.20. This is indeed the case,

since both Ei, E ′i ∈ D by assumption.

Corollary 2.4.22. [25, Proposition 2.5] The map D 7→ σD is well defined.

Proof. Suppose ω, ω′ ∈ RE
≥0 are two vectors such that the flags of both are maximal

chains of D. Then by Proposition 2.4.15, there exists two linear extensions L ,L ′

of PD such that ω ∈ relint(cone(L )) and ω′ ∈ relint(cone(L ′)). If L = L ′ then by

Proposition 2.4.18 we have Mω = Mω′ . Otherwise, by Proposition 2.4.17, L and L ′

are connected by a sequence of linear extensions L = L0,L1, . . . ,Lt = L ′ of PD

such that every consecutive pair of linear extensions in this sequence are adjacent.

Applying Proposition 2.4.21 to ωi := ω(Li) for i = 0, 1, 2, . . . , t, we see that Mω =
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Mω0 = Mω1 = · · · = Mωt = Mω′ . Moreover, by Proposition 2.4.15, Mω and Mω′ are

loop-free. By Proposition 2.4.9, we therefore conclude τω = τω′ . This is equivalent

to the assertion that both ω, ω′ lie in the relative interior of the same cone σ in the

outer normal fan of P±M .

The map σ 7→ Dσ is well defined

Let σ be a cone in the outer normal fan of P±M such that there exists some minimal-

support ω ∈ relint(σ) ∩ RE
≥0. Then by Proposition 2.4.10 Mω is loop-free, so that

by Theorem 2.4.9, Mω does not depend on ω but only σ. Let S denote the ground

set of Mω, and let Π denote the partition of S into ground sets of the connected

components of Mω.

We define D = Dσ to be the collection of unions F = S1∪S2∪ · · ·∪Sm of parts of

Π such that rkMω(F ) = rkM(F ). It is always true rkMω(F ) ≤ rkM(F ) for any F ⊆ S,

so D captures those F for which equality holds.

Proposition 2.4.23. The set system D forms an initial sublattice of M |S.

Proof. To show D is an initial sublattice of M |S, we need to show four things.

(1) Suppose F1, F2 ⊆ S satisfy F1 ∪ F2 ∈ D, F1 ∩ F2 ∈ D, and

rkM(F1) + rkM(F2) = rkM(F1 ∪ F2) + rkM(F1 ∩ F2).

We want to show F1 ∈ D and F2 ∈ D and both F1, F2 are unions of parts of Π. To

see that F1, F2 ∈ D, observe that

rkMω(F1) + rkMω(F2) = rkMω(F1 ∪ F2) + rkMω(F1 ∩ F2)

= rkM(F1 ∪ F2) + rkM(F1 ∩ F2)

= rkM(F1) + rkM(F2)

≥ rkMω(F1) + rkMω(F2)
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and so equality holds throughout. In particular, we have

rkMω(F1) = rkM(F1)

rkMω(F2) = rkM(F2),

that is, F1 and F2 both lie in D.

We next show that F1 and F2 must be unions of parts of Π. Since both F1∪F2 and

F1 ∩ F2 lie in D, the only way that this cannot happen is if there is some connected

componentM ′ ofMω on the ground set S ′ ∈ Π which contains some e ∈ S ′∩(F1rF2)

and f ∈ S ′ ∩ (F2 r F1). Now since M ′ is connected, there is a circuit C of M ′

containing both e and f . Choose a basis B of Mω|(F1 ∪ F2) such that f ∈ B and C

is the fundamental circuit of B ∪ e. Note that B ∩F1 ∩F2 is a basis of Mω|(F1 ∩F2),

because F1 ∩ F2 is a union of parts in Π. We therefore conclude

rkM(F1 ∪ F2) + rkM(F1 ∩ F2) = rkMω(F1 ∪ F2) + rkMω(F1 ∩ F2)

= |B ∩ F1 ∩ F2|+ |B ∩ (F1 ∪ F2)|

= |B ∩ F1|+ |B ∩ F2|

< |(B ∪ e) ∩ F1|+ |B ∩ F2|

≤ rkMω(F1) + rkMω(F2)

= rkM(F1) + rkM(F2)

= rkM(F1 ∪ F2) + rkM(F1 ∩ F2)

which is a contradiction.

(2) Let F1, F2 ∈ D. We want to show F1 ∩ F2 and F1 ∪ F2 are also in D, and

rkM(F1) + rkM(F2) = rkM(F1 ∪ F2) + rkM(F1 ∩ F2).
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We have

rkMω(F1 ∪ F2) + rkMω(F1 ∩ F2) ≤ rkM(F1 ∪ F2) + rkM(F1 ∩ F2)

≤ rkM(F1) + rkM(F2)

= rkMω(F1) + rkMω(F2)

= rkMω(F1 ∪ F2) + rkMω(F1 ∩ F2)

where the second inequality holds by submodularity of the rank function. So equality

holds throughout, which establishes all three assertions of (2).

(3) We want to show every F ∈ D is a flat of M |S. This is an immediate

consequence of the fact that F is a union of parts of Π, which means, since Mω is

loop-free, that every e ∈ S r F satisfies

rkM(F ) + 1 ≥ rkM(F ∪ e) ≥ rkMω(F ∪ e) = rkMω(F ) + 1 = rkM(F ) + 1.

So F is indeed a flat of M |S.

(4) Finally, we want to show ∅ ∈ D and S ∈ D. That ∅ ∈ D is clear from

the definition, as rkMω(∅) = rkM(∅) = 0 and ∅ is the empty union of the connected

components ofMω. To see that S ∈ D, since S is the ground set ofMω it is obviously

a union of the connected components ofMω. The fact that rkMω(S) = rkM(S) follows

immediately from Proposition 2.4.7.

Injectivity and surjectivity

We are going to show that our map is a bijection by showing that the maps σ 7→ Dσ

and D 7→ σD are inverses of eachother.

Proposition 2.4.24. Let ω ∈ RE and let ∅ ( E1 ( · · · ( Ek denote the flag of ω.

Then rkMω(Ej) = rkM(Ej) for all j = 1, 2, . . . , k.
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Proof. By Proposition 2.4.7 applied to the vector ω(j) where

ω(j)
e =


ωe, e ∈ Ej

0, e /∈ Ej,

we see that, for j = 1, 2, . . . , k, we have rkMω(Ej) = rkMω(j)(Ej) = rkM(Ej).

Proposition 2.4.25. We have σ = σDσ .

Proof. Let σ be a cone in the outer normal fan of P±M whose relative interior intersects

RE
≥0. Among all ω ∈ relint(σ) ∩ RE

≥0 such that ω is a minimal-support element of

relint(σ), choose ω so that the flag ∅ = E0 ( E1 ( · · · ( Ek = S of ω is as long as

possible. We start by showing that with this carefully chosen ω, the decomposition

Mω =
k⊕
i=1

(M |Ei)/Ei−1

is a decomposition of Mω into connected components. Suppose this was not the case,

so that there exists some i such that (M |Ei)/Ei−1 = M ′
1 ⊕M ′

2. Let E ′1, E ′2 denote

the ground sets of M ′
1,M

′
2, respectively. For sufficiently small ε > 0, the vector

ω′ ∈ relint(σ) defined by

ω′e =


ωe, e /∈ E ′

(1 + ε)ωe e ∈ E ′

optimizes the same face of P±M as ω but has a strictly longer flag than ω. This

contradicts maximality of the flag of ω. We therefore conclude that

Π := {Ei r Ei−1 : i = 1, 2, . . . , k}

is the partition of S into the ground sets of the connected components of Mω.

If we can show that ω ∈ relint(σDσ), then we are done. By definition, σDσ is
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defined to be the unique cone in the outer normal fan of P±M containing the relative

interior of cone(eE′1 , . . . , eE′k) where ∅ ( E ′1 ( · · · ( E ′k is any maximal chain of Dσ.

Hence, it suffices to show that ∅ ( E1 ( · · · ( Ek is a maximal chain of Dσ.

Now, Dσ is defined to be the collection of unions F of parts of Π such that

rkMω(F ) = rkM(F ). By Proposition 2.4.24, each Ej ∈ Dσ. Moreover, the length k of

the chain ∅ ( E1 ( · · · ( Ek is equal to the cardinality of Π, which implies that this

chain must be a maximal chain of Dσ.

Proposition 2.4.26. Let D′,D′′ be two initial sublattices of LM |S, such that ∅ =

E0 ( E1 ( · · · ( Ek = S ⊆ E is a maximal chain of both. Then D′ = D′′.

Proof. The statement is symmetric in D′ and D′′, so it suffices to show D′ ⊆ D′′.

