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SUMMARY

The Jacobian of a graph, also known as the sandpile group or the critical group, is a fi-

nite group abelian group associated to the graph; it has been independently discovered and

studied by researchers from various areas. By the Matrix-Tree Theorem, the cardinality of

the Jacobian is equal to the number of spanning trees of a graph. In this dissertation, we

study several topics centered on a new family of bijections, named the geometric bijections,

between the Jacobian and the set of spanning trees. An important feature of geometric bi-

jections is that they are closely related to polyhedral geometry and the theory of oriented

matroids despite their combinatorial description; in particular, they can be generalized to

Jacobians of regular matroids, in which many previous works on Jacobians failed to gener-

alize due to the lack of the notion of vertices.

In Chapter 3, we study the combinatorics of break divisors and the ABKS decomposi-

tion in tropical geometry. In Chapter 4, we construct a canonical simply transitive group

action of the Jacobian on the circuit-cocircuit reversal system of a regular matroid; we

also study the case of non-regular oriented matroids. In Chapter 5, which is joint work

with Spencer Backman and Matthew Baker, we introduce geometric bijections between

the circuit-cocircuit reversal system and the set of bases of a regular matroid, and prove

their bijectivity using constructions involving zonotopes and their tilings; we then further

develop the theory from different perspectives, including Ehrhart theory and algorithms.

In Chapter 6, we study Bernardi process on embedded graphs, and provide a connection

between planar Bernardi processes and the ABKS decomposition via geometric bijections.

In Chapter 7, we mention a few extensions of our work.

xii



CHAPTER 1

INTRODUCTION

Jacobians and zonotopes are two classical and prominent objects in algebraic and geometric

combinatorics, with numerous connections with other parts of mathematics. The central

subject of this dissertation is the notion of geometric bijections, which relates the two topics

in a novel manner. In the process of developing the notion, we build connections with other

subjects, and as a result, we unify some concepts and results from various origins into the

same framework. A recurring paradigm here is that even if one is only interested in graphs

or problems that are defined combinatorially, it is often more appropriate to consider the

problems in a matroidal or (polyhedral) geometric setting.

The Jacobian group (or Jacobian for short) of a graph, also known as the sandpile

group or the critical group, is a well-known and interesting finite group invariant. It has

been discovered independently by researchers in statistical physics [43], number theory

[83], and combinatorics [21]. The Jacobian is closely related to the abelian sandpile model

in physics [8] and chip-firing game in combinatorics [24]. Jacobians, sandpiles and their

generalizations have been studied from different perspectives, such as algebraic and tropical

geometry [11, 33, 53], algebra [16, 62, 93], combinatorics [12, 65, 86], and probability

theory [70, 112], just to name a few.

A zonotope is a Minkowski sum of line segments. Three-dimensional zonotopes, also

known as zonohedra, were first introduced back in the nineteenth century [50]. High dimen-

sional generalization of zonohedra were considered by discrete geometers [37, 38, 85], and

later appeared in algebra [66], algebraic geometry [2], computer science [18], etc. A major

significance of zonotopes is that they capture the combinatorics of (realizable) oriented ma-

troids [23, 115], an abstraction of point configurations and hyperplane arrangements in real

Euclidean space. In particular, the duality of oriented matroids, which generalizes plane
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duality in graph theory and linear programming duality in optimization and polyhedral

combinatorics, is a common theme behind many results studied in this dissertation.

By a variant of Kirchhoff’s Matrix–Tree Theorem [76], the cardinality of the Jacobian

is equal to the number of spanning trees of a graph, and the problem of finding explicit

combinatorial bijections between the Jacobian and the set of spanning trees of a graph

has received a lot of attention in combinatorics [20, 32, 34, 55, 94]. On the other hand,

Jacobians can be generalized and be defined for regular matroids [87], with an analogous

generalization of the Matrix-Tree Theorem stating that the cardinality of the Jacobian is

equal to the number of bases of a regular matroid. However, most of the aforementioned

bijections no longer generalize because they use the notion of vertices of graphs in an

essential manner. In contrast, we built on the work of Gioan [57, 58] and Backman [4, 5]

relating elements of Jacobian and orientation classes of a graph (resp. regular matroid),

and thus we were able to formulate a family of bijective maps that is well-defined for

regular matroids. Moreover, while the maps are very simple to define, proving that they are

indeed bijections is non-trivial, and all known proofs use polyhedral geometry or closely

related techniques, hence the name “geometric bijections”. In particular, zonotopes and

their tilings play an important role in the proof.

For the purpose of referencing within this chapter, we state here the central theorem

of this dissertation, together with a brief explanation of the essential notations. A more

detailed discussion will be provided in later chapters.

Theorem 1.0.1 Let M be a regular matroid and let B(M) be the set of bases of M . The

circuit-cocircuit reversal system G(M) ofM is the set of equivalence classes of orientations

of M with respect to the equivalence relation generated by circuit and cocircuit reversals.

Fix a pair of acyclic signatures (σ, σ∗) induced by a generic vector w, which, for each

circuit (resp. cocircuit) C of M , picks the orientation of C such that w · C > 0.

Given a basisB ∈ B(M), letO(B) be the orientation ofM in which we orient each e 6∈
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B according to its orientation in σ(C(B, e)) and each e ∈ B according to its orientation in

σ∗(C∗(B, e)), where C(B, e) (resp. C∗(B, e)) is the fundamental circuit (resp. cocircuit)

of ewith respect toB. Then the mapB 7→ [O(B)] gives a bijection βσ,σ∗ : B(M)→ G(M).

The high-level strategy of our approach is as follows. We will first describe a (combina-

torial) simply transitive group action of the Jacobian Jac(M) on G(M) in Section 4.2. This

reduces the problem of finding bijections between Jac(M) and B(M) to finding bijections

between G(M) and B(M). Then we will prove the bijectivity of the maps βσ,σ∗ in Chap-

ter 5 by giving them a geometric interpretation: we consider a zonotope ZM associated to

M and construct a tiling of ZM induced by σ, which partitions ZM into cells that canon-

ically correspond to the bases of M . Next we shift the lattice points of ZM in a direction

induced by σ∗, so that each cell contains a unique shifted lattice point in its interior, we

then have a bijection between cells (as bases) and a subcollection of lattice points (which

can be canonically identified with the elements of G(M)). Finally, we will show that such

bijection coincides with βσ,σ∗ .

We highlight a few interesting ideas from our picture. First of all, while the descrip-

tion of βσ,σ∗’s is symmetric with respect to circuits and cocircuits, the tiling versus shifting

setup in the geometric picture is not; this is an instance of the oriented matroid duality,

together with the realizable case of the Bohne–Dress theorem [26, 96]. Secondly, the def-

inition of acyclic signatures generalizes the data of edge ordering (Example 5.1.4), and

many results previously formulated using edge ordering can be extended to such setting,

this develops the idea from the work of Greene and Zaslavsky [59]. In fact, we will prove

new result (Theorem 5.5.7) that was formulated using edge ordering, but its proof relies on

the general geometric setting. Finally, we give a unifying interpretation of several works

on bijective problems concerning Jacobians: in the sense of Group Action–Tiling Duality

(Theorem 5.6.3), the isomorphism of group actions induced by Bernardi bijections (resp.

rotor-routings) on a plane graph G [13, 30, 31] is dual to the ABKS decomposition of the

planar dual of G [1], cf. Theorem 6.2.4. This provides a rather surprising connection be-

3



tween two “canonical” constructions (cf. the question by Jordan Ellenberg during the AIM

workshop on chip-firing [67]) motivated by bijective combinatorics and tropical geometry,

respectively.

Now we outline the remaining chapters of this dissertation.

In Chapter 2, we review definitions and basic properties of important objects that run

through the whole dissertation, including graphs and their divisors, matroids and oriented

matroids, regular matroids and their circuit/cocircuit lattices, Jacobian groups, and the Tutte

polynomial.

In Chapter 3, we review the notion of break divisors on metric graphs, followed by

the construction of the ABKS decomposition of tropical Jacobians. Then we revisit the

definition of break divisors from both combinatorial and geometric points of view, and

explain how they are related in an intriguing way via tropical geometry, which might serve

as an example of a potentially more general theory. Lastly, we prove two enumerative

results concerning these objects, with motivations and applications in algebraic geometry.

We note that trying to understand the combinatorics of these objects leads to the main work

of this dissertation.

In Chapter 4, we study Gioan’s circuit-cocircuit reversal system G(M) and prove that

G(M) is canonically a Jac(M)-torsor when M is a regular matroid. We also study G(M)

whenM is non-regular, and show that the equality |G(M)| = |B(M)| actually characterizes

regular matroids; in the proof, we use the notion of circuit-cocircuit minimal orientations,

which will be further generalized and play a crucial role in the rest of the dissertation.

In Chapter 5, we start with constructing zonotopes and their tilings using an approach

inspired by Chapter 3, and use them to prove Theorem 1.0.1. Then we further develop the

theory from different aspects: in Section 5.5, we elaborate the combinatorial interpretation

of lattice points in zonotopes and give a finer version of Stanley’s formula concerning the

Ehrhart polynomial of a unimodular zonotope; in Section 5.6, we formulate and prove a

4



Group Action–Tiling Duality connecting two seemingly orthogonal phenomena, namely,

isomorphism of Jac(M)-actions and translation invariance of tilings of unimodular zono-

topes; in Section 5.7, we relate the ABKS decomposition with zonotopal tilings; in Sec-

tion 5.8, we present several algorithmic consequences from the geometric bijection picture;

finally, in Section 5.9, we review some Lawrence type constructions in polyhedral geome-

try and commutative algebra, and explain how our theory is related to them. Most of this

chapter is joint work with Spencer Backman and Matthew Baker.

In Chapter 6, we investigate the combinatorial bijections introduced by Bernardi on em-

bedded graphs. We prove a conjecture by Baker that Bernardi bijections (of the first type)

on plane graphs are geometric bijections, and demonstrate how this connection clarifies and

simplifies several previous known results on Bernardi torsors; we also prove a partial con-

verse in the non-planar situation. Then we look at Bernardi bijections of the second type,

which are more in line with the classical burning algorithms and do not have a geometric

structure, but curiously some proof techniques from geometric bijections still apply.

In the first half of Chapter 7, we offer a generalization of Theorem 1.0.1 using more

abstract oriented matroid theory, notably oriented matroid programming. It is part of the

on-going work joint with Spencer Backman and Francisco Santos. In the second half, we

give a brief survey on the theory of cellular trees, and try to provide partial results and

evidence that suggest how our theory might shed some light on the subject.
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CHAPTER 2

PRELIMINARIES

2.1 Graphs

We will assume basic definitions from standard references on graph theory such as [44].

All graphs we consider in this work are finite. Unless otherwise specified, we allow multi-

edges but not loops. We will use n and m to denote the number of vertices and edges of a

graph (whom will be clear from the context), respectively.

A cycle means simple cycle, i.e., a closed walk v0 − e1 − v1 − e1 − . . .− vk − ek − v0

with all vi’s pairwise distinct. Given a subset of vertices U ⊂ V (G) and a vertex v ∈ U ,

G[U ] denotes the induced subgraph of G on U , and outdegU(v) is the number of edges

incident to v in which the other endpoint is outside U . Given two (disjoint) subsets U1, U2

of vertices,G[U1, U2] is the subset of edges with one end inU1 and the other end inU2. For a

connected graphG, a subset of edges of the formG[X, V (G)\X] for some ∅ 6= X ( V (G)

is a cut; an isthmus is an edge that forms a cut by itself. For a vertex v ∈ V , we often write

G[{v}, V \ {v}] as δ(v).

Let G be a connected graph. A spanning tree T is a connected spanning subgraph with

no cycles; the set of spanning trees of G is denoted by ST (G). For every edge e 6∈ T ,

T ∪ {e} contains a unique cycle C(T, e), it is the fundamental cycle of e with respect to T ;

dually, for every edge e ∈ T , there is a unique cut C∗(T, e) in G that does not contain any

edges from E(T ) \ {e}, it is the fundamental cut of e with respect to T . The genus g of G

is the number of edges outside any spanning tree, which is m− n+ 1.

An (vertex-edge) incidence matrixMG is a matrix whose rows and columns are indexed

by V and E, respectively, such that for each (non-loop) edge e = uv, the e-th column has a

1 in the u-th row and a−1 in the v-th row. The Laplacian matrixLG is equal toMGM
T
G , it is
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independent of the choice of signs inMG as it is easy to see that LG = DG−AG, whereDG

is a diagonal matrix whose (v, v)-entry is the degree of v, and AG is the adjacency matrix

of G. A reduced Laplacian L̃(i)
G is LG with the i-th row and the i-th column removed for

some i; L̃(i)
G is equal to M̃ (i)

G M̃
(i)
G

T

, where M̃ (i)
G is MG with the i-th row removed.

2.2 Divisors and Chip-firing

Definition 2.2.1 Let G = (V,E) be a graph. A divisor on G is a function D : V → Z,

which can be written as a formal sum
∑

v∈V D(v) · (v). D is an effective divisor if D ≥ 0.

The set of all divisors on G is denoted by Div(G); it has a natural group structure as

the free abelian group generated by V . The degree deg(D) of a divisor D is
∑

v∈V D(v),

and the set of all degree k divisors is denoted by Divk(G).

Given a divisor D, we often say there are D(v) chips at vertex v, and we can construct

a divisor on G by adding or removing chips on vertices in various ways.

Definition 2.2.2 Let D be a divisor on G. A chip-firing move at a vertex v sends one chip

away from v along each edge incident to v, hence v loses deg(v) chips and each neighbor

w gains the number of edges between v and w many chips.

Two divisors D,D′ are (linearly) equivalent, written as D ∼ D′, if they differ by a

sequence of chip-firing moves. The set of equivalence classes Divk(G)/ ∼ is denoted by

Pick(G). The group structure of Div(G) restricts and descends to Pic0(G), which is called

the (degree 0) Picard group of G.

It is not hard to see that if we identify divisors with vectors in Zn, then D ∼ D′ if and

only if D −D′ = LGu for some integral vector u. In particular, Pic0(G) ∼= cokerZ L̃G.

We introduce a few important classes of special divisors.

Definition 2.2.3 LetO be an orientation of a graphG. The divisorDO is
∑

v∈V (G)(indegO(v)−

1)(v). A divisor is orientable if it can be obtained in this way.
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Figure 2.1: Example of chip-firing moves.

Fix q ∈ V (G). An orientation O is q-connected if any vertex of G can be reached from

q via a directed path. A divisor is q-connected (known as q-orientable in [1]) if it is of the

form DO for some q-connected orientation O.

Proposition 2.2.4 [1, Theorem 4.13] For any vertex q, the set of q-connected divisors form

a set of representatives for the equivalence classes in Picg−1(G).

Given a divisor D, the Euler characteristic χD,G sends each subset of vertices S ⊂

V (G) to deg(D|S) − g(G[S]) + 1. We have the following criteria of orientable and q-

connected divisors.

Proposition 2.2.5 [1, Theorem 4.8 and Theorem 4.11] A degree g − 1 divisor D is ori-

entable if and only if χD,G(S) ≥ 0 for every non-empty S ⊂ V (G). An orientable divisor

D is q-connected if and only if χD,G(S) > 0 for every non-empty S ⊂ V (G) \ {q}.

Definition 2.2.6 Fix a vertex q ∈ V , a divisor D is q-reduced (also known as superstable

configurations [65] or G-parking functions [95, 113]) if

1. D(v) ≥ 0 for each v 6= q, and

2. for any U ⊂ V \ {q}, there exists some u ∈ U such that D(u) < outdegU(u).
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In chip-firing terms, (1) is to say that every vertex except possibly q is out of debt, while (2)

is to say that firing any subset of V avoiding q will send some vertex into debt.

Proposition 2.2.7 [11, Proposition 3.1] For any integer k and vertex q, the set of degree k

q-reduced divisors form a set of representatives for the equivalence classes in Pick(G).

Dhar gave an algorithmic criterion for q-reduced divisors. Let D be a divisor that is

effective outside q. Consider the following process: put D(v) “firefighters” at each vertex

v 6= q, where each firefighter can control fire from a single direction (i.e., an edge) leading

into v. Start a fire at q and let the fire spread along the edges. As soon as the number of

burnt edges incident to a vertex exceeds the number of firefighters there, the firefighters

leave and the vertex will be burnt. We are interested in whether the process will burn the

whole graph. A formal pseudocode is given as Algorithm 1.

Input: A divisor D ∈ Div(G), and a vertex q ∈ V .
Output: A boolean value TRUE or FALSE.

if D(v) < 0 for some v 6= q then
Output FALSE and Stop.

end
Set A0 := V, v0 := q. (Unburnt vertices, and the latest burnt vertex)
for 1 ≤ i ≤ n− 1 do

Ai := Ai−1 \ vi−1

if ∀v ∈ Ai, D(v) ≥ outdegAi(v) then
Output FALSE and Stop.

else
Set vi to be any vertex in Ai with D(v) < outdegAi(v)

end
end
Output TRUE.

Algorithm 1: Dhar’s Burning Algorithm

Proposition 2.2.8 [42] A divisor D is q-reduced if and only if Algorithm 1 returns TRUE.
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2.3 Matroids and Oriented Matroids

2.3.1 Matroids

The concept of matroids was introduced by Whitney as an abstraction of independence in

linear algebra and graph theory [110]. A comprehensive introduction on matroid theory is

the book by Oxley [92].

Definition 2.3.1 A matroid M = (E, I) consists of a non-empty finite set E (the ground

set) and a collection I of subsets of E that satisfies the following axioms:

1. ∅ ∈ I.

2. If X ∈ I and Y ⊂ X , then Y ∈ I.

3. If X, Y ∈ I and |X| < |Y |, then there exists y ∈ Y \X such that X ∪ {y} ∈ I.

A subset of E is independent if it is in I , it is dependent otherwise.

A basis is a maximal independent set with respect to inclusion; the set of bases of a

matroid M is denoted by B(M). By the third axiom above, any two bases have the same

size, which is denoted as the rank of the matroid; more generally, given a subset X of E,

the rank r(X) of X is the size of a maximal independent set contained in X . A circuit is a

minimal dependent set; the set of circuits of a matroid M is denoted by C(M). The closure

X of a subset X is the maximal subset containing X such that r(X) = r(X), the closure

is well-defined [92, Section 1.4].

Unless otherwise specified, we use m and r to denote the number of elements and the

rank of a matroid (whom will be clear from the context), respectively.

Remark. It is possible to define a matroid using axiom systems based on each of the

above notions [92, Chapter 1]. The phenomenon of having many equivalent axiom systems

for matroids is known as cryptomorphism in the literature.
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Two important operations in matroid theory are taking duals and taking minors, respec-

tively.

Definition 2.3.2 Let M = (E, I) be a matroid. The dual matroid M∗ of M is a matroid

on the same ground set E, where a subset Y is independent if and only if Y is disjoint from

some basis ofM . In particular,B is a basis ofM if and only if its complementB∗ := E\B

is a basis of M∗. A circuit of M∗ is said to be a cocircuit of M ; the set of cocircuits of a

matroid M is denoted by C∗(M).

Let X ⊂ E be a subset. The restriction M |X of M to X is the matroid (X, {I ∈ I :

I ⊂ X}). The deletion M \X of X from M is the matroid M |E\X . The contraction M/X

of X from M is the matroid (M∗ \X)∗. A minor of M is a matroid obtained by a sequence

of deletions and contractions from M . When X = {e} is a singleton, we often write X \ e

and X/e instead of X \ {e} and X/{e}.

Similar to the case of graphs, we have the following terminology in matroid theory.

Definition 2.3.3 An element of E is a loop if it is contained in no independent sets, or

equivalently if it is a circuit by itself; dually, an element is an isthmus (coloop) if it is

contained in every basis, or equivalently if it is a cocircuit by itself.

Given a basisB ofM , the fundamental circuitC(B, e) of an element e 6∈ B with respect

to B is the unique circuit contained in B∪{e}; dually, the fundamental cocircuit C∗(B, f)

of an element f ∈ B with respect to B is the unique cocircuit contained in (E \B) ∪ {e}.

Finally, we give some important examples of matroids.

Example 2.3.4 The uniform matroid Ur,m is the matroid on m elements in which a subset

X is independent if and only if |X| ≤ r.

Example 2.3.5 The graphic matroid M(G) of a finite graph G = (V,E) is the matroid on

E in which a subset F ⊂ E is independent if and only if the induced subgraph (V, F ) is a

forest, i.e., if it contains no cycles.

