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SUMMARY

In today’s world, globalization and the Internet have resulted in the creation of enormously

many different kinds of marketplaces. The marketplaces naturally tend to find an “equilibrium” in

terms of prices and interaction of agents. Therefore, understanding the equilibria results in better

understanding and prediction of the marketplaces. In this thesis, we study two broad classes of

equilibria. The first one is called market price equilibria, which can explain and predict prices

within a market. The second one is Nash equilibria (NE), which is arguably the most important

and well-studied solution concept within game theory. NE helps us to explain and predict the

interactions between agents within a market.

We can summarize the main contributions as follows:

• Combinatorial markets with covering constraints. We introduce a new class of combi-

natorial markets in which agents have covering constraints over resources required and are

interested in delay minimization. Our market model is applicable to several settings includ-

ing scheduling and communicating over a network. We give a proof of the existence of

equilibria and a polynomial time algorithm for finding one, drawing heavily on techniques

from LP duality and submodular minimization. Finally, we show that our model inherits

many of the fairness properties of traditional equilibrium models as well as new models,

such as Competitive Equilibrium with Equal Incomes (CEEI).

• Settling the complexity of Leontief and PLC exchange, markets under exact and ap-

proximate equilibria. We show FIXP-hardness of computing equilibria in Arrow-Debreu

exchange markets under Leontief utility functions, and Arrow-Debreu markets under lin-

ear utility functions and Leontief production sets, thereby settling these open questions of

Vazirani and Yannakakis (2011). As a consequence of the results stated above, and the fact

that membership in FIXP has been established for PLC utilities, the entire computational

xi



difficulty of Arrow-Debreu markets under PLC utility functions lies in the Leontief utility

subcase. Finally, we give a polynomial time algorithm for finding an equilibrium in Arrow-

Debreu exchange markets under Leontief utility functions provided the number of agents is

a constant. This settles part of an open problem of Devanur and Kannan (2008).

• ∃R-Completeness for multi-player Nash equilibria. As a result of a series of important

works [22, 32, 33, 56, 89], the complexity of 2-player Nash equilibrium is by now well

understood, even when equilibria with special properties are desired and when the game is

symmetric. Our contribution is on settling the complexity of finding equilibria with special

properties on multi-player games. We show that the following decision versions of 3-Nash

are ∃R-complete: checking whether (i) there are two or more equilibria, (ii) there exists

an equilibrium in which each player gets at least h payoff, where h is a rational number,

(iii) a given set of strategies are played with non-zero probability, and (iv) all the played

strategies belong to a given set. ∃R is the class of decision problems which can be reduced in

polynomial time to Existential Theory of the Reals. Next, we give a reduction from 3-Nash

to symmetric 3-Nash, hence resolving an open problem of Papadimitriou.

xii



CHAPTER 1

INTRODUCTION

In a free market economy, prices naturally tend to find an “equilibrium” under which there is

parity between supply and demand. The power of this pricing mechanism is well explored and

understood in economics: It allocates resources efficiently since prices send strong signals about

what is wanted and what is not, and it prevents artificial scarcity of goods while at the same

time ensuring that goods that are truly scarce are conserved [76]. Furthermore, equilibrium-based

mechanisms have been designed even for certain applications which do not involve any exchange

of money but require fairness properties such as envy-freeness and the sharing incentive property;

a popular one being CEEI1 [81]. The surge of markets on the Internet, in which pricing and

allocation are done in a centralized manner via computation, has led to a long line of work in the

Theoretical Computer Science community on the computation of economic equilibria.

In this thesis, we study the computational complexity of price equilibria in the classical Arrow-

Debreu exchange market model (see Section 3), and we define a new class of combinatorial mar-

kets with covering constraint to appropriately model several new markets on the internet, including

scheduling jobs and bandwidth allocation in networks (see Section 1.1).

Next, we study the complexity of another broad class of equilibria, namely, Nash Equilibria

(see Section 1.3). Nash equilibrium (NE) is arguably the most important and well-studied solution

concept within game theory and understanding its complexity has led to an impressive theory

which was discovered largely over the last decade.

1Competitive Equilibrium with Equal Incomes
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1.1 Combinatorial Markets with Covering Constraints

A quickly emerging market today is cloud computing and scheduling market and most projections

predict that this market will dwarf even the adwords market which is one of the most important

market on the internet. In order to appropriately model it, we define a broad class of market

models that we call combinatorial markets with covering constraints. A common feature of our

markets is that these are resource allocation markets in which each agent desires a specific amount

of resources to complete a task, i.e., each agent has a covering constraint. If the agent does not

get all the resources requested, then she will not be able to complete the task and hence has no

value for this partial allocation. With several agents vying for the same set of resources, a new

parameter that becomes crucially important is the delay experienced by agents. This naturally

leads to a definition of supply and demand, as well as pricing and allocation, based on temporal

considerations.

We define an equilibrium-based model for pricing and allocation in these markets. Our model is

fundamentally different from traditional market models: Each agent needs only a bounded amount

of resources to finish her tasks and has no use for more, and her utility, which corresponds to the

delay she experiences, also has a finite maximum value, i.e., her “utility function” satiates. On the

other hand, traditional models satisfy non-satiation, i.e., no matter what bundle of goods an agent

gets, there is a way of giving her additional goods so her utility strictly increases. Non-satiation

turns out to be a key assumption in the Arrow-Debreu Theorem, which established the existence

of equilibrium in traditional markets. Despite this, we manage to give an existence proof for our

model. Additionally, we prove that all the above-stated benefits of equilibria, including the fairness

properties of CEEI, continue to hold for our model.

We next address the issue of computing equilibria in our model. Rubinstein [93] recently

showed that computing an equilibrium in our general model is PPAD-hard via a reduction from

Fisher markets with separable piecewise linear concave (SPLC) utilities. Since the former prob-
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lem is known to be PPAD-hard [23], the market problem with strong feasibility is PPAD-hard. For

this reason, we define a sub-model which is still sufficiently rich to capture the applications men-

tioned above, and present a polynomial time algorithm to compute an equilibria in this sub-model.

In general, markets and games exhibit a kind of dichotomy: typically the structure of equilib-

ria is complicated in which case they are computationally intractable [25, 33, 34, 52, 68], or in

very special cases equilibria have a nice structure (usually, forming a convex set) and polynomial

time algorithms follow using standard methods, such as convex programming and the primal-dual

method [27, 40, 41, 62, 88, 106]. However, the sub-model we define breaks this dichotomy. The

equilibria have a different structure than those of models for which polynomial time algorithms

have been designed. In particular, we give examples in which the set of equilibrium prices is non-

convex. Hence techniques used for designing polynomial time algorithms for traditional models,

such as the primal-dual method and convex programming, are not applicable. Our algorithms are

based on new ideas: we make heavy use of LP duality and the way optimal solutions to LPs change

with changes in certain parameters. Submodular minimization, combined with binary search, is

used as a subroutine in this process.

1.2 Leontief and PLC Exchange Markets

A decade and a half of work in TCS has led to a deep understanding of computability of market

equilibria for classic market models under fundamental utility functions. At this point, perhaps the

most basic utility functions whose complexity remains unresolved are Leontief2 and piecewise-

linear concave (PLC). For both exact and approximate computation of equilibria, only partial re-

sults are know as detailed below. In this thesis, we resolve the remaining open questions, thereby

pinning down the classes which characterize their complexity.

In economics, concave utilities occupy a special place because of their generality and because

2Leontief utility function for a bundle x of goods is given by U(x) = minj xj/Aj , where Aj’s are non-negative
constants. It captures the situation when goods are complements and required in a fixed proportion.
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they capture the natural condition of decreasing marginal utilities. Since computer science assumes

a finite precision model of computation, one is forced to restrict attention to PLC3 utility functions.

Price equilibria are clearly quintessential to economics, and therefore it is important to obtain a

precise understanding of the complexity of computing Arrow-Debreu equilibria under PLC utility

functions Leontief utilities form a subcase of PLC utilities and are very widely used in economic

modeling [75].

For both these utility functions, computation of approximate equilibria has been known to

be PPAD-hard for more than a decade [29, 36, 60]; however, membership in PPAD has not been

established yet. In fact, [103] goes further to say that these problems may not even be in PPAD Fur-

thermore, certain consequences stated in the literature are not true without establishing this result

(see Section 3.1). Our first result shows membership of these problems in PPAD. The only fixed

point formulation known for these problems was obtained in the context of proving membership in

FIXP [48]. This formulation is our starting point; however, working with it is not straightforward.

The main technical challenge lies in showing that an approximate fixed point captures an approxi-

mate market equilibrium. This turns out to be quite involved and technical, and requires new ideas

as elaborated in Section 3.1. On the other hand, for both these utility functions, exact computation

of equilibria is known to be in FIXP [48, 109]; however, FIXP-hardness was not established before

and was stated as an open problem in [103]. This is our second result.

Proofs of membership in FIXP for Leontief and PLC utility functions were given by Yan-

nakakis [109] and Garg et. al. [48], respectively. In Chapter 3, we prove FIXP-hardness for

Arrow-Debreu exchange markets under Leontief utility functions, and Arrow-Debreu markets un-

der linear utility functions and Leontief production sets. As corollaries, we obtain FIXP-hardness

for PLC utilities and for Arrow-Debreu markets under linear utility functions and polyhedral pro-

duction sets (membership in FIXP for production was also shown in [48]). In all cases, as required

under FIXP, the set of instances mapped onto will admit equilibria, i.e., will be “yes” instances. If

3Clearly, by making the pieces fine enough, we can obtain a good approximation to the original utility functions.
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all instances are under consideration, then we prove that the problem of deciding if a given instance

admits an equilibrium is ETR-complete, where ETR is the class Existential Theory of Reals.

As a consequence of the results stated above, the entire computational difficulty of Arrow-

Debreu markets under PLC utility functions lies in the Leontief utility subcase. This is perhaps the

most unexpected aspect of our result, since Leontief utilities are meant only for the case that goods

are perfect complements, whereas PLC utilities are very general, capturing not only the cases when

goods are complements and substitutes, but also arbitrary combinations of these and much more.4

The class PPAD was defined by Papadimitriou [89]; he also proved PPAD-completeness of

computing an approximate equilibrium of Arrow-Debreu exchange markets given by aggregate

excess demand functions. The class FIXP was defined by Etessami and Yannakakis [68] and they

proved FIXP-completeness of Arrow-Debreu exchange markets whose aggregate excess demand

functions are algebraic. However, these results do not establish PPAD or FIXP-completeness of

Arrow-Debreu markets under any specific class of utility functions5. We note that there has been

no progress on giving proofs of FIXP-hardness for market equilibria under any specific utility

functions.

Perhaps the most elementary way of stating the main technical part of our second result is

the following reduction, which we will denote by R: Given a set S of simultaneous multivariate

polynomial equations in which the variables are constrained to be in a closed bounded region in the

positive orthant, we construct an Arrow-Debreu market with Leontief utilities, sayM, which has

one good corresponding to each variable in S. We prove that the equilibria ofM, when projected

onto prices of these latter goods, are in one-to-one correspondence with the set of solutions of the

polynomials. This reduction, together with the fact that the 3-player Nash equilibrium problem

(3-Nash) is FIXP-complete [68] and that 3-Nash can be reduced to such a system S , yield FIXP-

4We had expected the precise complexity of computing an equilibrium in Arrow-Debreu exchange markets to be
easier in case of Leontief utilities than in case of PLC utilities.

5In the economics literature, there are two parallel streams of results on market equilibria, one assumes being given
an excess demand function and the other a specific class of utility functions.
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hardness for the Leontief case.

On positive results for PLC utilities, Devanur and Kannan had given a polynomial time algo-

rithm for finding an equilibrium in Arrow-Debreu markets under these utility functions provided

the number of goods is a constant, using algebraic cell decomposition [38]. They had stated the

open problem of handling the case of constant number of agents. Our third result settles a part of

this open problem by obtaining a polynomial time algorithm for the subcase of Leontief utilities.

1.3 Multi-Player (Symmetric) Nash Equilibria

Nash equilibrium (NE) is arguably the most important and well-studied solution concept within

game theory and understanding its complexity has led to an impressive theory which was discov-

ered largely over the last decade. We denote by k-Nash the problem of computing a NE in a

k-player game for a constant k. For the case of 2-Nash, the seminal results of Daskalakis, Gold-

berg and Papadimitriou [33], and Chen, Deng and Teng [22] exactly characterized the complexity

of this problem, namely it is PPAD-complete. This leads us to another basic question: of finding a

k-Nash solution that satisfies special properties, e.g., has a payoff of at least h for each player. For

the case of 2-players, these questions were first studied by Gilboa and Zemel for non-symmetric

games [56] and later by Conitzer and Sandholm for symmetric games [32]. Both papers considered

2-Nash under numerous special properties and showed them all to be NP-complete. More recently,

Bilò and Mavronicolas [12] extended the results of Gilboa and Zemel to win-lose games, in which

all payoffs are either 0 or 1. Thus the complexity of the 2-player case is very well understood.

Although the 2-player case is the most classical and well studied case, it is also important to

study the complexity of the multi-player case, especially in the context of new applications arising

on the Internet and other large networks where multiple players are locked in strategic situations.

Indeed there has been much activity on this front, e.g., see [3, 66, 92], but the picture is not as clear

as the 2-player case. A fundamental difference between 2-Nash and k-Nash, for k ≥ 3, is that

whereas the former always admits an equilibrium that can be written using rational numbers [73],

6



the latter require irrational numbers in general, as shown by Nash himself [84] (we will assume

that all numbers in the given instance are rational). It is easy to see that in the latter case, equilibria

are algebraic numbers. This difference makes the multi-player case much harder.

Daskalakis, Goldberg and Papadimitriou [33] showed that for k-player games, k ≥ 3, finding

an ε-approximate Nash equilibrium is PPAD-complete. The complexity of exact equilibrium was

resolved by Etessami and Yannakakis [68], who showed this case to be complete for their class

FIXP. How about the complexity of finding a k-Nash solution that satisfies special properties?

Due to the inherent difficulty of dealing with irrational numbers, this problem remained open until

2011, when Schaefer and Štefankovič [97] formally defined class ∃R, and showed that checking if

a 3-player game has a NE in which every strategy is played with probability at most 0.5 (InBox)

is ∃R-complete. ∃R is the class of “yes” instances of existentially quantified formulas with bases

{+,−, ∗,∧,∨,=, <,>} on real numbers; we note that this class was informally known and used

earlier than [97], e.g., see [19]. In [35], Datta showed that an arbitrary semi-algebraic set can

be encoded as totally mixed NE of a 3-player game. However, the reduction is not polynomial

time and therefore is not applicable to show ∃R-completeness of the decision problems in 3-Nash.

Recently, in [74] Levy gave another construction to precisely capture any compact semi-algebraic

set of mixed-strategies of a game as a projection of Nash equilibrium strategies of another game

with additional binary players, however, no bound is provided on the number of additional players.

Our first set of results extends ∃R-completeness to NE computation with a number of special

properties in ≥ 3 player games: (i) checking if a game has more than one NE (NonUnique). NE

where, (ii) each player gets at least h payoff (MaxPayoff), (iii) a given set of strategies are played

with positive probability (Subset), or (iv) all the played strategies belong to a given set (Superset).

Our second set of results deals with symmetric games. Symmetry arises naturally in numer-

ous strategic situations and with the growth of the Internet, on which typically users are indistin-

guishable, such situations are only becoming more ubiquitous. In a symmetric game all players

participate under identical circumstances, i.e., strategy sets and payoffs. Thus the payoff of player
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i depends only on the strategy, s, played by her and the multiset of strategies, S, played by the

others, without reference to their identities. Furthermore, if any other player j were to play s and

the remaining players S, the payoff to j would be identical to that of i. A symmetric Nash equilib-

rium (SNE) is a NE in which all players play the same strategy. Nash [84], while providing game

theory with its central solution concept, also defined the notion of a symmetric game and proved,

in a separate theorem, that such games always admit a symmetric equilibrium.

A simple reduction is known from 2-Nash to symmetric 2-Nash, and it shows that the latter is

also PPAD-complete. The questions studied by Gilboa and Zemel [56] for 2-player games were

studied by Conitzer and Sandholm [32] for symmetric games and were shown to be NP-complete.

On the other hand, no reduction is known from 3-Nash to symmetric 3-Nash. Indeed, after giving

the reduction from 2-Nash to symmetric 2-Nash, Papadimitriou [90] states, “Amazingly, it is not

clear how to generalize this proof for three player games!”.

To obtain our results on symmetric k-player games, for k ≥ 3, we first give a reduction from

3-Nash to symmetric 3-Nash, hence settling the open problem of [90]. This also enables us to

show that symmetric 3-Nash is complete for the class FIXPa, Strong Approximation FIXP, which

is a variant of FIXP that is restricted to working with rational numbers only. It also yields ∃R-

completeness for Superset and Subset in such games. Once the 3-player case is settled, we prove

analogous results for symmetric k-player games, for k > 3.

[48] gave a dichotomy for NE, showing a qualitative difference between 2-Nash and k-Nash

along three different criteria, see Table 1.1. The results of this thesis add a fourth criterion to

this dichotomy, namely complexity of decision problems. Additionally, we get an analogous di-

chotomy for symmetric NE, see Table 1.2. Results of Chapter 4 are indicated by CP in the tables.

We note that the results were first presented in [51]. In that paper, we had left the open problem

of extending our ∃R-completeness results to decision versions of other 3-Nash and symmetric 3-

Nash problems. Since then, there has been much progress on this open problem. First, Bilò and

Mavronicolas [10] showed that the 3-player versions of all problems studied by Gilboa and Zemel
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Table 1.1: Dichotomy for Nash equilibria
2-Nash k-Nash, k ≥ 3

Nature of solution Rational [73] Algebraic; irrational example [84]
Complexity PPAD-complete [22, 33, 89] FIXP-complete [68]

Practical algorithms Lemke-Howson [73] ?

Decision problems NP-complete [32, 56]
∃R-complete: [97]
CP (Theorems 32, 34)

Table 1.2: Dichotomy for symmetric Nash equilibria
Symmetric 2-Nash Symmetric k-Nash, k ≥ 3

Nature of solution Rational [73]
Algebraic; irrational example
CP together with [84]

Complexity PPAD-complete [22, 33, 89] FIXPa-complete: CP (Theorem 42)
Practical algorithms Lemke-Howson [73, 95] ?
Decision problems NP-complete [32] ∃R-complete: CP (Theorem 41)

[56] are ∃R-complete; moreover, they do so via a unified reduction from InBox. Next, the same

authors [11] showed ∃R-completeness for several decision versions of symmetric 3-Nash, this time

via reductions from Subset.
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CHAPTER 2

COMBINATORIAL MARKETS WITH COVERING CONSTRAINTS: ALGORITHMS

AND APPLICATIONS

In this chapter, we introduce a new class of combinatorial markets in which agents have covering

constraints over resources required and are interested in delay minimization. Our market model is

applicable to several settings including scheduling and communicating over a network.

This model is quite different from the traditional models, to the extent that neither do the

classical equilibrium existence results seem to apply to it nor do any of the efficient algorithmic

techniques developed to compute equilibria. In particular, our model does not satisfy the condition

of non-satiation, which is used critically to show the existence of equilibria in traditional market

models and we observe that our set of equilibrium prices could be a connected, non-convex set.

We give a proof of the existence of equilibria and a polynomial time algorithm for finding one,

drawing heavily on techniques from LP duality and submodular minimization. Finally, we show

that our model inherits many of the fairness properties of traditional equilibrium models as well as

new models, such as CEEI.

2.1 Model and Main Results

We introduce a combinatorial version of the well studied Fisher market model [16, 41]. In market

M, let A be a set of n agents, indexed by i, and G be a set of m divisible goods, indexed by j.

We represent an allocation of goods to agents using the variables xij ∈ R+, i ∈ A, j ∈ G. Each

agent i ∈ A wants to procure goods that satisfy a set of covering constraints, C, where C is a set

indexing the constraints (C is the same for all agents for ease of notation).

∀ k ∈ C,∑j∈G aijkxij ≥ rik, and ∀ j ∈ G, xij ≥ 0. (CC(i))
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The objective of each agent is to minimize the “delay” she experiences, while meeting these

constraints. We refer to the term dij as the delay faced by agent i on using good j, and the terms riks

as the “requirements”; dijs and riks are assumed to be non-negative. Agent i wants an allocation

that optimizes the following LP.

min
∑

j∈G dijxij s.t. (Delay LP(i))

∀ k ∈ C,∑j∈G aijkxij ≥ rik.

∀ j ∈ G, xij ≥ 0.

We use the notation di := (dij)j∈G, ri := (rik)k∈C , Ai := (aijk)j∈G,k∈C , xi := (xij)j∈G, and

X := (xi)i∈A. Although our results hold for any LP, the most interesting cases are when the

constraints are covering constraints, i.e., the matrix Ai has only non-negative entries.

We will use a market mechanism to allocate resources. Let pj ∈ R+ denote the price per unit

amount of good j, and assume agent i has a total budget of mi ∈ R+. Then, as is standard in the

Fisher markets, the bundle xi that the agent may purchase is restricted by,

∑
j∈G pjxij ≤ mi. (Budget constraint(i))

Allocation xi is an optimal allocation (bundle) for agent i relative to prices p := (pj)j∈G, if

it optimizes LP (Delay LP(i)) with an additional budget constraint (Budget constraint(i)). We

denote the set of these optimal allocations by OPTi(p). Each good has a given supply which, after

normalization, may be assumed to be equal to 1. The allocation needs to be supply respecting, that

is, it has to satisfy the supply constraints:

∀ j ∈ G,∑i∈A xij ≤ 1. (Supply constraints)
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Finally, a supply respecting allocation X and prices p are a market equilibrium ofM iff

1. Each agent gets an optimal allocation relative to prices p.

2. If some good j ∈ G is not fully allocated, i.e.,
∑

i∈A xij < 1, then pj = 0.

The equilibrium condition requires that each agent does the best for herself, regardless of what the

other agents do or even what the supply constraints are. From the perspective of the goods, the

aim is market clearing (rather than, say, profit maximization). Some goods may not have sufficient

demand and therefore we may not be able to clear them. This is handled by requiring these goods

to be priced at zero.

In Theorem 3 we obtain a characterization of the equilibria in this general model in terms of

solutions of a parameterized linear program that has one parameter per agent.

2.1.1 Existence of equilibria

We show how the above model is a special case of the classic Arrow-Debreu market model with

quasi-concave utility functions in Section 2.6.1. Unfortunately, these utility functions do not sat-

isfy the “non-satiation” condition required by the Arrow-Debreu theorem for the existence of an

equilibrium: utility does not increase beyond a point even if additional goods are allocated. In fact,

an equilibrium doesn’t always exist for all covering LPs, as shown via a simple example in Section

2.4, Figure 2.2. And therefore we next identify conditions under which it does exist; the example

in Figure 2.2 shows why this condition is necessary.

The equilibrium condition requires at a minimum that there exists a supply respecting allocation

that also satisfies CC(i) for all the agents. In fact, it is easy to see that a somewhat stronger

feasibility condition is necessary: suppose that a subset of agents all have high budgets while the

remaining agents have budgets that are close to 0. Then at an equilibrium, agents in the former set

get their “best” goods, which means that whatever supply remains must be sufficient to allocate a

feasible bundle to the remaining agents.
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We require a similar condition for all minimally feasible allocations, i.e., an allocation xi such

that reducing the amount of any good would make CC(i) infeasible. We call this condition strong

feasibility.

Definition 1 (Strong feasibility). MarketM satisfies strong feasibility if any minimally feasible

and supply respecting solution for a subset of agents can be extended to a feasible and supply

respecting allocation for the entire set. Formally, ∀ S ⊂ A, and ∀ (xi)i∈S that are minimally

feasible for (CC(i))i∈S and are supply respecting (with xij = 0 ∀ i ∈ Sc), ∃ solutions (xi)i∈Sc that

are feasible for (CC(i))i∈Sc and (xi)i∈(S∪Sc) is supply respecting.

Theorem 1. [Strong feasibility implies the existence of an equilibrium] If (CC(i))i∈A of marketM

satisfies strong feasibility, then ∃ an allocationX and prices p that constitute a market equilibrium

ofM.

The proof of this theorem is in Section 2.6. Strong feasibility is quite general in the following

sense: it is satisfied if there is a “default” good that has a large enough capacity and may have a

large delay but occurs in every constraint with a positive coefficient. In other words, any agent’s

covering constraints may all be met by allocating a sufficient quantity of the default good.

2.1.2 Efficient computation

Ideally we would want to design an efficient algorithm for markets with Strong feasibility condi-

tion, however this problem turns out to be PPAD-hard [93]. In order to circumvent this hardness,

we define a stronger condition called extensibility, and design a polynomial time algorithm to com-

pute a market equilibrium under it. Extensibility requires that any “optimal allocation” to a subset

of agents can be “extended” to an “optimal allocation” for a set that includes one extra agent.

Hence this is a matroid-like condition. For this we first formally define the notion of an “optimal

allocation” for a subset of agents.
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Definition 2. For any subset of agents S ⊆ A, we say that an allocation X is jointly optimal for S

if (i) it satisfies (CC(i))i∈S , (ii) it is supply respecting, and (iii) it minimizes
∑

i∈S di ·xi. (Observe

that X may not be optimal for individual agents in S.)

Definition 3 (Extensibility). MarketM satisfies extensibility if ∀ S ⊂ A, given an allocation X

that is jointly optimal for S, the following holds: for any i ∈ Sc, ∃ an allocation X ′ that is jointly

optimal for S ′ = S∪{i}, while not changing the delay of the agents in S, i.e., di ·x′i = di ·xi, ∀i ∈

S. In other words, total delay cost of agents in S ′ can be minimized without changing the delay

cost of agents in S.

Extensibility seems somewhat stronger than strong feasibility, but the two conditions are for-

mally incomparable; see example in Section 2.4, Figure 2.2. In Section 2.1.3 we show that extensi-

bility condition captures many interesting problems as special cases. Even for very simple markets

that satisfy extensibility, e.g., Tables 2.1 and 2.2 in Section 2.4, the set of equilibria may turn out

to be highly non-convex. Therefore the techniques used to obtain polynomial time algorithms for

traditional models are not applicable. In Section 2.3 we design a polynomial time algorithm by

making a heavy use of parameterized LP, duality and submodular minimization, and obtain the

following result.

Theorem 2. [Extensibility implies polynomial time algorithm] There is a polynomial time al-

gorithm that computes a market equilibrium allocation X and prices p for any market M that

satisfies extensibility.

Since the algorithm is quite involved, we first convey the main ideas through a special case of

scheduling in Section 2.2. We show the run of the main algorithm on an example in Section 2.4,

Figure 2.4.
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2.1.3 Applications

We show that the extensibility condition is sufficiently rich by demonstrating how it can capture

scheduling and routing problems. As a consequence of the above theorem we get polynomial time

algorithms for the following special cases (The proofs that these satisfy extensibility are in Section

2.7.)

Scheduling. There are d different types of machines, and the set of time slots on a machine of

type k is Mk; a pair (machine type, time slot) defines a good in the market. Each agent needs rik ∈

R+ units of time on machines of type k, which is captured by the covering constraint
∑

j∈Mk
xijk ≥

rik, ∀k ∈ [d]. All agents experience the same delay djk from time slot j on type k. Assume that

the number of time slots of each machine type k is greater than the total requirements of the agents,∑
i∈A rik.

The main motivation for this problem is scheduling, but it also captures other client-server

scenarios such as crowdsourcing. Think of different machine types as machines with different

configurations, i.e., with different combinations of CPU, memory, hard disk, etc. For instance,

most providers of cloud computing offer a wide range of virtual machine configurations. In a

crowdsourcing scenario, different machine types could correspond to different demographics of

workers.

It is easy to see that our delay function can capture the flow time objective.

Flow time is an appropriate objective when a job is comprised of many small tasks, and the

results of these tasks are useful immediately upon completion. An alternate objective is the com-

pletion time, but the buyer optimization problem, i.e., the problem of finding an allocation for a

single agent that minimizes the completion time given prices for all the slots, is NP-hard. Flow

time is indeed a reasonable alternative even if the true objective is completion time: it is by now

standard to design (approximation) algorithms for the flow time objective, and argue that it also
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approximates completion time; see [20, 58] for examples.1

Even for this simple case with only one type of machine, we observe that the set of equilibria

may form a connected non-convex set. The non-convexity example shown in Section 2.4, Tables

2.1 and 2.2, are instances of this setting.

Restricted assignment with laminar families – Different arrival times. The above basic schedul-

ing setting can be generalized to the following restricted assignment case, where job i is allowed

to be processed only on a subset of time slots Sik ⊆ Mk on machines of type k. We need the

Siks to form a laminar2 family within each type, and in addition, we require that the slots in

a larger subset have lower delays. That is, if for some two agents i, i′ ∈ A, Si′k ⊂ Sik then

maxj∈Sik\Si′k
djk ≤ minj′∈Si′k

dj′k for each type k.

This captures the scenario where jobs may arrive at different times, as explained next. Recall

that the goods in the scheduling model represent pairs of (machine, time slot). Let’s define Skt to

be the set of goods corresponding to machine type k after time slot t. It is easy to see that Skts

form a laminar family. Therefore, different arrival times can be captured by allowing each job i

with arrival time ti to use goods of Skti only for each machine type k.

Network flows. The goods are edges in a network, where each edge e has a certain (fixed) delay

de. Each agent i wants to send ri units of flow from a source si to a sink ti, and minimize her own

delay (which is a min-cost flow problem). We show that if the network is series-parallel and the

source-sink pair is common to all agents, then the instance satisfies extensibility. This is similar

to the basic scheduling example in that there is a sequence of paths of increasing delay, but the

difference here is that we need to price edges and not paths. The difficulty is that paths share edges

and hence the edge prices should be co-ordinated in such a way that the path prices are as desired.

There are networks that are not series-parallel but still the instance satisfies extensibility. We show

1Flow time occurs as the objective of the natural LP relaxation for problems of minimizing completion time.
2A family of subsets is said to be laminar if any two sets S and T in the family are either disjoint, S ∩ T = ∅, or

contained in one another, S ⊆ T or T ⊆ S.
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one such network (and also how our algorithm runs on it) in Figure 2.4 on page 37. For a general

network, an equilibrium may not exist; we give such an example in Figure 2.2.

A generalization of all these special cases that still satisfies extensibility is as follows: take

any number of independent copies of any of these special cases above. E.g., each agent might

want some machines for job processing, as well as send some flows through a network or a set of

networks, but have a common budget for both together. Our algorithm works for all such cases.

2.1.4 Properties of equilibria

Fairness. We first discuss an application of our market model to fair division of goods, where

there are no monetary transfers involved. This captures scenarios where the goods to be shared are

commonly owned, such as the computing infrastructure of a large company to be shared among its

users. A standard fair division mechanism is competitive equilibrium from equal incomes (CEEI)

[81]. This mechanism uses an equilibrium allocation corresponding to an instance of the market

where all the agents have the same budget. This can be generalized to a weighted version, where

different agents are assigned different budgets based on their importance.

The fairness of such an allocation mechanism follows from the following properties of equilib-

ria shown in Section 2.10.1 for the general model. 1. The equilibrium allocation is Pareto optimal;

this an analog of the first welfare theorem for our model. 2. The allocation is envy-free; since each

agent gets the optimal bundle given the prices and the budget, he doesn’t envy the allocation of

any other agent. 3. Each agent gets a “fair share”: the equilibrium allocation Pareto-dominates an

“equal share” allocation, where each agent gets an equal amount of each resource. This property is

also known as sharing incentive in the scheduling literature [55]. 4. Incentive compatibility (IC):

the equilibrium allocation is incentive compatible “in the large”, where no single agent is large

enough to significantly affect the equilibrium prices. In this case, the agents are essentially price

takers, and hence the allocation is IC. We also show a version of IC when the market is not large.

We discuss this in more detail below.
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Incentive Compatibility. In the quasi-linear utility model, an agent maximizes the valuation of

the goods she gets minus the payment. In the presence of budget constraints, [42] show that no

anonymous3 IC mechanism can also be Pareto optimal, even when there are just two different

goods. In the context of our model, a quasi-linear utility function specifies an “exchange rate”

between delay and payments, and the agent wants to minimize a linear combination of the two.

We show in Section 2.10.3 that the impossibility extends to our model via an easy reduction to the

case of [42].

In the face of this impossibility, we show the following second best guarantee in Section 2.10.2.

For the scheduling application mentioned above, we show that our algorithm as a market based

mechanism is IC in the following sense: non-truthful reporting of mi and riks can never result in

an allocation with a lower delay. A small modification to the payments, keeping the allocation the

same, makes the entire mechanism incentive compatible for the model in which agents want to first

minimize their delay and subject to that, minimize their payments.

The first incentive compatibility assumes that utility of the agents is only the delay, and does

not depend on the money spent (or saved). Such utility functions have been considered in the

context of online advertising [14, 46, 82]. It is a reflection of the fact that companies often have a

given budget for procuring compute resources, and the agents acting on their behalf really have no

incentive to save any part of this budget. In the fair allocation context (CEEI), this gives a truly IC

mechanism, since the mis are determined exogenously, and hence are not private information.

The second incentive compatibility does take payments into account, but gives a strict prefer-

ence to delay over payments. Such preferences are also seen in the online advertising world, where

advertisers want as many clicks as possible, and only then want to minimize payments. The mod-

ifications required for this are minimal, and essentially change the payment from a “first price” to

a “second price” wherever required.

3Anonymity is a very mild restriction, which disallows favoring any agent based on the identity.
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2.2 Scheduling on a Single Machine

Our algorithm for the general setting is quite involved, therefore we first present it for a very special

case in a scheduling setting mentioned in Section 2.1.3. The basic building blocks and the structure

of the algorithm and the analysis are reflected in this case. In Section 2.4, we describe the run of

this algorithm on the example in Table 2.1. We note that the formal proofs are given only for the

general case and not for this section.

Suppose that there is just one machine and a good is this machine at a certain time t ∈ Z+,

which we refer to as slot t. The set of goods is therefore G = Z+ and we index the goods by

t instead of j as before. Further, assume that the delay of slot t is just t, i.e., ∀ i ∈ A, dit = t.