Let F ∈ D′. By Proposition 2.4.12, we may write F = Si1 ∪ · · · ∪ Sim where each

Sij = Eij r Eij−1. We may further assume that Ei1 ( Ei2 ( · · · ( Eim , so that

Fj := Si1 ∪ Si2 ∪ · · · ∪ Sij = F ∩ Eij for all j = 1, 2, . . . ,m.

Note that these Fj’s lie in D′.

We show by induction on j = 0, 1, . . . ,m that Fj lies in D′′. The case j = 0 holds

since ∅ ∈ D′′. Therefore, assume that j ≥ 1 and Fj−1 ∈ D′′. We can write

Eij−1 ∪ Fj = Eij ∈ D′′

Eij−1 ∩ Fj = Fj−1 ∈ D′′

where Fj−1 ∈ D′′ by induction. Moreover, since Eij−1, Fj ∈ D′, we have

rkM(Eij−1) + rkM(Fj) = rkM(Eij) + rkM(Fj−1)

since rkM(·) is modular on D′. Therefore, since D′′ is initial, we have Fj ∈ D′′. This

completes the induction. Now, by taking j = m, we conclude F ∈ D′′.
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Proposition 2.4.27. We have D = DσD .

Proof. Let D be an initial sublattice of M |S for some S ⊆ E. Let C : ∅ ( E1 (

E2 ( · · · ( Ek = S be a maximal chain of D. By Proposition 2.4.26, we are done if

we can show that we can take ω ∈ relint(cone(eE1 , . . . , eEk)) so that Mω is loop-free,

and that C is a maximal chain of

DσD = {F = S1 ∪ · · · ∪ Sm : each Si ∈ Π, rkMω(F ) = rkM(F )}

where Π consists of the ground sets of the connected components of Mω.

Let ω ∈ relint(cone(eE1 , . . . , eEk)). ThatMω is loop-free follows from Propositions

2.4.15 and 2.4.19. We also have that each Ei ∈ DσD by Proposition 2.4.24, so that C

is a chain of DσD . It therefore remains to show that C is maximal.

For C to not be a maximal chain of DσD means that there exists some summand

of

Mω =
k⊕
i=1

(M |Ei)/Ei−1

which is disconnected. Suppose M ′ := (M |Ei)/Ei−1 = M ′
1 ⊕ M ′

2 , and let E ′1, E ′2

denote the nonempty ground sets of M ′
1,M

′
2, respectively. Let

F1 := Ei−1 ∪ E ′1

F2 := Ei−1 ∪ E ′2.

Then F1 ∪ F2 = Ei ∈ D and F1 ∩ F2 = Ei−1 ∈ D. Moreover, by Proposition 2.4.20,

F1, F2 form a modular pair in LM |S. Since D is initial, we conclude that F1, F2 ∈ D.

But this contradicts maximality of C in D.
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An extreme ray description of the cones in the outer normal fan of P±M

The final step in the proof of Theorem 2.4.1 is to establish the extreme ray description

2.1 of the cones σ(X,D). We start by describing the rays of the outer normal fan of

the polytope P±M , which is full-dimensional in RE since M is loop-free. This task has

essentially been carried out by Edmonds:

Proposition 2.4.28. [37, Theorem 40.5] A nonzero vector ρ ∈ RE is an extreme

ray of the normal fan of P±M if and only if ρ is some nonzero multiple of some lattice

point {−1, 0, 1}E such that supp(ρ) equals a connected flat of M .

Proof. Let ρ ∈ RE be a nonzero vector that is an extreme ray of the normal fan of

P±M . The one-dimensional cone R≥0 · ρ is a cone in the outer normal fan of P±M , so by

Lemma 2.4.11 it corresponds to some initial sublattice D of LM |S for some S ⊆ E.

Now, the dimension of the cone R≥0 · ρ, which is equal to 1, is an upper bound

on the length of a maximal flag of D by the description of the bijection of Lemma

2.4.11. Hence D = {∅, S}, and so, by this description, we see that (up to positive

scaling) ρ ∈ {−1, 0, 1}E with supp(ρ) = S. To see that S is a flat of M , note that if

f ∈ clM(S)rS, then the face τρ of P±M maximized by ρ lies in the hyperplane xf = 0.

This is because every basis B of M such that B ∩ S is a basis of M |S must satisfy

B ∩ (clM(S) r S) = ∅.

It follows that the face of P±M maximized by ρ+ εef would contain τρ for sufficiently

small ε > 0. But this cannot happen since τρ is already a facet of P±M . To see that

S is connected, note that if S is equal to the disjoint union S1 ∪ S2 where S1, S2 are

flats of M such that rkM(S1) + rkM(S2) = rkM(S), then since D is initial we would

have S1, S2 ∈ D as well. This contradicts D = {∅, S}.

Conversely, suppose that ρ ∈ {−1, 0, 1}E is nonzero and has the support of a

connected flat S. We exhibit |E| − 1 linearly independent vectors each of which is
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parallel to some line segment inside the face τρ dual to ρ in P±M . If f ∈ E r S, then

because S is a flat of M , M/S is loop-free, and therefore there must exist a vertex v

of τρ such that vf = ±1. Furthermore, since ρf = 0, we have that v − 2vfef is also

a vertex of τρ. We conclude that ef is parallel to some line segment inside τρ. Note

that at this point we are done if |S| = 1, so assume |S| ≥ 2. Fix some e ∈ S and let

f ∈ S be distinct from e. We show that ee−ef is parallel to some line segment inside

τρ. Since S is connected, there exists a circuit C of M such that {e, f} ⊆ C ⊆ S.

This further implies there exists two bases B,B′ of M such that B∩S and B′∩S are

bases of M |S, and B′ = B ∪ er f . It follows that we can find two vertices v, v′ ∈ τρ

such that v − v′ is parallel to ee − ef . Altogether, this produces |E| − 1 linearly

independent vectors parallel to line segments inside τρ.

We now explain the extreme rays statement of Theorem 2.4.1.

Proof of the second part of Theorem 2.4.1. Fix a cone σ in the normal fan of P±M , and

let ω ∈ relint(σ) be a minimal-support element of relint(σ). Let S = supp(ω), and let

D be the initial sublattice of LM |S corresponding to σ. We show that ρ is an extreme

ray of σ if and only if ρ ∈ {−1, 0, 1}E has support equal to a connected flat clM(F )

for some F ∈ D such that ρ and ω agree in sign on their common support. As before,

we denote the face of P±M maximized by ρ, ω by τρ, τω, respectively.

(⇒) If ρ is an extreme ray of σ, then it is an extreme ray of P±M , so that we

may assume (by the above Proposition 2.4.28) that ρ ∈ {−1, 0, 1}E and supp(ρ) = G

for some connected flat G of M . Enumerating the ground sets of the connected

components of Mω as S1, S2, . . . , Sk, and letting F = G∩S, our goal is to show three

things:

• The set F is the union of the Si’s,

• We have rkMω(F ) = rkM(F ), and

• We have G = clM(F ).
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Note that the combination of the first two conditions is equivalent to F ∈ D, by the

description of the map σ 7→ Dσ in Section 2.4.3.

First we show that, for each Si, either F contains Si or is disjoint from Si. Let

e, f ∈ Si which, for this purpose, we assume to be distinct. SinceMω|Si is a connected

component of Mω, there exists a circuit C of Mω containing both e and f . It follows

that there exists bases B,B′ of Mω such that B′ = B ∪ f r e. Now, by Proposition

2.4.7 (3), there is a vertex v of τω such that B = supp(v) ∩ S, and a vertex v′ of

τω such that B′ = supp(v′) ∩ S. Because τω ⊆ τρ, we have that ρ attains the same

objective value at both v and v′, and therefore we conclude

|B ∩ F | = 〈ρ, v〉 = 〈ρ, v′〉 = |B′ ∩ F | = |(B ∪ f r e) ∩ F | .

In particular, it is not the case that F contains e but not f . By symmetry, it is also

not the case that F contains f but not e. Repeating this argument for every pair

(e, f ′) where f ′ ∈ Si r e shows that F either contains Si or is disjoint from Si.

To see that rkMω(F ) = rkM(F ) and G = clM(F ), choose any vertex v of τω. Since

τω ⊆ τρ, we have 〈ρ, v〉 = |B ∩G| = rkM(G), where B = supp(v) is a basis of M .