11



If G is connected, then the circuits, cocircuits, and bases of M(G) are (the edge sets

of) the cycles, minimal cuts, and spanning trees of G, respectively. If G is furthermore a

plane graph, then M(G)∗ is the graphic matroid of the dual graph G∗ of G.

Example 2.3.6 The Fano matroid F7 is the matroid on 7 elements illustrated by Figure 2.2,

here a subset X is independent if and only if |X| < 3 or |X| = 3 and the three elements of

X are not collinear.

Figure 2.2: Fano matroid.

Example 2.3.7 LetA be a matrix over a field. M(A) is the matroid whose ground set is the

set of columns of A (as abstract elements), where a subset is independent if and only if the

corresponding columns are linearly independent; in such case, we sayM(A) is represented

by A. A matroid is representable if it can be represented by some matrix over some field.

Every graphic matroid is representable as it is represented by the vertex-edge incidence

matrix of the graph.

Essentially by definition, a subset is a circuit of M(A) if and only if it is the support

of some non-zero vector in the kernel of A that is minimal with respect to inclusion, and a

subset is a cocircuit if and only if it is the support of some non-zero vector in the row space

of A that is minimal with respect to inclusion.
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2.3.2 Oriented Matroids

An oriented matroid, roughly speaking, is a matroid together with some “sign” data. The

notion of oriented matroids was introduced independently by several groups of people, no-

tably Robert Bland, Jon Folkman, Michel Las Vergnas, and Jim Lawrence [25, 51]. A com-

prehensive introduction on oriented matroid theory is the book by Björner, Las Vergnas,

Sturmfels, White, and Ziegler [23].

We make precise the definition of “sign data”. Given a non-empty, finite ground set E,

a signed subset of E is a map X : E → {+, 0,−} that assigns signs to its elements; we

define a total ordering of {+, 0,−} as + > 0 > −. The support X of a signed subset X

is {e ∈ E : X(e) 6= 0}. Similarly, we define X+ and X− to be {e ∈ E : X(e) = +} and

{e ∈ E : X(e) = −}, respectively. Now we have the following definition.

Definition 2.3.8 An oriented matroid M = (E, C) consists of a non-empty, finite set E and

a collection C of signed subsets that satisfies the following axioms:

1. ∅ 6∈ C.

2. If C ∈ C, then −C ∈ C.

3. For all C1, C2 ∈ C, if C1 ⊂ C2, then either C1 = C2 or C1 = −C2.

4. For all C1, C2 ∈ C, e ∈ C+
1 ∩C−2 and f ∈ (C+

1 \C−2 )∪ (C−1 \C+
2 ), there is a C3 ∈ C

such that C+
3 ⊂ (C+

1 ∪ C+
2 ) \ {e}, C−3 ⊂ (C−1 ∪ C−2 ) \ {e}, and f ∈ C3.

A signed subset in C is said to be a signed circuit.

By [92, Theorem 1.1.4], {C : C ∈ C} is the collection of circuits of a matroid M

with ground set E, called the underlying matroid of M . Two signed subsets X, Y are

orthogonal if either X ∩ Y = ∅, or there exist e, f ∈ E such that X(e) = Y (e) 6= 0 and

X(f) = −Y (f) 6= 0. There is a canonical way to assign signings to the cocircuits of M

so that they are orthogonal to all signed circuits of M [23, Theorem 3.4.1], such signings
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of cocircuits are the signed cocircuits of M . The dual matroid M∗ of M is the oriented

matroid on the same ground set whose signed circuits are the signed cocircuits of M .

Let X, Y be two signed subsets. Their composition X ◦ Y is the signed subset given

by X ◦ Y (e) = X(e) if X(e) 6= 0, and X ◦ Y (e) = Y (e) otherwise. A composition of

signed circuits is a (signed) vector, and a composition of signed cocircuits is a (signed)

covector. Moreover, we say X and Y are conformal if there are no elements e such that

X(e) = −Y (e) 6= 0.

We have other oriented matroidal operations as in ordinary matroids: given an oriented

matroid M = (E, C) and a subset X ⊂ E, the restriction M |X is the oriented matroid

(X, {C ∈ C : C ⊂ X}). The deletion M \ X is the restriction of M to E \ X . The

contraction M/X is the oriented matroid on ground set E \ X whose signed circuits are

the support minimal signed subsets of {C|E\X : C ∈ C}, here C|X is C : E → {+,−, 0}

restricted to X . A minor of M is an oriented matroid obtained by a sequence of deletions

and contractions from M .

Given an oriented matroid M = (E, C) and a subset X ⊂ E, the reorientation of M

with respect to X negates the signs of the coordinates over X for each signed circuit. An

orientation of M is a map from E to {+,−}. In some literature, an orientation is identified

with a reorientation of the oriented matroid, but since orientations have intuitive meaning

in the case of graphs as directed graphs, we will stick with our terminology.

Every matrix A over an ordered field (which can be assumed to be the field of real

numbers [23, Proposition 8.4.1]) gives an oriented matroid M(A), where the ground set is

the columns of A, and the signed circuits (resp. signed cocircuits) are the sign patterns of

the support minimal non-zero vectors in the kernel (resp. row space) of A. Such oriented

matroids are said to be realizable, and we say A is a realization of M if M = M(A).

Remark. On one hand, not every matroid is orientable (cf. [23, Example 6.6.2]).

On the other hand, a matroid can have multiple oriented structures that are not equivalent
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even up to reorientation (cf. [23, Section 1.5]). Furthermore, the same oriented struc-

ture can be realized by very different matrices, as an example, any matrix of the form t1 t2 t3 t4

at1 bt2 ct3 dt4

 , t1, t2, t3, t4 > 0, a > b > c > d > 0 realizes the same oriented

structure of U2,4 (the four-point line).

We state a technical but elementary lemma that is useful when studying realizable ori-

ented matroids. In abstract oriented matroid terms, it is to say that every signed vector of

an oriented matroid is a conformal composition of signed circuits.

Lemma 2.3.9 [115, Lemma 6.7] Let u ∈ RE be a vector in ker(A). Then u can be written

as
∑

vC such that:

1. Each vC is from ker(A).

2. The sign pattern C of each vC is a signed circuit of M(A).

3. The support of each C is contained in the support of u.

4. For each e ∈ C, the sign of e in C and the sign of the e-th coordinate of u agree.

2.3.3 Regular Matroids

A matrix A over R is totally unimodular if the determinant of every square submatrix is

either 0, 1 or −1. In particular, every totally unimodular matrix is an integer matrix. We

will consider a special class of matroids represented by such matrices.

Definition 2.3.10 A matroid is regular if it can be represented by a totally unimodular

matrix.

Since the vertex-edge incidence matrix of a graph is totally unimodular [92, Lemma

5.1.4], every graphic matroid is regular.

From the definition, every regular matroid is orientable. The family of regular matroids

is closed under taking duals and minors [92, Proposition 2.2.22, Proposition 3.2.5]. Regular
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matroids have many equivalent characterizations of different favors. We list a few important

ones in the following theorem.

Theorem 2.3.11 The following statements are equivalent for a matroid M .

1. M is regular.

2. M is representable over every field.

3. M has no minor isomorphic to any of U2,4, F7 or F ∗7 .

4. M is binary and orientable.

PROOF: The equivalence of (1), (2), and (3) is part of [109, Theorem 3.1.1]. (2) implying

(4) is trivial, while the converse is [23, Theorem 7.9.3]. �

A more complete list can be found in [109, Theorem 3.1.1], see also Seymour’s decom-

position theorem [92, Theorem 13.1.1].

Using Theorem 2.3.11, we have the following corollary.

Proposition 2.3.12 An oriented matroid is regular if and only if the underlying matroid

has no U2,4-minor.

PROOF: By Theorem 2.3.11, an oriented matroid is regular if and only if it is binary. By

[92, Theorem 6.5.4], a matroid is binary if and only if it has no U2,4-minor. �

Regular matroids are rigid in the sense that the underlying matroid completely deter-

mines its oriented structures and realizations up to trivial differences.

Proposition 2.3.13 The oriented structures on a regular matroid differ only by reorienta-

tions. Furthermore, if A,A′ are two r × m totally unimodular matrices of full row rank

that realize the same regular matroid, then there exists a unimodular integer matrix P such

that A′ equals PA with some (possibly none) columns negated. In particular, P preserves

volume in Rr and induces a bijection of lattice points in Zr.
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PROOF: The first statement is [23, Corollary 7.9.4]. The second statement can be found in

[105]. �

The significance of Proposition 2.3.13 is that, while the definitions of several objects as-

sociated to a regular matroid involve choosing an oriented structure or a totally unimodular

realization, these objects (or at least most of their properties) are intrinsic and independent

of such choices.

We state a useful lemma for regular matroids. Note that total unimodularity is crucial in

the proof, and the lemma is not true for general oriented matroids. The failure of the lemma

is one of the main reasons that some of our definitions and results cannot be generalized

beyond regular matroids.

Lemma 2.3.14 Let M be a regular matroid and let A be an arbitrary totally unimodu-

lar matrix realizing M . Then any support minimal non-zero vector u in the kernel of A

is a positive multiple of some {0, 1,−1}-vector û, which can be interpreted as a signed

circuit directly by identifying 1, 0,−1 with +, 0,−, respectively. Conversely, under such

identification, every signed circuit C can be thought as an element in ker(A) ⊂ RE .

Furthermore, if v is a vector in ker(A) whose coordinates are 0, 1, −1, then the v can

be written as a sum of disjoint signed circuits.

PROOF: By restricting and negating the columns of A if necessary, we may assume that all

coordinates of u are positive. Let a be the first column of A (which is a {0, 1,−1}-vector)

and let A′ be the rest of the matrix. The columns of A′ are linearly independent as the

support of u is a circuit of M , so we can pick a non-singular maximal square submatrix Ã

of A′. Denote by ã the corresponding restriction of a, the unique solution of Ãx = −ã is

then u/u1 excluding the first coordinate. By Cramer’s rule and the total unimodularity of

Ã, all coordinates of u/u1 are 0, 1, or −1. The converse is trivial as every signed circuit is

by definition the sign pattern of some support minimal non-zero vector of ker(A).
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For the second part of the lemma, we again assume that v is a {0, 1}-vector by negating

columns ofA. By Lemma 2.3.9, there exists a non-negative signed circuit C whose support

C is contained in the support X of v. By the first half of this lemma, v − C is a {0, 1}-

vector in ker(A) whose support is X \ C. By induction on the size of support, v − C can

be written as the sum of disjoint signed circuits, and these circuits are disjoint from C. �

2.3.4 Circuit and Cocircuit Lattices

From Section 2.3.3, signed circuits and signed cocircuits of a regular matroid M can be

identified as {0, 1,−1}-vectors. This leads to the following definitions.

Definition 2.3.15 Let M be a regular oriented matroid on ground set E. The lattice of

1-chains C1(M) ∼= ZE is the free Z-module generated by the elements of E. The lattice of

integer flows Z1(M) is the sublattice of C1(M) generated by all signed circuits of M ; the

lattice of integer cuts B1(M) is the sublattice of C1(M) generated by all signed cocircuits

of M .

Embed C1(M) into C1(M)⊗ R ∼= RE . The affine spans of Z1(M) and B1(M) are the

circuit space V (M) and the cocircuit space V ∗(M) of M , respectively.

We collect a few properties of these objects.

Proposition 2.3.16 Let M be a regular oriented matroid. Then

1. For any totally unimodular matrix A realizing M , the circuit space and cocircuit

space are the kernel and the row space of A, respectively.

2. V (M) is the orthogonal complement of V ∗(M); V (M) and V ∗(M) are of dimension

m− r and r, respectively.

3. C1(M) ∩ V (M) = Z1(M), C1(M) ∩ V ∗(M) = B1(M).
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4. For any basis B of M , the set of fundamental circuits {C(B, e) : e 6∈ B} with

respect to B forms a Z-basis (resp. R-basis) of Z1(M) (resp. V (M)); dually, the

set of fundamental cocircuits {C∗(B, e) : e ∈ B} forms a Z-basis (resp. R-basis) of

B1(M) (resp. V ∗(M)).

PROOF: (1), (2) follow from Lemma 2.3.14; (4) is from [105, Section 2.3]. For (3), let

z ∈ C1(M)∩ V (M) be an element. By (1), z is in the kernel of A, so by Lemma 2.3.9 and

2.3.14, there exists some signed circuitC ofM such that the support ofC is contained in the

support of z. Pick any e ∈ C, then z′ := z− (ze/C(e))C is an element in C1(M)∩ V (M)

whose support is strictly contained in the support of z. By induction on the size of support,

we can write z as a linear combination of signed circuits over Z, that is, z ∈ Z1(M). The

converse inclusion is obvious, and the dual statement for B1(M) is similar. �

Remark. Z1(M) and B1(M) can be defined for any oriented matroid, but they will

be less well-behaved because the lack of property (1). In fact, property (2) characterizes

regular matroids among oriented matroids, cf. [89], [91, Section 4.1].

2.4 Jacobian Groups

The Jacobian is a finite abelian group canonically associated to a regular matroid.

Definition 2.4.1 Let M be a regular matroid. The Jacobian Jac(M) of M is the group

C1(M)
Z1(M)⊕B1(M)

.

By [87] (or more directly, Proposition 2.3.13), Jac(M) does not depend on the choice

of the oriented structure of M .

Proposition 2.4.2 Let M be a regular matroid and fix a full row rank, totally unimodular

representationA ofM . Then [γ] 7→ [Aγ] is a group isomorphism between C1(M)
Z1(M)⊕B1(M)

and

cokerZ(AAT ), here Z1(M), B1(M) are defined using the oriented structure of M realized

by A.
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PROOF: The map is well-defined becauseA(Z1(M)⊕B1(M)) = A(B1(M)) = A(ColZA
T ) =

ColZAA
T , the equality also shows the map is injective. It is surjective because Aγ = b

has a solution in C1(M) for every b ∈ Zr, using the total unimodularity of A. �

Corollary 2.4.3 For a graph G, Jac(M(G)) ∼= Pic0(G).

We have following generalization of Kirchhoff’s Matrix–Tree theorem, which is usually

stated as the determinant of any reduced Laplacian (or product of the non-zero eigenvalues

of the Laplacian) equals the number of spanning trees.

Theorem 2.4.4 The cardinality of Jac(M) equals the number of bases ofM . In particular,

|Pick(G)| equals the number of spanning trees of G for any k.

PROOF: By Proposition 2.4.2, it suffices to compute | cokerZ(AAT )|. By Cauchy–Binet

formula, | cokerZ(AAT )| = det(AAT ) =
∑

I⊂E,|I|=r det(A|I)2. But since A is totally

unimodular, det(A|I)2 equals 1 if I is a basis, and 0 otherwise, so the sum counts the

number of bases of M . �

2.5 Tutte Polynomials

The Tutte polynomial is a bivariate polynomial invariant associated to every matroid, which

satisfies a deletion-contraction recurrence relation [106]. For the rest of this section,M will

be a matroid on ground set E.

Definition 2.5.1 The Tutte polynomial TM(x, y) of M is defined recursively as follows:

• If e ∈ E is neither a loop nor an isthmus, then TM(x, y) = TM\e(x, y) + TM/e(x, y),

otherwise

• TM(x, y) = xiyj if M consists only of i isthmus and j loops.

Tutte polynomials have many equivalent definitions and descriptions, including a defi-

nition using the rank function and a definition using basis activities.
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Proposition 2.5.2 [28, Lemma 6.2.1] Denote by r : 2E → Z the rank function of M . Then

TM(x, y) =
∑
A⊂E

(x− 1)r(M)−r(A)(y − 1)|A|−r(A).

Definition 2.5.3 Let < be a total ordering of E. Given a basis B of M . An element e 6∈ B

(resp. e ∈ B) is externally active (resp. internally active) if e is the smallest element in

its fundamental circuit (resp. fundamental cocircuit) with respect to B. The number of

externally active (resp. internally active) elements with respect to B is the external activity

ε(T ) (resp. internal activity ι(T )) of T .

Proposition 2.5.4 [28, Chapter 6.6A] For any total ordering of E, we have

TM(x, y) =
∑

B∈B(M)

xι(B)yε(B).

The Tutte polynomial is universal for deletion-contraction invariants [28, Theorem

6.2.2]. In particular, many important enumerative quantities of a matroid can be expressed

as special evaluations of the Tutte polynomial. Here are a few basic ones.

Proposition 2.5.5 [28, Proposition 6.2.11] Let M be a matroid. Then

1. TM(1, 1) equals the number of bases of M .

2. TM(2, 1) equals the number of independent sets of M .

3. TM(1, 2) equals the number of spanning sets of M , that is, subsets whose closure is

the all of E.

Other prominent specializations of the Tutte polynomial include the chromatic polyno-

mial and flow polynomial of a matroid [109, Chapter 7], see also [27, Chapter X] for ap-

plications in statistical physics and knot theory; some connections with oriented matroids

will be discussed in Section 4.3 and 5.5.
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CHAPTER 3

COMBINATORICS OF BREAK DIVISORS AND THE ABKS DECOMPOSITION

3.1 Definitions

3.1.1 Metric Graphs

A metric graph Γ is a compact connected metric space such that every point has a neighbor-

hood isometric to a star-shaped set. Every metric graph can be constructed in the following

way: start with a weighted graph (G = (V,E), w : E → R>0), associate with each edge e

a closed line segment Le of length w(e), and identify the endpoints of the Le’s according

to the graph structure in the obvious way. A (weighted) graph G that yields a metric graph

Γ is said to be a model of Γ. The genus of Γ is the genus of any model of Γ.

A divisor on Γ is a function D : Γ → Z of finite support, or equivalently a finite

formal sum of points of Γ over Z. A cut Z of Γ is a disjoint union of equal length open

line segments such that Γ \ Z is a disjoint union of two connected closed sets X, Y . A

chip-firing move chooses a cut Z = Z1 t . . . t Zk of the metric graph and for every line

segment Zi, moves a chip from the endpoint of Zi in X to the endpoint of Zi in Y . We can

define notions such as degree, effective divisors, (linearly) equivalence, Div(Γ), Divk(Γ),

and Pick(Γ) analogous to their discrete counterparts.

A divisor on a metric graph Γ is integral with respect to a model G if the support of

D consists of vertices of G, and in such case the divisor can be considered as a divisor on

G. Given a divisor D ∈ Div(Γ) (and a point q ∈ Γ), by choosing a model G of Γ such

that V (G) includes the support of D (and q), we say D is orientable (resp. q-connected,

q-reduced) if D is so when considered as a divisor on G. The criteria in Proposition 2.2.5

and 2.2.8 can be applied after such reduction.

Finally, we define the rank of a divisor in tropical Brill-Noether theory [9, 33]. A
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Figure 3.1: Examples of chip-firing on a metric graph.

divisor D ∈ Div(Γ) is of rank −1 if it is not linearly equivalent to any effective divisors.

Otherwise, the rank of D is the largest number r such that no matter how one takes away

r chips from D, the new divisor is linearly equivalent to some effective divisor. The Brill-

Noether locus W r
d (Γ) is the set of divisor classes in Picd(Γ) whose rank is at least r; a

geometric structure will be given to W r
d (Γ), as a subset of Picd(Γ), in Section 3.1.3. The

Brill-Noether number ρ(g, r, d) := g − (r + 1)(g − d + r) is the expected dimension of

W r
d (X) for a genus g algebraic curve X in the classical algebro-geometric setting [60].

3.1.2 Break Divisors

Definition 3.1.1 A divisorD of a connected graphG is a break divisor if it can be obtained

from the following procedure: choose a spanning tree T of G, and for every edge f 6∈ T ,

pick an orientation of f and add a chip at the head of f . The set of break divisors of G is

denoted by BD(G).

We collect a few important properties of break divisors.

Proposition 3.1.2 Let G be a connected graph. Then

1. Every break divisor is effective and of degree g.
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2. A divisor D is break if and only if D − (q) is a q-connected divisor for every vertex

q of G.

3. BD(G) is a set of representatives for the divisor classes of Picg(G).

4. The number of break divisors of G equals the number of spanning trees of G.

PROOF: (1) is trivial from definition. (2) and (3) are Lemma 3.3 and Theorem 1.3 of [1],

respectively. (4) is a simply corollary of (3) and Theorem 2.4.4. �

We mention another characterization of break divisors using Euler characteristic.

Lemma 3.1.3 A degree g divisorD is break if and only if χD,G(S) > 0 for every non-empty

S ⊂ V (G).