Each agent i requires a certain number of slots to be allocated to her, as captured by the covering

constraint
∑

t∈Z+
xit ≥ ri, for some ri ∈ Z+. We denote the sum of the requirements over a

subset S ⊆ A of agents as r(S) :=
∑

i∈S ri. Recall that the budget of agent i is mi, and similarly

m(S) :=
∑

i∈Smi. We will show that equilibrium prices are characterized by the following

conditions.4

1. The prices form a piecewise linear convex decreasing curve. Let the linear pieces (segments)

of this curve be numbered 1, 2, . . . , k, . . ., from right to left.

2. There is a partitioning of the agents into sets S1, S2, . . . , Sk, . . . , where the number of slots

in kth segment is r(Sk). Note that since ris are integers so are the r(Sk)s.

3. The sum of the prices of slots in kth segment equals m(Sk).

4. For any S ⊂ Sk, the total price of the first r(S) slots of the segment is at least m(S), since

otherwise these slots would be over demanded. This is equivalent to saying that the total

price of the last r(S) slots in this segment is at most m(S).

4For how this equilibrium characterization leads to an analogy with Myerson’s ironing for a special case of this
setting, with ri = 1 for all i ∈ A, see Section 2.11.
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Algorithm 1 Algorithm to compute market equilibrium for scheduling
1: Input: A, (mi)i∈A, (ri)i∈A
2: Initialize A′ ← A, plow ← 0, T 0 ← r(A) + 1,∀ t ≥ T 0, pt ← 0 and k ← 1
3: while A′ 6= ∅ do
4: Sk ← NextSeg(plow, A

′, (mi)i∈A′ , (ri)i∈A′)

5: λSk ← 2m(Sk)−plowr(S
k)

r(Sk)(r(Sk)+1)

6: T k ← T k−1 − r(Sk)
7: ∀ t ∈ [T k, T k−1], set pt ← plow + (T k−1 − t)λSk

8: Compute allocations xi for all i ∈ Sk by solving LP (2.1)
9: Update plow ← pTk , A′ ← A′ \ Sk, and k ← k + 1

10: end while
11: Output allocations X and prices p.

Condition 1 essentially comes from the optimal bundle condition of equilibrium. It makes sure

that if an agent buys goods of segment s then (1) she cannot afford earlier segments, (2) the later

segments increase her delay, and (3) for any combination of these the delay-per-dollar spent is

more.

The above only characterizes equilibrium prices. We will show that Conditions 3 and 4 imply

that there exists an allocation of the slots in segment k to the agents in Sk such that both their

requirements and budget constraints are satisfied. Such allocations can then be found by solving

the following feasibility LP (2.1). In this LP, segment k corresponds to the interval [T k, T k−1].

∀ i ∈ Sk :
∑

t∈[Tk,Tk−1] xit ≥ ri

∀ i ∈ Sk :
∑

t∈[Tk,Tk−1] ptxit ≤ mi

∀ t ∈ [T k, T k−1] :
∑

i∈Sk xit ≤ 1

∀ i ∈ Sk,∀ t ∈ [T k, T k−1] : xit ≥ 0.

(2.1)

We now describe the algorithm, which is formally defined in Algorithm 1. It iteratively com-

putes Sk, starting from k = 1: the last segment that corresponds to the latest slots is computed

first, and then the segment to its left, and so on. Inductively, suppose we have computed seg-

ments numbered 1 up to k − 1. Let plow be the price of the earliest slot in segment k − 1, and let
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A′ = A \ {S1 ∪ · · · ∪ Sk−1}. For any S ⊆ A′, consider the sum of the prices of r(S) consecutive

slots to the left of this slot, forming a line segment with slope −λ (see Figure 2.1); this sum is

plowr(S) + λ r(S)(r(S)+1)
2
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Figure 2.1: Prices on a Segment for set S ⊆ A′

Then for any S, one can solve for the λ where this would be equal to m(S); we define this as a

function of S.

λS := 2m(S)−plowr(S)
r(S)(r(S)+1)

.

The next segment is defined to be the one with the smallest slope:

Sk = NextSeg(plow, A
′, (mi)i∈A′ , (ri)i∈A′) := arg minS⊆A′ λS.

With this definition of the next segment, and with prices for the corresponding slots set to be linear

with slope −λSk , it follows that Conditions 3 and 4 are satisfied.

It is not immediately clear how to minimize λS; the function need not be submodular, for

instance. The main idea here is to do a binary search over λ, as defined in Algorithm 2. Consider

the function fplow,λ as defined in line 2 of this algorithm, and notice that fplow,λ is decreasing in λ.

From the preceding discussion, it follows that the segment S∗ we seek is such that fplow,λS∗ (S
∗) = 0
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Algorithm 2 Subroutine NextSeg(plow, A
′, (mi)i∈A′ , (ri)i∈A′)

1: Initialize λ0 ← 0, λ1 ← maxi∈A′mi

2: Define fplow,λ(S) := m(S)− plowr(S)− λr(S)(r(S) + 1)/2
3: Set S0 ∈ arg minS⊆A′,S 6=∅ fplow,λ0(S) and S1 ∈ arg minS⊆A′,S 6=∅ fplow,λ1(S)
4: while S0 6= S1 do
5: Set λ∗ ← λ0+λ1

2
and S∗ ∈ arg minS⊆A′,S 6=∅ fplow,λ∗(S)

6: if fplow,λ∗(S
∗) > 0 then Set λ0 ← λ∗ and S0 ← S∗

7: else Set λ1 ← λ∗ and S1 ← S∗

8: end if
9: end while

10: Return S0

and ∀S ⊂ A, fplow,λS∗ (S) ≥ 0. This implies that S∗ must minimize fplow,λS∗ over all subsets of A′.

Thus, given any λ and a minimizer of fplow,λ, we can tell whether the desired λS∗ is above or below

this λ, and a binary search gives us the desired segment. A minimizer of fplow,λ can be found

efficiently since this is a submodular function.

In addition to the feasibility of LP (2.1), the main technical aspect of proving the correctness of

the algorithm is to show that each agent gets an optimal allocation. This follows essentially from

showing Condition 1, that the prices indeed form a piecewise linear convex curve, or equivalently,

that the λks form an increasing sequence. It is fairly straightforward to see that the running time of

the algorithm is polynomial.

2.3 Algorithm under Extensibility

In this section we present the algorithm that proves Theorem 2; we will mimic the presentation in

Section 2.2, but we have to deal with significant additional difficulties. We first present equilibrium

characterization for the general model in Theorem 3 (complete proof is in Section 2.8), and then

describe the key ideas in designing the algorithm (the missing proofs and other details of this part

are in Section 2.9). We describe a run of our algorithm on a network flow example in Section 2.4,

Figure 2.4.

Recall that in our general model, each agent has a delay function and a set of constraints on
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the bundle of goods she gets. Unlike in Section 2.2, there is no simple ordering among the goods

that enables a geometric description of an equilibrium, therefore some parts that are immediate in

that setting require a proof here. Recall that the first step in Section 2.2 is to find an equilibrium

characterization only in terms of prices. This used the geometry of the instance in order to partition

the time slots into segments. For the general case, the right thing to do is to consider a partition of

agents rather than a partition of goods. By abuse of terminology, in this section, by “segment” we

refer to a subset of agents. Each agent i in A has a parameter λi, that previously corresponded to

the slope of the segment they were in. Similarly, now too, all agents in a segment Sk have the same

λi. This will also correspond to the reciprocal of the optimal dual variable for Budget constraint(i)

in the agent’s optimization problem at equilibrium.

A new issue that arises here is that some agents may have so much money that they don’t spend

all of it in equilibrium. These agents are guaranteed to get a bundle that absolutely minimizes the

delay, even without any budget or supply constraints, i.e., their allocation is an optimal solution to

LP (Delay LP(i)). We refer to this as “getting an optimal bundle under zero prices”.

Given a vector of λis, denoted by λ ∈ R|A|+ , we now define a parameterized linear program

and its dual. Intuition for this definition comes from the optimal allocation LP for each agent at

given prices. In the following, LP (λ) has allocation variables xijs, the constraint CC(i) for each

agent i, and the supply respecting constraint for each good j. The corresponding dual variables are

respectively αiks and pjs, where pj can be thought of as the price for good j.

LP (λ) : DLP (λ) :

min :
∑

i λi
∑

j dijxij

s.t.
∑

j aijkxij ≥ rik, ∀(i, k)∑
i xij ≤ 1, ∀j

xij ≥ 0, ∀(i, j)

max :
∑

i,k rikαik −
∑

j pj

s.t. λidij ≥
∑

k aijkαik − pj, ∀(i, j)

pj ≥ 0, ∀j; αik ≥ 0, ∀(i, k) .

(2.2)

Remarkably, the next theorem shows that the problem of computing an equilibrium reduces to
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solving the above LP and its dual for a right parameter vector λ ∈ R|A|+ . Recall that OPTi(p)

denotes the set of optimal bundles of agent i at prices p (Section 2.1).

Theorem 3. For a given λ > 0 if an optimal solution X of LP (λ) and an optimal solution (α,p)

of DLP (λ) satisfy Budget constraint(i) for all agents i ∈ A, and at (X,p) every agent i either

spends all her budget, or xi ∈ OPTi(0), then (X,p) constitute an equilibrium of marketM.

We note that the proof of Theorem 3 uses only the complementary slackness conditions for

the optimal allocation LP for each buyer, and therefore the theorem holds for the most general

model, i.e., without any of the extensibility or strong feasibility assumptions. Theorem 3 gives us

the “geometry” of an equilibrium outcome, and is roughly equivalent to Condition 1 from Section

2.2. It reduces the problem to one of finding a right parameter vector λ; however there is still the

entire R|A|+ to search from. As was done in Section 2.2, our main goal is to further reduce this task

to a sequence of single parameter searches, each involving submodular minimization and binary

search.

Note that there is really nothing that is equivalent to Condition 2 from Section 2.2, since some

goods may be allocated across agents in different segments. This is the source of many of the

difficulties we face. Next, in Lemma 2, we derive a condition that is (approximately) equivalent

to Conditions 3 and 4 from Section 2.2. This guarantees the existence of (allocation, prices) that

satisfy the budget constraints of agents. One difference here is that this is going to be a global

condition that involves the entire vector λ, rather than a local condition that we could apply to a

single segment like in Section 2.2. For this we need a number of properties of optimal solutions of

LP (λ) and DLP (λ) that we show in Lemma 1 next.

Let us define delayi(X) =
∑

j dijxij and payi(p, X) =
∑

j pjxij . Similarly, for a subset of

agents S ⊆ A, delayS(X) =
∑

i∈S
∑

j dijxij and payS(p, X) =
∑

i∈S
∑

j pjxij . Let [d] denote
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the set {1, . . . , d} of indices. By abuse of notation, let us define

λ(S) =

 the λ value of agents in S if all agents in S have the same λi.

undefined otherwise.

Using extensibility, in the next lemma we show that optimal solutions of LP (λ) and DLP (λ)

satisfy some invariants regarding delays and payments of agents. (1) The higher the λ is, the better

the delay gets in a primal optimal solution. (2) For a fixed dual optimal solution, the total payment

of a segment remains fixed at all optimal allocations. (3) As the delay of a subset decreases, its

payment increases. (The lemma uses Definition 2 for “jointly optimal for”.)

Lemma 1. Given λ, partition agents by equality of λi into sets S1, . . . , Sd such that λ(S1) < · · · <

λ(Sd).

1. At any optimal solution X of LP (λ), the delay is minimized first for set Sd, then for S(d−1),

and so on, finally for S1. This is equivalent to X being jointly optimal for each Tg,∀g ∈

[d] where Tg = ∪dq=gSq, and for any other optimal solution Y we have delaySg
(Y ) =

delaySg
(X), ∀g ∈ [d].

2. Given two dual optimal solutions (α,p) and (α′,p′), if the first part of the dual objective is

the same at both solutions for some g ∈ [d], i.e.,
∑

i∈Sg ,k
rikαik =

∑
i∈Sg ,k

rikα
′
ik, then for

any optimal solution X of LP (λ), paySg
(X,p) = paySg

(X,p′).

3. Given two optimal solutionsX andX ′ ofLP (λ), and an optimal solution (α,p) ofDLP (λ),

if for any subset S ⊆ Sg for g ∈ [d], delayS(X) ≤ delayS(X ′), then payS(X,p) ≥

payS(X ′,p). The former is strict iff the latter is strict too.

In the above lemma, the first claim follows from extensibility. The second and third claim

follow from the first claim together with the fact that any pair of primal and dual optimal solutions

satisfy complementary slackness conditions.
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Recall Conditions 3 and 4 of Section 2.2 that respectively require budget balanceness, and that

when a subset of agents in a segment are given their jointly optimal allocation, their total payment

should be at least their total budget (or else they will over demand some good). Using the first and

last part of Lemma 1 the latter can be roughly translated to saying that when the rest of the agents

are given their “worst” allocation, the rest underpay in total. Based on this intuition we define the

following conditions: budget balance (BB) and subset condition (SC).

Definition 4. Given (λ,p), and a set S ⊆ A, we say that

• BB is satisfied: If either for every solution X of LP (λ) we have payS(X,p) = m(S), or for

every solution X of LP (λ) we have payS(X,p) ≤ m(S) and ∀i ∈ S, xi ∈ OPTi(0).

• SC is satisfied: ∀ T ⊆ S let X be an optimal solution to LP (λ) where delayT is maximized.

Then, m(T ) ≥ payT (X,p).

We will show that if BB and SC are satisfied for each “segment” at any given λ > 0 then λ is

the right parameter vector. We will call such a (λ,p) proper , which is formally defined next.

Definition 5. We say that pair (λ,p) is proper if there exists α such that (α,p) is an optimal

solution to DLP (λ), and pair λ,p satisfies BB and SC for subsets Sg, ∀g ≤ d, where S1, . . . , Sd

is the partition of A by equality of λi.

The next lemma shows that the parameter vector λ corresponding to a proper pair would ensure

the existence of an allocation where no agent spends more than her budget, and an agent who does

not spend her entire budget gets an absolute best bundle, i.e., an optimal bundle at zero prices, and

thereby it gives an equilibrium using Theorem 3.

Lemma 2. If a pair (λ∗,p∗) is proper for λ∗ > 0 then there exists an optimal solution X∗ to the

primal LP (λ∗) such that payi(X
∗,p∗) ≤ mi ∀i ∈ A, and for every agent i either payi(X

∗,p∗) =

mi or we have xi ∈ OPTi(0), ∀X ∈ LP (λ∗).
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Algorithm 3 Algorithm to compute a market equilibrium under extensibility
1: Input: A, (mi)i∈A, (Delay LP(i))i∈A
2: Initialize A′ ← A, pcur ← 0,λcur ← 0 and k ← 1
3: while A′ 6= ∅ do
4: (Sk,λnew,pnew)← NextSeg(λcur,pcur, A′, (mi)i∈A, (Delay LP(i))i∈A)
5: A′ ← A′ \ Sk, and k ← k + 1
6: λcur ← λnew, and pcur ← pnew.
7: end while
8: Compute allocations xi satisfying Budget constraint(i) for all i ∈ A, by solving LP (2.3) for
p∗ = pcur and λ∗ = λcur.

9: Output allocations X and prices pcur.

Given such a λ∗ and a solution (α∗,p∗) to DLP (λ∗) that satisfy conditions of Lemma 2, the

lemma ensures existence of an allocation that simultaneously optimizes LP (λ∗) as well as satisfies

Budget constraint(i), ∀i ∈ A. In other words, it guarantees that the following LP in X variables is

feasible, and we can therefore compute such an allocation efficiently.

X̂ is any solution of LP (λ∗) :
∑

i λ
∗
i

∑
j dijxij =

∑
i λ
∗
i

∑
j dijx̂ij

∀(i, k) :
∑

j aijkxij ≥ rik

∀j :
∑

i xij ≤ 1

∀i, if x̂i ∈ OPTi(0) then
∑

j p
∗
jxij ≤ mi,

otherwise
∑

j p
∗
jxij = mi

∀(i, j) : xij ≥ 0 .

(2.3)

Now our goal has reduced to finding a proper (λ,p) pair. That is, if we think of the partition

of agents by equality of λi as “segments”, then we wish to find a vector λ such that BB and SC

are satisfied for each “segment”. Our algorithm, defined in Algorithm 3, tries to fulfill exactly this

goal. At a high level, like in Section 2.2, our algorithm will build the segments bottom up, i.e.,

lowest to highest λ segments. We start by setting all the λs to the same value, and find the lowest λ

value where BB and SC are satisfied for a subset. Once found, we freeze this subset as a segment

and continue increasing the λ for the rest to find the next segment, and repeat.
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In this process of finding the next segment we need to make sure that the BB and SC conditions

are maintained for the previous segments. In Section 2.2 we were able to do this by simply fixing

the prices of the goods in earlier segments, because goods were not shared across segments. Here,

some of the goods allocated to agents in the earlier segments may also be allocated to agents in the

later segments, and additionally these allocations are not fixed and may keep changing during the

algorithm. (We fix the allocation only at the end.) Furthermore, the prices are required to be dual

optimal w.r.t. the λ vector that we eventually find. On the other hand in order to maintain BB and

SC conditions for the previous segments we need to ensure that the total payments of the previous

segments do not change.

The next lemma shows that this is indeed possible by proving that prices of goods bought by

agents in the previous segments can be held fixed. In fact, we will be able to fix αiks as well, for

agents in the previous segments. The proof involves an application of Farkas’ lemma, leveraging

extensibility. During the computation of the next segment, we hold fixed the λs of the agents in

the segments found so far, and increase the λs of the remaining agents. To facilitate this we define

1S ∈ {0, 1}A as the indicator vector of S ⊆ A, i.e., 1S(i) = 1 if i ∈ S, and is 0 otherwise.

Lemma 3. Given a λ, partition agents into S1, . . . , Sd by equality of λi, where λ(S1) < · · · <

λ(Sd). For R ⊆ Sd consider primal optimal X̂ that is jointly optimal for R, and let (α̂, p̂) be a

dual optimal. Consider for some a > 0, the vector λ′ = λ + a1R. Then X̂ is optimal in LP (λ′)

and there exists an optimal solution (α′,p′) of DLP (λ′) such that,

∀j : p′j ≥ p̂j and
∑

i/∈R x̂ij > 0⇒ p′j = p̂j

∀i /∈ R, ∀k, α′ik = α̂ik .

As discussed above, our algorithm builds segments inductively from the lowest to highest λ

value, by increasing λ of only the “remaining” agents. Suppose, we have built segments S1 through

Sk−1, and let A′ = A \ ∪k−1
g=1Sg be the remaining set of agents. Let λcur be the current λ vector
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where λcur(S1) < · · · < λcur(Sk−1) < λcur(A′). Let pcur be the corresponding dual price vector

which is optimal for DLP (λcur). For ease of notation we define the following.

For any a ≥ 0, define λa = λcur + a1A′ . (2.4)

Fix an allocation Xcur that is an optimal solution to LP (λcur). We call an optimal solution (α,p)

to DLP (λa) valid if prices are monotone w.r.t. pcur and Xcur, in the sense as guaranteed by

Lemma 3 (where prices of goods allocated to previous segments are held fixed and prices of the

rest of the goods are not decreased), and αis are fixed for agents outside A′. We will call the

corresponding prices valid prices. For simplicity we will assume uniqueness of valid prices.5

Define pa to be the valid price vector at an optimal solution to DLP (λa). (2.5)

Since the correctness is proved by induction, the inductive hypothesis is that w.r.t. (λcur,pcur),

both SC and BB are satisfied for S1, . . . Sk−1, and SC is satisfied for the remaining agents A′. The

base case is easy with the λis all set to 0. Our next goal is to find the next segment Sk ⊆ A′, a new

vector λnew and a new price vector pnew such that the following properties hold.

1. Parameter vector λnew is obtained from λcur by fixing λis of agents outside A′, increase λis

of agents in Sk by the same amount, and those of agents A′ \ Sk by some more. The latter

increase is to separate Sk from A′. That is for some a ≥ 0 and ε > 0,λnew = λa + ε1A′\Sk
.

2. Price vector pnew is valid and optimal for DLP (λnew).

3. W.r.t. (λnew,pnew), S1, . . . , Sk satisfy both BB and SC, and A′ \ Sk satisfies SC.

The computation of the next segment Sk satisfying the above properties is done by the sub-

routine NextSeg, which is formally defined in Algorithm 4. As in Section 2.2, the basic idea is to
5This is without loss of generality since perturbing the parameters of the market ensures this. A typical way to

simulate perturbation is by lexicographic ordering [99].
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Algorithm 4 Subroutine NextSeg(λcur,pcur, A′, (mi)i∈A, (Delay LP(i))i∈A)

1: Initialize a0 ← 0, a1 ← ∆, where ∆ = (
∑

i,j,k |aijk|+
∑

i,k |rik|+
∑

i,j |dij|+
∑

i |mi|)2mn|C|.
2: Define function fa as in (2.7).
3: Set S0 ∈ arg minS⊆A′,S 6=∅ fa0(S) and S1 ∈ arg minS⊆A′,S 6=∅ fa1(S)
4: if fa1(S1) > 0 then Return(A′,λcur,pcur) // Note that g(∆) = fa1(S

1) > 0.
5: end if
6: while S0 6= S1 do
7: Set a∗ ← a0+a1

2
and S∗ ∈ arg minS⊆A′,S 6=∅ fa∗(S)

8: if fa∗(S∗) > 0 then Set a0 ← a∗ and S0 ← S∗

9: else Set a1 ← a∗ and S1 ← S∗

10: end if
11: end while
12: S∗ ← S0.
13: Compute a∗ by solving the feasibility LP for S∗ mentioned in Lemma 7 such that fa∗(S∗) = 0
14: // Next, we compute a maximal minimizer of the function fa∗ containing the set S∗.
15: A′ ← A′ \ S∗.
16: while A′ 6= ∅ do
17: S ← arg minT⊆A′,T 6=∅ fa∗(T ∪ S∗)
18: if fa∗(S ∪ S∗) > 0 then break
19: else set S∗ ← S∗ ∪ S, A′ ← A′ \ S
20: end while
21: Set λnew ← λa

∗
, λnewi ← λnewi + ε1A′ , and pnew ←valid price at λnew, where ε← 1

∆

22: Return (S∗,λnew,pnew)

reduce this problem to a single parameter binary search. Since SC is satisfied for the remaining

agents A′ at (λcur,pcur) while BB is not, the total payment of agents in A′ is less than their total

budget m(A′). In order to keep track of this surplus budget, consider the following function on

S ⊆ A′.

fλ,p(S) = m(S)−payS(X,p), where X is an optimal solution to LP (λ) that maximizes delayS .

(2.6)

We translate Property 3 above in terms of this function, in the following lemma, which essen-

tially reduces the problem to a single parameter search.
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Lemma 4. Suppose that for some a ≥ 0,

Sk ∈ arg min
S⊆A′,S 6=∅{fλa

,pa(S)}.

Further, suppose that fλa
,pa(Sk) = 0, and let Sk be a maximal such set. Then there exists a ra-

tional number ε > 0 of polynomial-size such that, w.r.t. (λnew,pnew) as defined above, S1, . . . , Sk

satisfy both BB and SC, and A′ \ Sk satisfies SC.

The above lemma reduces the task of finding the next segment to that of finding an appropriate

a such that the minimum value of fλa
,pa is zero under the valid price pa. This requires two things:

(1) we need to find a minimizer of fλa
,pa for a given a > 0, and (2) we need to find the right value

of a. The next lemma shows that the first task can be done using an algorithm for submodular

minimization, and therefore in a polynomial time [98]. For convenience of notation, we define the

following functions.

fa(S) := fλa
,pa(S) and g(a) := min

S⊆A′,S 6=∅
fa(S) . (2.7)

Lemma 5. Given a ≥ 0, function fa is submodular over set A′.

Now the following question remains: how does one find an a such that the minimum value is

0, i.e., g(a) = 0. We do binary search for this. In the next two lemmas we derive a number of

properties of g that facilitates binary search, while crucially using Lemmas 1 and 3.

Lemma 6. If g(a) > 0 for all a ≥ 0 then A′ satisfies the BB and SC conditions at (λcur,pcur) at

the start of Algorithm 4.

Lemma 7. Function g satisfies the following: (i) g(0) ≥ 0. (ii) fa(S) is continuous and mono-

tonically decreasing in a, ∀S ⊆ A′, therefore g is continuous and monotonically decreasing. (iii)

either g(∆) ≤ 0 for ∆ = (
∑

i,j,k |aijk| +
∑

i,k |rik| +
∑

i,j |dij| +
∑

i |mi|)2mn|C| or g(a) > 0 for
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all a ≥ 0. (iv) Given a set S ⊆ A′, if fa(S) > 0 and fa′(S) < 0 for a′ > a > 0, then ∃a∗ ≥ 0

such that fa∗(S) = 0 and such an a∗ can be computed by solving a feasibility linear program of

polynomial-size.

The first part follows essentially from the fact thatA′ satisfies the SC condition w.r.t. (λcur,pcur).

For the second part, we show that for any S ⊆ A′, the function fa(S) is monotonically decreasing

and continuous in a. Since the minimum of many continuous and decreasing functions is also con-

tinuous and decreasing, we get the same property for g. If g indeed becomes zero at some a then

we know that there exists S ⊆ A′ such that fa(S) = 0. We can show that for any S such an a has to

be at most ∆, and thereby we get the third part. Finally, for the fourth part, the existence of a∗ uses

the monotonicity and the continuity of fa(S) in a. Using the fact that complementary slackness

ensures optimality, we construct a feasibility linear program to compute a∗, given S ⊆ A′ such

that fa∗(S) = 0.

We initialize our binary search with a lower pivot of a0 = 0 and a higher pivot of a1 = ∆.

The third part of Lemma 7 guarantees that ∆ is such that either the binary search will find an a as

required, or no set will ever go tight and we have found our highest segment where agents don’t

spend all their money. Finally, since submodular minimization, binary search over a polynomial-

sized range, and solving a linear program can all be done in polynomial-time, we get our main

result, Theorem 2, using Lemmas 2, 4, 6 and 7, and Theorem 3.

2.4 Examples

In this section we show several interesting examples that illustrate important properties of our

market and of equilibria. In addition we demonstrate a run of our algorithm on a routing example.

Non-existence of equilibria. Consider the networks (typically used to show Braess’ paradox) in

Figure 2.2, where the label on each edge specifies its (capacity, delay cost). There are two agents,

each with a requirement of 1 from s to t. Their mis are 100 and 1 respectively. The network on the

32



left has enough capacity to route two units of flow, but does not satisfy strong feasibility condition

and does not have an equilibrium. This demonstrates importance of strong feasibility condition,

without which even a simple market may not have an equilibrium.

The network in the middle does satisfy strong feasibility but not extensibility and has an equi-

librium. The network on the right satisfies extensibility but not strong feasibility and has an equi-

librium. This demonstrates that conditions of strong feasibility and extensibility are incomparable.

𝑡𝑡

𝑣𝑣

𝑢𝑢

𝑠𝑠

(1, 1)

(1, 2)

(1, 1)

(1, 2)

(1, 3)𝑡𝑡

𝑣𝑣

𝑢𝑢

𝑠𝑠

(1, 1)

(1, 100)

(1, 100)

(1, 1)

(1, 1) 𝑡𝑡

𝑣𝑣

𝑢𝑢

𝑠𝑠

(1, 1)

(1, 100)

(1, 100)

(1, 1)

(1, 1)

(1, 500)

Figure 2.2: Non-existence of equilibria.
The network on the left does not satisfy strong feasibility and has no equilibria. Edge labels specify
(capacity, delay cost), there are two agents, each with a requirement of 1 from s to t. The mis are
100, 1. The same network with an additional edge with huge cost in the middle, does satisfy strong
feasibility but not extensibility and has an equilibrium. The network on the right with different edge
labels satisfies the extensibility but not strong feasibility. It has an equilibrium and our algorithm
will find one.

Non-convexity of equilibria. Consider a market in the scheduling setting of Section 2.2, with

6 agents, each with a requirement of 1. Their mis are 30, 17, 9, 4, 3, 1. Table 2.1 depicts some of

the equilibrium prices for this instance. A bigger example with 9 agents is in Table 2.2. These

examples show that the equilibrium set is not convex, but forms a connected set. Since these are

in high dimension, it is not easy to determine the exact shape of the entire equilibrium set, but one

can see that it is quite complicated.

A run of the algorithm. We describe the run of our algorithms on simple examples here. The

run of Algorithm 1 on the example in Table 2.1 is as follows. Each row below depicts one iteration,
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Table 2.1: An example in the scheduling setting of Section 2.2 where the set of equilibrium prices
is non-convex.

𝒑𝒑1

𝒑𝒑𝟑𝟑 𝒑𝒑𝟓𝟓

𝒑𝒑𝟔𝟔

𝒑𝒑𝟐𝟐 𝒑𝒑𝟒𝟒
p1 : (30, 17, 9, 5, 2, 1)

p2 : (30, 17, 9, 41/3, 22/3, 1)

p3 : (34, 13, 9, 5, 2, 1)

p4 : (34, 13, 9, 51/3, 22/3, 0)

p5 : (35, 13, 8, 41/3, 22/3, 1)

p6 : (35, 13, 8, 51/3, 22/3, 0)

There are 6 agents, each with a requirement of 1. Their mis are 30, 17, 9, 4, 3 and 1. We depict
only a subset of all equilibria here. In particular, we depict 6 equilibrium prices, p1,p2, · · · ,p6.
All prices either along solid lines connecting any two of these points, or in the shaded region are
equilibria. However, if any two of these prices are not connected by a solid line, then none of
the points on the line joining them is an equilibrium. For example, none of the prices on the line
joining p1 and p6, p2 and p5, or p3 and p4 is an equilibrium. There are more equilibrium points
not depicted here. As far as we can tell, the shape of the equilibrium set is something akin to a cup,
with empty space inside, but forming a single connected region.

where we find a new segment. We first give the set of agents in this new segment, then the corre-

sponding λ, and then the prices of the slots determined in this iteration. The last column shows the

sets which give the second and third lowest λs in that iteration, and hence were not selected.

S1 = {6}, λS1 = 1, p6 = 1 (λ{5,6} = 11/3, λ{4,5,6} = 11/3, . . . )

S2 = {4, 5}, λS2 = 12/3, p5 = 22/3, p4 = 41/3 (λ{5} = 2, λ{3,4,5} = 21/6, . . . )

S3 = {3}, λS3 = 42/3, p3 = 9 (λ{2,3} = 57/9, λ{1,2,3} = 71/6)

S4 = {2}, λS4 = 8, p2 = 17 (λ{1,2} = 92/3)

S5 = {1}, λS5 = 13, p1 = 30
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Table 2.2: An example in the scheduling setting of Section 2.2 where the set of equilibrium prices
is non-convex.

p1 : (57, 44, 33, 24, 16, 10, 5, 2, 1)

p2 : (57, 442/3, 321/3, 24, 16, 10, 5, 2, 1)

p3 : (57, 44, 33, 24, 162/3, 91/3, 5, 2, 1)

p4 : (57, 44, 33, 24, 16, 10, 5, 22/3, 1/3)

p5 : (571/3, 442/3, 32, 24, 16, 10, 5, 2, 1)

p6 : (57, 44, 33, 241/3, 162/3, 9, 5, 2, 1)

p7 : (57, 44, 33, 24, 16, 10, 51/3, 22/3, 0)

p8 : (571/3, 442/3, 32, 24, 162/3, 91/3, 5, 2, 1)

p9 : (571/3, 442/3, 32, 24, 16, 10, 5, 22/3, 1/3)

p10 : (57, 442/3, 321/3, 241/3, 162/3, 9, 5, 2, 1)

p11 : (57, 44, 33, 241/3, 162/3, 9, 5, 22/3, 1/3)

p12 : (57, 44, 33, 24, 162/3, 91/3, 51/3, 22/3, 0)

p13 : (57, 442/3, 321/3, 24, 16, 10, 51/3, 22/3, 0)

p14 : (571/3, 442/3, 32, 241/3, 162/3, 9, 5, 2, 1)

p15 : (571/3, 442/3, 32, 24, 16, 10, 51/3, 22/3, 0)

p16 : (57, 44, 33, 241/3, 162/3, 9, 51/3, 22/3, 0)

p17 : (57, 442/3, 321/3, 241/3, 162/3, 9, 51/3, 22/3, 0)

p18 : (571/3, 442/3, 32, 241/3, 162/3, 9, 5, 22/3, 1/3)

p19 : (571/3, 442/3, 32, 24, 162/3, 91/3, 51/3, 22/3, 0)

p20 : (571/3, 442/3, 32, 241/3, 162/3, 9, 51/3, 22/3, 0)

There are 9 agents, each with a requirement of 1. Their mis are 56, 45, 33, 23, 17, 10, 4, 3 and
1. We depict only a subset of all equilibria here. In particular, we depict 20 equilibrium prices,
p1,p2, · · · ,p20. All prices either along solid lines connecting any two of these points, or in the
shaded region are equilibria. However, if any two of these prices are not connected by a solid line,
then none of the points on the line joining them is an equilibrium.

The equilibrium price found in this run is the point p2 in Table 2.1. This price curve is shown in

Figure 2.3. The allocation obtained by solving the feasibility LP (2.3) is as follows: x11 = 1, x22 =

1, x33 = 1, x44 = 4/5, x45 = 1/5, x54 = 1/5, x55 = 4/5, x66 = 1.

We next describe the run of the algorithm on a network flow example, described in Figure

2.4. The figure shows the network structure and the edge labels specify (capacity, delay cost).

There are five agents with requirements 10, 11, 12, 13, 14 from s to t respectively. Their mis are

12, 10, 4, 2, 2. This network is not series-parallel, yet it satisfies the extensibility condition, so our

algorithm finds an equilibrium.
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Figure 2.3: Piecewise linear convex decreasing curve of equilibrium prices obtained by the algo-
rithm for the example in Table 2.1.

The run of Algorithm 3 on this example (in Figure 2.4) is as follows. Once again, each row

below depicts one iteration, where we find a new segment. We first give the set of agents in the new

segment, then the corresponding λ, and then the prices of the edges that are fixed in this iteration.

The last column shows the second and third lowest λs in that iteration.

S1 = {3, 4, 5}, λS1 = 8/37, psx = pxt = pwt = 0, pst = 8/37, psw = 16/37

(λ{4,5} = 4/13, λ{2,3,4,5} = 9/35)

S2 = {1, 2}, λS2 = 478/1147, pwu = 478/1147, pvt = 478/1147, psv = puv = put = 0 (λ{2} = 194/407)

The allocation from the feasibility LP (2.3):

• Agent 1 sends 2012/239 units of flow on path s − w − u − v − t and 378/239 units of flow on

path s− w − u− t.
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Figure 2.4: A network flow example.
There are 5 agents with requirements 10, 11, 12, 13, 14 from s to t respectively. Their mi’s are
12, 10, 4, 2, 2 respectively. The network satisfies the extensibility condition, so our algorithm finds
an equilibrium.