Since v ∈ τω, we also have B ∩ S is a basis of Mω by Proposition 2.4.7 (3). We just

showed F is a union of the ground sets of the connected components of Mω, and this

implies rkMω(F ) = |(B ∩ S) ∩ F | = |B ∩ F |. We next show that B does not intersect

G r S. If there were some f ∈ B ∩ (G r S), then since f is not in S = supp(ω) we

must have v′ := v − 2vfef is also a vertex of τω, and since τω ⊆ τρ this would imply

|B ∩ F | − 2 = 〈ρ, v′〉 = 〈ρ, v〉 = |B ∩ F | ,

which is a contradiction. So B is indeed disjoint from Gr S, and therefore B ∩ F =

66



B ∩G. Putting this all together, we get

rkM(F ) ≥ rkMω(F ) = |B ∩ F | = |B ∩G| = rkM(G) ≥ rkM(F )

so that equality holds throughout, and in particular rkM(F ) = rkMω(F ) and G =

clM(F ).

(⇐) Assume ρ ∈ {−1, 0, 1}E has support equal to a connected flat G := clM(F )

for some F ∈ D, so that ρ agrees in sign with ω on the mutual support of ρ and

ω. We show that ρ is an extreme ray of σ. To do this, it suffices to show that ρ

maximizes every vertex v in τω. So let v be a vertex of τω, and let B = supp(v) be the

corresponding basis of M . Since v ∈ τω, we have B ∩ S is a basis of Mω, and since

F ∈ D we have that F is a union of the ground sets of the connected components of

Mω, which implies B ∩ F is a basis of Mω|F . Furthermore, again since F ∈ D, we

have rkMω(F ) = rkM(F ). Therefore, we get

〈ρ, v〉 = |B ∩G| ≥ |B ∩ F | = rkMω(F ) = rkM(F ) = rkM(G),

and since 〈ρ, w〉 ≤ rkM(G) for every vertex w of P±M , we conclude that the vertices of

τω attain the maximum possible objective value of ρ among all vertices of P±M .

Proofs of the main results

The content of this section expands on and proves the main results of this paper,

Theorem 2.3.4 and Corollary 2.3.5.

The main theorem

LetM be a loop-free oriented matroid, let ω ∈ RE with flag

∅ = E0 ( E1 ( E2 ( · · · ( Ek = S
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as in Definition 2.4.6, and let A = {f ∈ E : ωf < 0}. Define the oriented matroid

Mω :=
−A

(
k⊕
i=1

(M|Ei)/Ei−1

)
.

Note that if M is the underlying matroid of an oriented matroidM, then Mω is the

underlying matroid ofMω.

Let τω denote the face of P±M that is maximized by ω. By the loop-free part of

M, we mean the oriented matroidM r L where L is the set of loops ofM. In the

oriented setting, Proposition 2.4.9 takes the following form:

Proposition 2.5.1. For two vectors ω, ω′ ∈ RE, we have τω = τω′ if and only if the

loop-free part ofMω equals the loop-free part ofMω′.

Recall that an oriented matroid is totally cyclic if every element of the ground set

is contained in a positive circuit.

Proposition 2.5.2. [23, Theorem 3.4] The support of ΣM is given by

|ΣM| =
{
ω ∈ RE :Mω is totally cyclic

}
.

Proof. We have thatMω is totally cyclic if and only if each summand ofMω is. The

positive circuits of a summand

−A∩(EirEi−1)((M|Ei)/Ei−1)

ofMω are the inclusionwise minimal sign vectors of the form C r Ei−1, where C is

a signed circuit of M|Ei, and C agrees in sign with ω on C r Ei−1 (Prop 3.3.2 red

book). Hence, every element in Ei r Ei−1 is contained in a positive circuit of this

summand if and only if there exists a vector Xi ofM|Ei such that Xi(e) = sign(ωe)

for each e ∈ Ei r Ei−1. Here we are using the fact that every vector is a conformal
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composition of circuits. This is the same as saying that there exists a flag of vectors

0 < X1 < X2 < · · · < Xk ofM such that

ω = λ1eX1 + λ2eX2 + · · ·+ λkeXk

for some λ1, . . . , λk > 0. But this is precisely the statement that ω ∈ |ΣM|, by

definition of the fine subdivision of ΣM.

Since an oriented matroidM is totally cyclic if and only if the loop-free part of

M is totally cyclic, we get the following corollary of Propositions 2.5.2 and 2.5.1:

Corollary 2.5.3. The support of ΣM is subdivided by cones in the outer normal fan

of the signed matroid polytope P±M .

We can make this statement more precise in terms of the pairs (X,D) of Theorem

2.4.1:

Corollary 2.5.4. This subdivision of ΣM is given by

ΣM = {σ(X,D) : X ∩ F is a vector ofM for all F ∈ D} .

Proof. First, let σ ∈ ΣM. Then by Theorem 2.4.1, σ = σ(X,D) for some pair X,D.

Now let F ∈ D, and let F1 ( F2 ( · · · ( Fk be a maximal chain of D so that F = Fj

for some j. We show that X ∩Fi is a vector ofM for all i = 1, 2, . . . , k. By Theorem

2.4.1,

ω := eX∩F1 + eX∩F2 + · · ·+ eX∩Fk

lies in the relative interior of σ(X,D). Since σ(X,D) ∈ ΣM, we have ω ∈ |ΣM|.

Therefore, by the fine subdivision of ΣM, we have

ω ∈ relint(cone(eX1 , eX2 , . . . , eXm))
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for some flag of conformal vectors X1 < X2 < · · · < Xm of M. Now this flag of

conformal vectors can be recovered from ω, which implies that k = m and Xi = X∩Fi

for all i = 1, 2, . . . , k. We conclude X ∩ F = X ∩ Fj = Xj is a vector ofM.

Conversely, suppose σ(X,D) has the property that X∩F is a vector for all F ∈ D.

Choose any maximal chain F1 ( F2 ( · · · ( Fk of D, and let

ω = eX∩F1 + eX∩F2 + · · ·+ eX∩Fk

so that by Theorem 2.4.1, ω ∈ relint(σ(X,D)). Then we have

ω ∈ relint(cone(eX∩F1 , eX∩F2 , . . . , eX∩Fk)),

which is a cone in the fine subdivision of ΣM since

X ∩ F1 < X ∩ F2 < · · · < X ∩ Fk

is a flag of conformal vectors ofM by assumption. It follows that the relative interior

of σ(X,D) intersects |ΣM|, and this implies σ(X,D) ∈ ΣM by Corollary 2.5.4.

The uniform case

In this section, we assume that M is a loop-free uniform oriented matroid on the

ground set E, with underlying matroid M .

We begin by showing Corollary 2.5.4 can be made more precise in the uniform

setting. Write as shorthand

σ(X) := σ(X, {∅, S})

where S is the support of the sign vector X. As we shall see, D = {∅, S} is in fact

an initial sublattice of LM |S if X is a vector ofM.
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Proposition 2.5.5. The coarse subdivision of ΣM is given by

ΣM = {σ (X) : X is a vector ofM} .

Proof. Let X be a vector ofM with support S, and let D be an initial sublattice of

LM |S. By Corollary 2.5.4, to prove this proposition it suffices to show that X ∩ F is

a vector for every F ∈ D if and only if D = {∅, S}. The “if” direction follows from

the fact that M |S is connected and so S is a connected flat of M |S, so that D is not

missing any other flats of M |S. For the “only if” direction, suppose F ∈ D is the

support of a nonzero vector ofM. Then F is a cyclic flat2 of M |S. But, since M |S

is uniform, the only possible cyclic flat of M |S is S itself. Hence, F = S.

Corollary 2.5.6. The poset (with respect to inclusion) of nonzero cones in the coarse

subdivision of ΣM is anti-isomorphic to the poset of nonzero vectors ofM.

Proof. The previous Proposition 2.5.5 defines a bijective map between the nonzero

vectors ofM and the nonzero cones of ΣM. It therefore remains to show that this map

is order-reversing. Let X, Y be nonzero vectors ofM with supports S, T , respectively.

Since S, T are both unions of circuits, we have that they are both dependent in M .

Moreover, since M is uniform, we further have that both S and T contain a basis of

M . In particular we have clM(S) = clM(T ) = E. Therefore, the descriptions of the

cones σ(X) and σ(Y ) given by (2.1) simplify to

σ(X) = cone

ρ ∈ RE :
ρe = Xe if e ∈ S

ρe ∈ {−1, 1} if e ∈ E r S



and

σ(Y ) = cone

ρ ∈ RE :
ρe = Ye if e ∈ T

ρe ∈ {−1, 1} if e ∈ E r T

 .
2A cyclic flat is a flat that is also a union of circuits.
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From these descriptions we see that X ≤ Y if and only if σ(X) ⊇ σ(Y ).
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CHAPTER 3

A CHIROTOPE-BASED PROOF OF THE BOHNE-DRESS THEOREM

Introduction

The fundamental theorem on tilings of zonotopes by zonotopes is surely the Bohne-

Dress Theorem, which states that zonotopal tilings of a fixed zonotope can be under-

stood purely combinatorially using the theory of oriented matroids:

Theorem 3.1.1 (The Bohne-Dress theorem). Let A = (v1, v2, . . . , vn) be a vector

configuration of vectors in Rr, letM be the oriented matroid associated to this vector

configuration, and let

Z =
n∑
i=1

[−vi, vi]

be the zonotope associated to this vector configuration. Then there exists a 1-1 corre-

spondence between the zonotopal tilings of Z and single-element liftings ofM. Here,

the tiles of the zonotopal tilings are assumed to be of the form

ZJ =
∑
i∈J

[−vi, vi]

for some J ⊆ {1, 2, . . . , n}.