PROOF: Fix an arbitrary vertex q. D is break if and only if D − (q) is q-connected, if

and only if, by Proposition 2.2.5, (1) for every non-empty S ⊂ V (G) \ {q}, χD,G(S) =

χ
D−(q),G(S) > 0 and (2) for every q ∈ S ⊂ V (G), χD,G(S) = χ

D−(q),G(S) + 1 > 0. �

The following definition generalizes the notion of break divisors to metric graphs.

Definition 3.1.4 Let Γ be a metric graph and fix an arbitrary model G of Γ. A divisor D of

Γ is a break divisor if it can be obtained from the following procedure: choose a spanning

tree T of G, and for every edge f 6∈ T , put a chip inside the interval of Γ corresponding to

f (possibly at an endpoint). In such case we say the break divisor is associated to T (such

T is in general not unique).

Theorem 3.1.5 [1, Theorem 1.1] (also [88]) Break divisors on Γ form a set of representa-

tives for the equivalence classes in Picg(Γ).

3.1.3 Tropical Jacobians and the ABKS Decomposition

The Picard group Pic0(Γ), and hence any Pick(Γ), has a natural structure as a g-dimensional

real torus. We give an informal description here; a rigorous treatment is given in [10, 88].

The theory here is can be thought as a geometric version of Section 2.3.4 and 2.4.
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Fix a model G = (V,E,w) for Γ, as well as an arbitrary reference orientation for the

edges of G. The real edge space C1(G;R) of G is the m-dimensional vector space with

E as a basis over R. This space is equipped with an inner product that extends ei · ej =

δi,jw(ei) bilinearly.

The real cycle space H1(G;R) is the g-dimensional subspace of C1(G;R) spanned by

all cycles of G; denote by π : C1(G;R)→ H1(G;R) the orthogonal projection. By Propo-

sition 2.3.16, the projections of k edges f1, . . . , fk ∈ G onto H1(G;R) are linearly inde-

pendent if and only if the set of edges does not contain a cut, if and only if G\{f1, . . . , fk}

is connected; hence π(e1), . . . , π(eg) form a basis of H1(G;R) exactly when e1, . . . , eg is

the complement of some spanning tree.

The integral cycle space H1(G;Z) is the g-dimensional lattice in H1(G;R) consisting

of integral combinations of cycles ofG. For any spanning tree T ofG, the set of fundamen-

tal cycles {C(T, e) : e 6∈ T} forms a R-basis (resp. Z-basis) ofH1(G;R) (resp. H1(G;Z)),

cf. Proposition 2.3.16 as well as [21]. The tropical Jacobian Jac(Γ) is the g-dimensional

real torus H1(G;R)/H1(G;Z) with the induced inner product.

Now we define a bijection between Picg(Γ) and Jac(Γ). Fix a vertex q of G. From

each divisor class in Picg(Γ), pick any effective divisor D = (p1) + . . . + (pg) (by The-

orem 3.1.5, we can always choose a break divisor). For each pi, choose a path γi from

q to pi and interpret γi as an element of C1(G;R). Then the image of [D] in Jac(Γ) is

[π(γ1 + . . . + γg)] ∈ H1(G;R)/H1(G;Z) = Jac(Γ). Different choices of q produce the

same bijection up to translations in the universal cover of Jac(Γ) only, so essentially the

map is independent of q, and from now on we will often abuse notations and identify

Picg(Γ) and Jac(Γ).

We also note that the map above can be used to define a map from Divg+(Γ), the space

of effective degree g divisors, to Jac(Γ).

Example 3.1.6 In Figure 3.2, take {e1, e3, e5} as the spanning tree associated to the break

25



divisor. The cycle space is spanned by C1 := e1 − e2 + e5, C2 := e3 − e4 + e5. Take

the paths γ1 = e1, γ2 = e2 − 1
3
e4 from q to p1, p2. The image of (p1) + (p2) in Jac(Γ) is

[π((e1) + (e2 − 1
3
e4))] = [−1

24
C1 + 1

8
C2] = [23

24
C1 + 1

8
C2].

Figure 3.2: A fixed model for a metric graph Γ and a break divisor (p1) + (p2) on it.

Next we study how the image of a break divisor changes when it is perturbed by a small

amount; for simplicity, we assume w ≡ 1. Let T be a spanning tree and let the (unit length)

edges not in T be e1 = −−→u1v1, . . . , eg = −−→ugvg. Let D = (p1) + . . . + (pg) be a break divisor

where pi ∈ Lei , say the segment −−→ujpj is of length 0 ≤ θj < 1. Suppose we perturb the

chip at pj and move it to p′j ∈ Lei where
−−→
ujp
′
j is of length θj < θ′j ≤ 1. Then the image of

[(p1) + . . .+ (p′j) + . . .+ (pg)] is [(θ′j − θj)π(ej)] away from the image of [D].

With T and e1 = −−→u1v1, . . . , eg = −−→ugvg 6∈ T as above, D = (u1) + . . . + (ug) is

a break divisor associated to T , and the image of every break divisor associated to T is

equal to [D] + [
∑g

i=1 θiπ(ei)] for some 0 < θi < 1. Therefore the image of all such

break divisors in Jac(Γ), denoted by CT , is the image of (a translation of) the parallelotope

{
∑g

i=1 θiπ(ei) : 0 ≤ θi ≤ 1} ⊂ H1(G,R) in Jac(Γ). The tropical Jacobian is the union

of CT ’s as T runs through all spanning trees of G. As two distinct cells are disjoint except

possibly at the boundary, they give a polyhedral decomposition of Jac(Γ).
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Definition 3.1.7 The ABKS decomposition of Jac(Γ), with respect to a model G of Γ, is

the polyhedral decomposition described above.

2

2

Figure 3.3: The ABKS decomposition of Pic2(Γ) ([1, Figure 1]), using the model chosen
in Figure 3.2.
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3.2 Checking Break Divisors by Matroid Intersection

The network flow based algorithm of Backman [4] gives an efficient method to check

whether a given divisor is break. Here we give an alternative algorithmic approach to

this problem using matroid intersection. Despite a slightly worse runtime, such point of

view provides a polyhedral picture of the problem.

For an effective degree g divisorD = (v1)+ . . .+(vg), construct the bipartite graphGD

whose vertex set is Et{1, 2, . . . , g} and e ∈ E is adjacent to i precisely when e is incident

to vi in G. Such bipartite graph corresponds to a transversal matroid, in which S ⊂ E is

independent if and only if there exists a matching of GD saturating S [92, Section 1.6].

Proposition 3.2.1 An effective degree g divisor D is break if and only if some common

independent set in the cographic matroid of G and the transversal matroid of GD has

cardinality g.

PROOF: This follows almost directly from the definition of break divisors. If D is break,

pick a spanning tree T and an orientation of edges outside T that induce D, then S :=

E(G) \E(T ) is independent in the cographic matroid of G, and the orientation of edges in

S specifies a matching of GD by matching e ∈ S to i if e is pointing to vi (in general vi’s

are not distinct, but if e1, . . . , ek are both pointing to the same v, then we simply pick any

matching between these edges and the k values in {1, 2, . . . , g} that correspond to v), so S

is independent in the transversal matroid as well. Conversely, if such common independent

set S of cardinality g exists, then E(G)\S is a spanning tree of G and any matching in GD

saturating S specifies a way to orient edges in S that induces D. �

Since efficient algorithms are known for solving the maximum common independent set

problem for the intersection of two matroids [80], our approach yields a polynomial-time

algorithm for checking whether a divisor is break. Geometrically speaking, Proposition

3.2.1 says a divisor is break if and only if the transversal matroid polytope corresponding

to GD has a non-empty intersection with the cographic matroid polytope of G.
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3.3 Some Geometry of Divg+(Γ)→ Jac(Γ)

We show that the break divisor section is the unique section of the map Divg+(Γ)→ Jac(Γ).

The statement itself is not too hard to see from the polyhedral picture, as both Divg+(Γ) and

Jac(Γ) are g-dimensional polyhedral complexes in which every fiber (as a tropical linear

system [63]) is connected. However, our approaches provide connections with other topics.

We first give a proof that uses the combinatorics of tropical divisors. A more general

version of the following lemma can be found in [88, Theorem 8.5], proven using sophisti-

cated arguments, here we give a more intuitive proof to the special case.

Lemma 3.3.1 Let D be a break divisor outside the (g − 1)-skeleton of the ABKS decom-

position (with respect to any model G). Then D is q-reduced for every q ∈ Γ.

PROOF: We run Dhar’s burning algorithm and start a fire at q. Pick an arbitrary edge e that

contains q. It has at most one interior chip (or “fireman”) and no chips at endpoints, so the

fire can burn through at least one of the endpoints. From there the fire can burn through the

remaining vertices of G using the (unique) spanning tree associated to D. Now for each

edge of G, both of its endpoints are burnt while it has at most one interior chip, so the

whole edge will be burnt. �

Proposition 3.3.2 Divg+(Γ)→ Jac(Γ) has a unique continuous section.

PROOF: In [1, 88], it was proven that the set of break divisors is a continuous section to

Divg+(Γ) → Jac(Γ). For uniqueness, notice that if D is a generic break divisor in the

sense of Lemma 3.3.1, then D is the unique effective divisor linearly equivalent to itself,

so any continuous section of Divg+(Γ) → Jac(Γ) must consist of break divisors outside

the (g − 1)-skeleton of the ABKS decomposition. The rest of the section will be uniquely

determined by taking limit from the generic part. �

Now we explain how the crucial observation in the proof of Proposition 3.3.2, namely

that most fibers of Divg+(Γ) → Jac(Γ) are singletons, can be viewed as an instance of a
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tropical analogue of Sard’s theorem (we will be referring to basic terminology in differen-

tial geometry, which can be found in standard texts such as [81]).

Since Divg+(Γ) has no canonical tropical structure, we will work with Γg → Jac(Γ)

instead. Fix a model G of Γ, denote the edge set of G by E. For a point x ∈ Γ, the tangent

space TxΓ ⊂ RE is the union of cones Cone(−→e ) corresponding to the edge directions −→e ’s

emanating from x. For example, if x is in the interior of an edge e, then TxΓ is the line

spanned by e as the union of two rays, each corresponds to a direction of e emanating from

x.

Next we define the tangent space T(p1,...,pg)Γ
g at a point (p1, . . . , pg) of Γg, which will

be a fan in R{1,...,g}×E . For each i = 1, . . . , g, we identify TpiΓ as a fan in the i-th copy of

RE , then we take the Minkowski sum of the fans TpiΓ’s. Equivalently, T(p1,...,pg)Γ
g consists

of cones (and faces thereof) of the form Cone({1} × −→e1 , . . . , {g} × −→eg ), where each −→ei is

an edge direction emanating from pi.

Remark. Our definition is similar to the case in differential geometry, where each

point x in a manifold X admits a neighborhood diffeomorphic to a neighborhood of its

tangent space. For the sake of simplicity, we do not consider the multiplicity data on Γg or

T(p1,...,pg)Γ
g.

Lastly, since Jac(Γ) = H1(Γ;R)/H1(Γ;Z), we define the tangent space T[D] Jac(Γ) at

any point of Jac(Γ) as the cycle space H1(Γ;R) itself. Now we can define the derivative

of the Γg → Jac(Γ) map as the restriction (to T(p1,...,pg)Γ
g) of the linear map R{1,...,g}×E →

H1(Γ;R), which extends the orthogonal projection RE ∼= C1(Γ;R) → H1(Γ;R) of each

RE-summand linearly.

Proposition 3.3.3 An effective degree g divisor (p1) + . . .+ (pg) is break if and only if the

image of T(p1,...,pg)Γ
g under the derivative map has a full dimensional image.

PROOF: By definition, the full-dimensional cones in T(p1,...,pg)Γ
g (and the extremal rays

thereof) specify all possible ways to choose a multi-set of g directed edges from G whose
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“orientable divisor” is (p1) + . . . + (pg). The projection of g edges span H1(Γ;R) if and

only if the edges are the complement of some spanning tree. Therefore (p1) + . . . + (pg)

is break if and only if some cone of T(p1,...,pg)Γ
g has a full-dimensional image under the

derivative map. �

Notice that the proof of Proposition 3.3.3 is similar to the proof of Proposition 3.2.1:

T(p1,...,pg)Γ
g encodes information of the transversal matroid while T[D] Jac(Γ) encodes in-

formation of the cographic matroid, and having full-dimensional image implies the two

matroids are having common bases. It is an interesting problem to further investigate the

relations between geometry of tropical objects and matroidal operations.

Further mimicking notions in differential geometry, we can say that a point (p1, . . . , pg)

in Γg is a critical point of f whenever (p1) + . . .+ (pg) is not break, and a degree g divisor

class in Jac(Γ) is a critical value if it contains a non-break effective divisor. The fact that

the subset of critical values is contained in a codimension one subset (the (g − 1)-skeleton

of the ABKS decomposition) can be viewed as an analogue of Sard’s theorem [81, Theorem

10.7].

3.4 The f -Vector of the ABKS Decomposition

We study the f -vector of the ABKS decomposition of a graph G, that is, the number of

faces of different dimensions. Denote by Γ the metric realization of G whose all edges

lengths are 1.

Definition 3.4.1 A pair (D′, E ′) is a break (i, j)-configuration if D′ ∈ Divi(G) and E ′ ⊂

E(G) is a set of j edges such that G − E ′ is connected and D′, treated as a divisor on

G \ E ′, is break. It follows that we must have i+ j = g.

Each break divisor D on Γ corresponds to a break configuration (D′, E ′), where D′

is D restricted on V (G), and E ′ is the set of edges containing chips of D − D′ in their
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interior. Conversely every break configuration (D′, E ′ = {e1, . . . , ej}) corresponds to the

family {D′ + (v1) + . . .+ (vj) : vi ∈ ei, ∀i = 1, 2, . . . , j} of break divisors.

Proposition 3.4.2 For each 0 ≤ i ≤ g, there is a one-to-one correspondence between the

i-dimensional faces of the ABKS decomposition and the break (g − i, i)-configurations.

PROOF: The assertion follows from unwrapping the construction of the ABKS decompo-

sition described in Section 3.1.3. Every face of the ABKS decomposition is the face of

some cell CT ∼= f1× . . .×fg, where f1, . . . , fg are the edges not in the spanning tree T . An

i-dimensional face of CT is specified by choosing endpoints for g−i edges from fi’s, which

specifies a break (g− i, i)-configuration. Conversely, given a break (g− i, i)-configuration

(D′, E ′), pick a spanning tree T ⊂ G − E ′, then some i-dimensional face of the cell CT

corresponds to such configuration. �

Theorem 3.4.3 The f -vector of the ABKS decomposition ofG is |ST (G)|·(
(
g
0

)
,
(
g
1

)
, . . . ,

(
g
g

)
).

Recall that |ST (G)| is the number of spanning trees of G.

PROOF: By Proposition 3.4.2 it suffices to count the number of break (g−i, i)-configurations.

Fix a bijection ϕH between BD(H) and ST (H) for every connected spanning subgraph

H of G. We associate each break (g − i, i)-configuration (D′, E ′) with a pair (T =

ϕG−E′(D
′), E ′); conversely, for every pair (T,E ′), where |E ′| = i and T is a spanning tree

ofG−E ′ (henceG), we can associate a break (g−i, i)-configuration (ϕ−1
G−E′(T ), E ′). Since

the two maps are inverse of each other, we conclude that the number of break (g − i, i)-

configurations is the same as the number of these (T,E ′) pairs, and there are exactly(
g
i

)
|ST (G)| of them: for each spanning tree T of G, any i-subset E ′ of E(G) \ E(T )

could pair up with T . �

Remark. The combinatorics of break configurations has connections with classical al-

gebraic geometry, notably the theory of compactified Jacobians. Let X be a nodal curve.

Let G be the dual graph of X , where vertices are the irreducible components of X , and
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two vertices are adjacent if the corresponding components intersect. The Jacobian Jac(X)

of X is the moduli space of isomorphism classes of degree zero line bundles on X , and one

can compactify Jac(X) by including suitable generalization of line bundles to it. The trop-

icalization of these algebro-geometric objects can be recorded as divisors on G (or metric

realization thereof). In the case of Simpson compactifications [100], the combinatorial type

of such divisors are the break configurations, and as a corollary, the compactifications are

independent of some initial choices [99]. On the other hand, Karl Christ independently

computed the f -vector of the ABKS decomposition, and used it to compute topological

invariants of the Simpson compactification and related objects [29].

Finally, we give one example of how the combinatorics of break divisors and the ABKS

decomposition could be used to study tropical Brill-Noether theory. Similar to the case of

Proposition 3.3.1, the following statement is related to [88, Theorem 8.5], but with a more

transparent proof.

Proposition 3.4.4 The Brill-Noether locus W 1
g is contained in the (g − 2)-skeleton of the

ABKS decomposition. In particular, dim(W 1
g ) ≤ ρ(g, g, 1) = g − 2.

PROOF: Let D be a break divisor outside the (g − 2)-skeleton, we claim it is of rank 0

by showing that D is q-reduced for some q ∈ Γ that has no chips. By Proposition 3.4.2,

there are at least g − 1 chips located in the interior of edges. Choose any g − 1 of them

and remove the corresponding edges from G, there is a unique cycle C left in the graph,

and the remaining chip x is on C. Pick any point q on C \ {x}. Apply Dhar’s burning

algorithm and start a fire at a point q, the fire can burn through the whole of C because it

will approach x from the two sides, from there the rest of the graph will be burnt using a

similar argument as in Lemma 3.3.1. �
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3.5 A Recursive Proof of the Number of (Generalized) Break Divisors

We consider a generalization of (the set of) break divisors on graphs and show that the

cardinality of any such set of divisors is at least the number of spanning trees of a graph.

We further show that the inequality is an equality when we consider ordinary break divisors.

This gives a new, recursive proof for Part (4) of Proposition 3.1.2 without referring to [1]

or the Matrix–Tree theorem.

The proof presented here was first given by myself for equality of the ordinary break

divisors case. Jonathan Barmak later independently used an argument equivalent to the

proof of Proposition 3.5.3 to prove the inequality for the general case.

Recall that a break divisor D ∈ BD(G) is induced by a spanning tree T and an orien-

tation O of edges outside T , denoted as D = D(T,O), if D is the indegree sequence of

the partial orientation O. Let IG be an arbitrary function from the ST (G) to Div0(G). A

divisor of degree g is a generalized break divisor with respect to IG if it can be written as

D(T,O)+IG(T ) for some choice of spanning tree T ∈ ST (G) and orientationO of edges

outside T . Denote by BDIG(G) the set of such divisors.

Theorem 3.5.1 For any function IG, |BDIG(G)| ≥ |ST (G)|. Equality holds when IG ≡ 0.

Theorem 3.5.1 was motivated by a question posed by Jesse Kass and Nicola Pagani in

their work on compactified Jacobians [74]. In their construction of compactified Jacobians

of a nodal curve X with dual graph G, one chooses a set of |ST (G \ F )| divisors from

Divg−|F |(G) for every subset F of E(G). Since one only needs to consider subsets in

which G \F are connected, the function IG records the choices for those maximal subsets.

The divisors chosen correspond to the strata of certain stratification of the moduli space;

and in order the moduli space to be well-defined, whenever a divisor D is chosen for F ,

the divisor D′ obtained by adding a chip to D at an endpoint of some f ∈ F must also

be chosen for F \ {f}. The inequality in Theorem 3.5.1 roughly says that one has enough

combinatorial options for choosing divisors for F = ∅, starting with any IG.
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To establish the recursive proof, we fix an edge e = uv of G that is neither a loop

nor an isthmus; the case when G consists solely of loops and isthmuses will be handled

separately as a base case. For D ∈ Div(G), denote by f(D) ∈ Div(G/e) the divisor

such that f(D)(x) = D(x) for x ∈ V (G) \ {u, v} and f(D)(w) = D(u) + D(v), where

w corresponds to the contracted edge e. Now define IG\e(T ) := IG(T ) and IG/e(T ) :=

f(IG(T ∪ e)).

Lemma 3.5.2 If E ∈ Divg−1(G \ e) is a generalized break divisor with respect to IG\e,

then both E + (u) and E + (v) are generalized break divisors with respect to IG.