• Agent 2 sends 2251/239 units of flow on path s − w − u − t and 378/239 units of flow on path

s− w − u− v − t.

• Agent 3 sends 8 units of flow on path s− w − t, 5/2 units of flow on path s− t and 3/2 units

of flow on path s− x− t.

• Agent 4 sends 2 units of flow on path s−w− t, 21/4 units of flow on path s− t and 23/4 units

of flow on path s− x− t.

• Agent 5 sends 2 units of flow on path s−w− t, 21/4 units of flow on path s− t and 27/4 units

of flow on path s− x− t.

2.5 Related work on computation and applications of market equilibrium

Computation and Complexity: The computational complexity of market equilibrium has been

extensively studied for the tradition models in the past decade and a half. This investigation has

involved many algorithmic techniques, such as primal-dual and flow based methods [40, 41, 88,
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106, 107], auction algorithms [53], ellipsoid [62] and other convex programming based techniques

[27], cell-decomposition [37, 38, 103], distributed price update rules [26, 30, 108], and comple-

mentary pivoting algorithms [48, 50], to name some of the most prominent. The algorithms have

been complemented by hardness results, either for PPAD [25, 29] or for FIXP [52, 68], pretty much

closing the gap between the two. Most of these papers focus on traditional utility functions used

in the economics literature. A notable exception that considers combinatorial utility functions is

[65], that study a market where agents want to send flow in a network, motivated by rate control

algorithms governing the traffic in the Internet.

Beyond being an important component in the complexity theory of total functions [78], the

computation of market equilibria has been studied by economists for much longer [16, 96, 102].

The classic case for the use of equilibrium computation is counter-factual evaluation of policy

or design changes [100], based on the assumption that markets left to themselves operate at an

equilibrium.

Fair allocation: Recently, market equilibrium outcomes have been used for fair allocation. Mar-

ket equilibrium conditions are often considered inherently fair, therefore equilibrium outcomes

have been used to allocate resources by a central planner seeking a fair allocation even when there

is no actual market or monetary transfers. E.g., the proportional fair allocation, which is well

known to be equivalent to the equilibrium allocation in a Fisher market [70], is widely used in

the design of computer networks. Exchange of bandwidth in a bittorrent network is modeled as a

process that converges to a market equilibrium by [108]. [17] proposes “competitive outcome from

equal incomes” (CEEI) as a way to allocate courses to students: the allocation is an equilibrium in

a market for courses in which the students participate with equal budgets (with random perturba-

tions to break ties). This scheme has been successfully used at the Wharton business school [18].

[31] show that a suitable modification of the Fisher market equilibrium allocation can be used as

a solution to a problem of fair resource allocation, without money. The mechanism is truthful,
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and satisfies an approximate per-agent welfare guarantee. Truthful mechanisms have also been

designed for scheduling, where it is the auctioneer who has jobs to be scheduled and the agents are

the one providing the required resources e.g., see [72, 85]. This is in contrast to our setting where

the agents have scheduling requirements.

Market based mechanisms: There is also a long history of “market based mechanisms”, where

a mechanism (with monetary transfers) implements an equilibrium outcome. The New York Stock

Exchange uses such a mechanism to determine the opening prices, and copper and gold prices in

London are fixed using a similar procedure [94]. There are different ways to do this: use a sample

(either historic or random) or a probabilistic model of the population to compute the equilibrium

price, and offer these prices to new agents. This is preferable to asking the bidders to report their

preferences, computing the equilibrium on reported preferences and offering the equilibrium prices

back. The latter leads to obvious strategic issues; [61] shows that strategic behavior by agents

participating in such a mechanism can lead to inefficiencies. [2] show price of anarchy bounds on

such mechanisms. In any case, such mechanisms are “incentive compatible in the large”, meaning

that as the market size grows and each agent becomes insignificant enough to affect prices on his

own, his best strategy is to accept the equilibrium outcome. Nonetheless such mechanisms have

been proposed and used in practice, e.g., for selling TV ads [86].

Budget constraints: Budget constraints in auctions has gained popularity in the last decade due

to ad auctions [9, 42, 47, 79], but has been studied for quite some time [21, 71]. There has also

been a recent line of work considering budget constraints in a procurement setting [4, 101].

2.6 Existence of Equilibrium under Strong Feasibility

In this section we show existence of equilibrium for market instances satisfying strong feasibility

(Definition 1 in Section 2.1). Given such an instanceM with set A of n agents and set G of m
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goods, let us create another instanceM′ by adding an extra good s with “large quantity” and very

high delay cost. Recall that the number of goods and agents in marketM be m and n respectively.

Set of agents and goods in marketM′ are respectively A and G′ = G∪{s}. After normalizing

to get quantity 1 for good s, we set coefficient of variable xis in all the constraints of CC(i)

to as = (n + 1)rmax for each agent, and set the delay cost for good s and for every agent to

ds = m(m+1)dmaxas

(
amax

amin

)m
, where amax = maxi,j,k |aijk|, amin = min{1,mini,j,k |aijk|}, and

rmax = maxi,k rik. Thus, given prices (p1, . . . , pm, ps) of goods inM′, the optimal bundle of agent

i at these prices can be found by solving the following linear program.

OPTi(p) = arg min :
∑

j dijxij + dsxis

s.t.
∑

j aijkxij + asxis ≥ rik, ∀k ∈ C∑
j pjxij + psxis ≤ mi

xij ≥ 0, ∀j ∈ G′.

(2.8)

The next lemma follows from the construction of marketM′.

Lemma 8. IfM satisfies strong feasibility then so doesM′.

Price vector p is said to be at equilibrium, if when every agent is given its optimal bundle, there

is no excess demand of any good, and goods with excess supply have price zero. That is, (X,p)

such that,

∀i ∈ A, xi ∈ OPTi(p), and ∀j ∈ G′,
∑
i∈A

xij ≤ 1; pj > 0⇒
∑
i∈A

xij = 1. (2.9)

Lemma 9. If xi ∈ OPTi(p), ∀i ∈ A at prices p ≥ 0 forM′, then
∑

i xis < 1. That is ps = 0 at

equilibrium.

Proof. It is easy to see that xis ≤ 1
n+1

, ∀i, and hence the proof follows.
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Next we show that equilibria ofM andM′ are related.

Lemma 10. IfM satisfies strong feasibility, then every equilibrium ofM′ gives an equilibrium of

M.

Proof. Let (X∗,p∗) respectively be an equilibrium allocation and prices ofM′. From Lemma 9,

we know that p∗s = 0. It suffices to show that x∗is = 0, ∀i ∈ A, for the lemma to follow.

To the contrary suppose for some agent u, x∗us > 0. We will construct another bundle x′u that

is affordable to agent u at prices p∗, satisfies CC(u), and has a lower delay than x∗u, contradicting

optimal bundle condition at equilibrium.

Due to strong feasibility, after all i 6= u is given their bundle x∗i , there will be a bundle x′u

left for u to buy among goods in G such that CC(u) constraints are satisfied. Clearly, one way to

construct such x′u is that the agent keeps buying all goods j 6= s as in x∗u, and starts decreasing

x∗us and increasing allocation for some other available good. Note that all such available goods are

under-sold at equilibrium and therefore has zero price in p∗. Thus payment for x′u and x∗u are the

same at prices p∗. In other words x′u is affordable at prices p∗.

If good j is increased by δj as we go from x∗u to x′u, then we claim that δj ≤ m!as

(
amax

amin

)m
x∗us,

where m = |G|. This is because, in a constraint even if coefficient of variable xuj is minimum

possible, and it needs to compensate for increase in other goods due to their negative coefficients,

this cascade could at most harm by a factor of m!
(
amax

amin

)m
. Difference in delay is

∑
j duj(x

′
uj − x∗uj)− dsx∗us =

∑
j dujδj − dsx∗us

≤ mdmax(maxj δj)− dsx∗us
≤

(
m(m+1)dmaxas

(
amax

amin

)m
− ds

)
x∗us < 0.

Due to Lemma 10, to show existence of equilibrium for marketM it suffices to show one for

M′. Next to show existence of equilibrium for market M′ it suffices to consider price vectors
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where ps = 0 due to Lemma 9, and therefore we consider the following set of possible price

vectors.

P = {p ∈ R(m+1)
+ | ps = 0;

∑
j∈G

pj ≤M} where M =
∑

imi.

Let us first handle trivial instances. It is easy to see that the feasible set of xis in LP (2.8) at

p = 0 is a superset of the feasible set at any other prices p. Therefore, for agent i if xi = 0 ∈

OPTi(0), then she will not buy anything at any prices. In that case, it is safe to discard her from

the market. Further, if there is an allocation X satisfying Supply constraints for marketM′ such

that xi ∈ OPTi(0), ∀i ∈ A, then we get a trivial equilibrium ofM′ where all the prices are set to

zero; note that in this case zero prices also constitute an equilibrium of marketM by Lemma 10.

To show existence for non-trivial instances, w.l.o.g. now on we assume the following for market

M′.

Enough Demand (ED): If X is such that ∀i ∈ A, xi ∈ OPTi(0), then xi 6= 0, ∀i, and there

exists a good j ∈ G′ such that
∑

i xij > 1. Clearly, j 6= s due to Lemma 9.

Lemma 11. For any p ∈ P , OPTi(p) is non-empty, and assuming enough demand (ED), 0 /∈

OPTi(p), ∀i ∈ A.

Proof. The first part of the proof is easy to see due to the extra good s whose price is zero in

P . For the second part, to the contrary suppose for xi ∈ OPTi(p) we have xi = 0. By ED

assumption we know that for any x0
i /∈ OPTi(0), we have x0

i 6= 0. Further, feasible set of LP

(2.8) is at prices p is a subset of the feasible set of this LP at zero prices. Hence we know that∑
j dijx

0
ij <

∑
j dijxij = 0.

It must be the case that x0
i is not affordable at prices p, i.e., mi <

∑
j x

0
ijpj . For λ =

mi/
∑

j x
0
ijpj , set x′i = λx0

i + (1 − λ)xi. Since xi and x0
i both satisfy CC(i), so does x′i. And

since xi = 0 bundle x′i is affordable at prices p, thereby x′i is feasible in OPTi(p). The delay at
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x′i is
∑

i dijx
′
ij =

∑
j dij(λx

0
ij + (1−λ)xij) = λ

∑
j dijx

0
ij < 0 =

∑
j dijxij , a contradiction to xi

being optimal bundle at prices p.

Next we will construct a correspondence whose fixed points are exactly the market equilibria of

M′. Let cmaxj be the maximum possible demand of good j; we can compute cmaxj by maximizing∑
i xij over the CC(i) constraints of all agents i ∈ A. Define domain

D = {(X,p) | p ∈ P ; X ≥ 0; ∀j,
∑
i

xij ≤ cmaxj }

Let δ = minimi. Define correspondence F : D → D as follows where for a given (X̄, p̄) ∈ D,

we have (X ′,p′) ∈ F (X̄, p̄),

∀i ∈ A, x′i ∈ OPTi(p̄), and p′ ∈ arg max
p∈P, δ≤∑j pj≤max{δ,

∑
i∈A,j∈G′ x̄ij p̄j}

∑
i∈A,j∈G′

x̄ijpj. (2.10)

The correspondence is well defined due to Lemma 11. If F (X̄, p̄) is a convex set, and graph

of F is closed, then Kakutani’s Theorem [69] implies that F has a fixed point, i.e., ∃(X∗,p∗) ∈ D

such that (X∗,p∗) ∈ F (X∗,p∗). Next we show the same.

Lemma 12. Correspondence F has a fixed point.

Proof. Clearly, F (X̄, p̄) is a convex set since it is a cross product of solution sets of LPs. The

lemma follows using Kakutani’s fixed-point Theorem [69] if graph of F is closed.

Let (X̄
t
, p̄t) for t = 1, 2, . . . be a sequence of points inD, and let (X t,pt) be another sequence

such that (X t,pt) ∈ F (X̄
t
, p̄t). Then essentially, X t and pt are solutions of LPs that are contin-

uously changing with (X̄, p̄). Therefore, if limt→∞(X̄
t
, p̄t) = (X̄

∗
, p̄∗) and limt→∞(X t,pt) =

(X∗,p∗), then by continuity of parameterized LP solutions, we get that (X∗,p∗) ∈ F (X̄
∗
, p̄∗),

implying graph of F is closed.

43



Lemma 13. If (X∗,p∗) is a fixed-point of F then ∀j ∈ G′,∑i∈A x
∗
ij ≤ 1.

Proof. Since x∗i ∈ OPTi(p
∗), ∀i ∈ A,

∑
i∈A x

∗
is ≤ 1 follows using Lemma 9. Among the rest

of the goods, suppose, for j′ 6= s we have
∑

i∈A x
∗
ij′ > 1. Let U = max{δ,∑i,j x

∗
ijp
∗
j}. Then the

optimization problem of (3.3) is

max
p∈P, δ≤∑j pj≤U

∑
i,j

x∗ijpj = max
p∈P, δ≤∑j pj≤U

∑
j

pj
∑
i

x∗ij.

The above quantity can be made more than U by setting pj′ = U , and therefore optimal value is

strictly more than U . However, due to the fixed-point condition p∗ is a solution of the above, which

implies
∑

i,j x
∗
ijp
∗
j > U , a contradiction.

Lemma 14. Assuming enough demand (ED), if (X∗,p∗) is a fixed-point of F then p∗ 6= 0 and∑
i,j x

∗
ijp
∗
j ≥ δ.

Proof. For the first part, to the contrary suppose p∗ = 0. Then ∀i ∈ A,x∗i ∈ OPTi(0) since

(X∗,p∗), and therefore by ED condition ∃j 6= s, x∗ij > 1. However
∑

i,j x
∗
ijp
∗
j = 0. Therefore,

max
p∈P, δ≤∑j pj≤max{δ,

∑
i,j x

∗
ijp
∗
j}

∑
i,j

x∗ijpj = max
p∈P, ∑j pj=δ

∑
i,j

x∗ijpj > 0.

This contradicts the fact that p∗ is a maximizer of the above.

For the second part, to the contrary suppose
∑

i,j x
∗
ijp
∗
j < δ, then max{δ,∑i,j x

∗
ijp
∗
j} = δ.

Further, due to Lemma 11 (together with the ED assumption) we have ∀i ∈ A,x∗i 6= 0, and

therefore at maximum
∑

j pj = δ. Since p∗ is a maximizer of the above,
∑

j p
∗
j = δ.

However since
∑

i,j x
∗
ijp
∗
j < δ, we get ∀i,∑j x

∗
ijp
∗
j < mi where x∗i is feasible in LP (2.8)

at prices p∗. Let X0 be a demand vector when all the prices are zero. Due to Lemma 13 and

ED assumption we get that for some agent i, x∗i /∈ OPTi(0). Let i′ be this agent. This implies∑
j di′jx

0
i′j <

∑
j di′jx

∗
i′j . Despite lower cost at x0

i′ she demands x∗i′ at prices p∗, hence it should

be the case that she can not afford x0
i′ at those prices. However, since i′ is also not spending all the
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money at prices p∗, there exists some 0 < τ < 1 such that she can afford X ′i′ = τx∗i′ + (1− τ)x0
i′

at p∗. Since both x0
i′ and x∗i′ satisfy the CC(i′) constraints of LP (2.8) for agent i′, so does X ′i′ .

Thus, X ′i′ is a feasible point in OPTi′(p∗) LP, and
∑

j di′jx
′
i′j <

∑
j di′jx

∗
i′j , a contradiction to

x∗i′ ∈ OPTi′(p∗).

Next we show the main result using Lemmas 12, 13 and 14.

Theorem 4. IfM′ satisfies strong feasibility then it has an equilibrium.

Proof. Due to Lemma 12, we know that there exists a fixed-point of correspondence F . Let this be

(X∗,p∗). We will show that it is a market equilibrium ofM′. Clearly, optimal allocation condition

is satisfied because x∗i ∈ OPTi(p
∗). Market clearing remains to be shown, which requires: (a)

∀j, ∑i x
∗
ij ≤ 1, and (b) p∗j > 0⇒∑

i x
∗
ij = 1.

(a) follows from Lemma 13. For (b), let U = max{δ,∑i,j x
∗
ijp
∗
j}, then due to Lemma 14,

U =
∑

i,j x
∗
ijp
∗
j . The optimization problem of (3.3) is

max
p∈P, δ≤

∑
j pj≤U

∑
i,j

x∗ijpj = max
p∈P, δ≤

∑
j pj≤U

∑
j

pj
∑
i

x∗ij.

Clearly, at optimal solution of the above pj is non-zero only where
∑

i x
∗
ij is maximum. Since

p∗ is a solution, if ∃j, ∑i x
∗
ij = 1, then (b) follows.

On the other hand suppose for all j we have
∑

i x
∗
ij < 1, then clearly the optimal value of the

above is strictly less than U . However since p∗ is a maximizer it implies that
∑

i,j x
∗
ijp
∗
j < U , a

contradiction to Lemma 14.

The next theorem follows using Lemmas 8, 10, and Theorem 4.

Theorem 1. [Strong feasibility implies the existence of an equilibrium] If (CC(i))i∈A of marketM

satisfies strong feasibility, then ∃ an allocationX and prices p that constitute a market equilibrium

ofM.
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Remark 1. By similar argument, we can show existence of equilibrium for market instances sat-

isfying only extensibility condition (see Definitions 3). However, since our algorithm returns an

equilibrium of such a market, it already gives a constructive proof of existence.

2.6.1 Quasi-concave utility functions

In this section, we show that the preferences of agents in our model can be captured by quasi-

concave utility functions. Notation: the symbol ≤ when used for vectors represents a co-ordinate

wise relation, and < represents that at least one of the inequalities is strict. Define the utility of an

agent i for an allocation xi to be the smallest delay of a feasible allocation dominated by xi, times

−1:

Ui(xi) = −min {di · x′i : x′i ≤ xi & x′i is feasible for Delay LP(i)} .

If there is no x′i ≤ xi that is feasible for Delay LP(i) then the utility is −∞. It is easy to check

that this utility function is quasi-concave, and induces the same preferences as in our model.

2.7 Special Cases

In this section, we show how the applications mentioned in Section 2.1.3 satisfy the extensibility

condition (Definition 3 in Section 2.1).

Scheduling. Recall the scheduling problem from Section 2.1.3. The agents are jobs that require

d different types of machines, and the set of time slots on machines of type k is Mk; pair (machine

type, time slot) defines a good in the market. Each agent needs rik ∈ R+ units of time on machine

type k, which is captured by the covering constraint
∑

j∈Mk
xijk ≥ rik, ∀k ∈ [d]. All agents

experience the same delay djk from time slot j on type k machine.

Lemma 15. Scheduling problem satisfies the extensibility condition.

Proof. Consider an arbitrary set S of agents and an agent î outside of this set. Let (xi)i∈S be a
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feasible allocation that minimizes the total delay of S, i.e.,
∑

i∈S,j∈Mk,k∈[d] djkxijk. Since the delay

values are the same for each agent the total delay minimizes when the agents in S get
∑

i∈S rik units

of machines of type k with the smallest delay. Therefore, if we assign the next rik units of machines

of type k with the smallest delay to agent î then (xi)i∈(S∪î) would be the feasible allocation that

minimizes the total delay. Therefore, this problem satisfies the extensibility condition.

Restricted assignment with laminar families. Recall this setting from Section 2.1.3. The above

basic scheduling setting can be generalized to the following restricted assignment case, where job

i is allowed to be processed only on a subset of all the time slots Sik ⊆Mk on the machine type k.

We need the Siks to form a laminar6 family within each type, and in addition, we require that the

machines in a larger subset have lower delays. That is, if for some two agents i, i′ ∈ A, Si′k ⊂ Sik

then maxj∈Sik\Si′k
djk ≤ minj′∈Si′k

dj′k for each type k.

Lemma 16. Restricted assignment with laminar families satisfies the extensibility condition if the

following assumption holds for the instance

• (Monotonicity) ∀i, i′ ∈ A, such that Si′ ⊂ Si then maxj∈Si\S′i djk ≤ minj′∈S′i dj′k for each

type k ∈ [d].

Proof. Since the requirement and variables for each machines type is separate, it is enough to

show this for k = 1. Consider an arbitrary set of agents T and an agent outside of this set î. Let

T ′ = T ∪ i. Let (xi)i∈T to be a feasible allocation that minimizes total delay, i.e.,
∑

i∈T d.xi. For

simplicity let Sî = {1, 2, . . . ,m} such that d1 ≤ · · · ≤ dm. Consider two agent i and i′. Note that

if j ∈ Si and j ∈ Si′ then ∀j′ ∈ Si such that dj′ ≤ dj we have j ∈ Si′ and vice versa because Sis

form a laminar family and the monotonicity condition. Therefore, an optimal allocation allocates

only a prefix of time slots in Sî. Let’s assign to î the next rî slots with smallest delay in subset Sî.

We claim the new allocation (xi)i∈S′ is minimizing the total delay, i.e.,
∑

i∈S′ d.xi. Let’s prove the

6A family of subsets is said to be laminar if any two sets S and T in the family are either disjoint, S ∩ T = ∅, or
contained in one another, S ⊆ T or T ⊆ S.
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claim by contradiction. Suppose the allocation is not optimal. Therefore there exists an optimal

allocation (x′i)i∈S′∪{̂i} with less total delay. Suppose allocation X ′ has allocated slots 1 through l′

in set Sî and allocation X has allocated slots 1 through l in set Sî. Note that in allocation X ′ we

can assume agent î is getting the last slot in X ′ among the machines that has been allocated in Si

because if there exists agent ī that has allocation on the right side of the first slot that is allocated

to î then we can swap the allocations so the total delay wouldn’t change. If l = l′ then the delay

of agent î is the same in X and X ′. This is a contradiction because then it would conclude that the

total delay of allocation (x′i)i∈S is less than total delay of (xi)i∈S but we assumed X is an optimal

allocation for S. There are two cases.

Case1. l < l′. Consider allocation X ′ after removing agent î. Since î is getting the last slots it

is easy to see the remaining allocation is optimal for S. Since l < l′ there are agents that have less

allocation in Si in X compare to X ′. Because of monotonic delay assumption they have been al-

located to machines with highest delay instead of available machines in Si. This is a contradiction

with the fact X is a optimal allocation for S.

Case2. l > l′. This case is very similar to the last case. With the same argument we can argue

that this case has contradiction with the fact X ′ is an optimal allocation.

Network flows. Recall that in this setting agent i wants to send ri units of flow from s to t in

a directed (graph) network where each edge has a capacity and cost per unit flow specified. Here

edges are goods, and the covering constraints of agent i has variable fie for each edge e representing

her flow on edge e. The constraints impose flow conservation at all nodes except s and t, and that

net outgoing and incoming flow at s and t respectively is ri.

Lemma 17. A series-parallel network satisfies the extensibility condition.

Proof. Consider an arbitrary set of agents S and an agent outside of this set î. Let (fi)i∈S to be a
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feasible min cost flow. Let’s remove the allocated capacities from the graph and allocate min cost

flow of size rî to agent î in the remaining graph. It is known that this greedy algorithm gives a min

cost flow of size
∑

i∈S∪î ri [8].

We can consider independent copies of any of these special cases above. E.g., each agent might

want some machines for job processing, as well as send some flows through a network, but have

a common budget for both together. Note that it would remain extensible because each copy is

independent and extensible itself.

2.8 Equilibrium Characterization

In this section we characterize equilibria of the most general market instances. Recall that alloca-

tion xi of agent i has to satisfy its covering constraints CC(i). Next we derive sufficient conditions

for prices p and allocation X to be an equilibrium. As we discussed in Section 2.1, given prices p

the optimal bundle of each agent i is captured by

min
∑

j∈G dijxij

s.t.
∑

j∈G aijkxij ≥ rik ∀k ∈ C∑
j∈G pjxij ≤ mi

xij ≥ 0, ∀j ∈ G .

(OB-LP(i))

It is well know that the solutions of a linear program are exactly the ones that satisfy the

complementary slackness conditions [99]. Let βik and γi be the dual variables of the first and

second of constraints in OB-LP(i). Then, the corresponding complementary slackness conditions

are

∀k ∈ C :
∑

j∈G aijkxij ≥ rik ⊥ βik ≥ 0

∀j ∈ G : dij ≥
∑

k aijkβik − γipj ⊥ xij ≥ 0∑
j∈G pjxij ≤ mi ⊥ γi ≥ 0 .

(2.11)
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Here ⊥ symbol between two inequalities means that both inequalities should be satisfied, and

at least one of them has to hold with equality. Let’s define Z = {i | γi = 0}, For all i in Z and for

all k define αik = βik, and for all i in A \ Z define λi = 1/γi and αik = βik/γi for each constraint

k. Then the above conditions of (2.11)can be rewritten as:

∀i ∈ Z, ∀k ∈ C :
∑

j∈G aijkxij ≥ rik ⊥ αik ≥ 0

∀i ∈ Z, ∀j ∈ G : dij ≥
∑

k aijkαik ⊥ xij ≥ 0

∀i ∈ A\Z, ∀k ∈ C :
∑

j∈G aijkxij ≥ rik ⊥ αik ≥ 0

∀i ∈ A\Z, ∀j ∈ G : λidij ≥
∑

k aijkαik − pj ⊥ xij ≥ 0

∀i ∈ A\Z :
∑

j∈G pjxij = mi and λi > 0

(2.12)

At equilibrium prices, every agent should get an optimal bundle and market should clear, i.e.,

Supply constraints are satisfied and every good with positive price should be fully sold (see Section

2.1 for the formal definition of market equilibrium). Since optimal allocations at given prices

are solutions of OB-LP(i) for each i, they must satisfy (2.12). This follows from the fact that

primal-dual feasibility and complementary slackness conditions are necessary and sufficient for

the solutions of a linear program. We get the following characterization.

Lemma 18. If (λ̂, X̂, p̂, α̂) satisfies (2.12), and ∀j ∈ G, ∑i∈A x̂ij ≤ 1 ⊥ p̂j ≥ 0, then (X̂, p̂)

constitutes an equilibrium allocation and prices.

Motivated from Lemma 18 we next define a parameterized LP that captures complementary

slackness conditions of OB-LP(i) for all the agents together. Suppose we are given λi’s, let us

define the following linear program parameterized by the λ vector, that we call LP (λ), and its

dual DLP (λ) (same as (2.2) defined in Section 2.3):
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LP (λ) DLP (λ)

min :
∑

i,j λidijxij

s.t.
∑

j∈G aijkxij ≥ rik ∀i ∈ A, k ∈ C∑
i∈A xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ A, j ∈ G

max :
∑

i∈A,k∈C rikαik −
∑

j pj

s.t. λidij ≥
∑

k aijkαik − pj ∀i ∈ A, j ∈ G

αik, pj ≥ 0 ∀j ∈ G, k ∈ C .

Using the equilibrium characterization of Lemma 18 together with the complementary slack-

ness conditions between constraints of LP (λ) and DLP (λ), next we show that the solutions of

LP (λ) and DLP (λ) exactly capture the equilibria if given appropriate value of parameter vector

λ.

Theorem 3. For a given λ > 0 if an optimal solution X of LP (λ) and an optimal solution (α,p)

of DLP (λ) satisfy Budget constraint(i) for all agents i ∈ A, and at (X,p) every agent i either

spends all her budget, or xi ∈ OPTi(0), then (X,p) constitute an equilibrium of marketM.

Proof. It suffices to show that (λ,a,p, X) satisfies the conditions of Lemma 18. Let Z be the set

of agents with xi ∈ OPTi(0). Clearly, (a,p, X) satisfies first two conditions of (2.12) just by

definition of set Z. The last one of (2.12) is already assumed in the hypothesis since agents not in

Z must spend all their budget.

For the remaining conditions, let us write the complementary slackness conditions for LP (λ).

∑
j

aijkxij ≥ rik ⊥ αik ≥ 0, ∀i, k. (2.13)

λidij ≥
∑
k

aijkαik − pj ⊥ xij ≥ 0, ∀i, j. (2.14)
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∑
i

xij ≤ 1 ⊥ pj ≥ 0, ∀j. (2.15)

Conditions (2.13) and (2.14) are exactly the third and fourth conditions of (2.12), and (2.15)

ensures market clearing. Thus the proof follows using Lemma 18.

Next we show the converse of the above theorem under the assumption that γi > 0,∀i ∈ A.

Lemma 19. Given an equilibrium (X̂, p̂) and the value of corresponding dual variables β̂ik and

γ̂i in (2.11) for marketM such that γ̂i > 0,∀i then X̂ and (α̂, p̂) give a solution of LP (λ̂) and

DLP (λ̂) respectively for some λ̂ and α̂.

Proof. It is easy to see using (2.12) that for Z = ∅, λ̂i = 1/γ̂i, ∀i ∈ A and α̂ik = β̂ik/γ̂i, ∀i ∈

A, k ∈ C, (X̂, α̂, p̂) satisfies the complementary slackness conditions of LP (λ̂) and DLP (λ̂).

Using the equilibrium characterization given by Theorem 3 crucially, we design a polynomial-

time algorithm to find an equilibrium for markets with extensibility (Definition 3) in Section 2.3.

2.9 Missing Proofs and Details of Section 4

The proof of first theorem of Section 2.3, namely Theorem 3 is in Section 2.8 where we charac-

terize market equilibria. Next we give proof of Lemma 1. For this we basically use the fact that

any pair of primal, dual solutions of a linear program has to satisfy complementary slackness [99].
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Recall the LP (λ) and DLP (λ) of (2.2).

LP (λ) : DLP (λ)

min :
∑

i λi
∑

j dijxij

s.t.
∑

j aijkxij ≥ rik, ∀k∑
i xij ≤ 1, ∀i

xij ≥ 0, ∀(i, j)

max :
∑

i,k rikαik −
∑

j pj

s.t. λidij ≥
∑

k aijkαik − pj, ∀(i, j)

pj ≥ 0, ∀j; αik ≥ 0, ∀(i, k).

(2.16)

For any given λ > 0, the optimal solutions of the LP (λ), namely X , and DLP (λ), namely

(α,p) has to satisfy the following complementary slackness conditions.

∀(i, k) : αik ≥ 0 ⊥ ∑
j aijkxij ≥ rik

∀j : pj ≥ 0 ⊥ ∑
i xij ≤ 1

∀(i, j) : xij ≥ 0 ⊥ λidij ≥
∑

k aijkαik − pj.

(2.17)

Recall that the ⊥ symbol between two inequalities means that both inequalities should be

satisfied, and at least one of them has to hold with equality. Also recall that for subset S ⊆ A, we

defined delayS(X,p) =
∑

i∈S,j dijxij and payS(X,p) =
∑

i∈S,j xijpj , and for ease of notation we

use delayi when S = {i} and similarly payi. Using this we first show a relation between delayi

and payi next.

Lemma 20. For a given λ > 0 if X̂ and (α̂, p̂) are optimal solutions of LP (λ) and DLP (λ)

respectively, while X ′ and (α′,p′) are feasible in LP (λ) and DLP (λ) then, such that,

∀i : λidelayi(X̂) =
∑

k rikα̂ik − payi(X̂, p̂)

∀i : λidelayi(X
′) ≥∑k rikα

′
ik − payi(X

′,p′).

Proof. For feasible solutions we have ∀(i, k), α′ik ≥ 0 and
∑

j aijkx
′
ij ≥ rik. Multiplying the
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two and summing over k for each i gives,
∑

k α
′
ik

∑
j aijkx

′
ij ≥

∑
k α
′
ikrik, ∀i. Another pair of

constraints are ∀(i, j), x′ij ≥ 0 and λidij ≥
∑

k aijkα
′
ik − p′j . Multiplying the two gives,

∀i : λidelay(X ′) = λi
∑

j x
′
ijdij

≥ ∑
j x
′
ij(
∑

k aijkα
′
ik)−

∑
j p
′
jx
′
ij

=
∑

k α
′
ik

∑
j aijkx

′
ij − payi(X

′,p′)

≥ ∑
k α
′
ikrik − payi(X

′,p′).

This gives the second part. Since optimal solutions satisfy complementary slackness, all inequali-

ties satisfy with equality in the above for (X̂, α̂, p̂) and we get the first part.

Recall notation [n] = {1, . . . , n} for any positive integer n, and Definition 2 of an allocation

X being jointly optimal for a subset of agents S.

Lemma 1. Given λ, partition agents by equality of λi into sets S1, . . . , Sd such that λ(S1) < · · · <

λ(Sd).

1. At any optimal solution X of LP (λ), the delay is minimized first for set Sd, then for S(d−1),

and so on, finally for S1. This is equivalent to X being jointly optimal for each Tg,∀g ∈

[d] where Tg = ∪dq=gSq, and for any other optimal solution Y we have delaySg
(Y ) =

delaySg
(X), ∀g ∈ [d].

2. Given two dual optimal solutions (α,p) and (α′,p′), if the first part of the dual objective is

the same at both solutions for some g ∈ [d], i.e.,
∑

i∈Sg ,k
rikαik =

∑
i∈Sg ,k

rikα
′
ik, then for

any optimal solution X of LP (λ), paySg
(X,p) = paySg

(X,p′).

3. Given two optimal solutionsX andX ′ ofLP (λ), and an optimal solution (α,p) ofDLP (λ),

if for any subset S ⊆ Sg for g ∈ [d], delayS(X) ≤ delayS(X ′), then payS(X,p) ≥

payS(X ′,p). The former is strict iff the latter is strict too.
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Proof. Note that, T1 = A, Td = Sd, and Sg = Tg \ Tg+1, ∀g ∈ [d − 1]. For the first part, let us

rewrite the objective function of LP (λ) as

d∑
g=2

(λ(Sg)− λ(Sg−1))
∑
i∈Tg ,j

dijxij + λ(S1)
∑
i∈T1,j

dijxij

Since M satisfies extensibility, we can construct a minimum delay allocation X∗ where Sd gets

the best, then next best to Sd−1, and so on to finally S1. In other words, X∗ is jointly optimal for

Tg, ∀g ≤ d. Let X ′ be an arbitrary optimal solution of LP (λ), not constructed as X∗. Then,

∀1 ≤ g ≤ d,
∑
i∈Tg ,j

dijx
∗
ij ≤

∑
i∈Tg ,j

dijx
′
ij.