Since the original proof appeared in Jochen Bohne’s PhD thesis [38], several

other proofs have appeared in the literature. A proof by Ziegler and Richter-Gebert

[zieglerrichtergebert2001] uses McMullen’s formula for the volume a zonotope to

show that every single-element lifting of M contributes a zonotopal tiling. Huber,

Rambau, and Santos [39] used the Cayley trick to show that the poset of zono-

topal tilings, ordered by refinement, is isomorphic to the poset of subdivisions of the

Lawrence polytope associated to the vector configuration A. This is the polytope
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which is the convex hull of the columns of the matrix

A 0

I I

 ,

where A is the r × n matrix A =
(
v1 v2 · · · vn

)
.

The goal of this paper is to understand one direction of theorem from a topological

point of view, namely, that every single element lifting of a realizable oriented matroid

can be represented as a zonotopal tiling. Specifically, we show how this direction of

the Bohne-Dress theorem follows from the following lemma about continuous maps

between spheres: If Sk has a triangulation T , and if a map f : Sk → Sk is continu-

ous, has degree 1, and if the restriction f |σ : σ → f(σ) is an orientation-preserving

homeomorphism for each σ ∈ T , then f itself is a homeomorphism. A crucial ingre-

dient here is the Topological Representation Theorem of Folkman and Lawrence [27,

Theorem 5.2.1], which asserts that ∆M, the order complex of the poset of nonzero

covectors of an oriented matroidM, is homeomorphic to a sphere.

The outline of this paper is as follows: After reviewing some notation and basic

definitions, we state the particular formulation of the Bohne-Dress theorem we are

interested in proving. Next, we give an alternative interpretation of the chirotope of

an oriented matroid, one which makes it clear how to consistently orient the simplices

of ∆M to match the orientation of ‖∆M‖ ' Sr−1. After this, we state and prove our

version of the Bohne-Dress theorem using the lemma about maps between spheres

mentioned above. The second-to-last section is then dedicated to proving the lemma,

and can be considered as an appendix. Finally, in the last section, we speculate on

generalizations of the Bohne-Dress theorem to settings beyond the realizable case.
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Statement of the main result

Before stating the main result, we review some notation and definitions used in this

paper. We assume that the reader is familiar with oriented matroids. For an intro-

duction to oriented matroids, we refer the reader to [27] or [28]. We define

3 := {−1, 0,+1}

2 := {−1,+1} .

For oriented matroids M,N , we write M,N to denote their underlying unoriented

matroids.

LetM be an oriented matroid of rank r on the ground set E. Let ∆M denote the

order complex of the poset of nonzero covectors of M :

∆M := ∆(L(M)− 0).

Here V∗(M) denotes the set of covectors ofM. We identify ∆M with the following

geometric realization of ∆M in RE:

∆M := {conv (eX1 , . . . , eXk) : X1 < X2 < · · · < Xk, each Xi ∈ V∗(M)} .

Here, given a sign vector X ∈ 3E, we define

eX :=
 ∑
f∈X+

ef

−
 ∑
f∈X−

ef

 ∈ RE.

Given two matroidsM, N on the ground set E of the same rank r, we say that

there is a weak mapM N if, up to a global sign change, we have

χM ≥ χN ,
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where a ≥ b means b is obtained from a by setting some entries to zero. Here χM

and χN are chirotopes ofM,N , respectively.

For our purposes, the following stronger notion of a weak map will be important

for us:

Definition 3.2.1. A weak mapM N is rank-preserving on flats if

rk(M |F ) = rk(N |F )

for all flats F of M .

Note that there are weak maps M  N which are not rank-preserving on flats

(Figure .), even whenM and N have the same rank.

Definition 3.2.2. Let π : RE → Rr be a surjective linear map. The oriented matroid

corresponding to π is the oriented matroid N whose chirotope is defined by

χN (b1, . . . , br) = sign det (vb1 , . . . , vbr) , vf := π(ef )

for all r-tuples (b1, . . . , br) ∈ Er.

We are now ready to state our version of the Bohne-Dress theorem.

Theorem 3.2.3. LetM N be a weak map pair such that N is the oriented matroid

of a surjective linear map π : RE → Rr. Assume N is loop-free. Let bdZ denote the

boundary of the zonotope Z := π([−1, 1]E). Then π restricts to a homeomorphism

πM : ‖∆M‖ → bdZ if and only ifM N is rank-preserving on flats.

The chirotope, revisited

In this section we reinterpret the chirotope of an oriented matroidM in terms of flags

of conformal covectors. Consider an arrangement of pseudospheres representing M

76



inside the sphere Sr−1. The pieces cut out by the pseudospheres fit together to form a

cell complex of Sr−1, and, by taking the first barycentric subdivision of this complex,

we obtain a triangulation of Sr−1. There is, furthermore, a natural ordering on the

vertices of each simplex in this triangulation: the vertices of each simplex correspond

to the covectors of a maximal flag of conformal covectors, and we can order these

by containment. The main observation of this section is that the chirotope assigns

a + or a − to each maximal simplex in this triangulation, according to whether or

not the simplex (with its natural ordering of vertices) agrees or disagrees with a fixed

orientation of Sr−1.

Signed ordered bases

A signed, ordered basis B = (s1b1, s2b2, . . . , srbr) is an ordered r-tuple such that each

si ∈ {−1, 1} and {b1, . . . , br} is a basis ofM. We will shorten this term to “s.o. basis”

for brevity. The first statement we make is that a s.o. basis uniquely determines a

maximal flag of covectors ofM.

Proposition 3.3.1. Let B = (s1b1, . . . , srbr) be a s.o. basis. Then there exists a

unique flag of covectors F : 0 = X0 < X1 < X2 < · · · < Xr such that bi ∈

supp(Xi) r supp(Xi−1) and Xi(bi) = si for all i = 1, 2, . . . , r.

We will denote the flag associated to a s.o. basis B as FB.

Proof. Assume r ≥ 1. Let X1 be the cocircuit complementary to the flat F1 spanned

by b2, . . . , br, so that E is the disjoint union supp(X1)∪F1. Then X1 is determined up

to sign, and so we further specify that X1(b1) = s1. By induction, there is a unique

flag of covectors

F ′ : 0 = X ′0 < X ′2 < · · · < X ′r

ofM|F1 associated to the s.o. basis (s2b2, . . . , srbr). From this flag we construct the
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flag F : 0 = X0 < X1 < X2 < · · · < Xr by setting

Xi(f) =


X1(f), f ∈ supp(X1)

X ′r(f), f ∈ F1

for each i = 1, 2, . . . , r. This procedure determines F uniquely, and any F satisfying

the conclusions of Proposition 3.3.1 can be recovered using this procedure given B =

(s1b1, . . . , srbr).

A chirotope χ ofM is an alternating function on the set of ordered bases of M ,

and extends naturally to an alternating function on the set of signed ordered bases

as follows:

χ (s1b1, s2b2, . . . , srbr) := s1s2 · · · sr χ(b1, b2, . . . , br).

Proposition 3.3.2. Let B,B′ be two s.o. bases such that FB = FB′. Then χ(B) =

χ(B′). In particular, χ(B) depends only on the flag of covectors determined by B.

Proof. This statement is obvious when r = 1, so assume r ≥ 2. Let F : 0 = X0 <

X1 < · · · < Xr, and let B = (s1b1, . . . , srbr), C = (t1c1, . . . , trcr) be two s.o. bases

such that FB = FC = F . Let F1 = E r X1. A chirotope χF1 for the restriction

M |F1 is given by

χF1(x2, . . . , xr) = χ(b1, x2, . . . , xr), x2, . . . , xr ∈ F1.