PROOF: Suppose E = D(T,O) + IG\e(T ) ∈ F (G \ e) for spanning tree T ∈ ST (G \ e)

and orientationO of edges (of G \ e) outside T . Then E+ (u) = D(T,O∪−→vu) + IG(T ) ∈

BDIG(G) and E + (v) = D(T,O ∪−→uv) + IG(T ) ∈ BDIG(G). �

Define the function γ : BDIG(G)→ BDIG\e(G \ e) t BDIG/e(G/e) as follows:

1. If D − (v) (considered as a divisor on G \ e) is in BDIG\e(G \ e), then set γ(D) :=

D − (v) ∈ BDIG\e(G \ e);

2. else if f(D) ∈ BDIG/e(G/e), then set γ(D) := f(D) ∈ BDIG/e(G/e);

3. otherwise set γ(D) := D − (u) ∈ BDIG\e(G \ e).

Proposition 3.5.3 The function γ is well-defined and surjective.

PROOF: “γ is well-defined”. Suppose D ∈ BDIG(G) is equal to D(T,O) + IG(T ). Then

either

1. e 6∈ T and e is oriented as−→uv inO, which meansD−(v) = D(T,O\−→uv)+IG\e(T ) ∈

BDIG\e(G \ e), or

2. e ∈ T , which means f(D) = D(T \ e,O) + IG/e(T \ e) ∈ BDIG/e(G/e), or
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3. e 6∈ T and e is oriented as−→vu inO, which meansD−(u) = D(T,O\−→vu)+IG\e(T ) ∈

BDIG\e(G \ e).

So γ(D) always lands in BDIG\e(G \ e) t BDIG/e(G/e).

“γ is surjective on BDIG\e(G \ e)”. For each D ∈ BDIG\e(G \ e), D+ (v) ∈ BDIG(G)

by Lemma 3.5.2, therefore γ(D + (v)) = D as we are in the first case in the definition of

γ.

“γ is surjective on BDIG/e(G/e)”. For each D̃ = D(T̃ , Õ) + IG/e(T̃ ) ∈ BDIG/e(G/e),

set D := D(T̃ ∪ e, Õ) + IG(T̃ ∪ e) ∈ BDIG(G) and let K be the minimum k ≥ 0 such that

D−(k+1)(v)+(k+1)(u) is not in BDIG(G). WriteD′ := D−K(v)+K(u) ∈ BDIG(G).

If D′ − (v) ∈ BDIG\e(G \ e), then by Lemma 3.5.2, D′ − (v) + (u) ∈ BDIG(G), a

contradiction to the choice of K. Therefore we are not in the first case, and γ(D′) =

f(D′) = f(D) = D̃. �

Now we show that γ is injective as well when IG is identically the zero divisor, that is,

when BDIG(G) is the set of ordinary break divisors.

Proposition 3.5.4 The function γ is injective when IG ≡ 0.

PROOF: “γ is injective in the first case”. Obvious.

“γ is injective in the second case”. Let D ∈ BD0(G) be a break divisor such that

γ(D) ∈ BD0(G/e). Since D − (v) is not a break divisor on G \ e (or otherwise we

would have been in the first case), there exists a non-empty subset S0 ⊂ V (G) such that

χ
D−(v),G\e(S0) ≤ 0 by Lemma 3.1.3. Note that χD−(v),G\e(S) = χ

D,G(S) > 0 whenever

S∩{u, v} 6= {v}, so we must have S0∩{u, v} = {v} and χD,G(S0) = 1. From this we can

see that for any k > 0,D−k(v)+k(u) is not a break divisor onG, for χD−k(v)+k(u),G(S0) ≤

χ
D,G(S0) − 1 ≤ 0. Reversing the roles in the argument, we can also see that D + k(v) −

k(u)’s are either not break (because it fails the criterion in Lemma 3.1.3) or would not be

mapped to BD(G/e) (because D − (v) is already break by Lemma 3.1.3). But from the
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definition of γ, these are the only possible divisors that could be mapped to D via f , so γ

is injective on the second part.

“γ is injective in the third case”. We claim that such case can never happen, hence

injectivity is vacuously true. Suppose D ∈ BD0(G) is equal to D(T,O) with e 6∈ T and e

is oriented as −→vu in O. Pick, from the fundamental cycle of e with respect to T , the other

edge f incident to u and set T ′ = T − f + e. Construct the partial orientation O′ of G that

agrees with O everywhere except e is now unoriented and f is oriented towards u. Then

D = (T ′,O′), and we would have stopped by the latest the second case. �

Remark. Despite not using the terminology of Euler characteristic, several other bi-

jective proofs related to break divisors [13, 114] construct such S0 explicitly in their argu-

ments.

PROOF OF THEOREM 3.5.1: If a graph only consists of loops and isthmuses, then it

only has one spanning tree and one break divisor, and the theorem is true with equality.

By Proposition 3.5.3, for a graph with an edge e that is neither a loop nor an isthmus,

|BDIG(G)| ≥ |BDIG\e(G \ e)| + |BDIG/e(G/e)|, and by induction, |BDIG\e(G \ e)| +

|BDIG/e(G/e)| ≥ |ST (G \ e)| + |ST (G/e)| = |ST (G)|, with equality through out if

IG ≡ 0 by Proposition 3.5.4. �
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CHAPTER 4

CIRCUIT-COCIRCUIT REVERSAL SYSTEMS

4.1 Definition

Let M be an oriented matroid on E. An orientation O is compatible with a signed circuit

or signed cocircuit C if O(e) = C(e) for every e ∈ C. We have the following dichotomy.

Proposition 4.1.1 [23, Corollary 3.4.6] In an orientation O, every element is either con-

tained in a signed circuit compatible with O or a signed cocircuit compatible with O, but

not both.

The set of elements contained in some signed circuit (resp. signed cocircuit) is the

circuit part (resp. cocircuit part) of O. An orientation is acyclic if its cocircuit part is the

all of E, and it is totally cyclic if its circuit part is the all of E.

The following definitions were introduced by Gioan [57, 58].

Definition 4.1.2 Given an orientation O, a circuit reversal (resp. cocircuit reversal) picks

a signed circuit (resp. cocircuit) C compatible with O and reverses the sign of O(e) for

every e ∈ C.

Two orientations O1,O2 are circuit-cocircuit reversal equivalent if O1 can be trans-

formed into O2 via a sequence of circuit and cocircuit reversals. The set of equivalence

classes G(M) is the circuit-cocircuit reversal system of M , and each equivalence class

is a circuit-cocircuit reversal class. Similarly we can define the circuit reversal classes or

cocircuit reversal classes of M .

Lemma 4.1.3 [58, Proposition 1] A circuit (resp. cocircuit) reversal does not change the

circuit part nor the cocircuit part of an orientation.
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Gioan proved the following theorem, which can be thought as a variation of the Matrix–

Tree theorem.

Theorem 4.1.4 [58, Theorem 10(v)] LetM be a regular matroid. Then |G(M)| = |B(M)|.

Built on the work of Gioan, Backman established the following connection between

circuit-cocircuit reversals and chip-firing in the case of graphs.

Proposition 4.1.5 [4, Lemma 3.1, Theorem 3.3], [57, Proposition 4.10, Corollary 4.13]

Let O,O′ be two orientations of a graph G. Then DO = DO′ if and only if O′ can be

obtained from O by a sequence of circuit (cycle) reversals, and DO ∼ DO′ if and only if

O′ can be obtained from O by a sequence of circuit (cycle) reversals and cocircuit (cut)

reversals.

Proposition 4.1.6 [4, Section 5] The map τG : G(M(G)) → Picg−1(G) given by [O] 7→

[DO] is a well-defined bijection.

For the rest of Section 4, we will use the term positive (co)circuit (with respect to

an orientation O) to denote either a signed (co)circuit that is compatible with O, or a

(co)circuit C of M in which O|C is a signed (co)circuit in M . Furthermore, given an

orientationO and a subset X ⊂ E, denote by −XO the orientation obtained from reversing

elements of X in O. For a (co)circuit C of M , we say that −XC is positive with respect

to O if C is a positive (co)circuit of −XO. Finally, denote by χX the {0, 1}-vector whose

support is X .

4.2 Circuit-cocircuit Reversal System as a Jac(M)-Torsor

We will define a natural action of Jac(M) on the circuit-cocircuit reversal system G(M)

for a regular matroid M , and prove that the action is simply transitive. We will also give an

efficient algorithm for computing this action. For the rest of Section 4.2, we will fix a full

row rank totally unimodular matrix A realizing M .
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4.2.1 Description of the Action

Recall from Definition 2.4.1 that Jac(M) can be identified with C1(M)
Z1(M)⊕B1(M)

. The quotient

group is generated by [−→e ], e ∈ M , where we use an overhead arrow to emphasize that we

are keeping track of the orientation of elements.

The group action Jac(M) � G(M) is defined by linearly extending the following action

of each generator [−→e ] on circuit-cocircuit reversal classes: given a class, pick an orientation

O from the class so that e is oriented as −→e in O, reverse the orientation of e in O to obtain

O′, and set [−→e ] · [O] = [O′]. This action generalizes the one defined in terms of path

reversals by Backman in the graphical case [4, Section 5].

[-f+2e]• [-f+e]• 

[-f]• [-f+e]• 

[-f]• [    ] 

e 

f 

[    ] [    ] 

[    ] 

[    ] 

[    ] 

Figure 4.1: Example of the torsor. Here the reference orientations of e, f are the same as
the orientation we begin with.

We will prove the following theorem.

Theorem 4.2.1 The group action � is well-defined and simply transitive.

Theorem 4.2.1 will be deduced from a series of intermediate results. We start with a

few general lemmas regarding (regular) matroids.
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Lemma 4.2.2 Let e ∈ E, and suppose X ⊂ E \ {e} is a positive cocircuit ofO \ e but not

in O. Then Y := X ∪ {e} is a positive cocircuit of either O or −eO.

PROOF: Without loss of generality we may assumeO ≡ +, hence there exists some u ∈ Zr

such that uTA|E\{e} = χ
X . Now uTA = χ

X +λχ{e} for some λ, which is not zero as X is

not a cocircuit in M . Since the support of uTA is Y , Y contains a cocircuit D by the dual

of Lemma 2.3.9.

If D ∩ X = ∅, then D = {e}. So u′TA = χ{e} for some u′, which implies that

(u− λu′)TA = χ
X , thus X itself is a cocircuit in M , a contradiction. Now we must have

X ⊂ D, or otherwise D ∩X ( X would be a cocircuit in M \ e. Since D 6= X , Y = D is

a cocircuit, and depending the sign of λ, either Y or −eY is positive in O. �

Lemma 4.2.3 Suppose e ∈ E is contained in some positive circuit of O, and Y is a subset

of E containing e such that −eY is a positive cocircuit of O. Then any positive circuit

containing e intersects Y in exactly two elements.

PROOF: Again we assume O ≡ +. Let C be a positive circuit containing e, so AχC = 0.

By assumption, there exists a vector u such that uTA = χ
Y \{e}−χ{e}. Then 0 = uTAχC =

|(Y \ {e})∩C| − 1, that is, Y intersects C in e together with exactly one more element. �

4.2.2 The Action is Well-defined

In order to show that the action of Jac(M) on G(M) is well-defined, we first show that the

corresponding action (which by abuse of notation we continue to write as �) of C1(M) on

G(M) is well-defined, then that the action descends to the quotient by Z1(M)⊕B1(M).

Proposition 4.2.4 For every [O] ∈ G(M) and oriented element −→e , there exists Õ ∈ [O]

so that e is oriented as −→e in Õ.

PROOF: This follows from Proposition 4.1.1, which guarantees that e is either contained in

a positive circuit or cocircuit C of O. If e is not already oriented as −→e in O, reverse C. �

41



Proposition 4.2.5 The action of −→e on [O] is independent of which orientation we choose.

PROOF: It suffices to show that if O ∼ O′ and the two orientations agree on e, then

−eO ∼−eO′. By Lemma 2.3.14 and its dual,O andO′ differ by a disjoint union of positive

circuits and cocircuits which do not contain e, and −eO can be transformed to −eO′ by

reversing these circuits and cocircuits. �

Proposition 4.2.6 For any−→e ,
−→
f ∈ C1(M) and [O] ∈ G(M),−→e ·(

−→
f ·[O]) =

−→
f ·(−→e ·[O]).

Hence it is valid to extend · linearly, and � is indeed a group action of C1(M) on G(M) .

PROOF: The statement is tautological if −→e =
−→
f . If −→e = −

−→
f , then without loss of

generality the orientation of e in O is −→e . Let C be a positive (co)circuit containing e. On

one hand, we have
−→
f · (−→e · [O]) =

−→
f · [−eO] = [O]; on the other hand, −→e · (

−→
f · [O]) =

−→e · (
−→
f · [−CO]) = [−CO] = [O]. Therefore the action order does not matter.

Now suppose e 6= f . We may again assume without loss of generality that e is oriented

as−→e inO. The statement is easy if there exists some positive (co)circuit inO that contains

f but not e, as we can reverse it and obtain an orientation in which the orientations of e, f

are already −→e ,
−→
f . So without loss of generality e, f are in the circuit part of O and every

positive circuit containing f also contains e. Fix any such positive circuit C. f must be

in some positive cocircuit D′ of O \ e, or otherwise f is in some positive circuit of O \ e,

which is a positive circuit of O avoiding e. By Lemma 4.2.2, D := D′ ∪ {e} is a cocircuit

in O and −eD is positive, and by Lemma 4.2.3, we know that C ∩D = {e, f}.

We have −→e · [O] = [−eO] = [−(D\{e})O] as D is a positive cocircuit of −eO, and
−→
f · [−(D\{e})O] = [−(D\{e,f})O] as f is oriented as

−→
f in −(D\{e})O. On the other hand,

−→
f · [O] =

−→
f · [−CO] = [−(C\{f})O], and D is positive in −(C\{f})O since C ∩D = {e, f},

hence −→e · [−(C\{f})O] = −→e · [−(C∪D\{e})O] = [−(C∪D)O]. But C is positive in −(C∪D)O, so

[−(C∪D)O] = [−(C∪D)4CO] = [−(D\{e,f})O]. �

Now we know that C1(M) � G(M) is well-defined, so we show next that this action

descends to a group action Jac(M) � G(M).
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e f 

Figure 4.2: Illustration of Proposition 4.2.6.

Proposition 4.2.7 The stabilizer of the action on any [O] contains Z1(M)⊕B1(M).

PROOF: Let
−→
C ∈ Z1(M) be a signed circuit. Let F be the set of elements in C whose ori-

entation inO is the same as in
−→
C . Then

−→
C ·[O] = (

∑
−→e ∈
−→
C \F
−→e )·[−FO] = (

∑
−→e ∈
−→
C \F
−→e )·

[−(C\F )O] = [O]. The proof for B1(M) is similar. �

4.2.3 The Action is Simply Transitive

Proposition 4.2.8 The group action Jac(M) � G(M) is transitive.

PROOF: Given any two orientations O,O′, let γ be the sum of the oriented elements in O

whose orientation in O′ is different; then [γ] · [O] = [O′]. �

PROOF OF THEOREM 4.2.1: We know from Proposition 4.2.7 that Jac(M) � G(M) is a

well-defined group action, and which by Proposition 4.2.8 is transitive. Since | Jac(M)| =

|B(M)| = |G(M)|, the action is automatically simple. �
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It is worthwhile to give a direct proof of the simplicity of the action which does not make

use of the equality | Jac(M)| = |G(M)|, since this yields an independent and “bijective”

proof of the equality. We begin with the following reduction.

Proposition 4.2.9 The simplicity of the group action Jac(M) � G(M) is equivalent to the

statement that every element of the quotient group C1(M)
Z1(M)⊕B1(M)

contains a coset represen-

tative whose coefficients are all 1, 0,−1.

PROOF: Suppose the group action is simple. Let [γ] ∈ C1(M)
Z1(M)⊕B1(M)

be an element of

Jac(M). Pick an arbitrary orientation O and an arbitrary orientation O′ from [γ] · [O]. Let

γ0 ∈ C1(M) be the sum of oriented elements in O which have the opposite orientation in

O′. Then [γ0] · [O] = [O′], which by the simplicity of the action implies that γ0 ∈ [γ]. The

desired coset representative is γ0.

Conversely, suppose such a set of coset representatives exists. We need to show that

whenever [γ] ∈ C1(M)
Z1(M)⊕B1(M)

fixes some circuit-cocircuit reversal class [O], [γ] = [0]. By

transitivity, we may assume [γ] fixes all circuit-cocircuit reversal classes: for any other

reversal class [O′] = [γ′] · [O], [γ] · [O′] = ([γ′] + [γ] + [−γ′]) · [O′] = ([γ′] + [γ]) · [O] =

[γ′]·[O] = [O′]. Without loss of generality, the coefficients of γ are all 1, 0,−1 with support

F ⊂ E. Pick an orientation O in which the orientation of every element in F agrees with

γ, then [O] = [γ] · [O] = [−FO]. Therefore O ∼−FO, meaning that F is a disjoint union

of positive circuits and cocircuits in O, that is, γ ∈ Z1(M)⊕B1(M) and [γ] = [0]. �

Then we prove the claim about special representatives in Jac(M).

Proposition 4.2.10 Every element of C1(M)
Z1(M)⊕B1(M)

contains a coset representative whose

coefficients are all 1, 0,−1.

PROOF: We will show that there is such a representative in [γ] for every γ =
∑

e∈E cee ∈

C1(M) by lexicographic induction on |γ|∞ := maxe∈E |ce| and the number of elements

e with |ce| = |γ|∞. The assertion is clearly true if |γ|∞ ≤ 1, so suppose |γ|∞ > 1.
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By reorientation, we may assume that all coefficients of γ are non-negative. Pick an ele-

ment e whose coefficient ce equals |γ|∞. By applying Proposition 4.1.1 to the all positive

orientation, there exists a signed (co)circuit C ≥ 0 containing e. Now if we subtract

γC :=
∑

f∈C f from γ, all positive coefficients cf with f ∈ C decrease by 1, while the

zero coefficients in the support of C become −1. Hence |γ − γc|∞ ≤ |γ|∞ and the number

of elements f with |cf | = |γ|∞ strictly decreases. By our induction hypothesis, there exists

a representative of the desired form in [γ − γC ] = [γ]. �

Remark. Proposition 4.2.10 implies the following result for divisors on graphs, which

serves as a degree 0 analogue of Proposition 4.1.6: for every degree 0 divisor D, there

exists a partial orientation O of G such that D ∼ D′, where D′(v) = indegO(v) −

outdegO(v),∀v ∈ V (G).

4.2.4 The Action is Efficiently Computable

Finally, we show that the simply transitive action of Jac(M) on G(M) is efficiently com-

putable.

Proposition 4.2.11 The action of Jac(M) on G(M) can be computed in polynomial-time,

given a totally unimodular matrix A realizing M .

PROOF: First we note that computing the action of a generator [−→e ] on a circuit-cocircuit

reversal class can be done in polynomial-time. To see this, it suffices by Proposition 4.2.4

to find a positive circuit or cocircuit containing a given element e in an orientationO, which

is represented by a matrix obtained from negating corresponding columns of A (by abuse

of notation we continue to write as A). e is in some positive circuit of O if and only if the

integer program min(1Tv : Av = 0,ve = 1, 0 ≤ vi ≤ 1,vi ∈ Z) has a solution, and if a

solution exists, the support of any minimizer v is a positive circuit containing e. Since A is

totally unimodular, the integer program is actually a linear program, which can be solved

in polynomial-time [98]. The cocircuit case is proved analogously.
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It remains to show that it is possible to find, in polynomial-time, a coset representative

with small (polynomial-size) coefficients in each element of Jac(M) ∼= C1(M)
Z1(M)⊕B1(M)

. For

the practical reason of generating random elements of Jac(M) (cf. Section 5.8.2), we often

start with a vector y ∈ Zr representing a coset of Zr
ColZ(AAT )

, before “lifting” y to a vector

γ ∈ C1(M) ∼= ZE that represents an element of Jac(M). Thus we describe a two-step

algorithm to in fact find a “thin” representative in C1(M) where all coefficients belong to

{−1, 0, 1} (the existence of which is guaranteed by Proposition 4.2.10), starting with an

input vector y ∈ Zr.

In step 1, we first replace y by y′ := y − (AAT )b(AAT )−1yc, where b c is the

coordinate-wise truncation. The new vector represents the same element in Zr
ColZ(AAT )

,

and it is equal to (AAT )((AAT )−1y − b(AAT )−1yc). Each coordinate of (AAT )−1y −

b(AAT )−1yc is between 0 and 1, and each coordinate of AAT is between −m and m, so

the absolute value of each coordinate of y′ is at most mr. Then we solve the equation

Aγ = y′ to work back in C1(M), which can be done by choosing an arbitrary basis B

and then solving A|Bγ′ = y′. Since A is totally unimodular, the absolute value of each

coefficient of γ′ is at most mr2.