To the contrary suppose at least one is strict inequality. Then, since λ(Sd) > λ(Sd−1) > · · · >

λ(S1) > 0 we have

λ(S1)
∑

i∈T1,j dijx
∗
ij +

∑d
g=2(λ(Sg)− λ(Sg−1))

∑
i∈Tg ,j dijx

∗
ij <

λ(S1)
∑

i∈T1,j dijx
′
ij +

∑d
g=2(λ(Sg)− λ(Sg−1))

∑
i∈Tg ,j dijx

′
ij.

A contradiction to X ′ being optimal solution of LP (λ). Since any minimum delay allocation for

a subset gives the same total delay, the first part follows.

The second part essentially follows by applying Lemma 20 twice. For optimal pair X and

(α̂, p̂), and pair X and (α′,p′) we get, ∀g

λ(Sg)delaySg
(X) =

∑
i∈Sg ,k

rikα̂ik−paySg
(X, p̂), and λ(Sg)delaySg

(X) =
∑
i∈Sg ,k

rikα
′
ik−paySg

(X,p′).

implying, paySg
(X, p̂) = paySg

(X,p′) if and only if
∑

i∈Sg ,k
rikα̂ik =

∑
i∈Sg ,k

rikα
′
ik.

For the third part, applying Lemma 20 to each agent i ∈ S and then taking the sum gives

λ(Sg)delayS(X̂) =
∑

i∈S,k rikαik−payS(X̂,p) and λ(Sg)delayS(X ′) =
∑

i∈S,k rikαik−payS(X ′,p).
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Combining the two, we get λ(Sg)(delayS(X̂)−delayS(X ′)) = payS(X ′,p)−payS(X̂,p), thereby

the lemma follows.

Given that the BB (budget balance) and SC (subset condition) of Definition 4 are satisfied

at the current values of λ and p, next we show the existence of a primal-dual solution where no

agent spends more than her budget, and an agent who does not spend her entire budget gets an

absolute best bundle, i.e., an optimal bundle at zero prices. Recall the definition of proper pair

(λ,p) (Definition 5).

Lemma 2. If a pair (λ∗,p∗) is proper for λ∗ > 0 then there exists an optimal solution X∗ to the

primal LP (λ∗) such that payi(X
∗,p∗) ≤ mi ∀i ∈ A, and for every agent i either payi(X

∗,p∗) =

mi or we have xi ∈ OPTi(0), ∀X ∈ LP (λ∗).

Proof. Let S1, . . . , Sd be the partition of agent set A by equality of λ∗i . If there is a set Sg for

g ∈ [d] such that paySg
(X,p∗) < m(Sg) for some X ∈ LP (λ∗), then from the BB condition

we know that for every solution X of LP (λ) we have paySg
(X,p) ≤ m(Sg) and ∀i ∈ Sg, xi ∈

OPTi(0). Therefore, the delay of every agent in Sg remains the same at all optimal solutions

of LP (λ∗). Therefore, using Lemma 1, we get that payment payi(X,p
∗) of every agent i in Sg

remains unchanged at all X ∈ LP (λ∗). In otherwords their essential spending at (λ∗,p∗) is

payi(X,p
∗). Therefore, it is wlog to reset mi = payi(X,p

∗), ∀i ∈ Sg for any X ∈ LP (λ∗). Note

that even after this reset both BB and SC will be satisfied for Sg at (λ∗,p∗).

Repeate the above process for all such sets with paySq
(X,p∗) < m(Sq) for someX ∈ LP (λ∗).

In the rest we show there exist an allocation such that payi(X
∗,p∗) = mi,∀i where mi is the

modified budget.

Let τi(X) = mi − payi(X,p
∗). Without loss of generality suppose agents are ordered such

that τ1(X) ≥ τ2(X) ≥ · · · ≥ τn(X). Define Tk(X) =
∑

1≤i≤k τi(X). Let’s define the following

potential function for every allocation X . The potential function is f(X) =
∑

k Tk(X).

Let X∗ be an optimal solution of LP (λ∗) that minimizes f . Order the agents such that
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τ1(X∗) ≥ τ2(X∗) ≥ · · · ≥ τn(X∗). Note that Tn(X∗) = 0 (condition BB and new modified

budgets). Therefore, Ti(X∗) ≥ 0 ∀i since τis are in decreasing order. Therefore, f(X∗) ≥ 0. If

f(X∗) = 0 then it must be the case that Ti(X∗) = 0, ∀i ∈ [n] and τi(X∗) = 0, ∀i ∈ [n]. This

gives mi − payi(X
∗,p∗) = 0, ∀i as we desired.

To the contrary suppose f(X∗) > 0. Let X̂ be an optimal allocation of LP (λ∗) where delay

of agent 1 is minimum, then of agent 2, and so on, finally of agent n.

Claim 5.
∑

i≤r τi(X̂) ≤ 0, ∀r ∈ [n].

Proof. Fix an r ∈ [n] and define S = {1, . . . , r} and S̄ = {r + 1, . . . , n}. Since the total delay

of all the agents is same at both X∗ and X̂ , their total payment is also same (first and third part

of Lemma 1). Therefore it suffices to show
∑

i∈S̄ τi(X̂) ≥ 0 because
∑

1≤i≤n τi(X̂) = 0. Let’s

define Lg = S̄ ∩ Sg. Note that X̂ is an optimal allocation in which delay of S̄ is maximized. We

will show that in an optimal allocation if delay of S̄ is maximized then delay of Lg is maximized

for all g and so m(Lg) ≥ payLg
(X̂,p∗) (SC condition). Therefore, m(S̄) ≥ payS̄(X̂,p∗). That

completes the proof.

In the following we show that if the delay of S̄ is maximized then delay of Lg maximized for

all g in an optimal allocation. Consider an optimal allocation X ′ of LP (λ∗) which is constructed

by first optimizing for Sd\Ld, then Ld, then Sd−1\Ld−1 then Ld−1 and so on. This is a valid

construction due to the extensibility property. We claim that X ′ is an optimal allocation which

maximizes delay of Lg, ∀g individually. Total delay of Sg ∀g is the same for all optimal allocations

(Lemma 1) and delay of (∪dq=g+1Sq) ∪ (Sg\Lg) is minimized in X ′. Therefore, delay of Sg\Lg is

minimized in X ′ and so delay of Lg is maximized since sum of delays of Sg\Lg and Lg is constant

among all optimal allocations.

Using the above claim we get ∃r̂ such that
∑

i≤r̂ τi(X̂) < 0 because otherwise τi(X̂) = 0,∀i

and f(X̂) = 0. Therefore, ∑
r≤n

∑
i≤r

τi(X̂) < 0. (2.18)
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Let’s define X(δ) = (1 − δ)X∗ + δX̂ . Since optimal solutions of an LP forms a convex set,

X(δ) is an optimal solution of LP (λ∗) for all δ ∈ [0 1]. For every pair i and j such that i < j

and τi(X∗) = τj(X
∗), we assume ∂τi(X(δ))

∂δ
>

∂τj(X(δ))

∂δ
. Note that the assumption is without loss of

generality. Therefore, there exists δ small enough such that the order of τi’s is the same for X(δ)

as at X∗. Considering that small δ, we have the following

f(X(δ)) =
∑
r

∑
i≤r

τi(X(δ))

=
∑
r

∑
i≤r

(τi(X
∗)− δ(τi(X∗)− τi(X̂)))

= f(X∗)− δ(f(X∗)−
∑
r≤n

∑
i≤r

τi(X̂))

= (1− δ)f(X∗) + δ(
∑
r≤n

∑
i≤r

τi(X̂)))

< f(X∗) (Using (2.18))

Therefore, we get f(X(δ)) < f(X∗) which is a contradiction to X∗ being optimal solution where

f is minimized.

While searching for the next segment during the algorithm, we would like to fix total payment

of the segments that already have been created. Note that unlike scheduling on a single machine

(Section 2.2), in this general setting we are not able to fix the allocation of the agents on the

previous segments. In fact the allocation will heavily depend on what segments are created later on.

However from Lemma 1 we know that the total delay of previous segments will remain unchanged.

If delay is fixed then payments can be controlled using the last part of Lemma 1 if prices of goods

they buy also remain unchanged. Therefore the only way to ensure that total payments are fixed

seems to be, fixing prices of goods they are buying, and also hold their dual variables αiks. Next

lemma shows that this is indeed possible. In a number of proofs that follows we will use the
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following version of Farkas’ lemma.

Lemma 21 (Farkas’ lemma [98]). Given a matrix A, if the system Az = b and z ≥ 0 is infeasible

then there exists vector y such that yTA ≥ 0 and yT b < 0.

Recall notation 1S ∈ {0, 1}|A| for a subset S ⊆ A denoting indicator vector of set S.

Lemma 3. Given a λ, partition agents into S1, . . . , Sd by equality of λi, where λ(S1) < · · · <

λ(Sd). For R ⊆ Sd consider primal optimal X̂ that is jointly optimal for R, and let (α̂, p̂) be a

dual optimal. Consider for some a > 0, the vector λ′ = λ + a1R. Then X̂ is optimal in LP (λ′)

and there exists an optimal solution (α′,p′) of DLP (λ′) such that,

∀j : p′j ≥ p̂j and
∑

i/∈R x̂ij > 0⇒ p′j = p̂j

∀i /∈ R, ∀k, α′ik = α̂ik .

Proof. By construction of X̂ and λ′, X̂ is feasible in LP (λ′), it is jointly optimal for R as well

as for all ∪dq=gSq, g ∈ [d], and λ′(S1) < · · · < λ′(Sd \ R) < λ′(R). Therefore, using the first

property of Lemma 1 it follows that X̂ is an optimal solution of LP (λ′).

Pair (p′,α′) is an optimal for DLP (λ′) if and only if it satisfies the complementary slackness

conditions with X̂ . Using this the second part of the lemma would follow if p′ is set to p̂+δ where

δ and α′ satisfy the following.

δ ≥ 0

∀j s.t. either
∑

i 6∈R x̂ij > 0 or
∑

i x̂ij < cj : δj = 0. (2.19)

∀i ∈ R, ∀j s.t. x̂ij > 0 : λ′idij =
∑

k aijkα
′
ik − p̂j − δj. (2.20)

∀i ∈ R, ∀j s.t. x̂ij = 0 : λ′idij ≥
∑

k aijkα
′
ik − p̂j − δj. (2.21)
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The proof is by contradiction. Suppose the system is infeasible. We will show a contradiction

using Farkas’ lemma (Lemma 21). To convert (2.21) to equality we add slack variable γij . In

addition, we remove all δj that are set to zero in (2.19) from (2.20) and (2.21), and remove (2.19)

itself from the system. Let T denote the set of goods j such that
∑

i 6∈R x̂ij > 0 or
∑

i x̂ij < cj and

T̄ denote the set of good not in T . The remaining system can be written as follows in Az = b form

in variables δjs and γijs:

∀i ∈ R, ∀j s.t. x̂ij > 0 & (j ∈ T̄ ) : λ′idij + p̂j =
∑

k aijkα
′
ik − δj

∀i ∈ R, ∀j s.t. x̂ij = 0 & (j ∈ T̄ ) : λ′idij + p̂j =
∑

k aijkα
′
ik − δj + γij

∀i ∈ R, ∀j s.t. x̂ij > 0 & (j ∈ T ) : λ′idij + p̂j =
∑

k aijkα
′
ik

∀i ∈ R, ∀j s.t. x̂ij = 0 & (j ∈ T ) : λ′idij + p̂j =
∑

k aijkα
′
ik + γij.

(2.22)

Due to Farkas’ lemma if the above system is infeasible then there exists y such that yTA = 0 and

yTb < 0. That is for variables yij, ∀i ∈ R, ∀j:

yTA ≥ 0⇒


∀i ∈ R, ∀k :

∑
j aijkyij ≥ 0

∀i ∈ R, ∀j s.t. xij = 0 : yij ≥ 0

∀j ∈ T̄ :
∑

i∈R yij ≤ 0.

(2.23)

yT b < 0⇒ ∑
i∈R,j λ

′
idijyij +

∑
i∈R,j p̂jyij < 0. (2.24)

Let’s consider two cases.

Case 1.
∑

i∈R,j dijyij ≥ 0. Since ∀i ∈ R, λ(Sd) = λi < λ′i = λ(Sd) + τ and yT b < 0 we get

λ(Sd)
∑

i∈R,j dijyij +
∑

i∈R,j p̂jyij < 0. (2.25)
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On the other hand, note that

λ(Sd)
∑

i∈R,j dijyij +
∑

i∈R,j p̂jyij =
∑

i∈R,j yij(λidij + p̂j)

≥∑i∈R,j yij(
∑

k aijkα̂ik) (∵ (p̂, α̂) is a solution for DLP (λ))

=
∑

i∈R
∑

k α̂ik
∑

j yijaijk ≥ 0 (Using (2.23)).

That is a contradiction.

Case 2.
∑

i∈R,j dijyij < 0. We will show that X̂ does not give min-cost allocation to agents of R.

Consider xij = x̂ij + εyij, ∀i ∈ R, ∀j for a small amount ε > 0 and xij = x̂ij, ∀i /∈ R, ∀j. Using

(2.23) it follows that X is feasible in LP (λ). In addition,

∑
i

λi
∑
j

dij(xij − x̂ij) = λ(Sg)
∑
i∈R, j

dij(εyij) < 0

This contradicts X̂ being optimal solution of LP (λ).

While creating next segment we need to maintain BB and SC conditions for all the previous

segments. Lemma 3 ensures that prices of goods bought by agents in previous segments is fixed. If

we also manage to ensure that total delay remains unchanged for previous segments, then we will

be able to leverage properties from Lemma 1 to show BB and SC do remain satisfied for previous

segments. The next lemma establishes exactly this.

Lemma 22. Given λ > 0 let the partition of agents by equality of λi be S1, . . . , Sk−1, A
′ such that

λ(S1) < · · · < λ(Sk−1) < λ(A′). For an Sk ⊂ A′, let λ′ ≥ λ be such that the induced partition is

S1, . . . , Sk, A
′ \ Sk and λ(S1) < · · · < λ(Sk) < λ(A′ \ Sk). Then for any group g < k, we have

delaySg
(X) = delaySg

(X ′) whereX andX ′ are solutions of LP (λ) and LP (λ′) respectively. And

for any subset T ⊂ Sg,

max
X optimal of LP (λ)

delayT (X) = max
X optimal of LP (λ′)

delayT (X)
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Proof. An optimal solution of both LP (λ) and LP (λ′) first minimizes total delay of A′ then of

Sk−1 and so on finally of S1 (Lemma 1). Within A′, LP (λ′) may first minimize for A′ \ Sk and

then of Sk. Thus, the optimal solution set may shrink as we go from λ to λ′. However, due

to extensibility, if X and X ′ are optimal solution of LP (λ) and LP (λ′) then, delaySg
(X) =

delaySg
(X ′). Further, by Lemma 1 the optimal solution of both LP (λ) and LP (λ′) where delayT

is maximized essentially minimizes total delay of A′ ∪k−1
q=g+1 Sq ∪ (Sg \ T ) and then of T , then of

∪g−1
q=1Sq. By extensibility condition delayT at any such allocation remains the same.

The next lemma shows that if before we start our search for next segment, already created

segments S1, . . . , Sk−1 satisfies BB and SC w.r.t. (λcur,pcur), and the remaining agents satisfy

SC, then for the value of a where minimum of fa is zero, the minimizer gives the next segment

without ruining the former. Recall that, for a given a ≥ 0 and ε > 0,λnew = λa + ε1A′\Sk
, and

the prices pnew are valid and optimal for DLP (λnew), where 1A′\Sk
is an indicator vector of set

A′\Sk, and λa as defined in (2.4). We will also use notation pa to denote prices at the valid optimal

solution of DLP (λa) (See (2.5)), i.e., in the sense guaranteed by Lemma 3.

Lemma 4. Suppose that for some a ≥ 0,

Sk ∈ arg min
S⊆A′,S 6=∅{fλa

,pa(S)}.

Further, suppose that fλa
,pa(Sk) = 0, and let Sk be a maximal such set. Then there exists a ra-

tional number ε > 0 of polynomial-size such that, w.r.t. (λnew,pnew) as defined above, S1, . . . , Sk

satisfy both BB and SC, and A′ \ Sk satisfies SC.

Proof. First part of Lemma 1 implies that every optimal solution of LP (λnew) minimizes delay of

sets A′ \ Sk, Sk, . . . , S1 in that sequence, while optimal of LP (λcur) minimizes delay of sets in

sequence A′, Sk−1,. . . , S1. Therefore clearly the set of optimal solutions of LP (λnew) is a subset

of the optimal solutions of LP (λcur). This together with the fact that at (λcur,pcur) BB and SC
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are satisfied for each g ≤ k − 1, Sg, for any optimal X ′ of LP (λnew), we have paySg
(X ′,pcur) =

m(Sg). Let αcur be corresponding dual variable, then Lemma 20 gives λ(Sg)delaySg
(X ′) =∑

i∈Sg ,k
rikα

cur
ik − paySg

(X ′,pcur)

Since pnew is a valid solution of DLP (λnew), at corresponding valid (αnew,pnew) value of

αnewi for each i /∈ A′ is same asαcuri . Using Lemma 20 we get λ(Sg)delaySg
(X ′) =

∑
i∈Sg ,k

rikα
new

ik−

paySg
(X ′,pnew) =

∑
i∈Sg ,k

rikα
cur

ik − paySg
(X ′,pnew). This together with the above equality

gives paySg
(X ′,pnew) = paySg

(X ′,pcur) = m(S). Hence BB is satisfied by S1,. . . ,Sk−1 at

(λnew,pnew). By the same reasoning, and using Lemma 22 and third part of Lemma 1 we get that

they also satisfy SC.

Note that λnew is λa with ε added to λis of agents in A′ \ Sk. And pnew is a valid optimal of

DLP (λnew) obtained starting from pa where αiks of agents not in A′ \ Sk, and prices of goods

“bought by them” are held fixed (Lemma 3). Since function fλ,p keeps track of surplus budget,

and Sk is the minimizer of fλa
,pa where surplus budget of Sk is zero at pa in addition, it fol-

lows that for every subset of Sk the surplus budget is non-negative. Thus we get SC for Sk at

(λnew,pnew) using Lemma 22. For BB note that we have λnew(Sk) < λ
new(A′ \ Sk). Hence, due

to first part of Lemma 1, optimal allocations X of LP (λnew) will give first to A′ \ Sk minimum

delay, and then next minimum to Sk. This is exactly same as maximizing delaySk
(X) among op-

timal of LP (λa) (where λa(S∗) = λa(A′ \ S∗) > λa(Sg), ∀g ≤ k − 1). Due to the fact that

fλa
,pa(Sk) = 0, at such an allocation we also have m(Sk) = paySk

(X,pa). This will be same as

paySk
(X,pnew) due to construction of pnew from pa in Lemma 3. Since at every such allocation

delaySk
(X) remains the same, paySk

(X,pnew) remains the same (Lemma 22).

For the second part, namelyA′\Sk satisfies SC w.r.t. (λnew,pnew), it suffices to show existence

of ε > 0 such that fλnew,pnew(T ) ≥ 0, ∀T ⊂ A′ \Sk. We will show this in Lemma 27 below.

Above lemma implies that if the minimizer of fa gives zero value, then it forms the next seg-

ment. One crucial task therefore is to find a minimizer of fa efficiently. Next lemma and (2.7)

show that fa is a submodular function, implying its minimizer can be found in polynomial time.
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Lemma 5. Given a ≥ 0, function fa is submodular over set A′.

Proof. For ease of notation let us use f to denote function fa, λ = λa, p = pa, and α be the dual

vector that forms valid solution ofDLP (λa) together with pa. Recall that agent setA is partitioned

by equality of λai into sets S1, . . . , S(k−1), A
′ such that λa(S1) < · · · < λa(S(k−1)) < λ

a(A′).

Let S ⊂ T ⊂ A′ and a 6∈ T . Define S ′ = S ∪ {a} and T ′ = T ∪ {a}. It suffices to show the

following

f(S ′)− f(S) ≥ f(T ′)− f(T ).

Let’s recall the following two complementary slackness conditions.

∀i ∈ A, ∀k ∈ C :
∑

j∈G aijkxij ≥ rik ⊥ αik ≥ 0

∀i ∈ A,∀j ∈ G : λidij ≥
∑

k aijkαik − pj ⊥ xij ≥ 0.

Using these it is easy to get the following, where λ∗ is the λi of agents in A′ which we know is the

same.

λ∗delayS(X) = payS(X,p) +
∑
i∈S,k

αikrik. (2.26)

For set S ⊆ A′ let us denote its complement withinA′ by S̄ = A′\S. From the first part of Lemma

1 we know that optimal solution of LP (λ) will first minimize delay of set A′ since it has highest

λ value. Note that, S̄ = S̄ ′ ∪ {a}. If XS is an optimal solution of LP (λ) where delay of S is

maximized then by extensibility it can constructed as follows: within minimization for set A′ first

minimizing delay for S̄ ′, then for a, and lastly for S. Then we have:

f(S ′)− f(S) = ma − payS′(X
S,p) + payS(XS,p)

= ma −
∑

i∈S′,k αikrik + λ∗delayS′(X
S) +

∑
i∈S,k αikrik − λ∗delayS(XS) (Using (2.26))

= ma −
∑

k α̂akrak + λ∗(delayS′(X
S)− delayS(XS))

= ma −
∑

k α̂akrak + λ∗delaya(X
S) (XS construction).
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Similarly we get,

f(T ′)− f(T ) = ma −
∑
k

α̂akrak + λ∗delaya(X
T )

where XT is an optimal solution where delay of T is maximized, which can be constructed by

first minimizing delay for T̄ ′, next for a, and last for T . Recall that S ⊂ T and so T̄ ⊂ S̄.

We constructed XS and XT by first optimizing for S̄ ′ and T̄ ′ and then adding a. Therefore,

delaya(X
S) ≤ delaya(X

T ) and so

f(S ′)− f(S) ≥ f(T ′)− f(T ).

The NextSeg subroutine does binary search on the value of a to find the one where minimizer

of fa gives zero. In next few lemmas we show why binary search is the right tool to find this critical

value of a. Essentially we show Lemma 7 which has four parts and we will show them in separate

lemmas.

Lemma 23. If A′ satisfies SC condition of Definition 4 at (λcur,pcur) then fλcur,pcur(T ) ≥

0, ∀T ⊂ A′. In other words g(0) ≥ 0.

Proof. Since A′ satisfies SC w.r.t. (λcur,pcur), by definition of SC condition (Definition 4), it

follows that for any T ⊂ A′, m(T ) − payT (XT ,pcur) ≥ 0, where XT is an optimal solution of

LP (λcur) where delayT (X) is maximized. Thus, fλcur,pcur(T ) = m(T ) − payT (XT ,pcur) ≥

0.

Lemma 24. For any T ⊂ A′, value fa(T ) monotonically decreases with increase in a. Further-

more, if there exists c > b such that fc(T ) < fb(T ) then fa(T ) strictly decreases as we go from

a = b to a = c.

Proof. There is a unique valid price vector pa and pa′ constituting optimal solution of DLP (λa)

and DLP (λa
′
). If we apply Lemma 3 for λ = λa and λ′ = λa

′
, then we get that pa ≤ pa

′ .
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Note that the partition of agents by equality of λi is the same at both λa and λa
′

and further their

ordering by the value of λ(S) is also same. Therefore, due to the first part of Lemma 1 every

optimal solutions of LP (λa) are the same LP (λa
′
). Hence, among them the ones minimizing

delayT (X) for any given T ⊂ A′ are the same, say XT is one of them. Note that delayT remains

the same at all such allocations.

fa(T ) = m(T )− payT (XT ,pa) = m(T )−
∑
i∈T,j

xTijp
a
j ≥ m(T )−

∑
i∈T,j

xTijp
a′

j = fa′(T ).

Since solutions of linear programs change continuously with change in parameters, the first part

follows.

For the second part, we know that solutions of LP (λa) is the same for all b ≤ a ≤ c, and

therefore the ones where total delay of agents in T is maximized also remains the same. Let pb

and pc be the valid prices at λb and λc respectively. And letαb andαc be correspondingα vectors

at the dual optimal. Then clearly, for any X ∈ LP (λb), both (αb,pb) at λ = λb and (αc,pc) at

λ = λc satisfy complementary slackness conditions. Furthermore, for any convex combination

d = τb + (1 − τ)c where τ ∈ [0, 1], we have λd = τλb + (1 − τ)λc and it is easy to see that

(α′,p′) = τ(αb,pb) + (1− τ)(αc,pc) satisfies complementary slackness with X at λ = λd. And

p′ is valid, and the lemma follows.

Lemma 25. For any given a′ > 0 with g(a′) > 0, the following are equivalent:

(a) g(a) > 0 for all a ≥ a′.

(b) ∀X ∈ LP (λa
′
) and ∀i ∈ A′ xi ∈ OPTi(0).

(c) fa(A
′) = fa′(A

′) and pa = pa
′

for all a ≥ a′.

Proof. If g(a′) > 0 then fa′(A′) > 0 as well. This implies lima→∞ p
a < ∞. At valid solution

of the dual αik for agents outside A′ is held fixed, therefore
∑

k rikαik for all i /∈ A′ is fixed at
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all DLP (λa). Furthermore, complementary slackness condition for i /∈ A′ ensures that for all of

them λi
∑

j dijxij =
∑

k rikαik −
∑

j xijpj at every solution of LP (λa) for all a ≥ 0.

Let (αa,pa) be the valid solution of DLP (λa), then we have (λ(A′) + a)
∑

i∈A′,j dijxij =∑
i∈A′,k rikα

a
ik −

∑
i∈A′,j xijp

a
j at every optimal of LP (λa). This implies

∑
i∈A′,j

dijxij =
∑
i∈A′,k

rikα
a
ik/(λ(A′) + a)−

∑
i∈A′,j

xijp
a
j/(λ(A′) + a)

As a goes to ∞ second term vanishes since pa < ∞. And since rik ≥ 0, ∀(i, k), we get that

lima→∞ α
a
ik/(λ(A′) + a) exists for all i ∈ A′, k. Let it be βik. Then from the complementary

slackness conditions, for any X ∈ LP (λa
′
), a′ = (a+ 1) we get,

∀i ∈ A′, j : xij > 0 ⇒ dij =
∑

k aijkβik

∀i ∈ A′, j : xij = 0 ⇒ dij ≥
∑

k aijkβik

∀i ∈ A′, k : βik > 0 ⇒ αa
′

ik > 0⇒∑
j aijkxij = rik

∀i ∈ A′, k : βik = 0 ⇒ ∑
j aijkxij ≥ rik

(2.27)

It is easy to check that the above exactly implies xi ∈ OPTi(0), ∀i ∈ A′. Thus, (b) follows from

(a).

For (b)⇒ (c), let (βik)k be a dual optimal of OPTi(0) for every i ∈ A′, and for the rest set βik

to zero. Let (α̂,pa
′
) be a valid solution of DLP (λa

′
. We know that by construction βik’s satisfies

all the constraints of (2.27) together with every X ∈ LP (λa) for all a ≥ a′. Similarly (α̂,pa
′
)

as well satisfies all complementary slackness conditions with X between LP (λa
′

and DLP (λa
′
).

Putting these two together we get that (α̂,pa
′
)+ε(β,0) is a valid optimal solution ofDLP (λ(a′+ε).

Note that prices do not change.

(c) ⇒ (a) follows from the fact that if fa(A′) remains constant with increase in a then

paya(X,p
a) is constant for all X ∈ LP (λa). This is possible only if no price is increasing.

Since no price can decrease anyway due to Lemma 3, we essentially get that fa(S) = fa′(S) for
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all S ⊆ A′ and for all a ≥ a′. This implies g(a) = g(a′) > 0, ∀a ≥ a′.

Lemma 26. Given existence of a > 0 for set S ⊆ A′ such that fa(S) = 0, such an a can be

found by solving a feasibility LP of polynomial-size. Furthermore, if there exists ah ≥ 0 such that

g(ah) ≤ 0, then g(∆) ≤ 0 for ∆ = (
∑

i,j,k |aijk|+
∑

i,k |rik|+
∑

i,j |dij|+
∑

i |mi|)2mn|C|.

Proof. For S ⊆ A′, existence of a ≥ 0 with fa(S) = 0 implies that valid (pa = p̂ + δ,αa) of

DLP (λa) is a feasible point in the following where X̂ is the optimal solution of LP (λa) where

delay of S is maximized:

∀j :
∑

i/∈A′ x̂ij > 0 or
∑

i x̂ij < 1⇒ δj = 0

∀i ∈ A′,∀j : x̂ij > 0⇒ (λ̂+ a)dij =
∑

k aijkαik − p̂j − δj
∀i ∈ A′,∀j : x̂ij = 0⇒ (λ̂+ a)dij ≥

∑
k aijkαik − p̂j − δj

∀i ∈ A′,∀k :
∑

j aijkx̂ij > rik ⇒ αik = 0∑
i∈S,j(p̂j + δj)(

∑
i∈S x̂ij) = m(S)

a ≥ 0, δ ≥ 0, α ≥ 0.

Hence existence of rational such a of polynomial-size, and that it can be found by solving a

feasibility LP follow. Cleraly such an a would be at most ∆.

For the second part we know that ∃S ⊆ A′, fah(S) = g(ah) ≤ 0. From Lemma 24 we know

that for some a ∈ [0, ah] fa(S) = 0 and from the first part of this lemma we know that a ≤ ∆.

By definition of g we have g(a) ≤ 0 as well. Since fa(S) is monotonicaly decreasing in a for all

S ⊆ A′ so is g(a). The lemma follows.

Lemma 6. If g(a) > 0 for all a ≥ 0 then A′ satisfies the BB and SC conditions at (λcur,pcur) at

the start of Algorithm 4.

Proof. From Lemma 25 we know that if g(a) > 0 for all a ≥ 0 then pa = pcur for all a ≥ 0.

Furthermore, for all X ∈ LP (λcur) and for all i ∈ A′ xi is an optimal bundle of agent i at zero
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prices. That means delayi(X) is the same at all these allocations, implying payi(X,p
cur) remains

the same at all these allocations. For an i ∈ A′ set T = i, then we know that fa(T ) ≥ g(a) > 0

implying payi(X,p
cur) ≤ mi at the allocation where T gets maximum delay among solutions of

LP (λa). From previous conclusion that payment is the same at all solutions of LP (λcur) it BB

follows. And SC follows because g(a) > 0 and pa = pcur at all a ≥ 0.

The next lemma follows essentially from Lemmas 23, 24, 25, and 26.

Lemma 7. Function g satisfies the following: (i) g(0) ≥ 0. (ii) fa(S) is continuous and mono-

tonically decreasing in a, ∀S ⊆ A′, therefore g is continuous and monotonically decreasing. (iii)

either g(∆) ≤ 0 for ∆ = (
∑

i,j,k |aijk| +
∑

i,k |rik| +
∑

i,j |dij| +
∑

i |mi|)2mn|C| or g(a) > 0 for

all a ≥ 0. (iv) Given a set S ⊆ A′, if fa(S) > 0 and fa′(S) < 0 for a′ > a > 0, then ∃a∗ ≥ 0

such that fa∗(S) = 0 and such an a∗ can be computed by solving a feasibility linear program of

polynomial-size.

Proof. Part (i) follows from Lemma 23. Part (ii) from Lemma 24 and the fact that g(a) is min-

imum of fa(S) over all subsets S ⊂ A′. Minimum of continuously decreasing functions is also

continuously decreasing. Parts (iii) and (iv) from Lemmas 25 and 26.

From Lemma 4 we know that at the end of NextSeg subroutine, when we have S∗ a maximal

minimizer of fa∗ and fa∗(S
∗) = 0 then S∗ together with previous segments S1, . . . , Sk−1 will

satisfy BB and SC at (λnew,pnew). Next we show existence of appropriate ε > 0 so that SC

condition is satisfied for A′ \ S∗. This will complete the missing part of Lemma 4.

Lemma 27. If a∗ > 0 such that g(a∗) = 0 and S∗ ⊂ A′ be maximal set such that fa∗(S∗) = 0, then

∃ε > 0 rational of polynomial size such that SC condition is satisfied forA′\S∗ w.r.t. (λnew,pnew)

where λnew = λa
∗

+ ε1, pnew is a valid optimal of DLP (λnew), and 1 is indicator vector of set

A′ \ S∗.

Proof. To show SC for A′ \ S∗ w.r.t. (λnew,pnew), it suffices to show the following:
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• fλnew,pnew(T ) ≥ 0, ∀T ⊂ A′ \ S∗.

Since S∗ was the maximal set where value of function fa∗ is 0 and minimum value of fa∗ is zero,

we have that for any S ⊂ A′ \ S∗, fa∗(S ∪ S∗) > 0. If there is an aT > a∗ such that faT (T ) = 0,

then by applying Lemma 26 it is a rational of polynomial size and can be computed by solving a

linear program, otherwise set aT = ∞. Among all of these pick the least one, lets call it amin. It

has to be strictly more than a∗.

Let A′′ = A′ \ S∗, and fix set S ⊂ A′′. Let λ̂ = λa
∗
, X̂ be an optimal allocation of LP (λ̂)

where A′′ \ S gets the best, then S, then S∗ and then rest of the segments. Let p̂ = pa
∗ . Similar to

Lemma 26 solve the following LP to compute maximum value of aS such that m(S) ≥ payS when

λis of only A′′ is increased. Here b, δ and α variables, cSj =
∑

i∈S x̂ij, ∀j, and λ̂ = λ̂i, i ∈ A′′.

max : b s.t.

∀j :
∑

i/∈A′′ x̂ij > 0 or
∑

i x̂ij < 1⇒ δj = 0

∀i ∈ A′′,∀j : x̂ij > 0⇒ (λ̂+ b)dij =
∑

k aijkαik − p̂j − δj
∀i ∈ A′′,∀j : x̂ij = 0⇒ (λ̂+ b)dij ≥

∑
k aijkαik − p̂j − δj

∀i ∈ A′′,∀k :
∑

j aijkx̂ij > rik ⇒ αik = 0∑
i∈S,j(p̂j + δj)c

S
j ≤ m(S)

b ≥ 0, δ ≥ 0, α ≥ 0.