Let F ′ : 0 = X0 ∩ F1 < X2 ∩ F1 < · · · < Xr ∩ F1 be a flag of covectors M |F1, where

Xi|F1 is the covector of M |F1 satisfying

(Xi ∩ F1)+ = X+
i ∩ F1

(Xi ∩ F1)0 = X0
i ∩ F1

(Xi ∩ F1)− = X−i ∩ F1
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for all i = 1, 2, . . . , r. Then FB′ = FC′ = F ′, where B′ = (s2b2, . . . , srbr), C ′ =

(t2c2, . . . , trcr) are s.o. bases of M |F1, by the procedure outlined in the proof of

Proposition 3.3.1. By induction, then, we have χF1(B′) = χF1(C ′). Now,

χ(B) = χ(s1b1, s2b2 . . . , srbr)

= s1 · χF1(B′)

= s1 · χF1(C ′)

= s1 · χ(b1, t2c2, . . . , trcr)

= s1 · t2 · · · tr · χ(b1, c2, . . . , cr)

= s1 · t2 · · · tr · s1t1 · χ(c1, c2, . . . , cr)

= χ(t1c1, . . . , trcr)

= χ(C).

Here the third-to-last equality holds by the dual pivoting property [27, p. 125].

Orienting simplices using the chirotope

Given a maximal flag F : 0 = X0 < X1 < · · · < Xr of covectors, define

χ(F ) := χ(B)

where B is any s.o. basis B such that FB = F . Note that such a B always exists; one

can take B = (X1(b1)b1, X2(b2)b2, . . . , Xr(br)br), where each bi is chosen arbitrarily

from supp(Xi) r supp(Xi−1). Proposition 3.3.2 implies that this definition is well-

defined.

The next goal is to give a topological interpretation of the chirotope χ ofM. Here

we make crucial use of the following fact about the topology of ∆M:

Theorem 3.3.3 (Topological Representation Theorem [27, Theorem 5.2.1]). The
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complex ∆M is homeomorphic to the sphere Sr−1.

This theorem implies that the only nonvanishing reduced homology group of ∆M

is H̃r−1(∆M), which is isomorphic to Z. Now, H̃r−1(∆M) is spanned by simplicial

maps

σF : ∆r−1 → ∆M

ei 7→ eXi for all i = 1, 2, . . . , r

for each maximal flag F : 0 = X0 < X1 < · · · < Xr of covectors, where

∆r−1 := conv(e1, e2, . . . , er) ⊂ Rr.

Recall that an orientation of an orientable (r − 1)-dimensional manifold M is

a cycle α ∈ H̃r−1(M) which generates H̃r−1(M), and if T is a collection of maps

σ : ∆r−1 → M which determines a triangulation of M , then α can be written as a

linear combination of the elements of T (more precisely, their images in H̃r−1(M))

each having coefficient +1 or −1. In the context of ∆M, these signs are governed by

the chirotope ofM:

Proposition 3.3.4. A generator for H̃r−1(∆M) is given by

αM :=
∑
F

χ(F )[σF ],

where the sum runs over all maximal flags F of conformal covectors.

Proof. We show that αM is a cycle; the fact that αM generates H̃r−1(∆M) will

then follow from the fact that T is a triangulation of ∆M. The boundary map
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∂ : Cr−1(∆M)→ Cr−2(∆M) sends αM to

∂αM =
∑
F

χ(F )
r∑

k=1
(−1)k[σF ,k]

=
∑

σ∈Cr−2(∆M)

 ∑
(F ,k):σF,k=σ

χ(F )(−1)k
 [σ]. (3.1)

Here σF ,k is the map σF restricted to the facet of ∆r−1 not containing vertex k. To

show that this is zero, it suffices to show that the inner sum of (3.1) is zero whenever

it is a nonempty sum.

Denote by L the lattice obtained by adjoining a top element 1 to the poset L(M).

Let σ ∈ Cr−2(∆M) so that the inner sum of (3.1) is nonempty. Then σ corresponds

to a flag of L of the form

Fσ : 0 = X0 < X1 < · · · < Xk−1 < Xk+1 < · · · < Xr < Xr+1 = 1.

This flag is obtained from a maximal flag F : 0 = X0 < X1 < · · · < Xr < Xr+1 = 1

of L by removing Xk for some k = 1, 2, . . . , r. Now, [Xk−1, Xk+1] is a length-2 interval

in the lattice L, and, therefore, there exist exactly two incomparable covectors Xk, X
′
k

strictly inside this interval. Let F and F ′ be the two extensions of Fσ which contain

Xk and X ′k, respectively. Then the inner sum of (3.1) corresponding to σ is equal to

χ(F )(−1)k + χ(F ′)(−1)k.

Thus, we would like to show that χ(F ) = −χ(F ′). Let B = (s1b1, . . . , srbr) be a

s.o. basis such that F = FB. If k = r, then we must have X ′r = Xr−1 ◦ (−Xr), and

therefore B′ := (s1b1, . . . , sr−1br−1,−srbr) is an s.o. basis of F ′. It follows that

χ(F ′) = χ(s1b1, . . . ,−srbr) = −χ(s1b1, . . . , srbr) = −χ(F ).
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Otherwise, k < r, and in this case B′ = (s1b1, . . . , sk+1bk+1, skbk, . . . , srbr) is an s.o.

basis for F ′. That is, B′ is obtained from B by swapping the entries in the k and

k + 1 positions. Since χ is alternating, we obtain that

χ(F ′) = χ(B′) = −χ(B) = −χ(F )

in this case as well. This shows that αM is indeed a cycle.

Piecewise linear topology

In this section we state some basic notions from piecewise linear topology, and state

a key lemma. A general reference is [40].

Definition 3.4.1. A pure k-dimensional PL simplicial complex K is a realization of

an abstract simplicial complex in some Euclidean space Rn, given by a collection of

affine maps TK = {σ : ∆k → K} which are linearly isomorphic onto their images.

For our purposes, it will be convenient to keep track of the maps themselves, rather

than just their images in K. It is not a loss of generality to assume K is embedded

in some Euclidean space, since every abstract simplical complex of dimension k has

a realization as a PL simplicial complex in R2k.

Definition 3.4.2. The support ‖K‖ of a PL simplicial complex K is defined to be

the union of imσ over all σ ∈ TK .

Definition 3.4.3. A refinement K ′ of K is a PL simplicial complex such that ‖K ′‖ =

‖K‖ and for all σ′ ∈ TK′ , we have imσ′ ⊆ imσ for some σ ∈ TK .

Definition 3.4.4. We say that a continuous map f : K → L is a PL map provided

there exists a refinementK ′ ofK and a refinement L′ of L such that for every σ′ ∈ TK′ ,

the restriction f |σ′ is a linear map whose image in L′ is equal to imτ for some τ ∈ TL′ .
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Remark 3.4.5. If f : K → L is the restriction of some linear map f : Rn → Rr, then

f : K → L is automatically a PL map. [40, Lemma 1.9]

Definition 3.4.6. Let L be a PL simplicial complex. A point y ∈ L is called a regular

point if there exists exactly one simplex τ : ∆k → L for which y ∈ imτ . In other

words, y “does not lie on the boundary of any simplex.”

Definition 3.4.7. Let f : K → L be a PL map. A regular point of f is a point y ∈ L

such that y is a regular point of L and x is a regular point of K for all x ∈ f−1(y).

Lemma 3.4.8. Let K,L be PL k-spheres with triangulations TK , TL, respectively.

Assume that H̃k(K) and H̃k(L) are generated by

∑
σ∈TK

[σ] and
∑
τ∈TL

[τ ],

respectively. Let f : K → L be a PL map. Assume that:

1. There exists a subcomplex K0 of K homeomorphic to Sk−1, so that the restric-

tion f : K0 → f(K0) is a homeomorphism. If K+, K− denote the two closed

hemispheres in K whose common boundary is K0, then we also have

f(K+) ∩ f(K−) = f(K0).

2. The composition f ◦ σ : ∆k → L is homeomorphic onto its image for each

σ ∈ TK.

3. For each regular point y of f , and for each x ∈ f−1(y), the Jacobian determinant

of the composition

τ−1 ◦ f ◦ σ : ∆k → ∆k

is positive at σ−1(x), where σ, τ are the unique maps of TK , TL, respectively,

such that x ∈ imσ and y ∈ imτ .
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Then f is a PL homeomorphism.

Remark 3.4.9. In the above Lemma 3.4.8, note that the composition τ−1◦f ◦σ : ∆k →

∆k is only defined in a neighbourhood U0 of σ−1(x). We can compute the Jacobian

determinant of an affine map ϕ : U0 → ∆k, where U0 is open in ∆k, by noting that

ϕ is the restriction of a linear map B : Rk+1 → Rk+1. The Jacobian determinant, in

this case, is simply the determinant of B.