In step 2, we find a “thin” representative in [γ]. The procedure described in Proposition

4.2.10 successively chooses a positive (co)circuit C which contains an element e whose

coefficient ce is maximum in γ (recall that we may assume all coefficients in γ are non-

negative by reorientation), then subtracts γC from γ. An algorithmic optimization is to

subtract b ce
2
cγC from γ at once instead. No new element with the absolute value of its

coefficient being larger than d |γ|∞
2
e is created in each such step, so after everyO(m) rounds

the maximum absolute value of coefficients is halved, and in a total of O(m logm) rounds

the maximum absolute value of coefficients is reduced to at most 1. �

Remark. Each of two steps above yields a polynomial-time algorithm by itself. If we

only perform the first step, the element γ produced at the end is already of polynomial-size,

so we may compute [γ] · [O] using γ directly. However, in such situation we will need to
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solve O(m2r2) many linear programs to compute the action, while the algorithm in the

second step solves O(m logm) linear programs to find a better γ, and the group action

can now be computed by solving only O(m) many extra linear programs. If we perform

the second step alone, starting from a general γ as input, the size reducing procedure still

terminates in O(m log |γ|∞) rounds, so it runs in polynomial-time with respect to the input

size.

4.3 Circuit-cocircuit Reversal Systems of Non-Regular Matroids

In [58, Proposition 2], Gioan noticed that Theorem 4.1.4 is not true in general for non-

regular oriented matroids. In this section, we prove that Theorem 4.1.4 actually character-

izes regular matroids among oriented matroids.

Theorem 4.3.1 Let M be a non-regular oriented matroid. Then |G(M)| < |B(M)|.

4.3.1 Reduction via Circuit-cocircuit Minimal Orientations

Fix a total ordering of the ground set E of M , together with a reference orientation of E.

Definition 4.3.2 An element of E is internally (resp. externally) active in an orientation

O if it is the minimal element in some signed cocircuit (resp. circuit) compatible with O.

The internal (resp. external) activity ι(O) (resp. ε(O)) is the number of internally (resp.

externally) active elements in O.

We have the following formula for the Tutte polynomial of M using activities of orien-

tations, which was first proven by Las Vergnas.

Theorem 4.3.3 [79] Let M be an oriented matroid. Then

TM(x, y) =
∑
O

1

2ι(O)+ε(O)
xι(O)yε(O), (4.1)

where the sum is taken over all 2|E| orientations of M .
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As immediate corollaries, we have the following enumerations as special evaluations

of the Tutte polynomial, extending the list in Proposition 2.5.5.

Corollary 4.3.4 [78] Let M be an oriented matroid. Then

1. TM(2, 0) equals the number of acyclic orientations of M .

2. TM(0, 2) equals the number of totally cyclic orientations of M .

Now we introduce an important collection of orientations, which will be generalized in

the next chapter.

Definition 4.3.5 An orientation is circuit-cocircuit minimal (with respect to the chosen

total ordering and reference orientation of E) if every active element is oriented according

to its reference orientation.

The following results were due to Gioan and Backman, respectively. But in view of

their importance in the proof of Theorem 4.3.1, we include a proof for each of them for

completeness.

Theorem 4.3.6 [56] Let M be an oriented matroid. Then the number of circuit-cocircuit

minimal orientations of M equals the number of bases of M .

PROOF: Substituting x = 1, y = 1 in (4.1), we have TM(1, 1) =
∑

ι,ε
1

2ι+ε
|Oι,ε|, where Oι,ε

is the set of orientations with internal activity ι and external activity ε. By Proposition 2.5.5,

TM(1, 1) equals the number of bases of M , so it suffices to show that we can partition each

Oι,ε into groups of size 2ι+ε such that there is a unique circuit-cocircuit minimal orientation

within each group.

Pick an arbitrary orientation O from Oι,ε (if it is not empty). Let e1 < . . . < eι (resp.

e′1 < . . . < e′ε) be the elements that are internally (resp. externally) active in O. For

k = 1, 2, . . . , ι, denote by Fk the union of (the support of) all signed cocircuits compatible
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with O whose minimal elements are at least ek; dually, for k = 1, 2, . . . , ε, denote by F ′k

the union of (the support of) all signed circuits compatible withO whose minimal elements

are at least e′k. The partition F = (Fι, Fι−1 \ Fι, . . . , F1 \ F2;F ′ε , F
′
ε−1 \ F ′ε , . . . , F ′1 \ F ′2)

of E is the active partition of O; note that each component contains precisely one active

element.

It is easy to see that reversing the elements of any Fk (resp. F ′k) produces an orientation

with the same active partition (hence the same internal and external activities). By induc-

tion, reversing any union of components from F also produces an orientation in Oι,ε, and

such a reversal procedure induces an equivalence relation on Oι,ε. Since each equivalence

class contains 2ι+ε orientations, and exactly one orientation in each class is circuit-cocircuit

minimal, this gives our desired partition of Oι,ε. �

As a simple corollary, we have the following variation of Theorem 4.3.3.

Corollary 4.3.7 Let M be an oriented matroid. Then

TM(x, y) =
∑
O

xι(O)yε(O), (4.2)

where the sum is taken over all circuit-cocircuit minimal orientations of M .

Proposition 4.3.8 [5] Every circuit-cocircuit reversal class of M contains at least one

circuit-cocircuit minimal orientation. Furthermore, a circuit-cocircuit minimal orientation

equivalent to a given orientation can be obtained greedily.

PROOF: Start with an arbitrary orientation, and greedily reverse any compatible signed

(co)circuit whose minimal element is not oriented according to its reference orientation.

Once the procedure stops, we will have a circuit-cocircuit minimal orientation equivalent

to the starting orientation, so it suffices to show that the procedure always terminates. If

this is not the case, then since the number of orientations is finite, we must (without loss

of generality) return to the starting orientation. Let e to be the minimal element that was
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reversed (which must occur at least twice) in the process. When e was reversed for the first

time, we must have reversed it to agree with its reference orientation, so the second reversal

is not valid, a contradiction. �

Remark. We claim that if we always reverse the circuit whose minimal element is the

smallest among all “wrongly oriented” positive circuits of the current orientation, then the

sequence of minimal elements of the circuits we reverse is strictly increasing, thus we only

have to reverse at most m circuits in the greedy process above (and a similar assertion for

cocircuits). Suppose that after reversing a positive circuit C of O whose minimal element

is e, we have to reverse a positive circuit C ′ of the new orientation O′ whose minimal

element is e′ < e. Consider X := C ∪ C ′, an element in X is either in the positive circuit

C of O or the positive circuit C ′ of O′, so by Lemma 4.1.3, O and O′ restricted to X are

totally cyclic. Therefore e′ was contained in some positive circuit C ′′ of O whose support

is contained in X . Since e′ is the minimal element of X , e′ is also the minimal element of

C ′′. Furthermore, C ′′ is necessarily not C as e is already its minimal element, so e′ was

oriented opposite to its reference orientation in O already, and we would have reversed C ′′

instead of C.

Corollary 4.3.9 The number of circuit-cocircuit reversal classes is at most the number of

bases, with equality if and only if no two circuit-cocircuit minimal orientations are con-

tained in the same class.

As an immediate application of Corollary 4.3.9, we can give a short proof of Theo-

rem 4.1.4: by Lemma 2.3.14, two circuit-cocircuit reversal equivalent orientations of a

regular matroid differ by a disjoint union of signed circuits and cocircuits, but for each

pair of opposite signed circuits or cocircuits, the minimal element is oriented as its refer-

ence orientation in precisely one of them, so at most one orientation within a class can be

circuit-cocircuit minimal.
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4.3.2 Proof of the Inequality

We prove Theorem 4.3.1 in this section. The idea of our proof is to use the fact that in a

non-binary matroid, the symmetric difference of two cocircuits need not be a disjoint union

of cocircuits, so the argument (a posteriori the conclusion) at the end of Section 4.3.1 fails.

We start with an observation on U2,4 which can be verified by a slightly tedious but routine

case by case analysis.

Proposition 4.3.10 Up to reorientation, the unique oriented structure on U2,4 is the one

induced by the four-point line configuration. Namely, the list of signed cocircuits is (+ +

+ 0), (+ + 0 −), (+ 0 − −), (0 + + +) and their negations.

Next we construct a special pair of signed cocircuits with respect to a U2,4-minor. These

cocircuits will be used in the main proof below.

Lemma 4.3.11 Let M be an oriented matroid over E and let B be a subset of E such that

M \B ∼= U2,4 = {e1, e2, e3, e4}. Without loss of generality the U2,4-minor has the oriented

structure described in Proposition 4.3.10. Then there exists a pair of signed cocircuits

D1,D2 of M such that

1. D1(e)D2(e) ≥ 0 for every e ∈ E, i.e., D1 and D2 are conformal.

2. D1(e1) = D1(e2) = D1(e3) = +,D1(e4) = 0, and D2(e1) = D2(e2) = +,D2(e3) ≥

0,D2(e4) = −.

PROOF: List the elements of B as b1, . . . , bm. We will inductively construct a pair of

signed cocircuits Di
1, D

i
2 of M \ {bi+1, . . . , bm} for each i = 0, . . . ,m with the following

properties:

1. Di
1(e)Di

2(e) ≥ 0 for every e ∈ E \ {bi+1, . . . , bm}.

2. Di
1(e1) = Di

1(e2) = Di
1(e3) = +, Di

1(e4) = 0 and Di
2(e1) = Di

2(e2) = +, Di
2(e3) ≥

0, Di
2(e4) = −.
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For ease of notation, by reorienting elements in B if necessary, we may assume that each

Di
1 is positive and each Di

2 is non-positive outside its common support with Di
1.

The base case is D0
1 = (+ + + 0), D0

2 = (+ + 0 −) as cocircuits of M \B.

Suppose we have constructed Dp
1, D

p
2 ⊂ M \ {bp+1, . . . , bm} for some p. Consider

the single-element extensions D′1, D
′
2 of Dp

1, D
p
2 obtained by adding bp+1. Without loss of

generality, D′1(bp+1) ≥ 0 by reorientation. If D′1(bp+1)D′2(bp+1) ≥ 0, then we can take

Dp+1
1 = D′1, D

p+1
2 = D′2.

IfD′1(bp+1) = +, D′2(bp+1) = −, apply the strong cocircuit elimination axiom to obtain

a cocircuit signed D of M \ {bp+2, . . . , bm} such that

D+ ⊂ (D′1
+ ∪D′2

+
) \ {bp+1} = D′1 \ {bp+1}

and

e4 ∈ D− ⊂ (D′1
− ∪D′2

−
) \ {bp+1} = D′2

− \ {bp+1} ⊂ D′1
c
.

We claim that choosing Dp+1
1 = D′1 and Dp+1

2 = D works. From the containment

D− ⊂ D′1
c, D′1, D satisfy (1). Also, D′1 satisfies (2) as the signs of e1, e2, e3, e4 do not

change after the single-element extension. Furthermore, we have D(e4) = − by construc-

tion, and D(e1), D(e2), D(e3) ≥ 0 by (1), so it remains to show D contains both e1, e2

in its support. If not, then by deleting {b1, . . . , bp+1} from D (resp. M \ {bp+2, . . . , bm}),

we have a signed subset X of {e1, . . . , e4} with X(e4) = − and otherwise non-negative,

but not positive on both e1, e2. By [23, Theorem 3.7.11], X is a signed covector and thus

contains a signed cocircuit, but U2,4 does not have such a signed cocircuit. �

PROOF OF THEOREM 4.3.1: By Proposition 2.3.12, M contains U2,4 as a minor, say

M/A\B = {e1, e2, e3, e4} is isomorphic to U2,4, in which we will assume it has the oriented

structure described in Proposition 4.3.10. Apply Lemma 4.3.11 to obtain a pair of signed

cocircuits D1,D2 of M/A, thus of M itself. By reorientation, we may assume that D1 is
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non-negative while D2 is non-positive outside D1 ∩D2. Take the positive orientation for

each element of E as the reference orientation.

We start with the orientationO1 whose all elements are positive. Note thatO1 is circuit-

cocircuit minimal with respect to any ordering of E. D1 is compatible with O1, so we

can reverse D1 in O1. Afterward, −D2 is compatible with the new orientation by (1) in

Lemma 4.3.11, so we can perform a second cocircuit reversal with −D2. Denote by O2

the resulting orientation and by S = D14D2 the set of elements that are negative in O2.

It follows that S is in the cocircuit part of O2, and e4 ∈ S ∩ {e1, e2, e3, e4} ⊂ {e3, e4}. In

particular, O1 6= O2.

S does not contain a positive cocircuit of O2 (and a priori does not contain a positive

circuit): suppose O2 contains a positive cocircuit D whose support is contained in S, by

contracting A and deleting B from M , we obtain a covector D|{e1,e2,e3,e4} ⊂ {e3, e4} in

U2,4, which is impossible. Now fix a total ordering of E such that the elements in S are

larger than the rest of the elements. Then O2 is circuit-cocircuit minimal because any sub-

set whose minimal element is negative in O2 would be contained in S, thus not a positive

circuit or cocircuit. The theorem follows from Corollary 4.3.9, since we have two distinct

circuit-cocircuit minimal orientations O1,O2 that are equivalent. �

In [58, Theorem 10], several other analogous enumerative results relating the number

of circuit/cocircuit reversal classes and special evaluations of Tutte polynomial were given.

By restricting ourselves to the circuit or cocircuit part of orientations, as well as further

restriction to totally cyclic or acyclic orientations (and their reversal classes), the above

argument for Theorem 4.3.1 can be modified to show the non-regular version of those

statements.

Proposition 4.3.12 LetM be a non-regular oriented matroid. Then we have the following.

1. The number of acyclic cocircuit reversal classes of M is strictly less than TM(1, 0).
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2. The number of totally cyclic circuit reversal classes ofM is strictly less than TM(0, 1).

3. The number of cocircuit reversal classes of M is strictly less than TM(1, 2).

4. The number of circuit reversal classes of M is strictly less than TM(2, 1).
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CHAPTER 5

GEOMETRIC BIJECTIONS

This chapter is mainly based on joint work with Spencer Backman and Matthew Baker [6].

5.1 Statement of the Main Theorem

In this chapter, we study a class of bijections between B(M) and G(M) of a regular matroid

M . Despite the simple combinatorial description, the only known proofs of their bijectivity

rely on geometric combinatorics in an essential way. In order to define the bijection, we

introduce several important notions.

Definition 5.1.1 Let M be a regular (oriented) matroid. A circuit signature σ is map from

C(M) to C(M), that is, for every circuit C of the underlying matroid, σ picks out one of the

two possible orientations of C. A cocircuit signature is defined similarly.

A circuit signature is acyclic if
∑

C∈C(M) aCσ(C) = 0 has no non-zero non-negative

solution, where each σ(C) is considered as a {1, 0,−1}-vector in C1(M) ∼= ZE . An

acyclic cocircuit signature is defined similarly.

The notion of acyclic signatures is geometric in nature.

Lemma 5.1.2 Let σ and σ∗ be signatures of C(M) and C∗(M), respectively. Then σ and

σ∗ are both acyclic if and only if there exists w ∈ RE such that w · σ(C) > 0 for every

circuit C of M and w · σ∗(D) > 0 for every cocircuit D of M .

PROOF: The Gordan’s alternative [23, p. 478] applied to the circuit-element incidence

matrix of M implies σ is acyclic if and only if there exists a vector w (which can be chosen

from the circuit space of M ) such that w · σ(C) > 0 for every circuit C of M . The
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orthogonality of the circuit space and cocircuit space of M allows us to consider circuits

and cocircuits simultaneously. �

Now we define our family of bijections. The following is the main theorem of this

chapter, which can be considered as the main theorem of the dissertation as well.

Theorem 5.1.3 Let M be a regular matroid, and fix acyclic signatures σ and σ∗ of C(M)

and C∗(M), respectively. Given a basis B ∈ B(M), let O(B) be the orientation of M in

which we orient each e 6∈ B according to its orientation in σ(C(B, e)) and each e ∈ B

according to its orientation in σ∗(C∗(B, e)). Then the map B 7→ [O(B)] gives a bijection

βσ,σ∗ : B(M)→ G(M).

Before moving on to the proof of Theorem 5.1.3, we give a few examples of acyclic

signatures and a non-example.

Example 5.1.4 Fix a total ordering and a reference orientation of E(M), and orient each

circuit C ∈ C(M) compatibly with the reference orientation of the minimal element in C.

This gives an acyclic signature of C(M).

Indeed, suppose the signature is not acyclic and take some non-trivial expression∑
C∈C(M) aCσ(C) = 0 with aC ≥ 0. Let e be the minimal element appearing in some

circuit in the support of this expression. Then the element e must be appear with different

orientations in at least two different circuits, and thus one of these circuits is not oriented

according to σ, a contradiction.

In view of Lemma 5.1.2, we can take (1, 1/2, 1/4, . . . , 1/2m−1) as the vector (up to

signs of individual coordinates) that induces such acyclic signature.

Example 5.1.5 Let M be the graphic matroid of a connected graph G. Fix a vertex q of G

and a spanning tree T ofG, in which we consider q as the root of T . Pick an arbitrary depth

first search ordering of the edges in T (or any ordering such that each edge in T is smaller

than its descendants), and extend such ordering arbitrarily by declaring all edges outside T
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to be larger than any edge in T . Then we choose the reference orientation of an edge in T as

the one orienting away from q (with respect to T ), and choose an arbitrary orientation for

the remaining edges. By Example 5.1.4, such data induces an acyclic cocircuit signature

of M .

We claim that the signature only depends on the choice of q: a cocircuit C of M corre-

sponds to a cut of G, say C is the set of edges between q ∈ U ⊂ V (G) and V (G) \U , then

C ∩ T is non-empty, and the minimal edge in the intersection must be oriented from U to

V (G) \ U , hence C is always oriented away from q. We call such cocircuit signature the

q-connected signature of M .

Example 5.1.6 Theorem 5.1.3 is not true for all signatures in general (although the acyclic

condition can be weakened, cf. Theorem 7.1.5). Consider the graph in Figure 5.1. Take the

cycle signature σ specified by the directed cycles in the top row, and take the v-connected

signature σ∗v as the cut signature. Then the two spanning trees in the bottom row produce

the same orientation (class) under the map βσ,σ∗v . Indeed, it is easy to check that the sum of

all directed cycles in the top row is zero, hence σ is not acyclic.

5.2 Zonotopes

We introduce the key geometric notion in the proof of Theorem 5.1.3, we will work in full

generality as much as possible unless the total unimodularity condition is necessary.

Definition 5.2.1 Let A be a (full row rank) r × m matrix over R. The column zonotope

ZA ⊂ Rr is the Minkowski sum of the columns of A (here we identify a column vector Ai

as the line segment from 0 to Ai). Let V ∗ ≤ Rm be the row space (cocircuit space) of A

and denote by πV ∗ : Rm → V ∗ the orthogonal projection.

The row zonotope Z̃A is the Minkowski sum of the vectors πV ∗(ei), i = 1, 2, . . . ,m,

where {e1, . . . , em} is the standard basis of Rm.
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Figure 5.1: Diagrams for Example 5.1.6. The top row specifies a (non-acyclic) cycle sig-
nature. The bottom row shows βσ,σ∗ need not to be bijective when the signatures failed to
be acyclic.

It is easy to check that the linear transformation L : v 7→ Av is a bijection between

Z̃A and ZA, and L preserves the set of lattice points when A is totally unimodular. The

reason we introduce two versions of essentially the same object is mostly for the sake of

comvenience, as one space is often more convenient to work with than the other under

different scenarios.

Remark. In the following sections, whenever C is a signed circuit (resp. signed cocir-

cuit) of M , vC will denote an element of ker(A) (resp. row(A)) whose sign pattern is C.

Such vC is unique up to multiplication of positive scalars, and in our discussion, either a

particular choice will be specified, or an arbitrary choice works. If we have already fixed
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+" +" ="

Z"K"[e1,e2]""" [e1,e3]"+" +" [e2,e3]" ="
3"

Figure 5.2: The zonotope associated to MK3 . We note that it is living in R3 as MK3 is not
of full row rank, and we use the line segment from ei to ej instead of from 0 to ej − ei, but
none of these differences in convention changes the geometry of zonotope.

some vC , we automatically choose v−C to be −vC .

Now we relate the zonotope ZA with the oriented matroid M := M(A) realized by A.

Definition 5.2.2 A continuous orientation O of M is a function E → [−1, 1]. If O(e) ∈

{−1, 1} for all e ∈ E, we say that O is a discrete orientation.