∀(i, j)

Clearly, b = 0, δj = 0, ∀j, and αik = α̂ik,∀(i, k) is feasible where (α̂, p̂) is the valid optimal

solution of LP (λ̂). If there is a finite optimal of the above LP then set aS = b otherwise set

aS = ∞. Since aT > a∗, we have aS > 0. Taking ε to be less than aS, ∀S ⊂ A′′ will suffice,

due to monotonicity of fa function (Lemma 24). Since aSs are polynomial size, there is an ε of

polynomial size.

Putting everything together next we argue that at the end of the algorithm all the created seg-

ments satisfy BB and SC w.r.t. (λcur,pcur). In other words, (λcur,pcur) are proper .
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Lemma 28. The λcur and pcur obtained at the end of Algorithm 3 are proper (Definition 4).

Proof. Lemmas 4 and 27 imply that if at the beginning of kth call to NextSeg, w.r.t. (λcur,pcur),

S1, . . . , Sk−1 satisfies BB and SC, A′ satisfies SC, and g(∆) ≤ 0, then at the end of it if Sk 6= A′

then, w.r.t. (λnew,pnew), S1, . . . , Sk satisfies BB and SC, and A′ \ Sk satisfies SC. On the other

hand if g(∆) = fa1(S
1) > 0 on line 4 of the algorithm, then by Lemma 6 we have that S1, . . . , Sk−1

and A′ satisfies BB and SC. Applying this inductively, starting from k = 1 where A′ = A, and

resetting A′ = A′ \ Sk every time, the theorem follows. This is because if we made s calls in total

to NextSeg forming segments S1, . . . , Ss, and A′ = ∅ at the end, then all s segments satisfy BB

and SC w.r.t. (λcur,pcur) at the end. Thus (λcur,pcur) are proper .

Next we show correctness of Algorithm 3 using Lemmas 2, 7 and 28, and Theorem 3, and the

next theorem follows.

Theorem 6. Given a marketM satisfying extensibility and sufficient demand, Algorithm 3 returns

its equilibrium allocation and prices in time polynomial in the size of the bit description ofM.

Proof. The fact that if Algorithm 3 terminates in polynomial time then it returns equilibrium allo-

cation and prices of marketM follows from Lemmas 28 and 2, and Theorem 3.

The question is why should the algorithm terminate, and that too in polynomial-time. Note

that, every call to NextSeg reduces size of active set of agents. Therefore, if the instance has n

agents then algorithm makes at most n calls to NextSeg. Subroutine NextSeg does binary search

for value of a between 0 and a polynomial-sized rational. In each iteration of binary search it

minimizes a submodular function, and in each call to the submodular function we will be solving

at most constantly many linear programs of polynomial size. Thus submodular minimization can

be done in polynomial time. Due to Lemma 7 and in particular Lemma 26 value of a where g(a)

becomes zero for some set is rational of polynomial-size. Hence overall the binary search has to

terminate in polynomial time. The next loop again takes at mostO(n) iterations, with sub-modular
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minimization in each. Thus the NextSeg subroutine terminates in polynomial-time. Finding allo-

cation satisfying Budget constraint(i) of all the agents i ∈ A at the end of the algorithm, given

prices pcur and λ values λcur is equivalent to solving the feasibility linear program (2.3). Thus,

overall the algorithm terminates in polynomial time.

We get our main result using Theorem 6.

Theorem 2. [Extensibility implies polynomial time algorithm] There is a polynomial time al-

gorithm that computes a market equilibrium allocation X and prices p for any market M that

satisfies extensibility.

2.10 Fairness and Incentive Compatibility Properties

In this section we show fairness properties of our general model, and incentive compatibility prop-

erties of our algorithm as a mechanism in scheduling application. Yet another utility model is

that of quasi-linear utilities, where the agent also specifies an “exchange rate” between delay and

payments, and wants to minimize a linear combination of the two. We show in Section 2.10.3 that

for such a utility model there is no IC mechanism that is also Pareto optimal and anonymous, even

with a single good and two agents.

2.10.1 Fairness Properties

The first welfare theorem for traditional market models says that at equilibrium the utility vector

of agents is Pareto-optimal among utility vectors at all possible feasible allocations. We first show

a similar result for our markets. For our model the set of feasible delay cost vectors are

D = {(delay1(X), . . . , delayn(X)) | xi is feasible in CC(i) for each agent i ∈ A,

and X satisfies Supply constraints for each good j ∈ G} .
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Theorem 7. Given marketM, the delay cost vector at any of its equilibrium is Pareto-optimal in

set D.

Proof. Let (X̂, p̂) be an equilibrium and β̂ik and γ̂i be the corresponding dual variables in (2.11).

Let Z = {i | γ̂i = 0}. Note that if agent i has γ̂i = 0 then applying this to (2.11) results in

∀k ∈ C :
∑

j∈G aijkxij ≥ rik ⊥ βik ≥ 0

∀j ∈ G : dij ≥
∑

k aijkβik ⊥ xij ≥ 0 .
(2.28)

It is easy to check that the above are the corresponding complementary slackness conditions for an

optimal bundle of agent i at zero prices. Therefore, each agent in Z gets an absolute best possible

bundle at X̂ , and therefore the delay of these agents can not be improved.

Let’s remove these agents and their allocation from the market and equilibrium. It is easy

to see the remaining is an equilibrium for the remaining market. In this equilibrium we have

γ̂i > 0,∀i /∈ Z.

Using Lemma 19 we know that for some vector λ∗ > 0, X̂ is a solution of LP (λ∗). Let

d∗i = delayi(X̂), ∀i ∈ A. If there is a d ∈ D such that di ≤ d∗i , ∀i ∈ A with at least one

strict inequality, then the strict inequality has to be for an i ∈ A \ Z. Furthermore, the allocation

corresponding to d restricted to agents in A\Z is feasible in LP (λ∗) and would give strictly lower

objective value, a contradiction.

The next theorem establishes envy-freeness for the general model and follows directly from the

equilibrium condition that every agent demands an optimal bundle at given prices.

Theorem 8. Equilibrium allocation of a given marketM is envy-free.

Next we show that at equilibrium each agent gets a “fair share”: the equilibrium allocation

Pareto-dominates an “equal share” allocation, where each agent gets an equal amount of each

resource. This property is also known as sharing incentive in the scheduling literature [55].
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Theorem 9. Given a market M, let X be an allocation where agent i gets mi∑
i∈Ami

amount of

each good, i.e., xij = mi∑
i∈Ami

, ∀i ∈ A, ∀j ∈ G. Then at any equilibrium (X∗,p∗) of marketM,

delayi(X
∗) ≤ delayi(X), ∀i ∈ A.

Proof. At equilibrium under-sold goods have price zero, and no agent spends more than its budget.

This gives

∑
i,j

x∗ijp
∗
j ≤

∑
i

mi ⇒
∑
j

p∗j
∑
i

x∗ij ≤
∑
i

mi ⇒
∑
j

p∗j ≤
∑
i

mi .

Therefore, for agent i, bundle xi where amount of every good is exactly mi∑
i∈Ami

costs money∑
j xijp

∗
j = mi∑

imi

∑
j p
∗
j ≤ mi. Thus, it is affordable at prices p∗. However, she preferred x∗i

instead, which implies either x′i is not feasible in CC(i) in which case delayi(x
′
i) is infinity, or she

prefers x∗i to x′i. In either case we get delayi(X
∗) ≤ delayi(X).

2.10.2 Scheduling: Algorithm as a Truthful Mechanism

Market based mechanisms are usually not (dominant strategy) incentive compatible (IC), except

in the large market assumption where each individual agent is too small to influence the price, and

therefore can be assumed to act as a price taker. Somewhat surprisingly, we can show IC, in a

certain sense, of the market based mechanism for the special case of our market that corresponds

to the scheduling setting presented in Section 2.2, and its generalization described in Section 2.1.3

with multiple machine types.

We show that our market based mechanism is IC in the following sense: non-truthful reporting

of mi and riks can never result in an allocation with a lower delay cost. A small modification to

the payments, keeping the allocation the same, makes the entire mechanism incentive compatible

for the setting in which agents want to first minimize their delay and subject to that, minimize their

payments.

The first incentive compatibility assumes that utility of the agents is only the delay, and does
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not depend on the money spent (or saved). Such utility functions have been considered in the

context of online advertising [14, 46, 82]. It is a reflection of the fact that companies often have a

given budget for procuring compute resources, and the agents acting on their behalf really have no

incentive to save any part of this budget. Our model could also be applied to scenarios with virtual

currency in which case the agents truly don’t have any incentive to minimize payments.

The second incentive compatibility does take payments into account, but gives a strict prefer-

ence to delay over payments. Such preferences are also seen in the online advertising world, where

advertisers want as many clicks as possible, and only then want to minimize payments. The mod-

ifications required for this are minimal, and essentially change the payment from a “first price” to

a “second price” wherever required.

Yet another utility model is that of quasi-linear utilities, where the agent also specifies an

“exchange rate” between delay and payments, and wants to minimize a linear combination of

the two. We show in Section 2.10.3 that for such a utility model there is no IC mechanism that

is also Pareto optimal and anonymous, even with a single good and two agents. Pareto optimality

is a benign notion of optimality that has been used as a benchmark for designing combinatorial

auctions with budget constraints [42, 47, 57]. Anonymity is also a reasonable restriction, which

disallows favoring any agent based on the identity. In the face of this impossibility, our mechanism

offers an attractive alternative.

Pure delay minimization

Suppose that there are j independent copies of the basic scheduling setting in Section 2.2, with

the requirement of agent i for the j th copy being rik. In this section we show that our algorithm is

actually IC, i.e., the agents have no incentive to misreport mis or riks, assuming that agents only

want to minimize their delay cost and don’t care about their payments as long as they are within the

budgets. Note that reporting lowermi or higher rik are the only possible types of misreport. Fixing

preferences of all agents except agent i, consider two runs of the algorithm, one where agent i is
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truthful and another where she misreports her preferences. In particular, say agent i either reports

a lower budget m′i, and/or a higher requirements r′ik for good j.

Consider the first iteration in which the two runs differ, and let (S1, λ1) and (S2, λ2) be the

segments found respectively in the truthful and non-truthful runs in this iteration. For any λ, any

p, and any set S that does not contain i, fp,λ(S) remains the same between the two runs; for any

set S that contains i, fp,λ(S) is strictly smaller in the non-truthful run. Hence, i does not belong

to any of the segments found in earlier iterations, and S2 necessarily contains i.7 Further, λ2 < λ1.

Let A′ be the set of agents who are not in one of the segments found prior to the current

iteration. By definition A′ is the same for both the runs, and includes i, as argued in the previous

paragraph. Let X1 and X2 be respectively the allocations output by the algorithm for the truthful

and the non-truthful runs. We will show the existence of a weakly feasible allocation X ′ such that

(1) For every agent i′ ∈ A′, i′ 6= i, his delay in X ′ is no higher than his delay in X1, and (2) For

agent i, his allocation in X ′ is the same as his allocation in X2.

This implies that i is no better off in the non-truthful run, because of the following reasoning.

The total delay of all the agents in A′ is minimized in X1, therefore the total delay of all the agents

in A′ cannot be lower in allocation X ′, even when the delay for agent i is calculated using only his

actual requirements. Since no other agent has a higher delay in X ′, it is impossible for i to get a

lower delay.

It remains to show the existence of X ′ as claimed. We define X ′ differently based on whether

the agent is in S2 or not.

Case 1: i′ ∈ S2: In this case, x′i′ = x2
i′ . This satisfies the second requirement since i ∈ S2. Since

λ2 < λ1, every agent in S2 faces a smaller price, for every copy j and every time slot in

which she is allocated. For i′ 6= i, given the same budget and the same requirements, this

actually implies that her delay in X2 is strictly smaller than her delay in X1.

7Consider the possibilities where i /∈ S2 and note that S2 cannot be the minimizer in the non-truthful run given
that S1 is the minimizer in the truthful run.
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Case 2: i′ /∈ S2: In this case, we first start with the allocation X1, in the slots [1, rj(B \ S2)] for

each copy j. Note that these slots have not been allocated at all in Case 1. Consider the total

deficit after this allocation. This must be equal to the total amount of slots in [1, rj(B \ S2)]

that are allocated to agents in S2 by X1, because of feasibility of X1. Now re-allocate these

empty slots in [1, rj(B \ S2)] to make up for the remaining requirement of these agents, and

note that this can only lower the delay.

Secondary preference for payments

In this section, we consider the utility model where an agent wants to first minimize her flow-

time, and subject to that, wants to further minimize her payments. We keep the same allocation as

Algorithm 1, but change the payments of some agents, and show that this is IC.

We first define the set of agents whose payments will be modified. Recall that Algorithm 1

outputs a sequence of segments, where each segment corresponds to a pair (λ, S). Call an agent

marginal if he gets the latest slots in his segment. This includes agents who are in singleton

segments, as well as agents who just happen to get such an allocation even though they are in a

segment with other agents. We modify the payments of only the marginal agents; all non-marginal

agents pay their budget.

Lemma 29. Any non-marginal agent gets a strictly higher delay cost for any misreport of his

information.

Proof. Consider the proof of incentive compatibility for only delay cost minimization in Section

2.10.2, and the notation therein. Note that if S2 6= {i′}, then the delay cost of i′ strictly increases.

Now suppose S2 = {i′}. In the new allocation f 2, agent i′ gets the latest slots among all agents in

B. Since i′ is not a marginal agent, he was getting a strictly better allocation in f 1, and the lemma

follows.

This shows that the mechanism is IC for non-marginal agents, even with their payments equal
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to the budgets.

We now define the modification to payments for marginal agents. As in Section 2.10.2, misre-

ports can still not get a better delay cost for marginal agents, since the allocation remains the same.

The only possibility is that misreporting can decrease payments, while keeping the delay cost the

same. Marginal agents can decrease their budgets, still get the same allocation, and pay less in the

equilibrium payment. This has a limit; at some lower budget declaration, they get “merged” with

a previous segment, and any further lowering of the budget will strictly lower their delay cost. The

payment of a marginal agent is defined to be the infimum of all budget declarations for which the

lower segments are unaltered, i.e., the run of the algorithm up to the previous segment remains

unchanged.

We now argue that this mechanism is IC, for marginal agents. We only need to consider mis-

reports that don’t change the allocation, since those that do only give a higher delay cost. Among

these, misreporting the budget clearly has no effect on the payment. Finally, we argue that report-

ing a higher rik can only lead to a higher payment. This is because the budget at which the agent

merges with the previous segment happens at a higher value, as can be seen from the formula for

λS .

2.10.3 Quasi Linear Utility Model

In this section we consider a quasi linear utility model for the agents. In this model, agents can

choose to tradeoff payment for delay cost, as specified by an “exchange rate”, denoted by ηi, for

agent i. We consider the design of incentive compatible (IC) auctions, that are also Pareto optimal.

In the related literature of IC auctions for combinatorial auctions with budget constraints, this has

been adopted as the standard notion of optimality. The usual notion of social welfare is ill fitted

for the case of budgets.8

As in Section 2.1 let the allocation of agent i for good j denoted by xij , but now we don’t have
8Of course, the revenue objective is also widely considered, and continues to make sense even in the presence of

budgets.
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prices for the slots. Instead we simply have a payment for each agent, denoted by payment(i) for

agent i. The allocation and the payments are together called the outcome of the auction. Agent i

now wants to minimize the objective

∑
j

dijxij + ηipayment(i).

A type of an agent is its budget mi, its covering constraints CC(i), and its ηi. An auction is

(dominant strategy) IC if for any agent, misreporting its type does not lead to an outcome with a

lower objective, no matter what the other agents report. An outcome is Pareto optimal if for no

other outcome,

1. all agents, including the auctioneer, are at least as well off as in the given outcome, and

2. at least one agent is strictly better off.

The auctioneer’s objective is to simply maximize the sum of all the payments.

We also restrict the auction to be anonymous, which means that the auction cannot rely on the

identity of the agents. Formally, an auction is anonymous if it is invariant under all permutations

of agent identities.

The main result of this section is an impossibility.

Theorem 10. There is no IC, Pareto optimal, and anonymous auction for our scheduling problem

with quasi linear utilities, for the case of a single good and two agents.

Since a single good and two agents is the most basic case, an impossibility follows for all

generalizations as well.

The theorem follows from a reduction to a combinatorial auction with additive valuations,

and an impossibility result of [42]. Consider an auction for a single divisible item, with budget

constraints. Agent i has valuation of vi per unit quantity of the item, and a budgetmi. The outcome
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of the auction is an allocation xi and payment payment(i) for agent i, such that
∑

i xi ≤ 1 and

xi ∈ [0, 1]. The utility of agent i is vixi − payment(i), and the budget constraint as before is that

pi ≤ mi. IC and Pareto optimality are as before, and we need an additional notion of individual

rationality (IR): vixi − payment(i) ≥ 0. [42] showed the following impossibility.

Theorem 11 ([42] ). There is no IC, Pareto optimal, IR and anonymous auction for auctioning a

single divisible good to 2 agents with budget constraints.

of Theorem 10. Consider an instance of the scheduling problem of Section 2.2 with a single ma-

chine and two agents, where each agent requires 1 unit of the good. Pareto optimality implies that

goods are not wasted, so the entire first two slots are completely allocated. If agent i gets xi units

of the slot t = 1, then his delay cost is xi + 2(1− xi). His objective is then

xi + 2(1− xi) + ηipayment(i) = 2− ηi
(

1
ηi
xi − payment(i)

)
.

Minimizing this objective is equivalent to maximizing 1
ηi
xi−payment(i), which is exactly as in the

single divisible good auction with vi = 1
ηi

. We also show that the IC constraint for the scheduling

problem implies the IR constraint for the divisible good case. If the IR constraint is violated, i.e.,

1
ηi
xi < payment(i), then the value of the objective of agent i for this outcome is strictly smaller

than 2. Then the agent is better off stating a budget of 0. This will force his payment to 0. The

worst delay cost he can get is 2, so his total objective value is 2.

Therefore, an IC, Pareto optimal, and anonymous auction for our scheduling problem implies

an IC, Pareto optimal, IR, and anonymous auction for the divisible good case, and the theorem

follows.

2.11 Relation to Myerson’s ironing

Recall the scheduling application in Section 2.1.3, which we specialize further as follows. There

is a single machine (d = 1). Each agent requires only one unit of time slot, i.e., ri1 = 1,∀ i ∈ A.
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Figure 2.5: Example of Myerson’s ironing
On the left is an example of Myerson’s ironing. The solid curve with the blue dots is the given

curve, which is non-monotone. The dashed curve with the orange dots is the ironed curve, which
is monotone. On the right is an example of our problem. The solid curve is the money function,
which is monotone but not convex. The dashed one is the price function, which is convex. Both
dashed curves are such that their “area under the curve” is higher than that for the solid curves,

and satisfy a minimality condition among all such curves.

81



The delay of slot j is j, i.e., dj1 = j for all j. For this special case, we show that equilibrium

conditions are equivalent to a set of conditions that are reminiscent of the ironing procedure used

in the characterization of optimal auctions by [83]. It is in fact “one higher derivative” analog of

Myerson’s ironing.

Let’s first restate Myerson’s ironing procedure for the case of a uniform distribution over a

discrete support. Suppose that we plot on the x-axis the quantiles, in the decreasing order of value,

and on the y-axis the corresponding virtual values. This is possibly a non-monotone function, and

Myerson’s ironing asks for an ironed function that is monotone non-increasing, and is such that

the area under the curve (starting at 0) of the ironed function is always higher than that for the

given function. Further, the ironed function given by this procedure is the minimal among all such

functions. This means that wherever the area under the curve differs for the two functions, the

ironed function is constant. (See Figure 2.5 on page 81.)

In the special case of scheduling stated above, the equilibrium price of the good as a function of

time is obtained as an ironed analog of the money function: the function i 7→ mi, where we assume

the mis are sorted in the decreasing order. This money function is monotone non-increasing by

definition but it need not be a convex function. The price as a function of time must be a monotone

non-increasing and convex function. The area under the curve of the price function must always

be higher than that of the money function; further, wherever the two areas are different, the price

function must be linear. One can see that the conditions are the same as that of Myerson’s ironing,

except each condition is replaced by a higher derivative analog. Unlike Myerson’s, the solution to

our problem is no longer unique and the solution set may be non-convex!
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CHAPTER 3

SETTLING THE COMPLEXITY OF LEONTIEF AND PLC EXCHANGE MARKETS

UNDER EXACT AND APPROXIMATE EQUILIBRIA

In this chapter we show membership in PPAD for the problem of computing approximate equilibria

for an Arrow-Debreu exchange market for piecewise-linear concave (PLC) utility functions. As a

corollary we also obtain membership in PPAD for Leontief utility functions. This settles an open

question of Vazirani and Yannakakis (2011).

Next we show FIXP-hardness of computing equilibria in Arrow-Debreu exchange markets un-

der Leontief utility functions, and Arrow-Debreu markets under linear utility functions and Leon-

tief production sets, thereby settling these open questions of Vazirani and Yannakakis (2011). As

corollaries, we obtain FIXP-hardness for PLC utilities and for Arrow-Debreu markets under linear

utility functions and polyhedral production sets. In all cases, as required under FIXP, the set of

instances mapped onto will admit equilibria, i.e., will be “yes” instances. If all instances are under

consideration, then in all cases we prove that the problem of deciding if a given instance admits an

equilibrium is ETR-complete, where ETR is the class Existential Theory of Reals.

As a consequence of the results stated above, and the fact that membership in FIXP has been es-

tablished for PLC utilities, the entire computational difficulty of Arrow-Debreu markets under PLC

utility functions lies in the Leontief utility subcase. This is perhaps the most unexpected aspect

of our result, since Leontief utilities are meant for the case that goods are perfect complements,

whereas PLC utilities are very general, capturing not only the cases when goods are complements

and substitutes, but also arbitrary combinations of these and much more.

Finally, we give a polynomial time algorithm for finding an equilibrium in Arrow-Debreu ex-

change markets under Leontief utility functions provided the number of agents is a constant. This

settles part of an open problem of Devanur and Kannan (2008).
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3.0.1 Previous Results on Computability of Market Equilibria

The first utility functions to be studied were linear. Once polynomial time algorithms were found

for markets under such functions [37, 39, 41, 43, 53, 62, 63, 87, 105, 110] and certain other cases

[28, 38, 54, 64, 104], the next question was settling the complexity of Arrow-Debreu markets

under separable, piecewise-linear concave (SPLC) utility functions. This problem was shown to

be complete [25, 103] for PPAD. Also, when all instances are under consideration, the problem

of deciding if a given SPLC market admits an equilibrium was shown to be NP-complete [103].

The notion of SPLC production sets was defined in [49] and Arrow-Debreu markets under such

production sets and linear utility functions were shown to be PPAD-complete.

Previous computability results for Leontief utility functions were the following: In contrast to

our result, Fisher markets under Leontief utilities admit a convex program [45] and hence their

equilibria can be approximated to any required degree in polynomial time [7, 15]. Arrow-Debreu

markets under Leontief utilities were shown to be PPAD-hard [29]. They reduce 2-Nash to a

special case called “pairing economy” in which each agent brings one unit of a distinct good. For

this case, equilibria are rational; however, in general they are irrational for Leontief markets [44],

and hence their complexity is not characterized by PPAD. We note that the two complexity classes

PPAD and FIXP appear to be quite disparate – whereas solutions to problems in the former are

rational numbers, those to the latter are algebraic numbers. And whereas the former is contained

in function classes NP ∩ co-NP, the latter lies somewhere between P and PSPACE, and is likely to

be closer to the harder end of PSPACE [109].

Leontief utilities are a limiting case of constant elasticity of substitution (CES) utilities [75].

Finding an approximate equilibrium under the latter was also shown to be PPAD-complete [24].
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3.1 Technical Contributions

LetM denote an Arrow-Debreu exchange market under piecewise-linear concave (PLC) utilities.

Daskalakis, Goldberg and Papadimitriou [33] proved that computation of approximate fixed point

of a Lipschitz continuous function, whose Lipschitz constant is polynomial sized, is in PPAD. In

showing membership of the problem of computing an equilibrium ofM in FIXP, [48] had given

a particular fixed point formulation F such that the fixed points of F give equilibria of M and

vice-versa. We start with F and to show that the problem of computing an ε-approximate market

equilibrium forM is in PPAD, we need to show two things: (i) F is Lipschitz continuous with

constant K, where size(K) = poly(size(M)), and (ii) a δ-approximate fixed point of F gives

an ε-approximate market equilibrium, where δ and ε are polynomially related, i.e., size(δ) =

poly(size(ε,M)).

The first step is easy to show; however, the second step is quite involved and technical because

F is rather intricate. We note that even in the case of Nash equilibrium, whose fixed point formu-

lation is relatively simple, it was non-trivial to show membership in PPAD [33]. Informally, at a

market equilibrium (prices, allocation of goods to agents), each agent obtains an optimal bundle of

goods and demand of each good meets its supply (market clearing). At given prices, optimal bun-

dles of an agent can be captured through a linear program (LP). At a fixed point of F , the primal

and dual constraints, and complementary slackness conditions of this LP are satisfied. This en-

sures that each agent receives an optimal bundle. We show that at an approximate fixed point of F ,

both feasibility and complementary slackness constraints are approximately satisfied. This proves

that each agent gets an approximately optimal bundle. Further, we show that market clearing is

also approximately satisfied at an approximate fixed point of F . Together, they imply approximate

market equilibrium and hence membership in PPAD.

As stated in the Introduction, some claims made in the literature do not hold without formally

proving membership in PPAD of the above-stated problem. As an example, [60] state that the

85



Leontief exchange market problem does not have a fully polynomial-time approximation scheme,

unless PPAD ⊆ P, and that the smoothed complexity of any algorithm for computing a market

equilibrium in a Leontief economy, is not polynomial, unless PPAD ⊆ RP.

We next move to our FIXP-hardness result and describe the difficulties encountered in obtain-

ing reduction R and the ideas needed to overcome them. For this purpose, it will be instructive to

draw a comparison between reductionR and the reduction from 2-Nash to SPLC markets given in

[25]. At the outset, observe the latter is only dealing with linear functions of variables1 and hence

is much easier than the former.

Both reductions create one market with numerous agents and goods, and the amount of each

good desired by an agent gets determined only after the prices are set. Yet, at the desired prices,

corresponding to solutions to the problem reduced from, the supply of each good needs to be

exactly equal to its demand. In the latter reduction, the relatively constrained utility functions give

a lot more “control” on the optimal bundles of agents. Indeed, it is possible to create one large

market with many agents and many goods and still argue how much of each good is consumed by

each agent at equilibrium.

We do not see a way of carrying out similar arguments when all agents have Leontief utility

functions. The key idea that led to our reduction was to create several modular units within the

large market and ensure that each unit would have a very simple and precise interaction with the

rest of the market. Leontief utilities, which seemed hard to manage, in fact enabled this in a very

natural manner as described below.

Closed submarket: A closed submarket is a set S of agents satisfying the following: At every

equilibrium of the complete market, the union of initial endowments of all agents in S exactly

equals the union of optimal bundles of all these agents.

Observe that the agents in S will not be sequestered in any way — they are free to choose their

1Since the payoff of the row player from a given strategy is a linear function of the variables denoting the proba-
bilities played by the column player.
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optimal bundles from all the goods available. Yet, we will show that at equilibrium prices, they

will only be exchanging goods among themselves. We note that the proof of PPAD-hardness for

Nash equilibrium computation also uses small game gadgets to accomplish arithmetic operations

of addition, multiplication and comparison [22, 33]; however, since there variables are captured

through strategies of different players, these gadgets did not interfere. In our case, the primary

challenge is to prevent flow of goods across gadgets and to ensure desired price dependencies

even when same goods are used across gadgets. We achieve this through the notion of closed

submarkets.

These closed submarkets enable us to ensure that variables denoting prices of goods satisfy

specified arithmetic relations. The latter are linear function and product; we show that these two

arithmetic relations suffice to encode any polynomial equation. Under linear functions, we want

that pa = Bpb + Cpc +D, where B,C and D are constants.

Under product, we want that pa = pb · pc. Designing this closed submarket, sayM, requires

several ideas, which we now describe. M has an agent i whose initial endowment is one unit

of good a and she desires only good c. We will ensure that the amount of good c leftover, after

all other agents in the submarket consume what they want, is exactly pb, i.e., the price of good

b. At equilibrium, i must consume all the leftover good c, whose total cost is pb · pc. Therefore

the price of her initial endowment, i.e., one unit of good a, must be pb · pc, hence establishing the

required product relation. The tricky part is ensuring that exactly pb amount of good c is leftover,

without knowing what pb will be at equilibrium. This is non-trivial, and this submarket needs to

have several goods and agents in addition to the ones mentioned above.

Once reduction R is established, FIXP-hardness follows from the straightforward observation

that a 3-Nash instance can be encoded via polynomials, where each variable, which represents the

probability of playing a certain strategy, is constrained in the interval [0, 1]. To get ETR-hardness,

we appeal to the result of Schaefer and Štefankovič [97] that checking if a 3-Nash instance has a

solution in a ball of radius half in l∞-norm is ETR-hard; this entails constraining the variables to be
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in the interval [0, 1/2]. By Nash’s theorem, in the former case, the market will admit an equilibrium

and in the latter case, it will admit an equilibrium iff the 3-Nash instance has a solution in the ball

of radius half in l∞-norm. Membership in ETR follows by essentially showing a reduction in the

reverse direction: given a Leontief market, we obtain a set of simultaneous multivariate polynomial

equations whose roots capture its equilibria.

Our final result gives a polynomial time algorithm for computing an equilibrium for Arrow-

Debreu exchange markets under Leontief utility functions provided the number of agents is a

constant, say d. Using the property that equilibrium allocation of an agent can be written in terms

of her equilibrium utility, we show that if equilibrium exists, then there is one where the number

of goods with positive prices is at most d. Next we iterate over all subsets of size d of goods, and

for each set we reduce the problem of checking existence of equilibrium to checking feasibility of

a set of polynomial inequalities in 2d dimension. Since this can be done in polynomial time [5, 6],

we get a polynomial time algorithm.

3.1.1 Organization of the chapter

We only give an overview of our results here and refer the reader to the full version paper for

complete details and proofs. In Section 3.2.1 we define the Arrow-Debreu exchange market model,

and the relevant utility functions. The definition of 3-player Nash equilibrium problem and its

relation with the complexity classes FIXP and ETR are given in Section 3.2.2. Section 3.3 contains

an overview of our second result where we show FIXP-hardness of computing an equilibrium in

Leontief exchange markets. An overview of our first result where we show membership in PPAD

for computing approximate equilibrium in exchange markets under PLC utilities is given in Section

3.4. Finally, Section 3.5 contains an overview of our third result where we give a polynomial

time algorithm for computing an equilibrium for Arrow-Debreu exchange markets under Leontief

utilities provided the number of agents is a constant.
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3.2 Preliminaries

3.2.1 The Arrow-Debreu Market Model

An Arrow-Debreu (AD) exchange market2 [67] consists of a set G of divisible goods and a set A

of agents. Let g denote the number of goods in the market. Each agent i comes with an initial

endowment of goods; Wij is amount of good j with agent i. The preference of an agent i over

bundles of goods is captured by a non-negative, non-decreasing and concave utility function Ui :

Rg
+ → R+. Non-decreasingness is due to free disposal property, and concavity captures the law of

diminishing marginal returns. Each agent wants to buy a (optimal) bundle of goods that maximizes

her utility to the extent allowed by her earned money from the initial endowment.

Let p ∈ Rg
+ denote the prices of goods, where pj is the price of good j. Given p, letOPTi(p) =

arg maxy{Ui(y) | ∑j yjpj =
∑

jWijpj} denote the set of optimal bundles of agent i. Let xi ∈

Rg denote the assignment of goods to agent i, where xij is the amount of good j.

If there is an assignment xi ∈ OPTi(p) to each agent i so that there is neither deficiency

nor surplus of any good, then such prices are called market clearing or market equilibrium prices.

Formally,

Definition 6 (Market Equilibrium). (x,p) is an equilibrium of an Arrow-Debreu exchange market

M if

∀i ∈ A : xi = arg max
y
{Ui(y) |

∑
j

yjpj ≤
∑
j

Wijpj}

∀j ∈ G :
∑
i∈α

xij =
∑
i∈α

Wij.

The market equilibrium problem is to find such prices when they exist. In a celebrated result,

Arrow and Debreu [67] proved that market equilibrium always exists under some mild conditions,

however the proof is non-constructive and uses the machinery of Kakutani fixed point theorem.
2Refer to the full version for the definition of Arrow-Debreu markets with production firms.
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We note that an arbitrary market may not admit an equilibrium.

To work under finite precision it is customary to assume that utility functions are piecewise-

linear concave.

Piecewise-Linear Concave (PLC) Utility Function

The utility function Ui of agent i is said to be piecewise-linear concave (PLC) if at bundle Xi =

(xi1, . . . , xig) it is given by

Ui(Xi) = min
k
{
∑
j

Uk
ijxij + T ki },

where Uk
ij’s and T ki ’s are given non-negative rational numbers. Since the agent gets zero utility

when she gets nothing, we have Ui(0) = 0, and therefore at least one T ki is zero.

Leontief Utility Function.

It is a special subclass of PLC, where each good is required in a fixed proportion. Formally, it is

given by:

Ui(Xi) = min
j∈G:Aij>0

{ xij
Aij
}, Aij ≥ 0.

In other words the agent wants good j in Aij proportion. Clearly, the agent has to spend
∑

j Aijpj

amount of money to get one unit of utility. Thus, optimal bundle satisfies the following condition.

∀j ∈ G, xij = βiAij, where βi =

∑
j∈GWijpj∑
j∈GAijpj

(3.1)

Since all market equilibria may be irrational even in the special case of Leontief utilities [44],

it may not be possible to compute them exactly. Next we define a notion of approximate market

equilibrium.
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Definition 7 (ε-approximate market equilibrium). (x,p) is an ε-approximate equilibrium of an

Arrow-Debreu exchange market M if each agent receives an approximately optimal bundle and

the aggregate demand of each good is approximately its aggregate supply, i.e.,

∀i ∈ α : Ui(xi) ≥ (1− ε)Ui(x̃i),where

x̃i = arg max
y
{Ui(y) |

∑
j

yjpj ≤
∑
j

Wijpj}

∀i ∈ α :
∑
j∈G

xijpj ≤ (1 + ε)
∑
j∈G

Wijpj

∀j ∈ G :
∑
i∈α

xij ≤ (1 + ε)
∑
i∈α

Wij .