The Bohne-Dress theorem, revisited

We are almost ready to state our proof of Theorem 3.2.3 using Lemma 3.4.8. First,

however, we state and prove some facts about weak maps that are rank preserving

on flats. We begin by showing that this notion of an oriented matroid map affords

the following useful feature:

Proposition 3.5.1. If a weak map M  N is rank-preserving on flats, then it

induces a weak mapM|F  N|F that is rank-preserving on flats for every flat F of

M .

Proof. Let F be a flat ofM , and let b1, . . . , bk be a basis of N |F . Since this weak map

is rank-preserving on flats, b1, . . . , bk is also a basis ofM |F . Therefore, the chirotopes

ofM|F,N|F are given by

χM|F (f1, . . . , fr−k) = χM(b1, . . . , bk, f1, . . . , fr−k)

χN|F (f1, . . . , fr−k) = χN (b1, . . . , bk, f1, . . . , fr−k)

for all (f1, . . . , fr−k) ∈ Er−k. In particular, χN|F is obtained from χM|F by setting

some entries to zero. This shows there is a weak mapM|F  N|F . To see that this

weak map is rank-preserving on flats, suppose G is a flat of M |F . Then G is also a
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flat of M , and hence

rkM |F (G) = rkM(G) = rkN(G) = rkN |F (G).

Lemma 3.5.2. Let N be the oriented matroid associated to a linear map π : RE →

Rr, and assume there is a weak mapM N . Let F : 0 = X0 < X1 < · · · < Xr be

a maximal flag of covectors ofM. Let vX := π(eX) for X ∈ 3E. Then

χM(F ) det(vX1 , . . . , vXr) =
∑
S

χN (S)2 |det(vb1 , . . . , vbr)| ,

where the sum is over all s.o. bases S = (s1b1, . . . , srbr) of F . In particular, the

vectors vX1 , . . . , vXr are linearly independent if and only if there exists a basis B =

{b1, . . . , br} of N such that bi ∈ suppXi r suppXi−1 for all i = 1, 2, . . . , r.

Proof. We have

χM(F ) det(vX1 , . . . , vXr) =
∑
S

χM(F ) det(vb1 , . . . , vbr)

=
∑
S

χM(S) det(s1vb1 , . . . , s1vbr)

=
∑
S

χM(S)χN (S) |det(vb1 , . . . , vbr)|

=
∑
S

χN (S)2 |det(vb1 , . . . , vbr)| .

The first equality holds by multilinearity of the determinant, the second equality

holds by Lemma 3.3.2, the third equality holds by definition of χN (S), and the last

inequality holds by the weak mapM N .

In the case when N is realizable, there is a linear-algebraic characterization of

when a weak mapM N is rank preserving on flats:
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Lemma 3.5.3. LetM N be a weak map pair such that N is the oriented matroid

of a surjective linear map π : RE → Rr. Then the following are equivalent:

1. The weak mapM N is rank preserving on flats.

2. For all maximal flags of covectors F : 0 = X0 < X1 < · · · < Xr of M, the

vectors vX1 , . . . , vXr are linearly independent.

Proof. Since every flat of M is complementary to some covector X ofM, and every

covector X ofM is contained in a maximal flag of covectors F , it suffices to show,

for every maximal flag F ,

vX1 , . . . , vXr linearly independent ⇐⇒ rk(M |Fi) = rk(N |Fi) for all i

where Fi = E rXr−i for i = 0, 1, 2, . . . , r. for every such flag F , By Lemma 3.5.2, it

suffices to show that rk(M |Fi) = rk(N |Fi) for all i if and only if there exists a basis

B of N such that bi ∈ suppXir suppXi−1 for all i = 1, 2, . . . , r. We note here the fact

that rk(M |Fi) = i for all i.

Let F : 0 = X0 < X1 < · · · < Xr be a maximal flag of covectors of M. First

suppose we have such a basis B of N as above, and let 1 ≤ i ≤ r. Then br−i+1, . . . , br

is an independent set in N |Fi for all i, and hence

i ≤ rk(N |Fi) ≤ rk(M |Fi) = i

where the second inequality holds by the weak map. This shows rk(M |Fi) = rk(N |Fi).

On the other hand, now suppose rk(M |Fi) = rk(N |Fi) for all i. Then a basis {br} of

N |F1 can be extended to a basis {br, br−1} of N |F2, which can in turn be extended to

a basis {br, br−1, br−2} of N |F3, and so on, until we obtain a basis B = {b1, . . . , br} of

N so that br−i+1 ∈ Fi r Fi−1 for all 1 ≤ i ≤ r. Equivalently, bi ∈ suppXi r suppXi−1

for all i.

86



For the convenience of the reader, we restate the main theorem of this paper which

we now prove.

Theorem. Let M  N be a weak map pair such that N is the oriented matroid of

a surjective linear map π : RE → Rr. Assume N is loop-free. Let bdZ denote the

boundary of the zonotope Z := π([−1, 1]E). Then π restricts to a homeomorphism

πM : ‖∆M‖ → bdZ if and only ifM N is rank-preserving on flats.

Proof. First, suppose πM : ∆M → bdZ is a PL homeomorphism. To show there

is a weak map M  N , it suffices to show that every tope of N is a tope of M.

First, note that each vertex v of Z has the property that π−1(v) = {eT} for some

sign vector T ∈ 2E. Indeed, π−1(v) is a face of [−1, 1]E, and if it were not a vertex of

[−1, 1]E then there would be some sign vector T ∈ 2E, some f ∈ E, and some edge

[eT , eT − 2T (f)ef ] ⊆ π−1(v). But this means

0 = π(eT )− π(eT − 2T (f)ef ) = 2T (f)π(ef ) = 2T (f)vf ,

and so vf = 0, which contradicts the assumption that N is loop free. Now, each

vertex vT of Z corresponds to some tope T of N in the sense that vT = π(eT ).

Hence, π−1(vT ) = eT . Now, because πM is surjective by assumption, there exists

some α ∈ ∆M such that π(α) = vT . Hence, α ∈ π−1(vT ) = {eT}. It follows that T

is a tope ofM. The fact thatM  N is rank-preserving on flats follows from the

assumption that πM is a PL homeomorphism, and therefore, for each maximal flag

of covectors F : 0 = X0 < · · · < Xr, we have

πM(conv(eX1 , . . . , eXr)) = conv(vX1 , . . . , vXr)

is an r-simplex. In particular, vX1 , . . . , vXr are affinely independent, and hence linearly

independent as they all lie on some facet of the full-dimensional 0-symmetric polytope
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Z. Thus Lemma 3.5.3 applies.

We now establish the other direction of the theorem. We proceed by induction

on the rank r of M. If r = 0, there is nothing to prove. Therefore, assume r ≥ 1.

Assume that there is a weak mapM N that is rank-preserving on flats. We wish

to show that πM : ∆M → bdZ is a PL homeomorphism. To do this, it suffices to

establish the three hypotheses of Theorem 3.4.8. We do this below:

1. Since r ≥ 1, there is at least one cocircuit X of M. Let F = E r X be

the flat complementary to X. Then by Proposition 3.5.1 there is a weak map

M|F  N|F that is rank preserving on flats. Now, N|F is realized by the

restriction of π to the subspace RF of RE spanned by {ef : f ∈ F}. Hence the

linear map π : RE → Rr restricts to a map of affine spaces π : (eX+RF )→ Rr,

which, in turn, restricts to a PL map πX : (eX + ∆M|F )→ bdZX where

ZX = vX +
∑
f∈F

[−vf , vf ]

is a translate of the zonotope of N|F by vX = π(eX). By induction, then, this

map is a PL homeomorphism, which establishes (1).

2. This condition is immediate from Lemma 3.5.3.

3. Fix a regular point y ∈ bdZ, and x ∈ π−1
M (y). Let

F : X1 < X2 < · · · < Xr

G : Y1 < Y2 < · · · < Yr

denote the unique flags of covectors of M and N , respectively, such that x ∈
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imσ, y ∈ imτ , where

σ = χM(F )σF ∈ Hk(∆M)

τ = χN (G )(π ◦ σG ) ∈ Hk(bdZ).

Then the Jacobian determinant of τ−1πMσ at σ−1(x) is equal to

χM(F ) det(vX1 , . . . , vXr) (χN (G ) det(vY1 , . . . , vYr))
−1 ,

and this is positive since

χN (G ) det(vY1 , . . . , vYr) = |det(vY1 , . . . , vYr)| > 0

and by Lemmas 3.5.2 and 3.5.3,

χM(F ) det(vX1 , . . . , vXr) =
∑
S

χN (S)2 |det(vb1 , . . . , vbr)| > 0.