Let C be a signed circuit of M . A continuous orientation O is compatible with C if

O(e) 6= −C(e) for all e in the support of C.

Given a continuous orientation O compatible with a signed circuit C, a continuous

circuit reversal with respect to C replaces O by a new continuous orientation O − εvC for

some ε > 0; often we choose the maximum of such ε, so that at least one e ∈ C satisfies

(O − εvC)(e) = − sign(C(e)). The continuous circuit reversal system is the equivalence

relation on the set of all continuous orientations of M generated by all possible continuous

circuit reversals.

We can make the same definitions for cocircuits analogously.

Immediately from the definition, a (row or column) zonotope is the projection of the
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hypercube [0, 1]E along A, and the hypercube [0, 1]E can be viewed as the space of all

continuous orientations using the relation Ov(e) = 2ve − 1 for v ∈ [0, 1]E . Therefore we

have the following connection between points in zonotope and continuous circuit reversal

system.

Proposition 5.2.3 The map ψ : [O] 7→
∑

e∈E
O(e)+1

2
Ae gives a bijection between continu-

ous circuit reversal classes of M and points of the zonotope ZA.

PROOF: By definition, ψ sends every continuous orientation to some point in ZA, and ψ

is surjective. Since vC’s are elements of ker(A), two continuous orientations in the same

circuit reversal class map to the same point of ZA, so it remains to show the converse.

Suppose ψ(O) = ψ(O′). By Lemma 2.3.9, O − O′ can be written as a sum of signed

circuits in which each signed circuit is compatible withO, andO can be transformed toO′

via the corresponding continuous circuit reversals in any order. �

5.3 Zonotopal Tilings

We explain how an acyclic circuit signature induces a tiling of ZA by sub-zonotopes (which

will be parallelotopes). There are classical approaches to zonotopal tilings that use either

polyhedral geometry or abstract oriented matroid theory [23, Section 2.2], [115, Lecture 7].

The approach here was suggested by Backman, and it is more similar to the constructions

in tropical divisor theory (e.g. the ABKS decomposition).

Since we are still working at the generality of realizable oriented matroids, we introduce

a more general definition of acyclic circuit signatures.

Definition 5.3.1 LetM be a realizable oriented matroid and letA be a matrix realizingM .

A circuit signature is acyclic (with respect to A) if
∑

C∈C(M) aCvσ(C) = 0 has no non-zero

non-negative solution. An acyclic cocircuit signature with respect to A is defined similarly.
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(0,1,2)'(2,1,0)'

(2,0,1)' (1,0,2)'

(1,2,0)' (0,2,1)'

(1,1,1)'

Figure 5.3: The zonotope associated to K3, with points identified as continuous circuit
reversal classes. The classes corresponding to the vertices of the zonotope are acyclic,
hence they are singletons, whereas the lattice point in the middle contains two (discrete)
orientations as well as a family of continuous orientations between them.

Remark. When M is a regular matroid represented by a totally unimodular matrix A,

vσ(C)’s in Definition 5.3.1 can be chosen to be {1, 0,−1}-vectors. Furthermore, Propo-

sition 2.3.13 implies the definition is independent of the choice of A. Therefore Defini-

tion 5.3.1 is indeed a generalization of Definition 5.1.1.

We have the following straightforward variation of Lemma 5.1.2.

Lemma 5.3.2 Let σ and σ∗ be signatures of C(M) and C∗(M), respectively. Then σ and σ∗

are both acyclic with respect to A if and only if there exists w ∈ RE such that w ·vσ(C) > 0

for every circuit C of M and w · vσ∗(D) > 0 for every cocircuit D of M .

Definition 5.3.3 Let M be an oriented matroid realized by matrix A. Let σ be an acyclic

circuit signature with respect to A. We say a continuous orientation O is σ-compatible if
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every signed circuit C of M compatible with O is oriented according to σ.

Theorem 5.3.4 Let M,A, σ be the same as in Definition 5.3.3. Then each continuous

circuit reversal class M contains a unique σ-compatible continuous orientation.

PROOF: By Lemma 5.3.2, there exists w ∈ RE such that w · vσ(C) > 0 for every circuit C

of M . Consider the function P (O′) := w · O′. If −σ(C) is compatible with O for some

circuit C, then performing a continuous circuit reversal using −σ(C) strictly increases the

value of P , so every maximizer of P inside a class (if exists) must be σ-compatible. The

set of continuous orientations in a continuous circuit reversal class can be identified with

the fiber of ψ over a point in ZA, which is compact as it is a closed subset of the hypercube.

Since P is continuous, a maximizer of P , and hence a σ-compatible continuous orientation,

must exist in every continuous circuit reversal class.

Now suppose there are two distinct σ-compatible continuous orientations O,O′ in a

continuous circuit reversal class. By Lemma 2.3.9, O can be transformed toO′ via a series

of continuous circuit reversals in which each signed circuit involved is compatible with O,

hence agrees with σ. If the last signed circuit involved in the series of reversals is C, then

−C is a signed circuit compatible withO′. Therefore−C agrees with σ as well, which is a

contradiction. This proves the uniqueness of the σ-compatible orientation in each class. �

Remark. By interpreting σ-compatible orientations as maximizers of the linear func-

tion P , it is easy to see that the map µ : ZA → [0, 1]E , which takes a point z of ZA to the

unique σ-compatible continuous orientation in the continuous circuit reversal class corre-

sponding to z, is a continuous section to the map ψ. Such point of view is closely related

to the classical theory of zonotopal tilings.

Next we explain how σ-compatible orientations are relate to bases of M .

Proposition 5.3.5 Let M,A, σ be the same as in Definition 5.3.3.

1. If O is a σ-compatible continuous orientation, then the set of e ∈ E which are bi-

oriented (i.e., O(e) 6= ±1) is independent in M .
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("1,"1,2)'(1,"1,0)'

(1,"2,1)' (0,"2,2)'

(0,0,0)' ("1,0,1)'

(0,"1,1)'
1' 2'

3'

Edge'
order'

Reference'
orienta7on'

Figure 5.4: The zonotope associated to K3 with points identified as continuous orientation
classes as in Figure 5.3. However, for the lattice point in the middle, we use the σ induced
by the total ordering and reference orientation on the right to pick out a σ-compatible
(continuous) orientation, which is highlighted in blue.

2. If B is a basis for M and b : B → (−1, 1) is any function, then there is a unique

σ-compatible continuous orientation O = O(B, b) such that O(e) = b(e) for all

e ∈ B and O(e) ∈ {±1} for all e 6∈ B.

PROOF: For (1), suppose the set S of bi-oriented elements in a continuous orientation

O is not independent. Then S contains some circuit C, and O is compatible with both

orientations of C, so O is not σ-compatible.

For the uniqueness assertion in (2), note that each element not in B must be oriented

in agreement with the orientation of its fundamental circuit given by σ, as for otherwise

the fundamental circuit will be compatible with −σ. Such unique choice of orientations

outside B, together with b itself, gives a continuous orientation O.

Now we claim that suchO is σ-compatible. If not, thenO is compatible with−σ(C) for

some circuit C. Without loss of generality, we may assume that |C \ B| 6= 0 is minimum

among all such circuits. Pick any e ∈ C \ B and let C ′ be the fundamental circuit of
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e with respect to B. Then O is compatible with σ(C ′) by construction. Pick suitable

v−σ(C),vσ(C′) such that they agree on the e-th coordinate. Using Lemma 2.3.9, we write

v−σ(C)−vσ(C′) =
∑

D vD withD’s being signed circuits conformal with the left hand side;

by Lemma 2.3.9, any D in the sum does not contain e. Since vσ(C) +vσ(C′) +
∑

D vD = 0,

at least one such D is oriented opposite to σ by acyclicity. Then we note that such D is

compatible withO: each element ofD is either inB (which is bi-oriented inO), or from C

and oriented as in−σ(C) (which is compatible withO). However, D \B ⊂ (C \B) \{e},

contradicting the minimality of |C \B|. �

Figure 5.5: More examples of σ-compatible continuous orientations of the zonotope ofK3.
The bi-oriented elements are highlighted in red.

By Proposition 5.3.5, for each basis B of M , every σ-compatible continuous orienta-

tion whose bi-oriented part is B has the form O(B, b) and vice versa. Let Z◦(B) be the

projection of these continuous orientations to ZA, and let Z(B) be the topological closure
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of Z◦(B) in ZA.

Theorem 5.3.6 1. The union of Z(B) over all bases B of M is equal to ZA, and if

B,B′ are distinct bases then Z◦(B) and Z◦(B′) are disjoint.

2. The collection of Z(B) as B varies over all bases B for M gives a polyhedral sub-

division of ZA whose vertices (i.e., 0-cells) correspond via ψ to the σ-compatible

discrete orientations of M .

PROOF: The only non-trivial part is the first half of (1). By Proposition 5.2.3, every point

of ZA is of the form ψ(O) for some continuous orientation O, and by Theorem 5.3.4 we

may assume O is σ-compatible. Hence by Proposition 5.3.5, it suffices to show that if the

set B̂ of bi-oriented elements in O do not form a basis, then we can bi-orient one or more

elements in O while maintaining σ-compatibility. By induction, we will end up with the

bi-oriented elements forming a basis B of M , which implies that ψ(O) is a limit point of

Z◦(B).

Suppose that for every e 6∈ B̂ such that B̂ ∪ {e} is independent in M , bi-orienting e

in O (in an arbitrary way) will cause the new continuous orientation Oe to no longer be σ-

compatible. Then for every such e,Oe is compatible with−σ(Ce) for some circuit Ce ofM

containing e. Pick, among all such elements e and circuits Ce, the pair that maximizes w ·

vσ(Ce), where we always choose the “normalized” vσ(Ce) whose e-th coordinate is σ(Ce)(e)

(which is either 1 or −1).

The circuit Ce must contain another element f 6∈ B̂ such that B̂ ∪ {f} is independent

in M , for otherwise e is contained in the closure of B̂. By assumption there exists some

circuit Cf containing f such that Of is compatible with −σ(Cf ). The signs of σ(Ce) and

σ(Cf ) over f are different, so we can choose a suitable positive multiple vf of vσ(Cf ) such

that the f -th coordinates of vf and v−σ(Ce) are equal.

By a trivial modification of Lemma 2.3.9, v−σ(Ce) − vf can be written as a weighted

sum
∑k

i=1 λivCi of signed circuits Ci’s with positive λi’s (we introduce λi’s because we

65



will specify the vectors vCi’s explicitly, and in general our choices only coincide with the

vectors provided by Lemma 2.3.9 up to multiplication of positive scalars). Each such signed

circuit Ci that does not contain e must be compatible with O (hence σ), while those signed

circuits that contain e would at least be compatible with Oe. Since w · (
∑k

i=1 λivCi) =

w · (v−σ(Ce) − vf ) < 0, some Ci’s are not compatible with σ, which implies that they are

not compatible with O, thus they contain e. In particular, the assertion of Lemma 2.3.9

guarantees that the sign of the e-th coordinate of v−σ(Ce) − vf agrees with −σ(Ce). But as

the signs of σ(Ce)(e) and σ(Cf )(e) are different, the absolute value of the e-th coordinate

is at most the absolute value of the e-th coordinate of v−σ(Ce), which is 1.

Without loss of generality, the circuits containing e areC1, C2, . . . , Cj . We choose vCi’s

so that their e-th coordinates equal −σ(Ce)(e). By comparing e-th coordinate,
∑j

i=1 λi ≤

1. Now we have

w · (
j∑
i=1

λivCi) = w ·

(
v−σ(Ce) − vf −

k∑
i=j+1

λivCi

)
< −w · vσ(Ce) < 0,

i.e., there exists some Ci with 1 ≤ i ≤ j that is compatible with Oe, disagrees with σ, and

w · vσ(Ci) > w · vσ(Ce), contradicting our choice of Ce. �

From Theorem 5.3.6, Z(B)’s subdivide ZA. Moreover, each Z(B) can be identified

with the parallelotope [0, 1]B, where the e-th coordinate of a point in Z(B) (corresponding

to a σ-compatible continuous orientationO via ψ) is the value O(e)+1
2

. Therefore restricting

to a face of Z(B) of codimension i can be described as orienting the corresponding i

elements in B.

Finally, we describe the incidence relations of the cells Z(B)’s. Here we fix an acyclic

circuit signature σ that induces the tiling.

Proposition 5.3.7 Let B be a basis, let e ∈ B, and let O be any continuous orientation

of the form O(B, b) (cf. Proposition 5.3.5). Choose an orientation for e, and let O′ be the

continuous orientation obtained from O by orienting e according to our choice. From the
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Figure 5.6: The subdivision of the zonotope associated toK3 as described in Theorem 5.3.6
using σ induced by the total ordering and reference orientation on the right. The red edges
are bi-oriented.

remark above, O is in the interior of Z(B) and O′ is in the relative interior of a facet Fe

of Z(B). Denote by K the (signed) fundamental cocircuit of e with respect to B, where we

choose the signed version that agrees with e’s chosen orientation. Then either

1. O′ is compatible with K, in which case Fe is a facet of ZA, or

2. there exists a unique element f ∈ K \ {e} such that the orientation obtained by

reversing f in O′ is also σ-compatible, and Fe is incident to Z(B \ {e} ∪ {f}).

PROOF: For simplicity, we use the linear transformation L introduced after Definition 5.2.1

and work with Z̃A. Suppose O′ is compatible with K. Then O′, as point in Z̃A, is a

maximizer of the linear functional w 7→ vK ·w over Z̃A, so Fe is a facet of Z̃A.

IfO′ is not compatible withK, then there exists some element f ∈ K whose orientation

in O′ is inconsistent with e with respect to K. Let Cf be the fundamental circuit of f with

respect to B. Since πV ∗(vCf ) = 0, to move outside of Z̃(B) from O′ ∈ F̃e, along the

direction which we have used to move from O to O′, is the same as bi-orienting the other
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elements of Cf in O′. All elements in Cf except e and f are still bi-oriented in O′, so

the only combinatorial change here is to bi-orient f as long as the moving distance is

sufficiently small. As a result, in order to prove (2), we only need to show that for one and

only one such element f , bi-orienting f inO′ makes the new orientationOf σ-compatible.

Uniqueness: Suppose the continuous orientations Of ,Og, obtained by bi-orienting f

and bi-orienting g in O′, respectively, are both σ-compatible. Consider the fundamental

circuit C of g with respect to B \ {e} ∪ {f}, which is also the fundamental circuit of

f with respect to B \ {e} ∪ {g}. Since both f and g are oriented opposite to K in O′

and K ∩ C = {f, g}, Of and Og would be compatible with opposite orientations of C

by orthogonality of C and K, contradicting with the assumption that both Of and Og are

σ-compatible.

Existence: First we prove that if Of is not σ-compatible, then the fundamental circuit

Cf
g of some g ∈ K with respect to B \ {e} ∪ {f} is not compatible with σ. Intuitively,

this is to say that if Of is not σ-compatible, we can find a “certificate” by just checking the

fundamental circuits of elements in K with respect to B \ {e} ∪ {f}.

SupposeOf is compatible with−σ(C) for some circuitC. For each fundamental circuit

Cf
g of the element g with respect toB\{e}∪{f}, we pick the orientation that is compatible

with Of . Then we have v−σ(C) =
∑

g∈C\(B\{e}∪{f}) vCfg for some suitable choice of vCfg ’s.

Since σ is acyclic, at least one of the Cf
g ’s is not compatible with σ. Such g must be from

K, or otherwise O′ would have been compatible with such Cf
g already.

Now we apply a greedy procedure to find (the unique) f . Pick any f1 ∈ K whose

orientation in O′ is inconsistent with e (with respect to K). If Of1 is σ-compatible then we

are done, otherwise there must exist some other f2 ∈ K such that Cf1
f2

is not compatible

with σ. ConsiderOf2 next, proceed until the correct f is found. We claim that the procedure

always terminates. Suppose not, without loss of generality we may assume fr+1 = f1 for

some r. By inductively choosing suitable scalar multiples to cancel out the fi-coordinate
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in the partial sum, the support of v
C
f1
f2

+ v
C
f2
f3

+ . . . + vCfrf1
is contained in a basis, which

means the sum is 0 as it is also an element from the circuit space. Such equality contradicts

the acyclicity assumption on σ. �

5.4 Proof of the Main Theorem

In this section, we prove Theorem 5.1.3 using the geometric tools we have developed. We

will prove a variation of Theorem 5.1.3 (Theorem 5.4.2) for all realizable oriented matroids,

and then specialize it to Theorem 5.1.3 when the oriented matroid is regular.

5.4.1 Proof for Realizable Oriented Matroids

Definition 5.4.1 LetM be an oriented matroid realized by matrixA. Let σ (resp. σ∗) be an

acyclic circuit (resp. cocircuit) signature with respect toA. We say a continuous orientation

O is (σ, σ∗)-compatible if every signed circuit (resp. cocircuit) of M compatible with O is

oriented according to σ (resp. σ∗). Denote by χ(M ;σ, σ∗) be the set of (σ, σ∗)-compatible

discrete orientations.

Theorem 5.4.2 Let M,A, σ, σ∗ be the same as in Definition 5.4.1. Given a basis B ∈

B(M), let O(B) be the orientation of M in which we orient each e 6∈ B according to its

orientation in σ(C(B, e)) and each e ∈ B according to its orientation in σ∗(C∗(B, e)).

Then the map B 7→ O(B) gives a bijection β̂σ,σ∗ : B(M)→ χ(M ;σ, σ∗).

The strategy to prove Theorem 5.4.2 (hence Theorem 5.1.3) is to show that the map β̂

(resp. β) can be thought as a “shifting” map that matches vertices and cells in the zonotopal

tiling induced by σ. Recall that by Lemma 5.3.2, there exists a vector w inducing σ∗,

which can be assumed to be in the row space of A by projecting if necessary. Since we are

identifying the index set {1, 2, . . . ,m} of Rm with elements of E, for an element e ∈ E,

we write e the unit vector whose e-th coordinate is 1.
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Figure 5.7: Geometric picture of the bijection for K3 using the pair (σ, σ∗) induced by the
total ordering and reference orientation from Figure 5.6.

Lemma 5.4.3 Let B be a basis of M and let Z̃(B) be the cell corresponding to B in the

zonotopal tiling of Z̃A induced by σ. Then for all sufficiently small ε > 0, the image of

Z̃(B) under the map v 7→ v + εw contains a unique point corresponding (via ψ) to a

σ-compatible (discrete) orientation OB.

PROOF: By Theorem 5.3.6, the vertices of Z̃(B) correspond to σ-compatible (discrete)

orientations. It therefore suffices to prove that w does not lie in the affine span of any facet

of Z̃(B).

The affine span of a facet of Z̃(B) is spanned by directions of the form πV ∗(e) for

e ∈ B̂, where B̂ ( B is a proper subset of B of size r − 1, and we know there is a

cocircuit K of M avoiding B̂. Any direction w′ :=
∑

e∈B̂ λeπV ∗(e) in the span satisfies

w′ · vσ∗(K) =
∑

e∈B̂ λee · vσ∗(K) = 0, since πV ∗ is self-adjoint and πV ∗(vσ∗(K)) = vσ∗(K).

On the other hand, since w induces σ∗, we have w · vσ∗(K) > 0. �

We then define φ to be the map that takes a basis B to the orientation OB defined in
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Lemma 5.4.3.

Theorem 5.4.4 The map φ coincides with the previously defined map β̂.

PROOF: Let B be a basis. Then φ(B) can be obtained by orienting each (bi-oriented) basis

element from a continuous σ-compatible orientation in the interior of Z̃(B) (which is of

the formO(B, b)), so by the greedy procedure described in Proposition 5.3.5, the elements

outside B are oriented according to their fundamental circuits, hence φ(B) agrees with

β̂(B) outside B.

For elements inside B, we work with the basis {πV ∗(e) : e ∈ B} for V ∗(M) and write

w =
∑

e∈B weπV ∗(e). Identify Z̃(B) with [0, 1]B and the vertices of Z̃(B) with {0, 1}B. If

a vertex v is identified with (se : e ∈ B), se ∈ {0, 1}, then it corresponds to a σ-compatible

discrete orientation where each element e ∈ B is oriented in agreement with (resp. opposite

to) its reference orientation when se = 1 (resp. se = 0). The cell Z̃(B) will contain v after

shifting if and only if the sign pattern of the se’s agrees with the sign pattern of the we’s,

that is, if and only if se = 1 precisely when we > 0.