Sufficiency conditions

Market equilibrium may not exist, and it is NP-complete to decide whether there exists an equi-

librium even in the exchange markets with SPLC utility functions [103]. Arrow-Debreu [67] gave

the following sufficiency conditions for the existence of equilibrium: W > 0 and each agent is

non-satiated. In case of PLC markets, non-satiation implies that for every k, there exists a j such

that Uk
ij > 0.

3.2.2 3-Player Nash Equilibrium (3-Nash)

Given a 3-player finite game, let the set of strategies of player p ∈ {1, 2, 3} be denoted by Sp. Let

S = S1×S2×S3. Such a game can be represented by 3-dimensional tensorsA1, A2 andA3, repre-

senting payoffs of first, second and third players respectively. If players play s = (s1, s2, s3) ∈ S ,

then the payoffs are A1(s), A2(s) and A3(s) respectively. Without loss of generality, we assume

that 0 ≤ Ap(s) ≤ 1,∀p.

Let ∆p denote the probability distribution over set Sp, ∀p ∈ {1, 2, 3} (the set of mixed-

strategies for player p), and let ∆ = ∆1 × ∆2 × ∆3. Given a mixed-strategy profile z =

(z1, z2, z3) ∈ ∆, let zps denote the probability with which player p plays strategy s ∈ Sp, and
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let z−p be the strategy profile of all the players at z except p. For player p ∈ {1, 2, 3} the total

payoff and payoff from strategy s ∈ Sp at z are respectively,

πp(z) =
∑
s∈S

Ap(s)z1s1z2s2z3s3 and

πp(s, z−p) =
∑
t∈S−p

Ap(s, t)
∏
q 6=p

zqtq .

Definition 8 (Nash (1951) [84]). A mixed-strategy profile z ∈ ∆ is a Nash equilibrium (NE) if no

player gains by deviating unilaterally. Formally, ∀p = 1, 2, 3 πp(z) ≥ πp(z
′, z−p),∀z′ ∈ ∆p.

Consider the following system of multivariate polynomials, whereA = (A1, A2, A3):

FNE(A) :

∀p ∈ {1, 2, 3}, ∑
s∈Sp

zps = 1

∀p ∈ {1, 2, 3}, s ∈ Sp, πp(s, z−p) + βps = δp

∀p ∈ {1, 2, 3}, s ∈ Sp, zpsβps = 0

∀p ∈ {1, 2, 3}, s ∈ Sp, 0 ≤ zps ≤ 1

∀p ∈ {1, 2, 3}, s ∈ Sp, 0 ≤ βps ≤ 1

∀p ∈ {1, 2, 3}, s ∈ Sp, 0 ≤ δp ≤ 1 .

(3.2)

Lemma 30. Nash equilibria ofA are exactly the solutions of system FNE(A), projected onto z.

Let 3-Nash denote the problem of computing a Nash equilibrium of a 3-player game. Next we

describe its relation with the complexity classes FIXP and ETR.

3.2.3 The Class FIXP

The class FIXP was defined to capture complexity of the exact fixed point problems with alge-

braic solutions [68]. An instance I of FIXP consists of an algebraic circuit CI defining a function

FI : [0, 1]d → [0, 1]d, and the problem is to compute a fixed-point of FI . The circuit is a finite

representation of function FI (like a formula), consisting of {max,+, ∗} operations, rational con-
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stants, and d inputs and outputs. We note that a circuit representing a problem in FIXP operates on

real numbers.

In order to remain faithful to Turing machine computation, [68] also defined three discrete

problems on FIXP, namelyFIXPpc (partial computation), FIXPd (decision) andFIXPa ((strong)

approximation). We refer to the full version for their definitions.

Whereas FIXP is a class of, in general, real-valued search problems, whose complexity can be

studied in a real computation model, e.g., [13], note that FIXPpc, FIXPd and FIXPa are classes

of discrete search problems, hence their complexity can be studied in the standard Turing machine

model. This is precisely the reason to define these three classes. [68] showed the following result.

Theorem 12 (Etessami-Yannakakis (2010) [68]). Given a 3-player gameA = (A1, A2, A3), com-

puting its NE is FIXP-complete. In particular, the corresponding Decision, (Strong) Approxi-

mation, and Partial Computation problems are complete respectively for FIXPd, FIXPa and

FIXPpc.

3.2.4 Existential Theory of Reals (ETR)

The class ETR was defined to capture the decision problems arising in existential theory of reals

[97]. An instance I of class ETR consists of a sentence of the form

(∃x1, . . . , xn)φ(x1, . . . , xn),

where φ is a quantifier-free (∧,∨,¬)-Boolean formula over the predicates (sentences) defined

by signature {0, 1,−1,+, ∗, <,≤,=} over variables that take real values. The question is if the

sentence is true. The size of the problem is n + size(φ), where n is the number of variables and

size(φ) is the minimum number of signatures needed to represent φ (we refer the readers to [97]

for detailed description of ETR, and its relation with other classes like PSPACE). Schaefer and

Štefankovič showed the following result; the first result on the complexity of a decision version of
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3-Nash.

Nash equilibrium always exists [84], however there are many non-trivial decision questions.

Definition 9 (Decision 3-Nash). Decision 3-Nash is the problem of checking if a given 3-player

gameA admits a Nash equilibrium z such that z ≤ 0.5.

Theorem 13 (Schaefer-Štefankovič (2015) [97]). Decision 3-Nash is ETR-complete.

Note that changing the upper bound on all zps’s from 1 to 0.5 in FNE(A) (3.2), exactly captures

the NE with z ≤ 0.5. Thus Decision 3-Nash can be reduced to checking if such a system of poly-

nomials admits a solution. Next we show a construction of Leontief exchange markets to exactly

capture the solutions of a system of polynomials, similar to that of FNE(A), at its equilibria.

3.3 Multivariate Polynomials to Leontief Exchange Market

Consider the following system of m multivariate polynomials on n variables z = (z1, . . . , zn):

F : {fi(z) = 0,∀i ∈ [m]; 0 ≤ Lj ≤ zj ≤ Uj, ∀j ∈ [n]} . (3.3)

The coefficients of fi’s, and the upper and lower bounds Uj’s and Lj’s are assumed to be

rational numbers. In this section we show that solutions of F can be captured as equilibrium prices

of a Leontief exchange market. The problems of 3-Nash and Decision 3-Nash can be characterized

by a set similar to (3.3) (Lemma 30), in turn we obtain FIXP and ETR hardness results for Leontief

exchange markets, from the corresponding hardness of 3-Nash (Theorems 12 and 13).

Polynomial fi is represented as sum of monomials, and a monomial αzd11 . . . zdnn is represented

by tuple (α, d1, ..., dn); here coefficient α is a rational number.3 LetMfi denote the set of mono-

mials of fi, and size[fi] =
∑

(α,d)∈Mfi

size(α,d), where size(r) for a rational number r is

the minimum number of bits needed to represent its numerator and denominator. Degree of fi
3In fact, our reduction is also applicable to a succinct representation of polynomials, e.g., fi = (x+ 1)d, however

the monomial representation is enough to obtain the hardness result due to (3.2).
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is deg(fi) = max
(α,d)∈Mfi

∑
j dj . Size of F , denoted by size[F ], is m + n +

∑
j(size(Uj) +

size(Lj)) +
∑

i(deg(fi) + size[fi]). Given F , next we construct an exchange market in time

polynomial in size[F ], whose equilibria correspond to solutions of F .

Preprocessing. First we transform system F into a polynomial sized equivalent system that uses

only the following basic operations on non-negative variables (refer to the full version for more

details).

(LIN.) za = Bzb + Czc +D, where B,C,D ≥ 0

(QD.) za = zb ∗ zc
(3.4)

Let R(F ) be a reformulation of F using these basic operations. All variables in R(F ) are

constrained to be non-negative. In order to construct R(F ) from F , we need to introduce many

auxiliary variables. Let the number of variables in R(F ) be N , and out of these let z1, . . . , zn

be the original set of variables of F (3.3). Given a system R(F ) of equalities, we will construct

an exchange market M, such that value of each variable zj, j ∈ [N ] is captured as price pj of

good Gj inM. Further, we make sure that these prices satisfy all the relations in R(F ) at every

equilibrium ofM.

Ensuring scale invariance. Since equilibrium prices of an exchange market are scale invariant,

the relations that these prices satisfy have to be scale invariant too. However note that in (3.4)

(LIN.) and (QD.) are not scale invariant. To handle this we introduce a special good Gs, such

that when its price ps is set to 1 we get back the original system.

(LIN.) pa = Bpb + Cpc +Dps, where B,C,D ≥ 0

(QD.) pa = pb∗pc
ps

(3.5)

Let R′(F ) be a system of equalities after applying the transformation of (3.5) to R(F ). Note

that, R′(F ) has exactly one extra variable than R(F ), namely ps, and solutions of R′(F ) with

ps = 1 are exactly the solutions of R(F ). Let the size of R′(F ) be (# variables + # relations
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in R′(F ) + size(B,C,D) in each of (LIN.)-type relations). To bound the values at a solution of

R′(F ), define

H = MmaxU
d
max + 1, where Mmax = max

i
|Mfi |,

d = max
fi

deg(fi), and Umax = max{max
j
Uj, max

fi, (α,d) ∈Mfi

|α|}.

Lemma 31. size[R′(F )] = poly(size[F ]). Vector p is a non-negative solution of R′(F ) with

ps = 1 iff zj = pj, ∀j ∈ [n] is a solution of F . Further, pj ≤ H, ∀j ∈ [N ].

3.3.1 Market Construction

In this section we construct market M consisting of goods G1, . . . , GN and Gs, such that the

prices p1, . . . , pN and ps, satisfy all the relations of R′(F ) at equilibrium. To ensure ps > 0 at

equilibrium, we add the following agent toM. Recall that Wij is the amount of good Gj agent Ai

brings to the market, Xi is the bundle of goods consumed by her, and Ui : Rg
+ → R+ is her utility

function.

As : Wss = 1, Wsj = 0, ∀j ∈ [N ]; Us(Xs) = xss (3.6)

Lemma 32. At every equilibrium of marketM, we have ps > 0, and xss = Wss.

Since a price pj may be used in multiple relations of R′(F ), the corresponding good has to be

used in many different gadgets. When we combine all these gadgets to form marketM, the biggest

challenge is to analyze the flow of goods among these gadgets at equilibrium. We overcome this

all together by forming closed submarket for each gadget.

Definition 10 (Submarket). A submarket M̃ of a market M consists of a subset of agents and

goods such that endowment and utility functions of agents in M̃ are defined over goods only in

M̃.

Definition 11 (Closed Submarket). A submarket M̃ of a market M is said to be closed if at

every equilibrium of the entire marketM, the submarket M̃ is locally at equilibrium, i.e., its total
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demand equals its total supply. The total demand of M̃ is the sum of demands of agents in M̃ and

its total supply is the sum of initial endowments of agents in M̃.

In other words, M̃ does not interfere with the rest of the market in terms of supply and demand,

even if some goods in M̃ are used outside as well. Note that the market of (3.6) is a closed

submarket (Lemma 32) with only one agent As and one good Gs. We will see that each submarket

M̃ establishing a relation of (LIN.) and (QD.) has a set of exclusive goods used only in M̃,

to achieve the closed property. Before describing construction of closed submarkets for more

involved relations, first we describe it for a simple equality relation.

Submarket for relation (EQ.) pa = pb

The gadget for (EQ.) consists of two agents with Leontief utility functions, as given in Table 3.1,

where good Gr is exclusive to this submarket. The endowment vector Wi of agent Ai should be

interpreted as (amount of Ga, amount of Gb, amount of Gr), i.e., in the same order of goods as

listed on the first line of the table.

Table 3.1: Closed submarket (EQ.) pa = pb
MEQ: 2 Agents (A1, A2) and 3 Goods (Ga, Gb, Gr)

(Gr: an exclusive good)
A1: W1 = (0, 1, 1) and U1(X) = min{xa, xr}
A2: W2 = (1, 0, 1) and U2(X) = min{xb, xr}

Lemma 33. The market MEQ of Table 3.1: (i) is a closed submarket, (ii) at equilibrium, it

enforces pa = pb, and (iii) every non-negative solution of pa = pb gives an equilibrium.

Proof. Let α and β denote the utility obtained byA1 andA2 at equilibrium respectively. Then using

(3.1) which characterizes optimal bundles for Leontief functions, the market clearing conditions of

the two agents give: pb + pr = α(pa + pr) and pa + pr = β(pb + pr).

Clearly these conditions imply that αβ = 1 ⇒ β = 1/α. Note that A1 and A2 consume α and

β amounts of good Gr respectively. And since this good is exclusive toMr, no other agent will
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consume it. Further, there are exactly two units of Gr available in the entire market M. Hence

we get α + β ≤ 2. Replacing β = 1
α

gives (α − 1)2 ≤ 0 ⇒ α = β = 1. Therefore, we get

that every equilibrium ofMr enforces pa + pr = pb + pr ⇒ pa = pb. Further, Mr is a closed

submarket because at equilibrium, demand of every good inMr is equal to its supply inMr even

though every good except Gr might participate in the rest of the market as well. For the last part,

if pa = pb ≥ 0, then choosing pr = 1, and x1a = x1r = x2b = x2r = 1 gives a market equilibrium

ofMr.

We refer the reader to full version for the (LIN.) submarket, which is an extension of (EQ.).

Submarket for Relation (QD.) pa = pbpc
ps

The market construction is quite involved, so we simplify it using the two assumptions (refer to

the full version for complete details). First, that ps = 1 and second, that pb 6= 0.

As mentioned earlier, establishing this relation in the market turns out to be complex, even with

the above two assumptions. For this, we need to make sure that at every equilibrium price pa of a

good a is same as the product of prices of two other goods b and c. One way to establish this is

by creating an agent who brings 1 unit of good a and desires only good c. For this to work, the

challenge is to ensure that the amount of good c leftover, after all other agents in the submarket

consume what they want, is exactly pb, without knowing what pb will be at equilibrium. We show

that this is indeed possible, but for this we need to create several gadgets and combine them in a

particular way.

In order to present the submarket in a modular manner, we will first define some devices. Each

of these devices will be implemented via a set of agents with Leontief utility functions. Each

device ensures a certain relationship between the net endowment left over by these agents and the

net consumption of these agents; for convenience, we will call these the net endowment and net

consumption of the device. Clearly, at equilibrium prices, for each device, the total worth of its

net endowment and net consumption must be equal. The first device converts price of a good to

98



amount of another good whose price is one.

Converter (Conv(q)): The net consumption of this device is 1 unit of good G1, whose price

is p, and the net endowment is p/q units of good G2, whose price is q. Table 3.2 and Figure 3.1

illustrate the implementation. In the figure tuple on edges represent (amount, price) of the goods

whose number is shown in circle. Table 3.2 has two parts: Part 1 describes the market and Part 2

enforces linear relations using (LIN.) submarkets.

Conv(q)

(1, p)

(pq , q)

A1 A2

(1, p)

(pq , q)

(1, Hq − p)

(H − p
q , q)

1 : 1
3

2

2

1

w12 = H

Figure 3.1: Flow of goods in Part 1 of Table 3.2 for Conv(q). Wires are numbered in circle, and
wire i carries good Gi. The tuple on each wire represents (amount, price).

Table 3.2: A closed submarket for Conv(q)

Part 1:

Input: 1 unit of G1 at price p
Output: p/q units of G2 at price q
2 Agents (A1, A2), 3 goods (G1, G2, G3)
A1: W12 = H and U1(X) = min{x1, x3}
A2: W23 = 1 and U2(X) = x2

Part 2:
Closed submarkets for these linear relations
p2 = q
p3 = Hq − p

There are two agents A1 and A2, and three goods G1, G2 and G3. A1 brings H units of G2,

whose price is set to q (H is a constant defined in Section 3.3). A1 wants to consume G1 and G3

in the ratio of 1:1. The net consumption of this device, i.e., 1 unit of G1 at price p, is consumed

by A1. A2 brings 1 unit of G3, whose price is enforced to Hq − p. A2 wants to consume only
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G2, hence it consumes H − p/q units of G2 (observe that there is no need to perform the division

involved in p/q explicitly). The remaining p/q units of G2 form the net endowment of the device,

as required.

We will use Conv to convert price pc to endowment of a good with price 1. In order to convert

this endowment to an endowment of a good with price pb and to make the entire submarket closed,

we need the following two more devices. Their construction is a bit more involved, and we refer

the reader to full version for their complete details.

Combiner (Comb(l, pa, pb)): The net consumption is l units each of goods G1 and G2, whose

prices are pa and pb, respectively. The net endowment is l units of a good G3, whose price is

pa + pb.

Table 3.3: A closed submarket for Comb(l, pa, pb)

Part 1:

Input: l units of G1 and G2 at price pa and pb
Output: l units of G3 at price pa + pb
3 Agents (A1, A2, A3), 5 goods (G1, G2, G3, G4, G5)
A1: W14 = 1 and U1(X) = min{x1, x2}
A2: W23 = H and U2(X) = min{x4, x5}
A3: W35 = 1 and U2(X) = x3

Part 2:
Closed submarkets for these linear relations
p3 = pa + pb
p5 = Hpa +Hpb − p4

Splitter (Spl(l, pa, pb)): The net endowment is l units each of two goods G2 and G3, whose

prices are pa and pb, respectively. The net consumption is l units of Good 1, whose price is pa +pb.

Submarket construction for pa = pbpc: Consider the submarket given in Table 3.5 and

Figure 3.2. In this market, the 7 goods, G1, . . . G7 are exclusive to the submarket. The prices of

some goods are set using (LIN.) relations as specified in Part 2. The submarket uses 2 Converters,

1 Combiner and 1 Splitter. Each device is specified by its (net endowment, net consumption). In
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Table 3.4: A closed submarket for Spl(l, pa, pb)

Part 1:

Input: l units of G1 at price pa + pb
Output: l units of G2 and G3 at price pa and pb
3 Agents (A1, A2, A3), 5 goods (G1, G2, G3, G4, G5)
A1: W14 = 1 and U1(X) = x1

A2: W22 = W23 = H and U2(X) = min{x4, x5}
A3: W35 = 1 and U2(X) = min{x2, x3}

Part 2:

Closed submarkets for these linear relation
p2 = pa
p3 = pb
p5 = Hpa +Hpb − p4

Table 3.5: A closed submarket for pa = pbpc

Part 1:

2 Agents (A1, A2), 2 Converters (Conv1, Conv2),
1 Combiner (Comb), 1 Splitter (Spl), and
7 Goods (G1, . . . , G7)

A1: W11 = 1 and U1(X) = x4

A2: W26 = 1 and U2(X) = x5

Conv1 = Conv(1): (G1, G2)

Conv2 = Conv(pb): (G6, G7)

Comb(pc, pb, 1): ((G2, G7), G3)

Spl(pc, pb, 1): (G3, (G4, G5))

Part 2:

Closed submarkets for these linear relations
p1 = pc
p2 = 1
p4 = 1
p5 = pb
p6 = pa
p7 = pb

addition to the agents needed for implementing these devices, the submarket requires 2 additional

agents, A1 and A2.

Lemma 34. The submarket of Table 3.5 enforces pa = pbpc and is closed under assumption pb 6= 0.
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(pc, 1)

(1, pc)

(pc, 1) (pc, pb)

(1, pbpc)(pc, pb + 1)

(pc, pb)

A1

Conv(1)

A2Spl(pc, pb, 1)

Comb(pc, pb, 1)

4 5

6

7

3

2

1

Conv(pb)

Figure 3.2: Flow of goods in Part 1 of Table 3.5. Wires are numbered, and wire i carries good Gi.
The tuple on each wire represents (amount, price).

For each relation r of R′(F ), depending on its type, construct a closed submarket Mr as

described in Section 3.3.1. Combine all theMr’s and add the agent of equation (3.6) to form one

marketM.

Next we prove the main theorem of this section which will give all the desired hardness results.

Theorem 14. Equilibrium prices of market M, projected onto (p1, . . . , pn), are in one-to-one

correspondence with the solutions of F . Furthermore, size[M] = poly(size[F ]).

Theorem 14 shows that finding solutions of F can be reduced to finding equilibria of a Leontief

exchange market. As discussed in Section 3.2.2, the problem of computing a NE of a 3-player

game A can be formulated as finding a solution of system FNE(A) (3.2) of polynomials in which

variables take values in [0, 1] (Lemma 30). Note that size[FNE(A)] = O(size(A)). The next

theorem follows using the formulation of (3.2), together with Lemma 30, and Theorems 12, 13

and 14.

Theorem 15. Computing an equilibrium of an exchange market under Leontief utility functions

is FIXP-hard. In particular, the corresponding Decision, (Strong) Approximation, and Partial

Computation problems are hard for FIXPd, FIXPa and FIXPpc, respectively. Furthermore,
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checking existence of an equilibrium in an arbitrary Leontief exchange market (and in market with

PLC utilities) is ETR-complete4.

3.4 Membership in PPAD

In this section, we show that computing an approximate equilibrium in an exchange market with

PLC utilities is in PPAD. This resolves an open question of [103].

The problem of computing an approximate market equilibrium under sufficiency conditions

has been known to be PPAD-hard [25, 29, 36, 60] for more than a decade; however, membership

in PPAD has not been established yet. The only fixed point formulation known for this problem

was obtained in the context of proving membership in FIXP [48]. We use this formulation to show

the result. Let M denote an exchange market with PLC utilities, and size(M) denote the bit

length of input parameters ofM. Let F be the fixed point formulation forM given in [48]. For

this, we need to show the following:

1. F is Lipschitz continuous with constant K, where size(K) = poly(size(M)).

2. δ-approximate fixed point ofF gives an ε-approximate equilibrium, where size(δ) = poly(size(ε,M)).

The first task is easy to show and it implies that finding an ε-approximate fixed point of F

is in PPAD [89]. Showing the second step is quite involved and technical because F is rather

intricate. For the second task, we need to show approximate market clearing of every good and

approximately optimal bundle to each agent at an approximate fixed point of F .

There is a simple linear program (LP) that captures optimal bundles of each agent at a given

price vector. Using this LP and its dual, F captures optimal bundles of each agent as feasibil-

ity of primal and dual constraints, and complementary slackness conditions. We show that at

a δ-approximate fixed point of F , both feasibility and complementary slackness constraints are

4Membership in ETR is obtained by characterizing the set of equilibria as simultaneous solutions of a set of
multivariate polynomial equations (refer to the full version for details).
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approximately satisfied. This essentially proves that each agent gets an approximately optimal

bundle.

Next we briefly describe the description of fixed point formulation F , given in [48]. Recall the

market parameters from Section 3.2.1. Given prices p, the optimal utility of agent i is a solution

of the following LP, where variables x = {xij | i ∈ α, j ∈ G} capture the assignment of goods to

agents, and λi’s and γik’s are dual variables.

max ui

∀k : ui ≤
∑
j

Uk
ijxij + T ki

∑
j

xijpj ≤
∑
j

Wijpj

∀j : xij ≥ 0

dual←−→

min λi
∑
j

Wijpj +
∑
k

T ki γ
i
k

∀j :
∑
k

Uk
ijγ

k
i ≤ λipj

∑
k

γki = 1

λi ≥ 0; ∀k : γik ≥ 0

(3.7)

Without loss of generality, we may assume that the total initial endowment of every good is

1, i.e,
∑

i∈αWij = 1,∀j ∈ G. Let m def
= |α|, and n

def
= |G|. Let H denote the maximum

number of hyperplanes in an agent’s PLC utility function, and wlog we may assume that it is same

for each agent. Let λ = {λi | i ∈ α} and γ = {γki | i ∈ α, k ∈ [H]}. Let xmax
def
= 1.1,

Wmin
def
= min(i,j)Wij , Umax

def
= max(i,j,k) U

k
ij , Umin

def
= min(i,j,k):Uk

ij>0 U
k
ij , Tmax

def
= max(i,k) T

k
i , and

λmax
def
= 2n(Umax+Tmax)/Wmin. Note that Wmin > 0 under sufficiency conditions.

Let D def
= {(p,x,γ,λ) ∈ RN

+ |
∑

j pj = 1; xij ≤ xmax;
∑

k γ
k
i = 1; λi ≤ λmax}, where N

is the total number of variables, and F : D → D is a continuous function such that (p,x,γ,λ)
def
=

F (p,x,γ,λ) as given in Table 3.6.

Theorem 16 (Garg-Mehta-Vazirani (2014) [48]). Assuming sufficient conditions of the existence

of equilibrium, every fixed point of F gives an equilibrium ofM and vice versa.

Lemma 35. F is Lipschitz continuous with constant K, where size(K) = poly(size(M)).
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Table 3.6: FIXP circuit for exchange markets

pj =
pj + max{∑i xij − 1, 0}∑

j

(pj + max{∑i xij − 1, 0})

γki =
γki + max{ui −

∑
j U

k
ijxij − T ki , 0}∑

k

(γki + max{ui −
∑

j U
k
ijxij − T ki , 0})

xij = min
{

max
{
xij +

∑
k U

k
ijγ

k
i − λipj, 0

}
, xmax

}
λi = min

{
max

{
λi +

∑
j xijpj −

∑
jWijpj, 0

}
, λmax

}

3.4.1 Approximate Market Clearing

In this section, we show that market clears approximately at an approximate fixed point of F . Let

y = (p,x, γ,λ). First we define ε-approximate fixed point of F .

Definition 12 (ε-Approximate Fixed Point). y is an ε-approximate fixed point of F if ‖F (y) −

y‖∞ ≤ ε.

Lemma 36. At an ε-approximate fixed point (x,p,λ,γ) of F ,

• |∑j xijpj −
∑

jWijpj| ≤ ε, ∀i ∈ α

• ∑i xij ≤ 1 + 5mn
√
εn, ∀j ∈ G.

3.4.2 Approximately Optimal Bundle

In this section, we show that each agent gets an approximately optimal bundle at an approximate

fixed point of F . We achieve this by showing that feasibility and complementary slackness of (3.7)

are approximately satisfied.

Lemma 37. At an ε-approximate fixed point (x,p,λ,γ) of F ,

105



• ∀(i, j) : If xij > ε then λipj ≤
∑

k U
k
ijγ

i
k + ε

• ∀(i, j) : λipj ≥
∑

k U
k
ijγ

i
k − ε

• ∀(i, k) : ui −
∑

j U
k
ijxij − T ki ≤ 12nH2U2

maxxmax
√
ε

• ∀(i, k) : If γik > 4
√
ε then

ui ≥
∑

j U
k
ijxij + T ki − 24nH2U2

maxxmax(nxmax + λmax) 4
√
ε.

Lemmas 36 and 37 give

Theorem 17. At an ε8-approximate fixed point of F , where ε < 1/24mnH2U2
maxxmax(nxmax+λmax),

1. ∀i : |∑j xijpj −
∑

jWijpj| ≤ ε

2. ∀j :
∑

i xij ≤ 1 + ε, ∀j

3. ∀i : ui ≤
∑

j U
k
ijxij + T ki + ε, ∀i

4. ∀(i, j) : λipj ≥
∑

k U
k
ijγ

i
k − ε, ∀(i, j)

5. ∀(i, j) : If xij > ε then λipj ≤
∑

k U
k
ijγ

i
k + ε

6. ∀(i, k) : If γik > ε then ui ≥
∑

j U
k
ijxij + T ki − ε.

Let u1
i be the optimal utility of (3.7). For a given ε, consider the following modified LP, where

feasibility constraints of (3.7) are perturbed:

max ui − ε
∑
j

xij

∀k : ui ≤
∑
j

Uk
ijxij + T ki + ε

∑
j

xijpj ≤
∑
j

Wijpj + ε

∀j : xij ≥ 0.

(3.8)

106



The dual is
min λi

∑
j

Wijpj +
∑
k

γik(T
k
i + ε)

∀j :
∑
k

Uk
ijγ

k
i ≤ λipj + ε

∑
k

γki = 1

λi ≥ 0; ∀k : γik ≥ 0.

Let u2
i be the optimal utility of (3.8).

Lemma 38. u2
i ≥ u1

i − εnxmax,∀i.

Proof. Let ẋ and ẍ be optimal solutions of (3.7) and (3.8) respectively. Since ẋ is a feasible point

in (3.8), we have u2
i − ε

∑
j ẍij ≥ u1

i − ε
∑

j ẋij , that implies u2
i − u1

i ≥ ε(
∑

j ẋij −
∑

j ẍij) ≥

εnxmax.

Suppose we have a candidate point (x̃, p̃, λ̃, γ̃), which satisfies all feasibility constraints of

(3.8) but approximately satisfies complementary slackness constraints as follows:

∀(i, j) : If x̃ij > ε then λ̃ip̃j ≤
∑
k

Uk
ij γ̃

k
i + ε

∀(i, k) : If γ̃ki > ε then u3
i ≥

∑
j

Uk
ijx̃ij + T ki − ε

∀i : If λ̃i > ε then
∑
j

x̃ij p̃j ≥
∑
j

Wij p̃j − ε,

where u3
i is the utility obtained at this point. At prices p = p̃, let u1

i and u2
i be the optimal value of

(3.7) and (3.8) respectively. Next we show that x̃ gives an approximately optimal utility at p̃.

Lemma 39. ∀i : u3
i ≥ u1

i − ε(2 + 2λmax + 4nxmax +HTmax + nHxmaxUmax).

Finally, using Theorem 17 and Lemma 39, we get
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Theorem 18. At an ε16-approximate fixed point (x,p,γ,λ) ofF , where ε < 1/(24mn2H2U2
maxx

2
maxλmaxTmax),

we have

(i) ∀i :
∑

j xijpj ≤
∑

jWijpj + ε

(ii) ∀j :
∑

i xij ≤ 1 + ε

(iii) ∀i : ui ≥ uopti − ε,

where uopti is the optimal utility of agent i at prices p.

Lemma 40. For an ε, if we have a solution (x,p) such that

(i) ∀i :
∑

j xijpj ≤
∑

jWijpj + ε

(ii) ∀j :
∑

i xij ≤ 1 + ε

(iii) ∀i : ui ≥ uopti − ε,

then it gives an ε′-approximate equilibrium, where ε′ = UminWminε.

From Theorem 18, Theorem 16 and Lemma 40, we get

Theorem 19. Assuming sufficiency conditions for the existence of equilibrium, for any 0 < ε < 1,

an ε-approximate equilibrium of exchange markets with piecewise-linear concave utilities can be

obtained from a δ-approximate fixed point ofF , where δ = ( ε
Λ

)16 and Λ = 24mn2H2U2
maxx

2
maxλmaxTmax

WminUmin
.

Note that finding an ε-approximate fixed point of a Lipschitz-continuous function from a con-

vex compact domain to itself is in PPAD [89]. Using Lemma 35 and Theorem 19, together with

[89], we get

Theorem 20. Assuming sufficiency conditions for the existence of equilibrium, finding an approx-

imate equilibrium in exchange markets with PLC utilities is in PPAD.

Since finding an n−13-approximate equilibrium of SPLC markets is PPAD-hard [25], we get

Theorem 21. Finding an n−13-approximate equilibrium of exchange markets with PLC utilities is

PPAD-complete, where number of agents and goods are O(n).
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3.5 Leontief Utilities under Constant Number of Agents

In this section, we show that there is a polynomial time algorithm for finding an equilibrium in

Arrow-Debreu exchange markets under Leontief utility functions provided the number of agents is

a constant. This settles part of an open problem of Devanur and Kannan [38]. Consider a Leontief

exchange market with n goods and d agents, where d is a constant. The Leontief utility function

of agent i is given by

Ui(xi) =
n

min
j=1

{
xij
Aij

}
,

where Aij ≥ 0 is the fraction of good j that agent i wants. Let Wij be the amount of good j agent

i owns. We assume wlog that
∑

iWij = 1, ∀j. Let us capture the equilibrium utility of agent i in

variable βi, then the optimal bundle condition gives,

xij = Aijβi (3.9)

at an equilibrium. Further, if (p1, . . . , pn) are corresponding equilibrium prices, then the market

clearing conditions can be written as,

∀j ∈ G :
∑

i xij =
∑

iAijβi ≤ 1 (3.10)

if pj > 0 then
∑

iAijβi = 1 .

Further, since Leontief utility function is non-satiated (given any bundle, there exists another

bundle where utility increases), the agents will spend all of their earned money. This gives the

following relation in β and p:

∀i ∈ α :
∑
j

pjxij =
∑
j

Wijpj ⇒ βi =

∑
jWijpj∑
j Aijpj

.

First, we show that if there is an equilibrium, then there is one where at most d prices are
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non-zero.

Lemma 41. If an exchange market with Leontief utilities has an equilibrium, then there is one

where at most d goods have non-zero prices.

Due to Lemma 41, to find an equilibrium, it suffices to check for every set S of d goods if there

is an equilibrium by setting the prices of goods outside S to zero. And this can be achieved by

checking the feasibility of the following system, where βis and pjs are variables.

∀j /∈ S, pj = 0; ∀j ∈ S, pj ≥ 0.

∀j /∈ S, ∑iAijβi ≤ 1; ∀j ∈ S, ∑iAijβi = 1

∀i, βi =
∑

j Wijpj∑
j Aijpj

(3.11)

Lemma 42. If ∃β∗, p∗ satisfying (3.11) then they constitute an equilibrium.

Proof. Let x∗ij = β∗iAij , then for every agent i we get

∑
j

x∗ijp
∗
j = β∗i

∑
j

Aijp
∗
j =

∑
j

Wijp
∗
j ,

using the third condition of (3.11). This together with the fact that x∗ij = β∗iAij it follows that

X∗i is an optimal bundle of agent i at prices p∗. Market clearing for goods follows from the first

two conditions of (3.11).

Note that system (3.11) remains unchanged if we remove price variables that are set to zero.

Then it will have 2d variables, The first two conditions are linear in these variables, while the third

condition is of degree two. Since d is a constant, checking non-emptiness of (3.11) can be done in

polynomial time [5, 6, 38].

If (3.11) turns out to be non-empty then by Lemma 42 we get an equilibrium. Lemma 41

implies that we need to check feasibility of this system for every subset of goods of size d. There

are at most
(
n
d

)
≤ nd such systems need to be checked, which is a polynomial in number because
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d is a constant. Therefore, overall we can find an equilibrium in polynomial time, and the next

theorem follows:

Theorem 22. Consider an Arrow-Debreu exchange market under Leontief utility functions in

which the number of agents is a constant. Then, in polynomial time we can determine if an equi-

librium exists, and if so, we can find one.