Remark 3.5.4. One half of the Bohne-Dress theorem can be deduced from this theorem

as follows: Given a zonotope Z ⊂ RE, let N denote the oriented matroid of Z ×

[−1, 1] ⊂ RE ×Re; that is, N is the oriented matroid of Z, plus a coloop e. LetM

be an oriented matroid such thatM/e = N /e. Then the identity map on E induces

a weak map M  N that is rank-preserving on flats. Applying Theorem 3.2.3 to

M and N , we obtain a triangulation of the boundary of the prism Z × [−1, 1] that

realizes ∆M. If we look in particular at one of the two big facets of Z × [−1, 1], we

see a triangulation of Z which coincides with the canonical barycentric subdivision

of a zonotopal tiling that representsM.

Remark 3.5.5. The following sketch of an argument demonstrates that Theorem 3.2.3
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can also be deduced from the Bohne-Dress theorem: Start with a realizable oriented

matroid N and a weak map M  N that is rank-preserving on flats. Let Z be a

zonotope representing N . Let Ñ = N + e be a realizable free extension of N and let

M̃ be an oriented matroidM such that there is a weak map M̃ Ñ that is rank-

preserving on flats. Now, M̃ is a single element lifting of Ñ /e, and therefore, by the

Bohne-Dress theorem, there is a zonotopal tiling of the zonotope Z̃ corresponding

to Ñ /e that represents M̃. Taking the canonical barycentric subdivision of this

zonotopal tiling, we obtain exactly one-half of a geometric realization of ∆M. We

then take two copies of this triangulated complex, multiply one of them by −1, and

then lift both of them onto the boundary of Z so that they intersect on their common

boundary. The result is a homeomorphic image of ∆M that lives on the boundary

of Z, whose support can be shown to be exactly π(∆M). The main challenge of this

argument is to show that there is such a M̃ that works; but it turns out that by

simply taking the localization of Ñ with respect to N + e, and composing it with

the localization of a generic lexicographic extension ofM, yields an oriented matroid

with the desired properties (are you sure?). We leave the details to the interested

reader.

Details

In this section we prove the following lemma, and then show how to derive Lemma

3.4.8 from it. Throughout this section, assume k ≥ 1.

Lemma 3.6.1. Let T be a triangulation of Sk, and let f : Sk → Sk be a map such

that:

1. The degree of f is +1 or −1.

2. For each σ ∈ T , the restriction f |σ is a homeomorphism onto its image.
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3. There exists some sign s ∈ {−1, 1} such that for each maximal cell σ ∈ T , the

local degree of f at each point in the interior of σ has sign s.

Then f : Sk → Sk is a homeomorphism.

Preliminaries

The proof of this lemma relies on the following result due to Brouwer:

Theorem 3.6.2 (Invariance of Domain [41, Theorem 2B.3]). Let f : Sk → Sk be a

map, and let U ⊆ Sk be open such that the restriction f : U → f(U) is injective.

Then f(U) is open in Sk.

We also need the notion of local degree:

Definition 3.6.3 ([42, Definition 5.1]). Let V ⊂ Sk be an open set, and let y ∈ Sk.

Let f : V → Sk be such that f−1(y) is compact. Then define the local degree of f at

y, denoted degy(f) to be the integer d such that the composite

Hk(Sk) −→ Hk(Sk|f−1(y)) −→ Hk(V |f−1(y)) f∗−→ Hk(Sk|y) −→ Hk(Sk)

is given by x 7→ d · x. Here the first map is the projection map, the second is an

excision map, and last is the inverse of the projection map. The notation Hk(X|A)

denotes the relative homology group Hk(X,X − A).

Proposition 3.6.4 ([42, Proposition 5.8]). Let V ⊆ Sk be an open set and let f :

V → Sk. Suppose we can write V as a union

V = V1 ∪ V2 ∪ · · · ∪ Vm

where each Vi is open. Let fi : Vi → Sk denote the restriction of f to Vi for each

i = 1, . . . ,m. Suppose y ∈ Sk has the property that f−1
i (y) is disjoint from f−1

j (y) for
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all i 6= j. Then

degy(f) =
m∑
i=1

degy(fi).

Definition 3.6.5 ([42, Definition 5.11]). Let V ⊆ Sk be an open set and let f : V →

Sk. Let W ⊆ Sk. Then f is proper over W if f−1(L) is compact for every compact

L ⊂ W .

Proposition 3.6.6 ([42, Proposition 5.12]). Let V ⊆ Sk be an open set and let

f : V → Sk. Let W be a connected open set such that f is proper over W . Then the

function W → Z given by y 7→ degy(f) is constant.

Proof of Lemma 3.6.1

In the following three propositions, we assume T and f : Sk → Sk are as in the

statement of the lemma.

Proposition 3.6.7. Let y ∈ Sk. Let f−1(y) = {x1, . . . , xs}. Let Ui be a neighbour-

hood of xi for i = 1, 2, . . . , s, so that the Ui’s are pairwise disjoint. Then there exists

some ε > 0 such that

f−1(B(y, ε)) ⊆ U1 ∪ U2 ∪ · · · ∪ Us.

Here B(y, ε) denotes the open cap in Sk centered at y of radius ε.

Proof. Let Vn = f−1(B(y, 1
n
)). Note that V1 ⊃ V2 ⊃ V3 ⊃ · · · We have that

f−1(y) =
⋂
n≥1

Vn

since a point x ∈ Sk lies in this intersection if and only if ‖f(x)− y‖ < 1/n for all

n ≥ 1; that is, f(x) = y. Now Let U = U1 ∪ · · · ∪ Us and let K = Sk r U . We have

an open cover of K as follows: each x ∈ K is covered by Sk r Vn where n = n(x) is
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the smallest integer for which x /∈ Vn. Since K is a closed subset of Sk, and therefore

compact, this open cover has a finite subcover; in particular, there exists some N

such that Sk r U = K ⊆ Sk r VN , and therefore we conclude VN ⊆ U .

Proposition 3.6.8. Define the set

X := f

( ⋃
σ∈T

bd σ
)
⊆ Sk.

Then Sk rX is open and dense in Sk.

Proof. We start by showing that Sk r f(bd σ) is open and dense in Sk for all σ ∈ T .

That Sk r f(bd σ) is open is clear from the fact that f : Sk → Sk maps closed sets

to closed sets, and bd σ is closed. To see that Sk r f(bd σ) is dense, Let y ∈ f(bd σ).

There exists a unique x ∈ bd σ such that f(x) = y. Since σ is homeomorphic to

a closed ball, we can find a sequence x1, x2, . . . in σ◦ which converges to x. By

continuity of f , we have f(xn)→ f(x) = y, and since f |σ is a homeomorphic to f(σ),

we must have that each f(xn) ∈ f(σ◦) which is disjoint from f(bd σ). We conclude

that y lies in the closure of Sk r f(bd σ). Since |T | is finite, the conclusion of the

proposition follows from the fact that a finite intersection of open dense sets in Sk is

open dense.

Proposition 3.6.9. Let W be open in Sk, and let V = f−1(W ). Suppose V can

be written as the disjoint union V = V1 ∪ · · · ∪ Vs where each Vi is open. Then the

restriction fi : Vi → Sk is proper over W for each i = 1, 2, . . . , s.

Proof. Suppose i = 1, 2, . . . , s, and let L ⊆ W be a compact set. We show that each

f−1
i (L) is closed in Sk, and hence compact, by showing that f−1

i (L) contains all its

limit points.

Let {xn} be a convergent sequence in f−1
i (L) = f−1(L) ∩ Vi which converges to

some x ∈ Sk. Since f−1
i (L) ⊆ f−1(L) which is closed, we have x ∈ f−1(L). Hence it
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remains to show x ∈ Vi. We may write

f−1(L) =
s⋃
i=1

f−1(L) ∩ Vi =
s⋃
i=1

f−1
i (L),

which means in particular that x ∈ f−1
j (L) for some j = 1, 2, . . . , s. If i 6= j, then

there exists some ε > 0 such that B(x, ε) ⊆ Vj, and hence each xn in the sequence

x1, x2, . . . has distance at least ε from x. This contradicts the fact that xn → x. We

conclude that i = j.

We are now ready to prove the lemma.

Proof of Lemma. Let y ∈ Sk. Then f−1(y) = {x1, . . . , xt}. Let Ui be a neigh-

bourhood of xi for all i = 1, 2, . . . , t, so that the Ui’s are pairwise disjoint, and let

U = U1∪U2∪ · · · ∪Ut. Let W = B(y, ε) ⊆ Sk, where ε > 0 is chosen small enough so

that V := f−1(W ) is a neighbourhood of f−1(y) contained in U . Such an ε exists by

Proposition . Let Vi = V ∩ Ui for all i = 1, 2, . . . , t. Then the Vi’s are also pairwise

disjoint, and each Vi is an open neighbourhood of xi.