Let f ∈ B, and let K be the fundamental cocircuit of f with respect to B. Then σ∗(K)

is by definition the orientation of K with the property that w ·vσ∗(K) > 0. By a calculation

similar to the above,

w · vσ∗(K) =
∑
e∈B

wee · vσ∗(K) = wf f · vσ∗(K),

as f is the unique element in B ∩ K. If wf > 0, then f · vσ∗(K) > 0 and the reference

orientation of f agrees with σ∗(K), i.e., the orientation of f in φ(B) is the same as the

reference orientation of f . From the last paragraph, f is oriented according to its reference

orientation in β̂(B) as well, because wf > 0. A similar analysis in the case where wf < 0

yields the same conclusion that φ(B)(f) = β̂(B)(f). �

Proposition 5.4.5 Let B be a basis. Then β̂(B) is (σ, σ∗)-compatible.
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PROOF: Since φ(B) is σ-compatible, β̂(B) is σ-compatible as well by Theorem 5.4.4. And

since the procedure described in Theorem 5.4.2 is symmetric with respect to circuits and

cocircuits, a dual argument shows that β̂(B) is σ∗-compatible. �

PROOF OF THEOREM 5.4.2: By Proposition 5.4.5, β̂ is well-defined. It is injective for

the simple geometric reason that a vertex can only be contained in the interior of at most

one cell Z̃(B) after shifting. To prove surjectivity, we need to show that for every (σ, σ∗)-

compatible orientation O, there exists a continuous orientation O′ such that the displace-

ment fromO′ toO, interpreted as points of Z̃A via ψ, is w (here we assume w is sufficiently

short). For simplicity, we negate suitable columns of A in order to assume without loss of

generality thatO ≡ 1, and we modify w accordingly. For such to be determinedO′, denote

by fe ≥ 0 the difference between 1 and O
′(e)+1

2
. By an easy application of the formula for

orthogonal projection, our condition on O′ in terms of displacement becomes Af = Aw,

hence O′ exists if and only if the polyhedron

{f : Af = Aw, f ≥ 0} (5.1)

is non-empty. But the σ∗-compatible condition implies “if zTA ≥ 0 (i.e., zTA is a non-

negative sum of signed cocircuits), then (zTA)w ≥ 0”, which is the same as “there exists

no z such that zTA ≥ 0, zT (Aw) < 0”, by the Farkas lemma, the latter condition is

equivalent to the existence of some f ≥ 0 such that Af = Aw. �

5.4.2 Specialization to Regular Matroids

In this section, we assume M is a regular (oriented) matroid realized by a totally unimod-

ular matrix A, and we will switch back to the discrete setting from Section 4.1 and 5.1. In

particular, we give the discrete version of Definition 5.3.3.

Definition 5.4.6 Let σ, σ∗ be an acyclic circuit signature and an acyclic cocircuit signa-
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ture, respectively. An orientationO is σ-compatible if every signed circuit C of M compat-

ible withO is oriented according to σ;O is (σ, σ∗)-compatible if furthermore every signed

cocircuit compatible with O is oriented according to σ∗.

Proposition 5.4.7 The map ψ induces a bijection between circuit reversal classes of M

and lattice points of ZA.

PROOF: As the columns of A are integral, ψ takes an orientation of M to a lattice point of

ZA; conversely, for any lattice point y ∈ ZA ∩ Zr we know Aα̂ = y, 0 ≤ α̂i ≤ 1 ∀i has a

solution α̂, but by the total unimodularity of A, α̂ can be chosen to be integral and hence

corresponds to an orientation. Thus the image of ψ is precisely the set of lattice points of

ZA. By the orthogonality of circuit space and cocircuit space, two orientations in the same

circuit reversal class map to the same point of ZA. Conversely, suppose ψ(O) = ψ(O′).

By Lemma 2.3.14,O−O′ can be written as a sum of disjoint signed circuits in which each

signed circuit is compatible withO, andO can be transformed toO′ via the corresponding

circuit reversals in any order. �

Proposition 5.4.8 Each circuit reversal class M contains a unique σ-compatible orienta-

tion.

PROOF: If a circuit reversal class contains two distinct σ-compatible orientations O,O′,

then by Lemma 2.3.14, O,O′ differ by a disjoint union of signed circuits. But for any such

circuit C, O and O′ are compatible with different orientations of C, a contradiction.

For existence, start with any orientation O in the class and reverse some signed circuit

C compatible with O but not compatible with σ. We claim that the process will eventually

stop. Suppose not, since the number of discrete orientations of M is finite, the orientation

will without loss of generality return to O after reversing some signed circuits C1, . . . , Ck

in that order (the circuits might not be distinct). Then C1 + · · ·+Ck = 0, which means that

σ(C1) + · · ·+ σ(Ck) = 0, contradicting the acyclicity of σ. �
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Corollary 5.4.9 The lattice points of ZA are exactly the vertices of the zonotopal tiling

induced by σ.

PROOF: By Theorem 5.3.6, the vertices of the zonotopal tiling are precisely the σ-compatible

discrete orientations, which form a set of representatives for the (discrete) circuit reversal

classes by Proposition 5.4.8, and finally by Proposition 5.4.7, they correspond to the lattice

points of ZA. �

Proposition 5.4.10 Every circuit-cocircuit reversal class of M contains a unique (σ, σ∗)-

compatible orientation.

PROOF: By Proposition 4.1.1 and Lemma 4.1.3, it suffices to consider the circuit (resp. co-

circuit) part of orientations inside a circuit-cocircuit reversal class, in which the statement

follows from Proposition 5.4.8. �

PROOF OF THEOREM 5.1.3: βσ,σ∗ is the composition of β̂σ,σ∗ and the map O 7→ [O],

which are both bijective by Theorem 5.4.2 and Lemma 5.4.10, respectively. �

5.5 Ehrhart Theory

We start with the definition of Ehrhart polynomial associated to a lattice polytope, that is,

a polytope whose vertices have integer coordinates.

Theorem 5.5.1 [48] Let P be a lattice polytope. Then there exists a polynomial EP (the

Ehrhart polynomial) such that, for every positive integer q, EP (q) equals the number of

lattice points in the q-fold dilation of P .

Now let M be a regular matroid. By Proposition 2.3.13, the zonotopes ZA’s defined by

different totally unimodular realizations A of M differ by lattice preserving full rank linear

transformations, so in terms of Ehrhart theory, it is well-defined to talk about the zonotope

ZM associated to M . Stanley’s formula relates the Ehrhart polynomial of ZM and the Tutte

polynomial of M .
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Theorem 5.5.2 [102] Let M be a regular matroid. Then EZM (q) = qrTM(1 + 1
q
, 1).

We have the following theorem relating special orientations (resp. orientation classes),

special lattice points of ZM , and special evaluations of the Tutte polynomial.

Theorem 5.5.3 For a regular matroid M , we have:

1. The lattice points of ZM correspond to the circuit reversal classes of M , and there

are TM(2, 1) many of them.

2. The interior lattice points of ZM correspond to the totally cyclic circuit reversal

classes of M , and there are TM(0, 1) many of them.

3. The vertices of ZM correspond to the acyclic circuit reversal classes of M (hence the

acyclic orientations themselves), and there are TM(2, 0) many of them.

4. The volume of ZM equals the number of bases of M , which is TM(1, 1).

PROOF: The first correspondence is Proposition 5.4.7. Next, we know from the proof

of Proposition 5.3.7 that an orientation contains a signed cocircuit if and only if it is on

the boundary, this shows the second correspondence. For the third correspondence, note

that each vertex is contained in r linearly independent facets of ZM , hence by Proposi-

tion 5.3.7, the corresponding orientation contains r independent (in the sense of cocircuit

space) signed cocircuits, so it is acyclic (for otherwise we can contract the circuit part of the

orientation to obtain a matroid of smaller rank, which still contains r independent signed

cocircuits). The enumerative claims concerning orientation classes can be found in [5, 7].

For the last statement, fix an arbitrary acyclic circuit signature σ and consider the zono-

topal tiling induced by σ. The number of cells equals the number of bases of M , while

each cell has volume 1 by the total unimodularity of A. �

Corollary 5.5.4 For any acyclic circuit signature σ of a regular matroid M , the number of

σ-compatible orientations of M equals TM(2, 1).
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PROOF: It follows from the first statement of Theorem 5.5.3 and Proposition 5.4.8. �

We now prove a finer version of Theorem 5.5.2 using the language of orientations. To

do so, we first review the notion of partial orientations (or (type B) fourientations in the

original paper of Backman and Hopkins [7]) of an oriented matroid.

Definition 5.5.5 Let M be an oriented matroid. A partial orientation O assigns to each

element ofM a value of +,−, or 0. Here we say an element is bi-oriented inO ifO(e) = 0.

For M regular, we can define compatibility of a signed circuit of M with respect to a

partial orientation analogous to Definition 5.2.2, and from there we can also define circuit

reversals and σ-compatibility of partial orientations (with respect to some acyclic circuit

signature σ of M ) analogous to Definition 4.1.2 and Definition 5.3.3, respectively.

Lemma 5.5.6 For any acyclic circuit signature σ of a regular matroid M , there exists a

unique σ-compatible partial orientation within each circuit reversal class of partial orien-

tations, in which the bi-oriented part of any σ-compatible partial orientation is an inde-

pendent set of M .

PROOF: The proof is analogous to Proposition 5.4.8 and the first half of Proposition 5.3.5.

�

Theorem 5.5.7 Let σ be an acyclic circuit signature of a regular matroid M and let S be

an independent set of M . Then the number of σ-compatible partial orientations whose

bi-oriented part is precisely S is TM/S(2, 1).

We first prove an auxiliary lemma. Recall that given a subset S of a matroid M , its

closure S is the unique maximal subset containing S such that the rank of S equals the

rank of S. It follows that e 6∈ S is in S if and only if S ∪ {e} contains a unique circuit, in

which we will say it is the fundamental circuit of e (with respect to S) as well.
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Lemma 5.5.8 Let σ be an acyclic circuit signature of a regular matroid M and let S be

an independent set of M . Let O be a partial orientation of M whose bi-oriented part is

precisely S, and every element e ∈ S \ S is oriented according to the orientation of its

fundamental circuit specified by σ. If O is not σ-compatible, then there exists a signed

circuit C ⊂ S ∪ (M \ S) that is compatible with O but not σ.

PROOF: The proof is analogous to Proposition 5.3.5. We pick, among all signed circuits

that are compatible with O but not σ, a C such that |C \ S| is minimum. If there exists

some element e ∈ C ∩ (S \ S), then we can apply the circuit elimination axiom to C and

the fundamental circuit of e to obtain some signed circuit C ′ in which |C ′ \ B| < |C \ B|,

and is compatible with O but not σ. �

PROOF OF THEOREM 5.5.7 By Corollary 5.5.4, it suffices to provide a bijection between

the partial orientations we are counting and the σ′-compatible orientations of M/S for

some suitable acyclic circuit signature σ′.

We will work with the following circuit signature σ′ ofM/S: given a circuit C inM/S,

there exists a unique circuit Ĉ in C ∪ S in M and it contains C, set σ′(C) = σ(Ĉ)/S. We

claim that σ′ is acyclic. Suppose
∑
aCσ

′(C) = 0 for some non-negative aC’s that are not

all zeros, consider
∑
aCσ(Ĉ). On one hand the support of the sum is a subset of S, but

on the other hand it is an element in the circuit space of M , so it must be zero, which

contradicts the acyclicity of σ.

Now we claim that the map O 7→ O/S is the bijection we wanted. By the construc-

tion of σ′, such map sends σ-compatible orientations of M to σ′-compatible orientations of

M/S. Since every partial orientation we are considering is the same over S, injectivity is

trivial. Let O be a σ′-compatible orientation, we construct a partial orientation Ô of M as

follows: we assign 0 to the elements in S, then orient other elements in S according to the

orientation of their fundamental circuits specified by σ, and finally assign the orientations

of the remaining elements according to O. By Lemma 5.5.8, if Ô is not σ-compatible,
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then there exists a signed circuit C ⊂ S ∪ (M \ S) that is compatible with Ô but not σ.

By definition, C/S is not compatible with σ′, but it is compatible with O, a contradiction.

Therefore Ô is σ-compatible and Ô/S = O, so our map is surjective as well. �

Remark. Even when σ is of the (highly combinatorial) form described in Exam-

ple 5.1.4, we do not know a combinatorial proof of Theorem 5.5.7 that does not use the no-

tion of acyclicity, as the constraint on the bi-oriented part seems to make standard deletion-

contraction arguments or other similar classical techniques impossible. From a higher level

point of view, it is because “lexicographic data” is not closed under arbitrary minor opera-

tions (but the notion of acyclicity is).

Now we deduce Theorem 5.5.2 from Theorem 5.5.7, the argument below was due to

Backman, who posed Theorem 5.5.7 as a conjecture.

PROOF OF THEOREM 5.5.2: Every continuous orientation O of M can be viewed as a

partial orientation Ô by declaring Ô(e) = sign(O(e)) if O(e) = ±1, and Ô(e) = 0

otherwise. Fix an acyclic circuit signature σ. By Theorem 5.3.4 and Proposition 5.3.5,

every face of the zonotopal tiling induced by σ corresponds to a partial orientation, namely

the combinatorial type of any σ-compatible continuous orientation in the relative interior

of the face. Moreover, the dimension of the face equals the size of the bi-oriented part.

Every (d-dimensional) face of the zonotopal tiling is a unimodular lattice parallelotope,

hence its q-fold dilation contains (q − 1)d many interior lattice points. Summing over

all faces and using the aforementioned correspondence between faces and σ-compatible

partial orientations, we have EZM (q) =
∑
O(q − 1)d(O), where the sum is taken over all σ-

compatible partial orientations and d(O) is the size of the bi-oriented part of O. Applying

Theorem 5.5.7, we further haveEZM (q) =
∑

S TM/S(2, 1)(q−1)|S|, where the sum is taken

over all independent sets.
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By a theorem of Kung [77], we have the following convolution formula:

TM(λξ + 1, xy + 1) =
∑
S⊂M

λr(M)−r(S)(−y)|S|−r(S)TM [S](1− λ, 1− x)TM/S(1 + ξ, 1 + y).

Substituting (x, y, λ, ξ) = (1, 0, 1
q
, 1), we have

TM(1 +
1

q
, 1) =

∑
S⊂M

qr(S)−r(M)0|S|−r(S)TM [S](1−
1

q
, 0)TM/S(2, 1).

A term on the right hand side is non-zero only if |S| = r(S), that is, S is independent. But

in such case, qr(S)TM [S](1− 1
q
, 0) = q|S|(1− 1

q
)|S| = (q − 1)|S|. Hence the right hand side

of the equation is q−r
∑

S TM/S(2, 1)(q − 1)|S| (sum over independent S’s) as desired. �

Remark. By applying Kung’s convolution formula to Stanley’s formula, we can deduce

that for any d, the sum of TM/S(2, 1)’s over all independent sets S of size d equals the

number of σ-compatible partial orientations whose bi-oriented part is of size d. But a

priori we cannot isolate equalities for individual S’s.

5.6 Group Action–Tiling Duality

We establish a connection between group actions of the Jacobian of a regular matroid on the

set of bases induced by geometric bijections, and tilings of the cocircuit space that extend

zonotopal tilings.

Proposition 5.6.1 LetA be a totally unimodular matrix of full row rank. Then the zonotope

Z̃A equals, up to translation, a full-dimensional cell of the Voronoi decomposition of the

row space V ∗ of A [108] with respect to the cocircuit lattice of M(A). In particular, Z̃A

tiles the row space ofA in a facet to facet manner, with the period being the cocircuit lattice

of A.

PROOF: By [107, Lemma 3.2 and 3.3], the (affine span of) facets of the Voronoi cell
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containing the origin are {x : x·K = 1
2
K ·K}’s for each cocircuit K (as a {1, 0,−1}-vector

in the cocircuit lattice) of A. By Proposition 5.3.7 and the fact that vK there coincides

with K when A is totally unimodular, the (affine span of) facets of Z̃A are {x : x · K =

1
2
(K+

∑
e∈E πV ∗(e)) ·K}’s. Therefore Z̃A and the aforementioned Voronoi cell differ only

by a translation of 1
2

∑
e∈E πV ∗(e). �

In particular, if we start with a unimodular zonotope Z := ZM with a chosen zonotopal

tiling, then such tiling pattern can be extended to V ∗(M) by tiling the whole space with Z.

We call such tiling of V ∗(M) the extension of the zonotopal tiling (of Z).

For the next lemma, recall that by Section 4.2, there is a canonical group action · of

Jac(M) on G(M). For the sake of clarity, we write the group action as addition, i.e.,

g + X := g ·X for g ∈ Jac(M) and X ∈ G(M). Moreover, as the group action is simply

transitive, for X, Y ∈ G(M), it is well-defined to denote by X − Y the unique group

element g such that g + Y = X .

Lemma 5.6.2 Let M be a regular matroid, and let β1, β2 : B(M) → G(M) be two

bijections. Then the two Jac(M)-group actions g ·1 B := β−1
1 (g + β1(B)) and g ·2

B := β−1
2 (g + β2(B)) are isomorphic if and only if there exists g0 ∈ Jac(M) such that

β1(B)− β2(B) = g0 for every B ∈ B(M).

PROOF: “⇒”. Pick an arbitrary B0 ∈ B(M) and denote by g0 the difference β1(B0) −

β2(B0). For any other B ∈ B(M), let g := β2(B0) − β2(B). We have g ·1 B =

g ·2 B = β−1
2 ((β2(B0) − β2(B)) + β2(B)) = B0. Applying β1 to both sides yield

g + β1(B) = (β2(B0) − β2(B)) + β1(B) and β1(B0) = β2(B0) + g0, respectively. Com-

paring gives β1(B)− β2(B) = g0.

“⇐”. For any g ∈ Jac(M) and B ∈ B(M), g ·1 B = β−1
1 (g + β1(B)) = β−1

1 (g + g0 +

β2(B)) = β−1
1 (g0 + β2(g ·2 B)) = β−1

1 (β1(g ·2 B)) = g ·2 B. �
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Theorem 5.6.3 Let M be a regular matroid. Let σ be an acyclic circuit signature and let

τ, τ ′ be two acyclic cocircuit signatures. Then βσ,τ , βσ,τ ′ induce the same Jac(M)-group

action on B(M) up to isomorphism if and only if the two extensions of the zonotopal tilings

of ZM∗ induced by τ, τ ′, respectively, are equivalent up to translation.

PROOF: “⇒”. Suppose βσ,τ , βσ,τ ′ induce isomorphic group actions. For each basisB ofM ,

denote by γB ∈ C1(M) the difference β̂σ,τ (B)− β̂σ,τ ′(B), that is, γB is the sum of (signed)

elements whose orientations differ between β̂σ,τ (B) and β̂σ,τ ′(B). By Lemma 5.6.2, [γB] =

[γB′ ] ∈ Jac(M) for any pair of bases B,B′, which means γB − γB′ ∈ Z1(M)⊕B1(M).

Fix an arbitrary basis B0 of M . We claim that in the extension of the zonotopal tiling

of ZM∗ induced by τ , there is a copy of ZM∗ that is πV (γB0) away from the reference

zonotope, and its tiling pattern is equal to the zonotopal tiling induced by τ ′. Here πV is

the projection onto the cocircuit space of M∗, which is also the circuit space of M .

Let B be any basis of M and bi-orient the elements of its dual basis B∗ = E \ B in

an arbitrary way. Consider the τ -compatible (continuous) orientation O and τ ′-compatible

(continuous) orientation O′ extending the bi-oriented B∗. The difference between O,O′

is precisely γB by Proposition 5.3.5, hence the points representing O,O′ via ψ (and L)

in Z̃M differ by a displacement of πV (γB). In particular, the copies of Z̃(B∗) in the two

zonotopal tilings of a fixed copy of ZM∗ , induced by τ and τ ′, respectively, also differ by

the displacement of πV (γB).

The projection map πV is the zero map over B1(M) and the identity map over Z1(M).

So the observation that γB− γB0 ∈ Z1(M)⊕B1(M) implies πV (γB0) ∈ πV (γB) +Z1(M)

for any B. Since Z1(M) is the period of any extension tiling, in the comparison of the

positions of cells in two zonotopal tilings above, the displacement πV (γB) can be replaced

uniformly by πV (γB0) if we work with their extensions (and consider cells from the trans-

lated copies of ZM∗ if necessary), and this is precisely our claim.