3.6 Discussion

Is computing an equilibrium for a Fisher market under PLC utilities FIXP-hard? Clearly the prob-

lem is in FIXP since Fisher markets are a subcase of Arrow-Debreu markets. We believe that

existing techniques, for example of [103] establishing hardness for Fisher markets under SPLC

utilities via reduction from Arrow-Debreu markets, will not work and new ideas are needed. As

stated in Section 3.0.1, finding an approximate equilibrium under CES utilities was also shown to

be PPAD-complete [24]. Is computing an exact equilibrium FIXP-complete?

In economics, uniqueness of equilibria plays an important role. In this vein, we ask what is the

complexity of deciding if a PLC or Leontief market has more than one equilibria. We note that the

reduction given in this chapter blows up the number of equilibria and hence it will not answer this

question in a straightforward manner.
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CHAPTER 4

∃R-COMPLETENESS FOR MULTI-PLAYER NASH EQUILIBRIA

As a result of a series of important works [22, 32, 33, 56, 89], the complexity of 2-player Nash

equilibrium is by now well understood, even when equilibria with special properties are desired

and when the game is symmetric. However, for multi-player games, when equilibria with special

properties are desired, the only result known is due to Schaefer and Štefankovič [97]: that checking

whether a 3-player Nash Equilibrium (3-Nash) instance has an equilibrium in a ball of radius half

in l∞-norm is ∃R-complete, where ∃R is the class of decision problems which can be reduced in

polynomial time to Existential Theory of the Reals.

In this chapter, we show that the following decision versions of 3-Nash are also ∃R-complete:

checking whether (i) there are two or more equilibria, (ii) there exists an equilibrium in which

each player gets at least h payoff, where h is a rational number, (iii) a given set of strategies are

played with non-zero probability, and (iv) all the played strategies belong to a given set.

Next, we give a reduction from 3-Nash to symmetric 3-Nash, hence resolving an open prob-

lem of Papadimitriou [90]. This yields ∃R-completeness for symmetric 3-Nash for the last two

problems stated above as well as completeness for the class FIXPa, a variant of FIXP for strong

approximation. All our results extend to k-Nash, for any constant k ≥ 3.

4.1 Technical Overview

We first give the main idea behind our reduction from 3-Nash to symmetric 3-Nash (Theorem

35). We will reduce the given game (A,B,C), where each tensor is of size m × n × p, to a

symmetric game, D, of size l × l × l, where l = m + n + p (see Section 4.2.1 for the description

of (symmetric) games). In this game, under each symmetric NE, the strategy of each player can
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be decomposed into three vectors, say X, Y , z, of dimension m,n, p, respectively. An essential

condition for recovering a Nash equilibrium for the original game (A,B,C) is that each of these

three vectors be non-zero; this is also the most difficult part of the reduction.

To achieve this we construct a 3 × 3 × 3 symmetric game G all of whose symmetric NE are

of full support, even though it is only partially specified (see (4.6)). We “blow up” G to derive D,

which is of size l × l × l, and the unspecified entries of G create room where tensors A,B,C are

“inserted”. Now, if (X, Y ,z) is a symmetric NE of D then so is (
∑

i xi,
∑

j yj,
∑

k zk) of G. As

a result, each vector, X, Y , z 6= 0. Next we show that if these vectors are scaled to probability

vectors, they form a NE for (A,B,C). Additional arguments yield ∃R-completeness for Subset

and Superset for symmetric k-Nash (Theorems 36 and 37).

Next we give the idea for showing that symmetric 3-Nash is complete for the class FIXPa

(Theorem 39). Note that we are unable to show that symmetric 3-Nash is complete for the class

FIXP itself, since we don’t see how to express the solution to the given instance (A,B,C) as a

rational linear projection of the solution of the reduced symmetric game D, a requirement of FIXP

reductions [68].

Under FIXPa, given an instance I and a rational ε > 0, we need to compute a vector X that is

within (additive) ε distance from some solution, i.e., ∃X∗ ∈ Sol(I) such that |X∗ −X|∞ ≤ ε, in

time polynomial in size[I] and log(1/ε). In the above reduction, obtaining a solution of (A,B,C)

involves e.g., dividing X by
∑

i xi. If the latter is very small, this may give us a vector that is very

far away from a solution of (A,B,C), even though x may be close to a solution of D.

We get around this problem by a small change in the above reduction, namely, we need to mul-

tiply the tensors A,B,C by a small constant ε′ before they are “inserted” at the appropriate places

in G to get symmetric game D. This ensures that vector (
∑

i xi,
∑

j yj,
∑

k zk) is approximately

(1/3, 1/3, 1/3). As a result, given a point close to a solution of D, we can get a point “close” to a

solution of (A,B,C).

Next, we describe how we show ∃R-completeness for the four decision problems, mentioned
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in the previous section, for k-Nash. To show hardness in case of 3-players, we reduce InBox,

which is known to be ∃R-complete for 3-Nash [97], to each of MaxPayoff, Subset and Superset,

and then from MaxPayoff to NonUnique. Hardness for the k-Nash, k > 3, follows since 3-Nash

reduces to k-Nash trivially by introducing dummy players. To show containment in ∃R we give a

non-linear complementarity problem (NCP) formulation that exactly captures NE of a given game

(Theorems 23 and 24).

Next, we briefly explain the reduction from InBox to MaxPayoff for the 2-player case (see

Section 4.4.1 for details); 3-player case is an extension of it (Section 4.4.2). Let the given game be

represented by two payoff matrices (A,B) of size m×n, one for each player. The InBox problem

is to check if it has a NE in which all strategies are played with at most 0.5 probability. We reduce

it to checking if another game (C,D) has a NE in which every player gets payoff at least h > 0

(MaxPayoff). Without loss of generality (wlog) we can assume that A,B > 0.

We construct m(n+ 1)× n(m+ 1) matrices C and D, where the top-left block is set to A+ h

and B+ h respectively. This ensures that if each player gets payoff h at a NE, then strategies from

this block are played with non-zero probability, and normalizing them gives a NE of (A,B). The

latter follows since NE set remains invariant under additive scaling of payoffs. In order to retrieve

a NE in 0.5 ball, we ensure that if any of these strategies is (relatively) played with more than 0.5

probability then a sequence of deviations leads to both players playing only among their last mn

strategies where payoff is zero (< h).

In particular suppose the second player plays Y in the top-left block. The last mn strategies of

the row player are divided into n blocks of size m, one for each yj, j ≤ n such that if yj > 0.5

then best response of the first player is to deviate to jth block. The payoff of the second player is

set to −1 in these blocks, so then yj fetches −1 and second player is forced to deviate to her last

mn strategies where both get zero. Similarly for the first player.

Organization: In Section 4.2 we formally define the (symmetric) k-Nash problem, their decision

problems, and discuss the complexity classes ∃R and FIXP. Membership in ∃R for decision prob-
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lems in (symmetric) k-Nash is shown in Section 4.3. In Section 4.4, we show that decision prob-

lems in k-player games, for any constant k ≥ 3, are ∃R-complete. ∃R-completeness of decision

problems in symmetric 3-Nash is shown in Section 4.5. In Section 4.6, we show that computing an

equilibrium in symmetric 3-Nash is FIXPa-complete. Since symmetric 3-Nash does not trivially

reduce to symmetric k-Nash, we extend the ∃R and FIXPa-completeness results for the latter in

Section 4.7 for any constant k ≥ 3.

4.2 Preliminaries

In this section we formally define the (symmetric) k-Nash problem, and their decision problems.

Further, we discuss the complexity classes ∃R and FIXP.

Notations: Vectors are represented in bold-face letters, and ith coordinate of vector X is denoted

by xi, and X−i denotes the vector X with ith coordinate removed. 1 and 0 represent all ones

and all zeros vector respectively of appropriate dimension. For integers k < l, X(k : l) =

(xk, xk+1, . . . , xl). We use [n] to denote set {1, . . . , n} and [k : l] to denote {k, k + 1, . . . , l}.

If X is of m dimensional, then by σ(X) we mean
∑m

i=1 xi, and η(X) = X/σ(X). Concatenation of

vectors X and Y is denoted by (X|Y ). Given a matrix A and h ∈ R, A + h denotes the matrix A

with h added to each of its entries. Further, A(i, :) is its ith row and A(:, j) is its jth column.

4.2.1 (Symmetric) k-Nash

For a given k-player game let Si, i ∈ [k] be the set of pure strategies of player i, and let S =

×i∈[k]Si. The payoffs of player i can be represented by a k-dimensional tensor Ai, such that Ai(s)

denotes the payoff she gets when s ∈ S is played. Players may randomize among their strategies.

Let ∆i denote the set of mixed strategy profiles of player i, and let ∆ = ×i∈[k]∆i. Expected payoff

of player i from X = (X1, . . . , Xk) ∈∆ is πi(X) =
∑
s∈S(Πi∈[k]X

i
si

)Ai(s).

115



Definition 13. (Nash Equilibrium (NE) [84]) X ∈ ∆ is said to be a NE if no player gains by

unilateral deviation. Formally, ∀i, ∀X ′i ∈ ∆i, πi(X) ≥ πi(X
′i, X−i).

Let πi(s,X−i) denote the payoff i receives when she plays s ∈ Si and others play as per X−i.

It is easy to see that X is a NE iff [84]

∀i ∈ [k], ∀s ∈ Si, xis > 0 ⇒ πi(s,X
−i) = max

t∈Si

πi(t,X
−i) . (4.1)

Symmetric k-Nash: In a symmetric game the players are indistinguishable. Their strategy sets are

identical (S) and payoffs are symmetric represented by one tensor A. For a player, the payoff she

gets by playing s′ ∈ S, when others are playing s ∈ S(k−1), is A(s′, s). Further, who is playing

what in s does not matter. Formally, A satisfies A(s′, s) = A(s′, sτ ) for all permutations τ of

(1, . . . , k − 1), where sτ is the corresponding permuted vector.

A profileX ∈∆ is called symmetric ifX i = Xj, ∀i, j ∈ [k], thus one vectorX ∈ ∆ is enough

to denote a symmetric profile. At a symmetric strategy profile all the players get the same payoff,

and we denote it by π(X). The problem of computing a symmetric NE (SNE) of a symmetric

game is called symmetric k-Nash.

Note that the description of a (symmetric) k-player game takes O(kmk) space, where m =

maxi |Si|, which is exponential in m and k. To keep it polynomial, we consider k as a constant.

Further, wlog (A1, . . . , Ak) > 0 because adding a constant to the tensors does not change the set

of NE.

2-Nash: The payoff tensors in case of 2-player game are matrices, say (A,B), A for player one

and B for player two. If the first player plays i and second plays j, then their respective payoff are

Aij and Bij . Game is said to be symmetric if B = AT . A mixed strategy is (X, Y ) ∈ ∆1 × ∆2,

and respective payoffs at such a strategy are XTAY and XTBY . 2-Nash is the problem of finding
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a Nash equilibrium of such a game, i.e., strategy (X, Y ) such that

XTAY ≥ X ′TAY , ∀X ′ ∈ ∆1 and XTBY ≥ XTBY ′, ∀Y ′ ∈ ∆2 .

The NE characterization of (4.1) reduces to:

∀i ∈ S1, xi > 0⇒ (AY )i = max
k∈S1

(AY )k; ∀j ∈ S2, yj > 0⇒ (XTB)j = max
k∈S2

(XTB)k . (4.2)

3-Nash: It is the k-Nash problem with k = 3 players. We will represent such a game by three

3-dimensional tensors (A,B,C); A for player one, B for player two, and C for player three. If

player one plays i, two plays j and three plays k, then their respective payoffs are Aijk, Bijk, and

Cijk. If the game is symmetric then we have Aijk = Aikj = Bjik = Bkij = Cjki = Ckji. A mixed

strategy is denoted by (X, Y ,z) ∈ ∆1 ×∆2 ×∆3. Thus NE characterization of (4.1) reduces to:

∀i ∈ S1, xi > 0 ⇒ ∑
j∈S2,k∈S3

Aijkyjzk = maxl∈S1

∑
j∈S2,k∈S3

Aljkyjzk

∀j ∈ S2, yj > 0 ⇒ ∑
i∈S1,k∈S3

Bijkxizk = maxl∈S2

∑
i∈S1,k∈S3

Bilkxizk

∀k ∈ S3, zk > 0 ⇒ ∑
i∈S1,j∈S2

Cijkxiyj = maxl∈S3

∑
i∈S1,j∈S2

Cijlxiyj .

(4.3)

Decision Problems: Computational complexity of numerous decision problems have been studied

for 2-Nash and 3-Nash [32, 56]. In this thesis, we consider the following:

• NonUnique: Does there exist more than one NE?

• MaxPayoff: Given a rational number h, does there exist a NE where every player gets payoff

at least h?

• Subset: Given sets Ti ⊂ Si, ∀i ∈ [k], does there exist a NE where every strategy in Ti is

played with positive probability by player i?

• Superset: Given sets Ti ⊂ Si, ∀i ∈ [k], does there exist a NE where all the strategies outside
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Ti are played with zero probability by player i?

• InBox: Does there exists a NE where every strategy is played with probability less than or

equal 0.5?

All but last problem have been shown to be NP-complete in case of 2-Nash [32, 56], and the last

one is shown to be ∃R-complete in case of 3-Nash [97]. In this chapter, we show ∃R-completeness

for the first four decision problems for k-Nash, and for third and fourth for symmetric k-Nash,

where k ≥ 3 in both cases.

We refer the reader to Section 4.4 and Section 3.2.3 for definition of existential theory of reals

and the class of FIXP and its variant FIXPA

4.3 (Symmetric) k-Nash: Containment in ∃R

In this section we show that the first four decision problems described in Section 4.2.1 are in ∃R,

for k-Nash as well as symmetric k-Nash. For a k-player game (A1, . . . , Ak), NE characterization of

(4.1) can be reformulated as a set of polynomial inequalities as follows, where variable xis captures

the probability with which player i plays s ∈ Si, and variable λi captures her best payoff. Recall

function πi(s,X−i) from Section 4.2.1 representing payoff of player i when she plays s ∈ Si and

others play as per X−i.

∀i ∈ [k], ∀s ∈ Si, xis ≥ 0; πi(s,X
−i) ≤ λi; xis(πi(s,X

−i)− λi) = 0;
∑
s∈Si

xis = 1 . (4.4)

It is easy to see that strategy profile X ∈∆ satisfies (4.1) if and only if it satisfies (4.4).

Theorem 23. Given a k-player game (A1, . . . , Ak), for a constant k, the problems of NonUnique,

MaxPayoff, Subset and Superset are in ∃R.

Proof. To frame NonUnique as an ∃R problem, take two copies of (4.4) each with different sets

of variables, say X and Y , and add |X − Y |2 > 0 to it. This system has a feasible solution (X, Y )
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if and only if the game has two NE X 6= Y . Thus, containment of NonUnique in ∃R follows.

For MaxPayoff, add ∀i ∈ [k], πi(X) ≥ h to the system (4.4). It has a feasible solution X if

and only if X is a NE of the game where payoff received by every player is at least h, implying

MaxPayoff is in ∃R.

Similarly, to formulate Subset, add ∀i ∈ [k], ∀s ∈ Ti, xis > 0 to (4.4). And for Superset, add

∀i ∈ [1 : k], ∀s ∈ Si \ Ti, xis = 0 to (4.4).

Given a symmetric game A, the following system of polynomial inequalities (similar to (4.4))

exactly captures its symmetric NE, where variable xs captures the probability of playing strategy

s ∈ S and λ captures the payoff.

∀s ∈ S, xs ≥ 0; π(s,X) ≤ λ; xs(π(s,X)− λ) = 0 and
∑
s

xs = 1 .

The proof for the next theorem follows similar to that of Theorem 23.

Theorem 24. Given a symmetric k-player game A, for a constant k, the problems of NonUnique,

MaxPayoff, Subset and Superset for symmetric NE are in ∃R.

4.4 k-Nash: ∃R-completeness for Decision Problems

In this section we show that MaxPayoff, Subset, Superset and NonUnique are ∃R-complete

in k-player games, for any constant k ≥ 3. Containment in ∃R follows from Theorem 23 from

Section 4.3. We show ∃R-hardness for these four decision problems in case of 3-player games next,

and since 3-player game trivially reduces to k-player game, for k > 3, by adding k − 3 dummy

players with one strategy each, the result will follow for the latter as well. To show hardness for

MaxPayoff, Subset and Superset we reduce from InBox (in Section 4.4.1), and for NonUnique

we reduce from MaxPayoff (in Section 4.4.3).
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4.4.1 ∃R-hardness: InBox to MaxPayoff, Subset and Superset

To convey the main ideas, we first describe the reduction in 2-player games and later generalize it

to the 3-player case in Section 4.4.2. We show the reduction from InBox to MaxPayoff, and from

the intermediate lemmas, reduction to Subset and Superset will follow. Let the given two player

game be represented by m× n dimensional payoff matrices (A,B) > 0.

For a ≥ 0, let Ba = [0, a]m+n be a ball of radius a at origin in l∞ norm. We will construct

another game (C,D), with m(n+ 1)× n(m+ 1)-dimensional matrices, and show that it has a NE

where each player gets at least h > 0 payoff (MaxPayoff) if and only if the game (A,B) has a NE

in B0.5 (InBox). First we define a couple of notations required for the construction.

Definition 14. Let i and j be integers where i ∈ [m] and j ∈ [n], and h be a real number. We

define the following operators:

A(i,:)+h : matrix A with h added to the entries in its ith row, and

A(:,j)+h : matrix A with h added to the entries in its jth column.

Definition 15. Given a matrix M of size a× b and integers r and s such that a+ r−1 ≤ m(n+ 1)

and b+ s− 1 ≤ n(m+ 1), define [M ]r,s to be an m(n+ 1)×n(m+ 1)-dimensional matrix where

M is copied starting at position (r, s), and all other coordinates are set to zero.

Using the above notations we construct matrices C and D as follows, where h > 0.

C = [A+ h]1,1 + [(−1)m×mn]1,n+1 +
∑

j∈[n][A(:,j)+2h]jm+1,1 , and

D = [B + h]1,1 + [(−1)mn×n]m+1,1 +
∑

i∈[m][B(i,:)+2h]1,in+1 .

The next lemma follows from the construction of C,D. Recall that σ(X) =
∑

i xi .

Lemma 43. Given a strategy (X ′, Y ′) of game (C,D), let X = X ′(1 : m), Y = Y ′(1 : n),
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A+ h (−1)m×mn

A(:,1)+2h

A(:,n)+2h

(0)mn×mn

n mn

m

mn

B + h

(−1)mn×n

B(1,:)+2h B(m,:)+2h

n mn

m

mn

C : D :

(0)mn×mn

α = h ∗ σ(Y )− σ(Y ′(n+ 1 : (m+ 1)n)), and β = h ∗ σ(X)− σ(X ′(m+ 1 : (n+ 1)m)). Then,

(CY ′)i =


α + (AY )i if i ∈ [m]

2hyb(i−1)/mc + (AY )r if i ∈ [m+ 1,m(n+ 1)], r = ((i− 1) mod m) + 1.

(X ′TD)j =


β + (XTB)j if j ∈ [n]

2hxb(j−1)/nc + (XTB)r if j ∈ [n+ 1, n(m+ 1)], r = ((j − 1) mod n) + 1.

Before the formal reduction, here is a brief intuition. Note that in (C,D) we have copied

(A + h,B + h) in the top-left m× n block, we call it first block now on. Since adding a constant

does not change NE of a game, if strategies from only the first block are played with non-zero

probability at a NE of (C,D), then they give a NE of (A,B) as well. Also, the payoff achieved at

such a NE are at least h, a solution of MaxPayoff, using Lemma 43.

To guarantee a NE in B0.5 for game (A,B) (solution of InBox), we make use of the blocks

added after the first block in both the directions. In particular, in Lemma 43, if ∃j ∈ [n], yj >

0.5 ∗σ(Y ), then for the first player her first m strategies are worse than those from block [mj+ 1 :

mj + m], forcing her to play only from her last mn strategies. This will force the second player

to move away from the first block too (or else he gets negative payoff), and thereby leading to a

NE where both play from the last mn strategies and both get zero payoff – also not a solution of
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MaxPayoff. We will use these observations crucially in the reduction.

We show that solutions of InBox in game (A,B), i.e., (X, Y ) such that X, Y ≤ 0.5, are

retained as NE of (C,D). The proof uses the fact that in C and D, top-left block encodes A and B

respectively.

Lemma 44. (A,B) has a NE (X, Y ) ∈ B0.5 iff (X ′, Y ′) = ((X, 0mn), (Y , 0mn)) is a NE of (C,D).

Proof. To prove forward direction, it suffices to check if strategy profile (X ′, Y ′) satisfies (4.2)

for game (C,D). We show the conditions for the first player, namely involving C, and proof for

the second player follows similarly. As last mn strategies in Y ′ are not played at all, we have

α = h
∑

j∈[n] yi −
∑

j∈[n+1,n(m+1)] y
′
j = h ∗ 1− 0 = h. This together with Lemma 43 gives

i ∈ [m], (CY ′)i = h+ (AY )i ⇒ max
i∈[m]

(CY ′)i = h+ max
i∈[m]

(AY )i .

For i ∈ [m+1,m(n+1)], let r = ((i−1) mod m)+1 and k = b(i−1)/mc. Then using Lemma

43 and the fact that yk ≤ 0.5, we have

(CY ′)i ≤ 2h(0.5) + (AY )r = h+ (AY )r = (CY ′)r .

In other words strategies [1 : m] give at least as much payoff as the rest. Since (X, Y ) is a

NE of game (A,B), if x′i = xi > 0 then (CY ′)i = h + (AY )i = h + maxk∈[m](AY )k =

maxk∈[m(n+1)](CY
′)k.

For the reverse direction, ∃i ∈ [m] s.t. x′i > 0 and hence ∀j ∈ [n], (CY ′)i ≥ (CY ′)mj+i ⇒

2hyj ≤ h⇒ yj ≤ 0.5. Similarly X ≤ 0.5 follows.

Lemma 44 maps a solution of InBox in game (A,B) to a NE of (C,D) where players play

only among their first m,n strategies respectively. Clearly, at such a NE both the players in game

(C,D) get at least h payoff, therefore it is also a solution of MaxPayoff in (C,D). Next we show
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a reverse mapping: a NE of (C,D) where both players play some of first m,n strategies, gives a

NE of game (A,B). Recall that for vector X , η(X) = X/σ(X).

Lemma 45. If (X ′, Y ′) is a NE of game (C,D) s.t. X = X ′[1 : m] and Y = Y ′[1 : n] are non

zero, then (η(X), η(Y )) is a NE for game (A,B), and (η(X), η(Y )) ∈ B0.5.

Proof. As σ(X), σ(Y ) > 0, to show (η(X), η(Y )) is a NE of (A,B) it suffices to show the fol-

lowing.

∀i ∈ [m], xi > 0 ⇒ (AY )i = maxk∈[m](AY )k , and

∀j ∈ [n], yj > 0 ⇒ (XTB)j = maxk∈[n](X
TB)k .

We show that the first one holds and the proof for the second follows similarly. Let

λ = maxk∈[m(n+1)](CY
′)k and λ′ = maxk∈[m](CY

′)k = α + max
k∈[m]

(AY )k (Using Lemma 43).

As ∃i ∈ [m], x′i > 0 we have λ′ = λ. Thus we get

∀i ∈ [m], xi > 0⇒ (CY ′)i = λ⇒ α + (AY )i = α + max
k∈[m]

(AY )k ⇒ (AY )i = max
k∈[m]

(AY )k .

For the second part, to the contrary suppose ∃j ∈ [n], (η(Y ))j =
yj

σ(Y )
> 0.5⇒ 2yj > σ(Y ).

Then for some i ∈ [m] we have x′i > 0 and (CY ′)i ≤ hσ(Y ) + (AY )i < 2hyj + (AY )i =

(CY ′)jm+i ≤ λ, a contradiction to (X ′, Y ′) being a NE of game (C,D).

Lemmas 44 and 45 imply that game (A,B) has a NE in B0.5 if and only if game (C,D) has a

NE where both players play some of first m,n strategies respectively. If we show that to get payoff

of at least h in the latter game, players have to play some of first m,n strategies, then clearly the

reduction will follow.

Lemma 46. Given a strategy profile (X ′, Y ′), if X ′TCY ′ ≥ h and X ′TDY ′ ≥ h then X = X ′(1 :

m) and Y = Y ′(1 : n) are non-zero.
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Proof. If Y = 0, then ∀i ∈ [m(n + 1)] we have (CY ′)i ≤ 0 using Lemma 43, and in turn

X ′TCY ′ ≤ 0. Similarly, if X = 0, then ∀j ∈ [n(m + 1)] we have (X ′TD)j ≤ 0, and then

X ′TDY ′ ≤ 0. Lemma follows using the fact that h > 0.

The next theorem follows using Lemmas 44, 45, and 46.

Theorem 25. Game (A,B) has a NE in B0.5 if and only if game (C,D) has a NE where every

player gets payoff at least h.

Next theorem shows reduction from InBox to Superset using Lemma 44.

Theorem 26. Game (A,B) has a NE in B0.5 if and only if game (C,D) has a NE where all the

strategies played with non-zero probability by the first and second player are from T1 = [1 : m]

and T2 = [1 : n] respectively.

Lemmas 44 and 45 imply that, one of the first m,n strategies are played with non-zero proba-

bility by respective players in game (C,D) if and only if game (A,B) has a NE in B0.5. Thus next

theorem gives a Turing reduction from InBox to Subset.

Theorem 27. Game (A,B) has a NE in B0.5 if and only if ∃i ∈ [m],∃j ∈ [n] such that for

T1 = {i} and T2 = {j}, game (C,D) has a NE where all strategies of T1 and T2 are played with

non-zero probability.

Leveraging on the intuition presented for the reduction on 2-player games, next we extend

Theorems 25, 26 and 27 to 3-player games in order to get the hardness results for the same.

4.4.2 3-Nash: InBox to MaxPayoff, Subset and Superset

Like in the two player case, given a 3-player game with m × n × p-dimensional payoff tensors

(A,B,C), we will create a game (D,E, F ) of size m(n + 1) × n(p + 1) × p(m + 1) and insert

the original game in the first block with h added. We start with the definitions, analogous that of

14 and 15.
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Definition 16. For i ∈ [m], j ∈ [n], k ∈ [p], and a real number h, define

A(i,:,:)+h : Tensor A with h added to the entries Aij′k′ ∀j′ ∈ [n],∀k′ ∈ [p],

A(:,j,:)+h : Tensor A with h added to the entries Ai′jk′ ∀i′ ∈ [m], ∀k′ ∈ [p], and

A(:,:,k)+h : Tensor A with h added to the entries Ai′j′k ∀i′ ∈ [m], ∀j′ ∈ [n].

Definition 17. Given a tensor T of size a× b× c and integers r, s, t s.t. a+ r− 1 ≤ m(n+ 1), b+

s−1 ≤ n(p+ 1) and c+ t−1 ≤ p(m+ 1), define [T ]r,s,t to be an m(n+ 1)×n(p+ 1)×p(m+ 1)

dimensional tensor where T is copied starting at position (r, s, t), and all other coordinates are set

to zero.

Construct game (D,E, F ) as follows, given (A,B,C) and a scalar h > 0.

D = [A+ h]1,1,1 + [(−1)m,n(p+1),mp]1,1,p+1 +
∑

j∈[n][A(:,j,:)+2h]jm+1,1,1 ,

E = [B + h]1,1,1 + [(−1)mn,n,(m+1)p]m+1,1,1 +
∑

k∈[p][B(:,:,k)+2h]1,kp+1,1 ,

F = [C + h]1,1,1 + [(−1)m(n+1),np,p]1,n+1,1 +
∑

i∈[m][C(i,:,:)+2h]1,1,in+1 .

(4.5)

We will mimic the proof of 2-Nash to 3-Nash next, i.e., Lemmas 43, 44, and 45. In the proof

of each of these lemmas, argument for the second player follows similar to that for the first player

due to symmetry in the construction of the reduced game. Therefore, in what follows we will focus

on the first player again, and argument for the second and third player follows similarly.

Recall that πi(X), for X ∈∆ represents the payoff of player i when played profile is X . Since

we will be dealing with two games in this section, in order to resolve ambiguity we super-script it

with the payoff tensor under consideration. To denote payoff from a pure-strategy i with respect

to tensor A, when other two are playing Y ,z we use πA1 (i, Y , z), even if Y ,z are not probability

distributions.

Next lemma follows from the construction of game (D,E, F ) in (4.5).

Lemma 47. Let Y ′ and z′ be vectors of sizes n(p+1) and p(m+1) respectively. Let Y = Y ′[1 : n],
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z = z′[1 : p] and α = h ∗ σ(Y )σ(z)−∑j∈[p+1,p(m+1)] z
′
j . We have

πD1 (i, Y ′, z′) =


α + πA1 (i, Y , z) if i ∈ [m]

2hyb(i−1)/mc + πA1 (r, Y , z) if i ∈ [m+ 1,m(n+ 1)],

where r = ((i− 1) mod m) + 1

.

Let B0.5 = [0, 0.5]m+n+p. Using the payoff structure in game (D,E, F ) we show the next

lemma.

Lemma 48. Game (A,B,C) has a NE (X, Y ,z) ∈ B0.5 iff (X ′, Y ′, z′) = ((X, 0mn), (Y , 0np), (z, 0mp))

is a NE of the game (D,E, F ).

Proof. The proof is similar to that of Lemma 44. For the forward direction, we show the first

condition of (4.3) characterizing 3-Nash, and other two follow similarly. Note that again α = h,

and hence maxi∈[m] π
D
1 (i, Y ′, z′) = h+maxi∈[m] π

A
1 (i, Y , z) (Using Lemma 47). Further, ∀j ∈ [n]

and ∀i ∈ [m], we have πD1 (jm+ i, Y ′, z′) = 2hyj+πA1 (i, Y , z) ≤ h+πA1 (i, Y , z) = πD1 (i, Y ′, z′).

Thus, the first m strategies are at least as good as last [m + 1,m(n + 1)]. We get ∀i ∈ [m(n +

1)], x′i > 0 ⇒ πD1 (i, Y ′, z′) = maxs∈[m(n+1)] π
D
1 (s, Y ′, z′). Argument for the second and third

player follows similarly using the fact that z ≤ 0.5 and X ≤ 0.5 respectively.

For the reverse direction, ∃i ∈ [m], x′i > 0 and hence ∀j ∈ [n], πD1 (i, Y ′, z′) ≥ πD1 (mj +

i, Y ′, z′) ⇒ 2hyj ≤ h ⇒ yj ≤ 0.5. Similarly X ≤ 0.5 and z ≤ 0.5 follows by arguing for third

and second players respectively.

Next we obtain a solution of InBox for game (A,B,C) from a NE of (D,E, F ) where players

play some strategies from the first m, n and p strategies respectively with non-zero probability.

Lemma 49. If (X ′, Y ′, z′) is a NE of game (D,E, F ) such that the vectors X = X ′[1 : m],

Y = Y ′[1 : n], and z = z′[1 : p] are non-zero, then (η(X), η(Y ), η(z)) is a NE for game

(A,B,C), and (η(X), η(Y ), η(z)) ∈ B0.5.
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Proof. As σ(X), σ(Y ), σ(z) > 0, profile (η(X), η(Y ), η(z)) is well-defined. To show that it is a

NE of game (A,B,C) it suffices to show the following for the first player, and similar argument

follows for the other two players.

∀i ∈ [m], xi > 0 ⇒ πA1 (i, Y , z) = max
l∈[m]

πA1 (l, Y , z) .

Let λ = maxk∈[m(n+1)] π
D
1 (i, Y ′, z′), and λ′ = maxk∈[m] π

D
1 (k, Y ′, z′) = α+maxk∈[m] π

A
1 (k, Y ,z)

(Using Lemma 47). As ∃i ∈ [m], x′i > 0 we have λ′ = λ. Thus we get

∀i ∈ [m], xi > 0 ⇒ x′i > 0

⇒ πD1 (i, Y ′, z′) = λ

⇒ α + πA1 (i, Y , z) = α + maxk∈[m] π
A
1 (k, Y ′, z′)

⇒ πA1 (i, Y ′, z′) = maxk∈[m] π
A
1 (k, Y ′, z′) .

For the second part, to the contrary suppose ∃j ∈ [n], (η(Y ))j =
yj

σ(Y )
> 0.5 ⇒ 2yj >

σ(Y ). Then for some i ∈ [m] we have x′i > 0 and πD1 (i, Y ′, z′) ≤ hσ(Y ) + πA1 (i, Y ′, z′) <

2hyj + πA1 (i, Y ′, z′) = πD1 (jm+ i, Y ′, z′) ≤ λ, a contradiction to (X ′, Y ′, z′) being a NE of game

(D,E, F ).

Now if we can relate the NE of (D,E, F ) where at least one of the first m, n, and p strategies

are played by the first, second, and third players respectively, and the payoff received at the NE by

all the players, then InBox to MaxPayoff reduction will follow.

Lemma 50. Given a strategy profile d = (X ′, Y ′, z′) of game (D,E, F ), if πi(d) ≥ h > 0, i =

1, 2, 3, then X = X ′(1 : m), Y = Y ′(1 : n) and z = z′(1 : p) are non-zero.

Proof. If Y = 0, then ∀i ∈ [m(n + 1)] we have πD1 (i, Y ′, z′) ≤ 0 using Lemma 47, and in turn

π1(d) ≤ 0. Similarly, if z = 0 then we get π2(d) ≤ 0, and if X = 0 then π3(d) ≤ 0. Lemma

follows using the fact that h > 0.
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The next theorem, for InBox to MaxPayoff reduction, follows using Lemmas 48, 49, and 50.

Theorem 28. Game (A,B,C) has a NE in B0.5 if and only if game (D,E, F ) has a NE where

every player gets payoff at least h.

The next theorem showing reduction from InBox to Superset follows using Lemma 48.

Theorem 29. Game (A,B,C) has a NE in B0.5 if and only if game (D,E, F ) has a NE where all

the strategies played with non-zero probability by players are from T1 = [1 : m], T2 = [1 : n] and

T3 = [1 : p] respectively.

Next theorem follows using Lemmas 48 and 49, and gives a Turing machine reduction (many-

to-one) from InBox to Subset.

Theorem 30. Game (A,B,C) has a NE in B0.5 if and only if ∃i ∈ [m],∃j ∈ [n],∃k ∈ [p] such

that for T1 = {i}, T2 = {j} and T3 = {k}, game (D,E, F ) has a NE where all strategies of

T1, T2, T3 are played with non-zero probability.