Choose some σ ∈ T containing xi. Then Vi∩σ◦ is open in Sk and nonempty, since

it is possible to approach xi from within σ◦. Moreover, since the map f |σ : σ → f(σ)

is a homeomorphism, any restriction of this map is also a homeomorphism. From this

and Theorem we conclude that f(Vi ∩ σ◦) is open in Sk.

Now, let X = f(∪τ∈T bd τ), so that Sk r X is open and dense in Sk by Propo-

sition . Then f(Vi ∩ σ◦) intersects Sk r X at a point zi. Write f−1(zi) ∩ Vi =

{wi1, wi2 . . . , wi,`(i)}. Note that since zi ∈ f(Vi), we have `(i) ≥ 1. Let Wij be an

open neighbourhood of wij in Vi, and let fij : Wij → Sk denote the restriction of f
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to Wij for all j = 1, 2, . . . , `(i). Let s = deg(f). We have

1 = s · deg(f) =
t∑
i=1

s · degy(fi)

=
t∑
i=1

s · degzi(fi)

=
t∑
i=1

`(i)∑
j=1

s · degzi(fij) ≥ `(1) + `(2) + · · ·+ `(t) ≥ t.

The first equality holds by assumption (1), the second equality holds by Proposition

, the third equality holds by Propositions and , and the fourth equality holds again

by Proposition . The second-to-last inequality holds by assumption (3), and the last

inequality holds since each `(i) ≥ 1. Since t is a positive number, we must therefore

have t = 1. Since y was arbitrarily chosen, we conclude f must be injective, and

therefore a homeomorphism.

Proof of Lemma 3.4.8

Definition 3.6.10. Let U ⊂ ∆k be open. A map ϕ : U → ∆k is is orientation

preserving at x ∈ U , if the diagram below commutes:

Hk(∆k|x) Hk(U |x)

Hk(∆k|ϕ(x))

ϕ∗

Here the top map is the excision isomorphism, and the diagonal sends the class

of the identity map 1 : ∆k → ∆k in Hk(∆k|x) to the class of the identity map in

Hk(∆k|ϕ(x))

Lemma 3.6.11. Let T1, T2 be two triangulations of Sk, and suppose that Hk(Sk) is

generated by

α =
∑
σ∈T1

σ =
∑
τ∈T2

τ.
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Suppose that f : Sk → Sk has the following property: For each y ∈ Sk r bd T2, and

for each x ∈ f−1(y) r bd T1, the map ϕ : U0 → ∆k is orientation preserving, where:

• σ, τ are the unique maps of T1, T2, respectively, such that x ∈ imσ and y ∈ imτ ,

• U ⊂ imσ is a neighbourhood of x such that U ∩ f−1(y) = {x},

• U0 = σ−1(U),

• The map ϕ is the composite τ−1 ◦ f ◦ (σ|U0).

Then the local degree of the restiction f : U → Sk at x is equal to 1.

Proof. Let y0 = τ−1(y), and consider the following diagram:

Hk(Sk) Hk(Sk|x) Hk(U |x) Hk(Sk|y) Hk(Sk)

Hk(∆k|x0) Hk(U0|x0) Hk(∆k|y0)

f∗

1 7→1

σ∗

ϕ∗

σ∗ τ∗

Let γ ∈ Hk(U0|x0) be the cycle that is the image of [1] under the bottom-left

excision map. Then, since ϕ is orientation preserving, we have [1] = [ϕ ◦ γ]. Com-

mutativity of the right square implies [f ◦ σ ◦ γ] = [τ ◦ϕ ◦ γ] = [τ ]. Hence, under the

maps of the top row, α is mapped as follows:

α 7−→ [σ] 7−→ [σ ◦ γ] 7−→ [f ◦ σ ◦ γ] = [τ ◦ ϕ ◦ γ] = [τ ] 7−→ α,

and hence the local degree of ϕ at x equals 1.

In the following lemma, let A denote the affine span of ∆k, which is the hyperplane∑
xi = 1 inside Rk+1. Given an affine map B : A → A, there exists a unique linear

map B̃ : Rk+1 → Rk+1 such that the restriction of B̃ to A is B.
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Lemma 3.6.12. Let U ⊂ ∆k be open, and let B : A→ A be an affine map such that

B(U) ⊂ ∆◦k. Let ϕ : U → ∆◦k denote the restriction of B to U . If det B̃ > 0, then ϕ

is orientation preserving at each x ∈ U .

Proof. Let x ∈ U , and let y = ϕ(x). Note that since det B̃ > 0, we must have

B̃(A) = A. Since SL(Rk+1) is path-connected, we can find a path B̃t, t ∈ [0, 1], of

positive-determinant matrices such that B̃t(A) = A and B̃0 = I and B̃1 = B̃. From

this we get a homotopy of maps ϕt : (A,A− x)→ (A,A− y), t ∈ [0, 1] given by

ϕt(v) = B̃t(v − x) + y

so that ϕ0 is the translation mapping T : A → A given by T (v) := v + y − x, and

ϕ1 = B. From this we conclude T ∗ = B∗ : Hk(A|x)→ Hk(A|y), by Proposition 2.19

in Hatcher.

Now let S be the line segment joining x and y, and consider the homotopy Tt :

(∆k,∆k − S)→ (A,A− y), t ∈ [0, 1] given by

Tt(v) = v + t(y − x).

Then T0 is the inclusion map iA : ∆k → A, while T1 = T |∆k
. It follows that

(iA)∗ = (T |∆k
)∗ : Hk(∆k|S) → Hk(A|y), again, by Proposition 2.19. Now consider

the following diagram:

Hk(∆k|y) Hk(∆k|S) Hk(∆k|x)

Hk(A|y) Hk(A|x) Hk(U |x)

(iA)∗=(T |∆k )∗

T∗=B∗

We show that ϕ is orientation preserving at each x ∈ U . Let [γ] ∈ Hk(U |x)

denote the image of [1] under the rightmost diagonal map. We have [γ] is sent to
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[iA ◦ γ] = [iA] under the bottom right map, by commutativity of the right triangle.

This in turn is mapped to

[iA ◦ ϕ ◦ γ] = [B ◦ iA ◦ γ] = [B ◦ iA] = [T ◦ iA].

On the other hand, we also have

[T ◦ iA] = [(T |∆k
) ◦ 1] = [iA ◦ 1] = [iA].

So we conclude that [iA] = [iA ◦ ϕ ◦ γ] ∈ H(A|y). Since the leftmost diagonal map is

an isomorphism, this implies that [1] = [ϕ ◦ γ] ∈ H(∆k|x).

Finally, we give a sufficient condition for a map f : Sk → Sk to have degree +1

or −1.

Lemma 3.6.13. Let S0 ⊂ Sk be homeomorphic to Sk−1, so that there is a homeo-

morphism Sk → Sk which maps S0 to the equator of Sk. Suppose f : Sk → Sk is a

surjective map for which f(S0) = X ∩ Y , where X, Y are the closures in Sk of the

two components of Sk r S0. Further suppose f(S0) is homeomorphic to Sk−1. Then

the degee of f is +1 or −1.

Proof. We can slightly large the upper and lower hemispheres of Sk to obtain open

U, V ⊂ Sk for which Sk = U ∪ V , so that there is a deformation retraction of U onto

the closed upper hemisphere X of Sk, and similarly there is a deformation retraction

of V onto the closed lower hemisphere V of Sk. There is also a deformation retraction

of U ∩ V onto X ∩ Y = S0. Now, consider the diagram

H̃k(X)⊕ H̃k(Y ) H̃k(Sk) H̃k−1(S0) H̃k−1(X)⊕ H̃k−1(Y )

H̃k(f(X))⊕ H̃k(f(Y )) H̃k(Sk) H̃k−1(f(S0)) H̃k−1(f(X))⊕ H̃k−1(f(Y ))

f∗ f∗ f∗ f∗
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The top and bottom rows are portions of Mayer-Vietoris exact sequences. By nat-

urality, this diagram commutes. Now all three of H̃k(Sk), H̃k−1(S0), and H̃k−1(f(S0))

are isomorphic to Z, and since X, Y are contractible, by exactness the top middle

map is an isomorphism. It follows that the map

H̃k(Sk) −→ H̃k−1(S0) f∗−→ H̃k−1(f(S0))

is an isomorphism. By commutativity of the middle square, we conclude that f∗ :

H̃k(Sk)→ H̃k(Sk) is an isomorphism, and hence the degree of f is +1 or −1.
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