From Theorem 30, it follows that to solve InBox for game (A,B,C) we will need to solve

(mnp) many instances of Subset in game (D,E, F ), we get many-to-one reduction from InBox

to Subset. Theorems 28, 29 and 30 together with ∃R-hardness of InBox in 3-Nash, and Theorem

23 gives the next result.

Theorem 31. The problems of MaxPayoff, Subset and Superset are ∃R-complete in 3-player

games.

A 3-player game can be reduced to a k-player game for k > 3 trivially, without changing its

set of NE, by adding k − 3 dummy players with one strategy each (and payoff tensor Ai = [h] to

get reduction for MaxPayoff). And therefore, the next theorem follows from Theorem 31.

Theorem 32. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3, the problems of MaxPayoff,

Subset and Superset are ∃R-complete.
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In the next section we show ∃R-completeness for NonUnique, by reducing MaxPayoff to

NonUnique in 3-player games.

4.4.3 MaxPayoff to NonUnique

In this section we reduce MaxPayoff to NonUnique in a 3-player game. Let (A,B,C) be a given

game, and for a given rational number h > 0, we are asked to check if it has a NE where all three

players get payoff at least h. We will reduce this problem to checking if game (D,E, F ) has more

than one equilibrium. TensorsA,B,C are of sizem×n×p, wherem,n, p are number of strategies

of player 1, 2, 3 respectively. Let m′ = m + 1, n′ = n + 1, p′ = p + 1, and D,E, F be of size

m′ × n′ × p′, where

∀i ∈ [m], j ∈ [n], k ∈ [p], Dijk = Aijk, Eijk = Bijk, Fijk = Cijk

∀j ∈ [n′], k ∈ [p′], Dm′jk = h

∀i ∈ [m′], k ∈ [p′], Ein′k = h

∀i ∈ [m′], j ∈ [n′], Fijp′ = h .

Rest of the entries in D,E, F are set to zero. Basically, we added one extra strategy for each

player and made sure that the player gets payoff h when she plays this extra strategy regardless of

what others play.

Lemma 51. Let (X ′, Y ′, z′) be a strategy profile for game (D,E, F ), and X = X ′(1 : m), Y =

Y ′(1 : n) and z = z′(1 : p). Then,

• πD1 (m′, Y ′, z′) = h, πE2 (X ′, n′, z′) = h, and πF3 (X ′, Y ′, p′) = h.

• ∀i ∈ [1 : m], πD1 (i, Y ′, z′) = πA1 (i, Y , z). ∀j ∈ [1 : n], πE2 (X ′, j,z′) = πB2 (X, j,z).

∀k ∈ [1 : p], πF3 (X ′, Y ′, k) = πC3 (X, Y , k).

Proof. The first part follows by construction. For the second part, we show ∀i ∈ [1 : m], πD1 (i, Y ′, z′) =
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πA1 (i, Y , z). The rest can be proven similarly. Recall that n′ = n+ 1 and p′ = p+ 1. We have

πD1 (i, Y ′, z′) =
∑

j∈[n′],k∈[p′] Dijky
′
jz
′
k

=
∑

j∈[n],k∈[p] Dijkyjzk +
∑

k∈[p′] Din′ky
′
n′z
′
k +

∑
j∈[n′] Dijp′y

′
jz
′
p′

=
∑

j∈[n],k∈[p] Aijkyjzk

= πA1 (i, Y , z) ,

where the third equality holds because Dijk = Aijk, ∀j ∈ [n],∀k ∈ [p], and Dijk = 0 if either

j = n′ or k = p′.

Next we show that game (D,E, F ) has a trivial pure NE where all players play their extra

strategy.

Lemma 52. Pure-strategy profile (m′, n′, p′) is a NE of game (D,E, F ).

Proof. When players two and three are playing strategy n′ and p′ respectively, then ∀i ∈ [m] payoff

Din′p′ of the first player is zero, while Dm′n′p′ = h > 0. Therefore, playing m′ is the best response

for her. Similarly, we can argue for players two and three.

Except for the trivial NE established in Lemma 52 if game (D,E, F ) has another equilibrium,

then we need to construct a solution of MaxPayoff in game (A,B,C).

Lemma 53. If (X ′, Y ′, z′) 6= (m′, n′, p′) is a NE of game (D,E, F ), then (η(X), η(Y ), η(z)) is a

NE of game (A,B,C) with payoff at least h to each player, where X = X ′(1 : m), Y = Y ′(1 : n)

and z = z′(1 : p).

Proof. First we show that σ(X), σ(Y ), σ(z) > 0. To the contrary, suppose z = 0 and wlog

X 6= 0. Then, z′p′ = 1, and ∃i ∈ [m], x′i > 0 with payoff πD1 (i, Y ′, z′) = πA1 (i, Y , z) = 0 (Lemma

51), a contradiction because player one will deviate tom′ that always fetches payoff h > 0. Similar

contradiction can be derived if σ(Y ) = 0 or σ(X) = 0.
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We will show that η(X) is a best response of the first player when other two are playing η(Y )

and η(z) respectively in (A,B,C), and that her payoff is at least h. Argument for other players

follow similarly. Let λ = maxs∈[m]

∑
j∈[n],k∈[p] Asjkyjzk. It suffices to show that ∀i ∈ [m], xi >

0 ⇒ ∑
j∈[n],k∈[p] Aijkyjzk = λ and λ ≥ h, because normalization will increase the payoff of all

the pure-strategies, and that too by the same factor.

Let λ′ = maxi∈[m′] π
D
1 (i, Y ′, z′), then λ = λ′ because ∃i ∈ [m], xi > 0 and payoff at i is λ.

xi > 0⇒ x′i > 0⇒ πD1 (i, Y ′, z′) = λ′ ⇒
∑

j∈[n],k∈[p]

Asjkyjzk = λ .

Now since each player gets payoff h from their last strategy in game (D,E, F ) (Lemma 51),

other strategies played with non-zero probabilities have to fetch payoff at least h and hence λ =

λ′ ≥ h follows.

We also need to establish that if game (A,B,C) has a feasible solution for MaxPayoff then

game (D,E, F ) has more than one equilibrium.

Lemma 54. If (X, Y ,z) is a Nash equilibrium of (A,B,C) where every player gets payoff at least

h, then ((X|0), (Y |0), (z|0)) is a NE of game (D,E, F ).

Proof. Let X ′ = (X|0), Y ′ = (Y |0) and z′ = (z|0). We will show that X ′ is a best response

for player one against Y ′, z′ in (D,E, F ), and cases for other two players follow similarly. Let

λ = maxi∈[m] π
A
1 (i, Y , z) and λ′ = maxi∈[m′] π

D
1 (i, Y ′, z′). Since λ ≥ h and πD1 (m′, Y ′, z′) = h

(Lemma 51) we get λ = λ′, and the lemma follows.

Using Lemmas 52, 53 and 54, we get the next theorem.

Theorem 33. Game (A,B,C) has a NE where every player gets at least h payoff iff game (D,E, F )

has more than one equilibrium.
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As argued in Section 4.4.2, a 3-player game can be trivially reduced to a k-player game, for

k > 3, by adding k − 3 dummy players. Therefore, next theorem follows using Theorems 23, 31

and 33.

Theorem 34. Given a k-player game (A1, . . . , Ak), for a constant k ≥ 3, the problem of NonUnique

is ∃R-complete.

Since there is no reduction known from 3-Nash to symmetric 3-Nash, results of this section do

not follow directly for symmetric 3-Nash, or symmetric k-Nash for that matter. In the next section

we show ∃R-completeness results for symmetric Nash equilibria in 3-player symmetric games.

4.5 Symmetric 3-Nash: ∃R-Completeness

Containment in ∃R for various decision versions of symmetric 3-Nash is shown in Section 4.3

(Theorem 24). In this section, we show ∃R-hardness for Subset and Superset for symmetric

3-Nash, by giving a reduction from 3-Nash to symmetric 3-Nash.

Let the given game be (A,B,C), where each tensor is of size m × n × p. Let D denote the

reduced symmetric game, which will be of size l × l × l, where l = m + n + p. Let (X, Y , z)

be a NE of (A,B,C). We will show that there are positive numbers α, β, γ such that (d,d,d)

is a NE of the reduced game, where d is a l-dimensional vector (αX|βY |γz). Furthermore, let

(d,d,d) be a NE of the reduced game, where d decomposes into vectors X ′, Y ′, z′ of dimension

m,n, p respectively. Scaling these vectors gives a NE (X, Y , z) of game (A,B,C). This will yield

mapping in both directions.

Essential to this reduction is the 3×3×3 symmetric gameG(a, b, c) given below. We represent

the payoff tensor of the first player by three 3× 3 matrices, one for each of her pure strategy. Here
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a, b, c are any non-negative reals.


0 0 0

0 1 a

0 a 0

 ,


0 0 b

0 0 0

b 0 1

 ,


1 c 0

c 0 0

0 0 0

 . (4.6)

Lemma 55. If (α, β, γ) is a symmetric NE of game G, then α, β, γ > 0.

Proof. We will first show that G has no symmetric NE of support one or two. This involves a

case analysis of which we present one representative case each. First observe that (α, β, γ) =

(1, 0, 0) cannot be a symmetric NE, since player 1 should play (0, 0, 1) if the other two players

play the given strategy. Next consider the strategy (α, β, 0) with the first two components non-

zero. Because the matrix corresponding to second strategy of the first player has all zeros in the

upper left 2 × 2 sub-matrix, she will be strictly better off playing the third strategy instead of the

second. Hence any symmetric NE of G must be of full support.

From G, we derive a symmetric game D, which is of size l × l × l, by blowing up each of

the three strategies of G to m,n, p number of strategies respectively. Copy 0s and 1s to their

respective blocks, and replace a, b, c with tensors A,B,C respectively after appropriate rotation.

For example we have G(1, 2, 3) = a, which is replaced by A as is, while G(1, 3, 2) = a is replaced

by A after rotation so that first, second and third dimensions correspond to players one, three

and two respectively. In general, G(i1, i2, i3) is replaced by an appropriate tensor after rotation

such that first, second and third dimensions correspond to players i1, i2 and i3 respectively where

i1 6= i2 6= i3 6= i1 . Following is the formal description of D
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Dstu =

1 ≤ s, t, u ≤ l



As(t−m)(u−m−n) if s ≤ m & m < t ≤ m+ n & m+ n < u ≤ l

As(u−m)(t−m−n) if s ≤ m & m < u ≤ m+ n & m+ n < t ≤ l

Bt(s−m)(u−m−n) if t ≤ m & m < s ≤ m+ n & m+ n < u ≤ l

Bu(s−m)(t−m−n) if u ≤ m & m < s ≤ m+ n & m+ n < t ≤ l

Ct(u−m)(s−m−n) if t ≤ m & m < u ≤ m+ n & m+ n < s ≤ l

Cu(t−m)(s−m−n) if u ≤ m & m < t ≤ m+ n & m+ n < s ≤ l

1 if s ≤ m & m < t = u ≤ m+ n,

1 if m < s ≤ m+ n & m+ n < t = u ≤ l

1 if m+ n < s ≤ l & t = u ≤ m

0 Otherwise .

(4.7)

In the above game, suppose two players are playing mixed-strategy d = (X|Y |z), where

X, Y ,z are of dimensions m,n, p respectively. Then from strategy s the third player receives

payoff:

πD(s,d) =


(σ(Y ))2 + 2

∑
j∈[n],k∈[p] Asjkyjzk, if s ≤ m,

(σ(z))2 + 2
∑

i∈[m],k∈[p]Biskxizk if m < s ≤ m+ n

(σ(X))2 + 2
∑

i∈[m],j∈[n]Cijsxiyj if m+ n < s ≤ l

. (4.8)

Wlog we assume that A,B,C ≥ 0 and hence D ≥ 0. We consider 0
0

as 0.

Lemma 56. If d = (X|Y |z) is a SNE of game D then (σ(X), σ(Y ), σ(z)) is a NE of G(a, b, c)

where a =
maxs≤m

∑
jk Asjkyjzk

σ(Y )σ(z)
, b =

maxs≤n
∑

i,k Biskxizk

σ(X)σ(z)
, c =

maxs≤p
∑

i,j Cijsxiyj

σ(X)σ(Y )
.
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Proof. Let α = σ(X), β = σ(Y ) and γ = σ(z). Clearly, the payoffs from three strategies of G

are respectively β2 +2aβγ, γ2 +2bαγ, and α2 +2cαβ. Observe that these are also the best payoffs

among strategies [1 : m], [m + 1 : m + n] and [m + n + 1 : l] respectively in game D. Let the

maximum among these three be λ. Then, we have

α = σ(X) > 0⇒ ∃i ≤ m, xi > 0⇒ πD(i,d) = β2 + 2aβγ = λ .

Similarly, we can show that if β > 0 then payoff at the second strategy is λ, and if γ > 0 then

the third gives λ. Hence (α, β, γ) is a symmetric NE of game G.

Lemmas 55 and 56 imply that at any SNE d = (X|Y |z), all three components X, Y , z of the

strategy profile are non-zero. Next we show that normalizing each gives a NE of the original game

(A,B,C). Recall the notations σ(X) =
∑

i xi and η(X) = X
σ(X)

.

Lemma 57. If d = (X|Y |z) is a SNE of gameD, then σ(X), σ(Y ), σ(z) > 0, and (η(X), η(Y ), η(z))

is a NE of game (A,B,C).

Proof. From Lemmas 55 and 56 it follows that vectors X , Y , and z are non-zero. Thus the first

part follows.

Let X ′ = η(X), Y ′ = η(Y ) and z′ = η(z); clearly these are well-defined due to the first part.

We will show that (X ′, Y ′, z′) satisfies conditions (4.3) characterizing NE of game (A,B,C). We

do this for the first condition, the rest two follow similarly. Let λ denote the maximum payoff of a

player in symmetric game D when others are playing d. For strategy s ∈ S1 of the first player, we

have
x′s > 0 ⇒ xs > 0

⇒ πD(s,d) = λ (Using (4.8) and (4.3))

⇒ πD(s,d) ≥ πD(s′,d), ∀s′ ≤ m

⇒ ∑
j∈[n],k∈[p] Asjky

′
jz
′
k ≥

∑
j∈[n],k∈[p] As′jky

′
jz
′
k,∀s′ ≤ m .
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The mapping from SNE of game D to NE of game (A,B,C) established in Lemma 57 implies

that computing SNE in symmetric games is no easier than computing a NE in normal games. We

extend this reduction to k-Nash in Section 4.7. Next, we show a mapping in reverse direction,

i.e., from NE of (A,B,C) to a SNE of D, to obtain ∃R-hardness results for a number of decision

problems in symmetric 3-Nash.

Lemma 58. Let (X, Y ,z) be a NE of (A,B,C), and let (α, β, γ) be a NE of game G(a, b, c)

where a, b, c are set to payoffs of the first, second and third players respectively at the NE of game

(A,B,C). Then d = (αX|βY |γz) is a SNE of game D.

Proof. Clearly, a = maxi∈S1

∑
j,k Aijkyjzk, b = maxj∈S2

∑
i,k Bijkxizk and c = maxi,j Cijkxiyj .

Let X ′ = αX , Y ′ = βY and z′ = γz, then clearly d = (X ′|Y ′|z′) is a mixed-strategy, i.e.,

σ(d) = 1. Since α, β, γ > 0 (Lemma 55), we have X ′, Y ′, z′ 6= 0. In symmetric game D,

let a′ = maxs≤m π
D(s,d) = β2 + 2aβγ, b′ = maxm<s≤m+n π

D(s,d) = γ2 + 2bαγ, and c′ =

maxm+n<s≤l π
D(s,d) = α2 + 2cαβ. Note that a′, b′, c′ are payoffs from the three strategies at

(α, β, γ) in game G. Since (α, β, γ) is a NE of G, we have a′ = b′ = c′ (using Lemma 55).

As (X, Y , z) is a NE of game (A,B,C), we get

∀i ∈ [m], x′i > 0⇒ xi > 0⇒
∑
j,k

Aijkyjzk = a⇒ πD(i,d) = a′ .

Similarly we get, ∀j ∈ [n], y′j > 0⇒ πD(m+ j,d) = b′, and ∀k ∈ [p], z′k > 0⇒ πD(m+ n+

k,d) = c′. Lemma follows using the fact that a′ = b′ = c′.

The next theorem summaries the relation between NE of game (A,B,C) and SNE of game D,

and follows using Lemmas 57 and 58.

Theorem 35. Profile d = (X|Y |z) is a SNE of game D iff (η(X), η(Y ), η(z)) is a NE of game

(A,B,C).
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We showed a number of ∃R-completeness results for 3-Nash in Section 4.4. Since support of

a NE remains intact in the reduction from 3-Nash to symmetric 3-Nash as shown in Theorem 35,

next we show ∃R-completeness of Subset and Superset problems for symmetric 3-Nash.

Theorem 36. Given a symmetric game D and a subset T ⊂ S, it is ∃R-complete to check if there

exists a SNE X s.t. xs > 0, ∀s ∈ T (Subset).

Proof. Theorem 31 establishes that checking if game (A,B,C) has a NE where strategies in Ti ⊂

Si, i = 1, 2, 3 are played with non-zero probability is ∃R-complete. Let l = m+ n+ p. Construct

a symmetric game D of size l × l × l from G of (4.6) by blowing it up and replacing a, b and c

with A, B, and C respectively. Construct D as given in (4.7).

Let T = T1 ∪ {j + m | j ∈ T2} ∪ {k + m + n | k ∈ T3}. Using Theorem 35 it follows that

game (A,B,C) has a NE where strategies of Ti are played with positive probability if and only if

game D has a symmetric NE where strategies of T are played with positive probability. Since size

of D is O(size(A,B,C)), ∃R-hardness follows.

Containment in ∃R follows from Theorem 24.

The next theorem follows similarly using Theorems 31 and 35.

Theorem 37. Given a symmetric game D and a subset T ⊂ S, it is ∃R-complete to check if there

exists a SNE X s.t. xs = 0, ∀s ∈ S \ T (Superset).

4.6 Symmetric 3-Nash: FIXPa-completeness

Even though Theorem 35 reduces 3-Nash, which is known to be FIXP-complete [68], to symmetric

3-Nash, we do not get FIXP-harness for the latter. This is because to obtain a solution, say X , of

former requires division among the coordinates of a solution, say d, of the latter. While FIXP

reduction requires that every xi is a linear function of some dj , with rational coefficients [68] (in

order to handle irrational solutions under Turing reduction). Since there always exists a strong
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approximate solution that constitutes only rational numbers, such a requirement is not needed for

FIXPa. Leveraging on this, we give a reduction for strong approximation in 3-Nash to strong

approximation in symmetric 3-Nash in this section, to get FIXPa-completeness for the latter.

First, for containment in FIXPa we show a more general result, namely for symmetric k-Nash,

k ≥ 3. And later show the hardness for the 3-player case. We show that symmetric k-Nash, for

a constant k, is in FIXP, and consequently strong approximation is in FIXPa. Let the given game

be represented by tensor A and let the set of pure strategies of players be S. At a symmetric NE

all players play the same mixed-strategy. Consider a function F : ∆ → ∆ as follows, where

X ′ = F (X) for an X ∈ ∆:

∀s ∈ S, x′s =
xs + max{πA(s,X)− πA(X), 0}

1 +
∑

s max{πA(s,X)− πA(X), 0} . (4.9)

Nash [84] proved that fixed-points of F are exactly the symmetric NE of game A.

Theorem 38. The problem of computing a symmetric NE in a symmetric k-player game, for a

constant k, is in FIXP, and corresponding strong approximation is in FIXPa.

Proof. The operations used in defining F are +,−, ∗, / and max. Further, domain of F is convex

and compact, and function is well-defined over the domain. Thus, finding fixed-points of F is in

FIXP by definition. Since description of F is O(size(A)), this together with Nash’s result [84]

imply that finding a symmetric NE of A is also in FIXP. Further, for a given ε > 0 if X is ε-near to

an actual fixed-point X∗, i.e., |X −X∗|∞ < ε, then X is also a strong approximate symmetric NE

of game A. Containment in FIXPa follows.

For FIXPa-hardness result we need to compute a strategy profile (X ′, Y ′, z′) that is ε-near to

an actual equilibrium of (A,B,C), given a symmetric profile d ε′-near to a symmetric NE d∗ of

D, where distances are measured in l∞ norm.

In reduction of Theorem 35, obtaining solution of (A,B,C) involves e.g., dividingX by σ(X).
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If the latter is very small, this may give us a vector that is very far from a solution of (A,B,C),

even when d may be close to d∗. To get around this, next we make sure that σ(X) is big enough.

Wlog, we assume that all entries ofA,B,C ∈ [0, 0.1], as adding constants toA,B,C or scaling

them by positive constants does not change its set of NE. In that case, payoffs of a player at its

NE is in [0, 0.1]. The a, b, c of Lemma 56 are also in [0, 0.1]. Thus, if we can lower bound the NE

strategy (α, β, γ) of game G with such a, b, c then we get a lower bound on σ(X), σ(Y ) and σ(z)

as desired.

Lemma 59. If (α, β, γ) is a NE of game G(a, b, c), where a, b, c ∈ [0, 0.1], then 1
4
≤ α, β, γ ≤ 1

2
.

Proof. Note that α, β, γ > 0 because of Lemma 55. Therefore each of the three strategies fetch

the same payoff, i.e., β2 + 2aβγ = γ2 + 2bαγ = α2 + 2cαβ. We show that none of α, β, γ < 1/4,

and the upper bound follows because α + β + γ = 1. There are two cases for each, and we show

them for α. For β and γ they follow similarly.

Case I: α < 1/4, and β, γ ≥ 1/4.

As β+γ ≥ 3/4, wlog let β ≥ 3/8. Then, we have β2+2aβγ ≥ 9/64+3a/16, and α2+2cαβ ≤ 1/16+c/2.

The above equality gives 9/64 + 3a/16 ≤ 1/16 + c/2 ⇒ 5/64 ≤ c/2 − 3a/16 ⇒ c ≥ 10/64 ≥ 0.1, a

contradiction.

Case II: α, γ < 1/4, and β > 1/2.

β2+2aβγ ≥ 1/4 and γ2+2cαγ ≤ 1+2c/16. Thus, we have 4 ≤ 1+2c⇒ c ≥ 3/2, a contradiction.

Next we show that strong approximate symmetric NE of gameD maps to a strong approximate

NE of (A,B,C), under the mapping of Theorem 35.

Lemma 60. Let d∗ = (X∗|Y ∗|z∗) be a symmetric Nash equilibrium of gameD, and d = (X|Y |z)

be such that |d − d∗|∞ ≤ ε. Then,
∣∣∣ xi
σ(X)

− x∗i
σ(X∗)

∣∣∣ ≤ ε′, ∀i;
∣∣∣ yj

σ(Y )
− y∗j

σ(Y ∗)

∣∣∣ ≤ ε′, ∀j; and∣∣∣ zk
σ(z)

− z∗k
σ(z∗)

∣∣∣ ≤ ε′, ∀k, where ε = ε′

20l
.
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Proof. Lemmas 56 and 59 give us 1
4
≤ σ(X∗) ≤ 1

2
. Using this we obtain bounds on σ(X).

∀i ≤ m, |xi − x∗i | ≤ ε⇒ |σ(X)− σ(X∗)| ≤ mε⇒ σ(X∗)−mε ≤ σ(X) ≤ σ(X∗) +mε

Assuming ε < 1
20m

, we get that 1
5
≤ σ(X) ≤ 2

3
. Next consider the quantity we wish to bound.

∣∣∣ xi
σ(X)

− x∗i
σ(X∗)

∣∣∣ ≤ 20|xi
∑

k x
∗
k − x∗i

∑
k xk|

≤ 20|xi(mε+
∑

k xk)− (xi −mε)
∑

k xk|

≤ 20(mε(xi +
∑

k xk))

≤ 20(m+ 1)ε ≤ ε′ .

Similar argument suffices to show ∀j,
∣∣∣ yj

σ(Y )
− y∗j

σ(Y ∗)

∣∣∣ ≤ ε′, and ∀k,
∣∣∣ zk
σ(z)

- z∗k
σ(z∗)

∣∣∣ ≤ ε′.

From Theorem 35 we know that a symmetric NE d∗ = (X∗|Y ∗|z∗) maps to a NE (X ′∗, Y ′∗, z′∗) =

(η(X∗), η(Y ∗), η(z∗))of game (A,B,C). Lemma 60 implies that finding a profile (X ′, Y ′, z′) that

is ε′ near to (X ′∗, Y ′∗, z′∗), for any ε′ < 1 reduces to finding a symmetric profile d that is ε′

20l
near

to d∗. Clearly, there is such a d with size poly{size(A,B,C), log( 1
ε′

)}, and therefore it can be

mapped to a solution of (A,B,C) in polynomial time. Since, such an approximation in 3-Nash is

FIXPa-hard [68], and symmetric 3-Nash is in FIXP (Theorem 38), the next theorem follows.

Theorem 39. Symmetric 3-Nash is FIXPa-complete.

Since there is no trivial reduction from symmetric 3-player game to symmetric k-player game,

in the next section we extend Theorems 36, 37 and 39 to symmetric k-Nash, to obtain all the results

for the latter.

4.7 Symmetric k-Nash: ∃R and FIXPa Completeness

Building on the construction of Section 4.5, in this section we reduce k-Nash to symmetric k-

Nash. Given a k-player game A = (A1, . . . , Ak) we construct a symmetric game D where the
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set of strategies of each player is S = ∪iSi, such that NE of game A maps to symmetric NE of

game D, and vice-versa. Note that D will be a k-dimensional tensor with l =
∑

imi coordinates

in each dimension, where mi = |Si|. First we construct a symmetric game G (similar to that

of (4.6)), which has now k-players each with k strategies. As players are identical in symmetric

games, the payoff of a player from her pure-strategy depends on which strategies are played by

how many players; it doesn’t matter who played what. Therefore, the non-zero entries of G may

be represented as follows, where a1, . . . , ak are non-negative numbers.

G(i, i+ 1, . . . , i+ 1) = 1, ∀i < k; G(k, 1, . . . , 1) = 1;

G(i, {1, . . . , i− 1, i+ 1, . . . , k}) = ai,∀i ≤ k,∀ permutations of {1, . . . , i− 1, i+ 1, . . . , k};

Set the rest of entries of G to zero.

Similar to Lemma 55, it follows that all symmetric NE of G are of full support. Next, we can

blow up G to construct D. Note that G is a k-dimensional tensor with length k in each dimension,

i.e., for any (i1, . . . , ik)
th entry of G each ij ∈ [k]. In every dimension, jth element will represent

jth player of game A when mapped toD, and therefore in game D it will be replaced bymj = |Sj|

many elements. ThusD will be k-dimensional tensor with length l =
∑k

j=1 mj in each dimension.

If G(i1, . . . , ik) is zero or one, then we replace it by a k-dimensional tensor of all zeros or

all ones respectively of dimension mi1 × · · · × mik . Note that if G(i1, . . . , ik) = ai for some

i ∈ [k], then set {i1, . . . , ik} = [k], i.e., every player is represented. We will replace this entry in

G by tensor Ai from game A after appropriate rotation so that its jth dimension corresponds to jth

player.

Like Lemma 56 we can show that if d = (X1| . . . |Xk) is a symmetric NE of game D then

(σ(X1), . . . , σ(Xk)) is a symmetric NE of game G, thereby showing that each of these sums are

strictly positive. Here ai is set to the best payoff achieved among the strategies of X i divided by

Πj 6=iσ(Xj). Further, d being a NE it ensures that if a coordinate j of X i is non-zero then payoff

from jth strategy, among strategies corresponding to X i is the best. This sets the stage to obtain
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NE of game A from d, namely, (η(X1), . . . , η(Xk)) (Similar to Lemma 57).

For the reverse mapping, let X = (X1, . . . , Xk) be a NE of game A, and let α = (α1, . . . , αk)

be a symmetric NE of G where ai is set to the payoff player i receives at the given NE of A. Then,

it follows that d = (α1X
1| . . . |αkXk) is a symmetric NE of D. The brief reason is as follows: the

best payoff from ith block of strategies is a′i = αk−1
i+1 + (k − 1)!aiΠj 6=iαi, and X being a NE of A,

non-zero strategies of X i fetch best payoff to player i, namely ai. Hence, in d the strategies played

with non-zero probability within block i fetch payoff a′i. Since ai is the maximum payoff of player

i from any of its pure strategies, a′i is also maximum among the payoffs from the strategies within

the block. Furthermore, a′i is also the payoff from ith strategy in game G, and α being a NE with

full support, it ensures that all a′is are same. Thus, in d best payoffs are the same across blocks,

and therefore it is a symmetric NE of game D.

The next theorem follows from the above discussion (of this section).

Theorem 40. Profile d = (X1| . . . |Xk) is a symmetric NE of gameD if and only if (η(X1), . . . , η(Xk))

is a NE of game (A1, . . . , Ak).

Using Theorem 40 together with Theorems 24 and 31 we get the following ∃R-completeness

results.

Theorem 41. For symmetric k-Nash, problems Subset and Superset are ∃R-complete, where

k ≥ 3 is a constant.

A normal form k-player game can be reduced to k+1-player game trivially by adding a dummy

player with one strategy and any payoff, and therefore FIXPa-hardness of Theorem ?? extends to

k-Nash for k ≥ 3. However, such a reduction is not possible in case of symmetric games, because

the resulting game has to satisfy the symmetry conditions (see Section 4.2.1). Therefore, FIXPa-

hardness for symmetric 3-Nash does not extend to symmetric k-Nash for k > 3. We show this

result using the fact that k-Nash is FIXPa-hard together with Theorem 40.
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As done in Section 4.6, we need to lower bound each σ(X i) for a given symmetric NE d =

(X1| . . . |Xk) of game D. Similar to Lemma 59, we show the following. Define,

Γ =
1

(k − 1)!

((
k

k − 1

)(k−1)

− 1

)
.

Lemma 61. Let (α1, . . . , αk) be a NE of game G with ai ∈ [0, Γ], ∀i ∈ [k], then 1
k+1
≤ αi ≤

1
k−1

, ∀i ∈ [k].

Proof. Suppose not, and wlog let α1 <
1

k+1
. Then ∃i 6= 1, αi >

k
k2−1

, let it be i = 2 (wlog). Then

the payoff of first player from strategy one is:

α
(k−1)
2 + (k − 1)!a1Πk

i=2αi ≥
(

k

k2 − 1

)(k−1)

.

Given that d non-negative numbers sum up to one, then their product is maximized when each

number is 1/d. Using this, from strategy k, player one gets

α
(k−1)
1 + (k − 1)!akΠ

(k−1)
i=1 αi <

1

(k + 1)(k−1)
+

(k − 1)! ak
(k + 1)(k − 1)(k−2)

.

Since at equilibrium both the strategies are played with nonzero probability we get

(
k

k2 − 1

)(k−1)

<
1

(k + 1)(k−1)
+

(k − 1)! ak
(k + 1)(k − 1)(k−2)

⇒ 1

(k − 1)!

((
k

k − 1

)(k−1)

− 1

)
< ak,

which is a contradiction to ak ≤ Γ.

We can wlog assume that A1, . . . , Ak ∈ [0,Γ], since NE remains unchanged when all the

payoffs are scaled additively, or multiplicatively by a positive constant. This will ensure that

payoff of each player in A at any NE is in [0,Γ].

Since we know that if d = (X1| . . . |Xk) is a symmetric NE of gameD then (σ(X1), . . . , σ(Xk))

is a symmetric NE of game G, from Lemma 61 we get that each of σ(X i) is lower bounded by
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1
k+1

. Finally, using this lower bound we can show that if |d − d∗|∞ < ε where d∗ is a symmetric

NE, then |xis/σ(Xi) − x∗
i

s /σ(X∗
i
)| < ε′, ∀i ∈ [1 : k],∀s ∈ Si, where ε = ε′

2(k+1)2(
∑

i |Si|) and ε <

1
5(k+1)(maxi∈[k] |Si|) (similar to Lemma 60). In other words the strategy profile (η(X1), . . . , η(Xk))

obtained from d is ε′-near to NE (η(X∗
1
), . . . , η(X∗

k
)) obtained from d∗ for game A. Thus,

FIXPa-hardness follows for symmetric k-Nash, and we get the next result using Theorem 38.

Theorem 42. For a constant k ≥ 3, symmetric k-Nash is FIXPa-complete.

4.8 Discussion

There is a reduction from symmetric 2-Nash to 2-Nash using the notion of imitation games [77].

Is there an analogous reduction from symmetric k-Nash to k-Nash, for k ≥ 3? For the case of 2-

player games, Papadimitriou [91] asked the complexity of finding a non-symmetric equilibrium in

a symmetric game. This was recently shown to be NP-complete [80]. What is the complexity of the

analogous question for k-player games, for k ≥ 3? For the case of 2-player games, the question

of counting the number of equilibria, even those satisfying special properties, is typically #P-

complete. What is the complexity of analogous questions for k-player games, for k ≥ 3? Are they

PSPACE-complete? Another question is whether our reduction from 3-Nash to symmetric 3-Nash

creates a one-to-one correspondence between solutions of the two problems. If so, intractability of

counting 3-Nash solutions will carry over to counting symmetric 3-Nash solutions.

For k-player games, k ≥ 3, finding an ε-approximate Nash equilibrium was shown to be in

the class PPAD by [33]. Equilibrium questions that are in this class have admitted complementary

pivot algorithms that are practical, e.g., for 2-Nash [73] and for market equilibrium under separable,

piecewise-linear concave utility functions [50]. Are there practical algorithms for finding an ε-

approximate Nash equilibrium in k-player games, k ≥ 3?

We next come to other results on NE satisfying certain properties for two-player games. First,

[32] showed that finding a exact NE that approximately maximizes properties such as social wel-
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fare is NP-hard. Next, [59] showed that finding an approximately Nash equilibrium which maxi-

mizes the social welfare is as hard as finding a planted clique in a random graph G(n, 1/2), and

[1] showed the same hardness for the following three problems: finding an approximate NE with

payoff more than v, finding two approximate Nash equilibria that are far apart and finding an ap-

proximate NE with a small support. Resolving the complexity of analogous problems for 3-player

games is open.
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[11] Vittorio Bilò and Marios Mavronicolas. “Existential-R-complete decision problems about
symmetric Nash equilibria in symmetric multi-player games”. In: Proceedings of STACS.
2017, 13:1–13:14.

146
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