“⇐”. The proof is essentially the converse of the above argument. In the zonotopal
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tilings induced by τ, τ ′, respectively, the cells correspond to the same basis B differ by the

displacement of πV (γB), where γB = β̂σ,τ (B)− β̂σ,τ ′(B) ∈ C1(M) is the same element as

above. The translation invariance implies that zB,B′ := πV (γB)−πV (γB′) ∈ Z1(M) for any

basesB,B′. Now γB−γB′−zB,B′ ∈ V ∗(M) as the projection of such element onto V (M)

is 0, butC1(M)∩V ∗(M) = B1(M) by Proposition 2.3.16, so γB−γB′ ∈ Z1(M)⊕B1(M).

It follows from Lemma 5.6.2 that the group actions induced by βσ,τ , βσ,τ ′ are isomorphic.

�

5.7 The ABKS Decomposition as a Zonotopal Tiling

We explain how the ABKS decomposition of a graph G is related to zonotopal tilings. In

particular, we describe a family of bijections between spanning trees and (integral) break

divisors of a graph that comes from the geometric bijections defined in previous sections.

For that reason, we call these bijections as geometric bijections (coming from the ABKS

decomposition) as well.

Let Γ be the metric realization of G whose edge lengths are 1, fix a vertex q of G as

well as a reference orientation −−→uivi for each edge ei of G. Let D = (c1) + . . . + (cg) be a

break divisor. Pick a spanning tree T that induces D, that is, ci is a chip inside edge ei 6∈ T

(by a permutation of edge indexes if necessary) and is of distance αi from ui. We associate

a continuous orientation OD of M(G)∗ to D: for an element e ∈ T , orient e away from q

with respect to T , and set OD(ei) = 2αi − 1 for i = 1, 2, . . . , g.

Lemma 5.7.1 For a break divisor D, OD is well-defined up to continuous cocircuit re-

versals with respect to M(G)∗, and they are all σq-compatible. Here we interpret σq, the

q-connected signature defined in Example 5.1.5, as an acyclic circuit signature of M(G)∗.

PROOF: LetOD andO′D be two continuous orientations constructed fromD using different

choices of T and ei’s. When a chip c is in the interior of an edge e, there would be no

ambiguity and we must have OD(e) = O′D(e). If we remove these chips that are in the
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interior of edges fromD to obtainD′, and remove the corresponding set S of edges fromG

to obtain G′, then D′ is still a break divisor of G′ and it is integral. Now OD|E\S,O′D|E\S

are discrete orientations that induce the same orientable divisor D′ − (q), so they differ

by a series of cycle reversals in G′ by Proposition 4.1.5, which are cocircuit reversals in

M(G)∗/S. The first half of the lemma follows from the observation that these cocircuit

reversals can be lifted back toM(G)∗ to transformOD intoO′D without involving elements

in S.

By the explanation in Example 5.1.5, the orientation of elements in T can be thought

as coming from the greedy procedure in the proof of Proposition 5.3.5 with respect to σq

and E \ T ∈ B(M(G)∗). By the same proposition, the overall orientation is σq-compatible

regardless the orientation outside T . �

The ABKS decomposition can be lifted to the universal cover H1(G;R) of the tropical

Jacobian, while by Proposition 5.6.1, a zonotopal tiling of Z̃M(G)∗ can be extended to a

tiling of V ∗(M(G)∗) ∼= V (M(G)) ∼= H1(G;R) by tiling the space using Z̃M(G)∗ . More-

over, Proposition 5.6.1 implies that in such a tiling, a facet of Z̃M(G)∗ will overlap with the

opposite facet of another copy of Z̃M(G)∗ .

Theorem 5.7.2 Let q be an arbitrary vertex ofG. Then the following two tilings ofH1(G;R)

coincide up to translation: the ABKS decomposition lifted to its universal cover, and the

zonotopal tiling of Z̃M(G)∗ induced by the q-connected signature σq of M(G)∗, extended to

the whole affine span.

PROOF: Both the ABKS decomposition and the zonotopal tiling induced by σq have the

same set of cells, namely, one parallelotope CT (resp. ˜Z(E \ T )) for each spanning tree

(resp. basis) T , both equal
∏

e6∈T πH1(G;R)(e) up to translation. So it suffices to show that

the cells in the ABKS decomposition glue to each other according to the rule described in

Proposition 5.3.7.

Let CT be the cell in the ABKS decomposition corresponding to a spanning tree T , and
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let F be a facet of CT corresponding to break divisors whose chip in e = uv 6∈ T is at v.

Pick a break divisor D contained in the relative interior of F (so all chips of D, except the

one at v, are in the interior of edges). Let C be the fundamental cycle of e with respect to T

and let f = u′v be the other edge in C incident to v. Move the chip at v in D to the interior

of f to obtain a new divisorD′, thenD′ is a break divisor associated to T ′ := T \{e}∪{f},

and thus in CT ′ .

Case I: v 6= q. If we choose T to be the spanning tree in the construction ofOD, then f is

oriented from u′ to v, andOD′ can be chosen as the continuous orientation obtained from bi-

orienting f inOD. Since D′ is break,OD′ is σq-compatible and the edge f we have chosen

here is the same “f” in Case 2 of the statement of Proposition 5.3.7, so ˜Z(E \ T ) ∼= CT

shares the common face F with ˜Z(E \ T ′) ∼= CT ′ .

Case II: v = q. If we again choose T as the spanning tree to construct OD, then f is

oriented from v = q to u′ and C is a directed cycle in OD. If we choose T ′ instead to

construct another continuous orientation O′D corresponding to D, then OD and O′D differ

by a reversal of C, and O′D is on the opposite facet F ′ of F in Z̃M(G)∗ . Now OD′ can be

chosen as the continuous orientation obtained from bi-orienting f inO′D, so F ′ is a facet of

˜Z(E \ T ′). In particular, in the extension tiling, ˜Z(E \ T ) in a copy of Z̃M(G)∗ shares the

common face F with ˜Z(E \ T ′) in other copy of Z̃M(G)∗ , which is Case 1 of the statement

of Proposition 5.3.7. �

Since the shifting part of geometric bijections only relies on the local structure of cells,

Theorem 5.7.2 yields the following version of “geometric bijections”.

Corollary 5.7.3 Let σ be an acyclic cycle signature of G. Given a spanning tree T of G,

let DT be the divisor of G in which we orient each e 6∈ T according to its orientation in

σ(C(T, e)) and then put a chip at the head of e. Then the map βσ : T 7→ DT is a bijection

from ST (G) to BD(G).

In view of Theorem 5.6.3, we may ask what is the “dual” group action of the ABKS
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decomposition. An answer is provided in Section 6.2.1.

5.8 Algorithmic Aspects

5.8.1 Inverse Algorithm for Geometric Bijections via Linear Programming

We describe an inverse algorithm which furnishes an inverse to the map φ, and hence to

β̂ and β. The key ingredient is that given a continuous orientation O and a vector w that

induces acyclic signatures σ and σ∗ with respect to a matrix A (cf. Lemma 5.3.2), the

unique σ-compatible continuous orientation O′ in the continuous circuit reversal class of

O (whose existence is guaranteed by Theorem 5.3.4) can be computed in polynomial-time

using linear programming.

To do so, we solve the “max-flow” linear program

max{wTy : Ay = 0,−1−O(e) ≤ ye ≤ 1−O(e)∀e}. (5.2)

Let ỹ be an optimal solution. Consider the continuous orientation O′ given by O′(e) =

O(e) + ỹe for every e, we claim that this is the σ-compatible continuous orientation we are

looking for. The condition −1−O(e) ≤ ye ≤ 1−O(e) in the linear program guarantees

that O′ is a valid continuous orientation, and the condition Ay = 0 guarantees that O′ is

circuit-reversal equivalent to O. Finally, the orientation O′ is σ-compatible: indeed, if O′

is compatible with some−σ(C), then one can easily check that ỹ+δvσ(C) is also a feasible

solution to the linear program for sufficiently small δ > 0, contradicting the optimality of

ỹ.

The linear program (5.2) and its dual version, together with the fact that one can work

independently in the circuit (resp. cocircuit) part of an orientation (Lemma 4.1.3), imply

the following.
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Proposition 5.8.1 There is a polynomial-time algorithm to compute the unique (σ, σ∗)-

compatible continuous orientation equivalent to a given continuous orientation.

Now suppose we are given a (σ, σ∗)-compatible discrete orientationO ∈ χ(M ;σ, σ∗) in

the general realizable matroid case, or any discrete orientation in the regular case. We will

work with the general case, as the latter case can be reduced to it using Proposition 5.8.1.

SupposeO was shifted into the cell Z̃(B) after moving by a displacement of−πV ∗(w) (for

sufficiently short w). By solving the linear program (5.1) in the proof of Theorem 5.4.2,

we obtain a vector f such that a continuous orientation in the cell Z(B) is given by Õ :=

O − 2f . Then we apply Proposition 5.8.1 to obtain the (σ, σ∗)-compatible continuous

orientation O′ equivalent to Õ, the basis B will then be the set of bi-oriented elements in

O′.

Since linear programming admits a polynomial-time algorithm [98, Chapter 13], we

only need to guarantee the bit complexity is of polynomial-size with respect to the input

through out the algorithm. But precisely because linear programming can be solved in

polynomial-time, the output of any intermediate linear program has polynomial bit com-

plexity with respect to the input. Finally, w can be taken as (1, 1/2, 1/4, . . . , 1/2m−1)

(Example 5.1.4), which has polynomial bit size with respect to A.

Summarizing the discussion, we have the following theorem.

Theorem 5.8.2 There is a polynomial-time algorithm to compute the inverse of β̂ and β.

5.8.2 Sampling Algorithms

By mimicking the strategy from [12], we can now produce a polynomial-time algorithm

for randomly sampling bases of a regular matroid, which gives an answer to the question

posed by Jeremy Martin and Farbod Shokrieh at the AIM chip-firing workshop [67]. The

high-level strategy is:
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1. Fix an arbitrary reference orientation O of M , as well as an acyclic circuit signature

σ and an acyclic cocircuit signature σ∗.

2. Compute Jac(M) ∼= coker(AAT ) as a product of cyclic groups by computing the

Smith normal form of AAT [72].

3. Use this presentation to choose a random element Jac(M), and transform it to an

element [γ] ∈ Jac(M) ∼= C1(M)
Z1(M)⊕B1(M)

.

4. Compute [O′] := [γ]·[O] ∈ G(M), where · is the polynomial-time computable group

action from Section 4.2.

5. Compute the (σ, σ∗)-compatible orientationO′′ in [O′], which can be done in polynomial-

time by Proposition 5.8.1.

6. Output the set of bi-oriented elements in O′′ as the random basis.

Besides theoretical interests, a random basis sampling algorithm for graphic matroids

(that is, a random spanning tree sampling algorithm) has real-life applications [52]. And

while the current implementation of our algorithm is slower than some other available

algorithms (e.g. the random walk based ones such as [111], or the determinant based ones

such as [45]), a feature of our algorithm is that it uses information theoretically minimum

amount of randomness, namely, it suffices to use log2 |B(M)| random bits.

Using the combinatorial description of lattice points in a (unimodular) zonotope (cf.

Section 5.5), we can deduce another algorithmic result related to sampling. The combina-

torial part was first studied by Tetali et al. [17], in which they posed the problem of finding

a polynomial-time algorithm for sampling acyclic orientations of G with a unique source

q.

Proposition 5.8.3 Let G be a connected graph without loops. Then for any vertex q,

the number of acyclic orientations of G with a unique source q is equal to TG(1, 0) =

TM(G)∗(0, 1).
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Furthermore, the problem of uniformly sampling an acyclic orientation with a unique

source is polynomial-time equivalent to uniformly sampling an interior lattice point of

ZM(G)∗ .

PROOF: By Theorem 5.5.3, the interior lattice points of ZM(G)∗ are precisely the acyclic

cut reversal classes ofG. We then claim that their σq-compatible representatives are exactly

the acyclic orientations of G with a unique source q, from which the enumerative statement

follows from Theorem 5.5.3 immediately. If an acyclic orientation O contains another

source vertex q′, then δ(q′) must be pointing away from q′ thus pointing towards q, hence

O is not σq-compatible. Conversely, if q is the unique source of an acyclic orientation O

and K is a directed cut pointing from U to V (G) \ U such that q 6∈ U , then O|U must

contain a source q′ 6= q, which is also a source in O.

Using the linear algebraic map ψ, we have an easy correspondence between the interior

lattice points of ZM(G)∗ and the acyclic cut reversal classes of G; and given any acyclic

orientation of G, the unique σq-compatible orientation equivalent to it can be computed

in polynomial-time either using Proposition 5.8.1 or the greedy procedure described in

Proposition 4.3.8 (which runs in polynomial-time by the remark followed). This establishes

the equivalence. �

Despite we cannot settle the sampling problem of Tetali et al. at this moment, the

reduction shed some light to the problem as there are works on sampling lattice points

of a polytope using tools from high dimensional geometry [73], so advances along these

directions might help us to solve the original problem; conversely, combinatorial hardness

results can in turn be translated into hardness results of geometric problems. As another

note, in [17], the authors also gave explicit and polynomial-time computable bijections

between acyclic orientations with a unique source and other combinatorial objects, such as

spanning trees with zero external activity (as known as “safe tree” [75]) and maximal G-

parking functions, so our reduction can be applied to the corresponding sampling problems

as well.
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5.8.3 Edge Ordering Maps and Their Combinatorial Inverses

We consider a special class of geometric bijections from the ABKS decomposition. An

advantage of these bijections is that they admit a purely combinatorial polynomial-time

inverse algorithm.

Fix a total ordering and a reference orientation of the edges e1 = −−→u1v1 < e2 = −−→u2v2 <

. . . < em = −−−→umvm of G. By Example 5.1.4, such data induces an acyclic circuit signature.

Hence the following edge ordering map is a bijection between spanning trees and break

divisors of G.

Input: A spanning tree T of G.
Output: A break divisor D ∈ Div(G).

Set D := 0.

for f 6∈ T do
C := Unique cycle contained in T + f
i := index of the smallest edge in C
Orient f to have the same orientation as ei in C
D := D + Head(f)

end

Output D.
Algorithm 2: Edge Ordering Map

Now we give a combinatorial inverse algorithm to Algorithm 2, thereby providing a

combinatorial proof that an edge ordering map is indeed a bijection.

We will first describe the key subroutine Inverse in Algorithm 3, which works at the

level of orientations; then we will give the main algorithm in Algorithm 4. Here the sub-

routine DivisorToOrientation is the algorithm by Backman [4, Algorithm 7.6] which, given

a break divisor D on a graph G and a vertex q, outputs a q-connected orientation O such

that D = DO + (q).

With the routine Inverse, the overall inverse algorithm, Algorithm 4, is fairly simple.

Theorem 5.8.4 Algorithm 4 always terminates and it is the inverse of Algorithm 2.
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Input: A connected graph H , a vertex q ∈ V (H) and a q-connected orientation O.
Output: A spanning tree T of H.

if H is a tree then
T := H

else
i := index of the smallest edge in H
P := A directed path from q to vi in O
Reverse the edges of P in O to obtain Ô
U := Vertices ui can reach in Ô
if vi ∈ U then

if ei goes from vi to ui in Ô then
Q := A directed path from ui to vi in Ô
Reverse the edges of the directed cycle {ei} ∪Q in Ô

end
T := Inverse(H − ei, vi, Ô − ei)

else
T := {ei} ∪ Inverse(H[U ], ui, Ô|H[U ]) ∪ Inverse(H[U c], vi, Ô|H[Uc])

end
end

Output T .
Algorithm 3: The subroutine Inverse

Input: A connected graph G and a break divisor D ∈ Div(G).
Output: A spanning tree T of G.

O := DivisorToOrientation(G,D, v1)
T := Inverse(G, v1,O)

Output T .
Algorithm 4: Inverse to the Edge Order Map
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PROOF: We shall first prove that every recursive step in Inverse is valid, then show by

induction on the number of edges that Inverse is the inverse of Algorithm 2, namely, if

T = Inverse(H, q,O), then the break divisor associated to T via Algorithm 2 is DO + (q).

The case of H being a tree is obviously correct. For the non-trivial cases, first notice

that DÔ + (vi) = DO + (q), so they correspond to the same break divisor. Furthermore, Ô

is vi-connected: for any vertex u in H , pick a directed path R from q to u inO, let w be the

vertex in the intersection of V (P ) and V (R) that is closest to vi on P (w could be q itself),

then concatenating the portion of P from vi to w and the portion of R from w to u gives a

directed path from vi to u in Ô.

In the case of vi ∈ U , the algorithm performs a cycle reversal if necessary to guarantee

that ei goes from ui to vi in Ô, so Ô − ei is a vi-connected orientation of H − ei as vi

never needed to use ei to reach any other vertices in the new Ô. Hence the recursive call

Inverse(H − ei, vi, Ô − ei) is valid. Letting T = Inverse(H − ei, vi, Ô − ei), by induction

the break divisor obtained from T in H − ei using Algorithm 2 is DÔ−ei + (vi). Consider

the fundamental cycle C of ei in T + ei ⊂ H . Since ei is the smallest edge in C, ei will

be oriented as its own reference orientation −−→uivi in Algorithm 2, hence the break divisor

obtained from T in H using Algorithm 2 is indeed DÔ−ei + 2(vi) = DÔ + (vi).

In the last case with vi 6∈ U , every edge between U and U c goes from U c to U in Ô.

In particular, DÔ = DÔ|H[U ]
+ DÔ|H[Uc]

+
∑

e=uu′,u∈U,u′∈Uc(u), here we abuse notations

and consider DÔ|H[U ]
and DÔ|H[Uc]

as divisors on H in the obvious way. On one side, Ô

restricted to H[U c] is vi-connected as vi could never use edges between U and U c to access

vertices in U c, hence Inverse(H[U c], vi, Ô|H[Uc]) is a valid call; on the other side, Ô re-

stricted to H[U ] is ui-connected by the construction of U , hence Inverse(H[U ], ui, Ô|H[U ])

is also a valid call. Suppose T is the outputted tree here, we consider the break divisor as-

sociated to T via Algorithm 2. By induction hypothesis, the contribution of those non-tree

edges in H[U ] and H[U c] is equal to DÔ|H[U ]
+ (ui) + DÔ|H[Uc]

+ (vi). For every edge

f 6= ei between U and U c, the fundamental cycle of T +f contains ei, so f will be oriented
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from U c to U , thus these edges contribute [
∑

e=uu′,u∈U,u′∈Uc(u)]− (ui) to the final divisor.

Summing these contributions of non-tree edges gives DÔ + (vi) as claimed. �

Now we analyze the complexity of Algorithm 4. The complexity of the subroutine Di-

visorToOrientation is essentially the complexity of a maximum flow algorithm (here any

exact algorithm for unit capacity directed graphs suffices, say the Õ(m10/7) algorithm by

Madry [84]). Each instance of the first case of Inverse takes O(|V (H)|) time, but any two

H’s considered in the computational process of Algorithm 4 are disjoint, so the first case

takes O(n) time in total. Lastly, for each non-trivial call of Inverse, a different smallest

edge ei is being considered, so there can be O(m) such calls, and it is easy to see such a

call can be handled in O(m) time (P , U , and Q can all be found by BFS, and other mainte-

nance/modification operations also take O(m) time). Therefore the total time complexity

is O(m2).

5.9 A Note on Lawrence Polytopes and Lawrence Ideals

In this section, we provide a brief survey on the Lawrence construction in combinatorial

commutative algebra and polyhedral geometry, and describe how the notion of geometric

bijections is related to it. We will assume basic definitions in these areas, and refer the

reader to standard texts such as [104] and [115].

Let π : P → Q be a projection of polytopes and let w be a vector in the affine span Rk

of P . The π-coherent subdivision with respect to w is a subdivision of Q consisting of the

projection of the “lower faces” of {(π(x),w · x) : x ∈ P} ∈ Rk × R [115, Section 9.1].

We will be interested in the projection [0, 1]E → Z from a hypercube to a zonotope, in

which the tight π-coherent subdivisions correspond to zonotopal tilings induced by acyclic

circuit signatures, cf. the remark after Theorem 5.3.4. The fiber polytope of π : P → Q

is a polytope whose face poset is isomorphic to the poset of all π-coherent subdivisions

ordered by refinement [22]; while not a standard terminology, we will call the normal fan

of fiber polytope the fiber fan.

92



LetA be the set of vertices of some polytope P (in generalA can be any point configu-

ration). The secondary polytope of P is the fiber polytope of the projection π : ∆|A|−1 → P

that maps the vertices of the simplex ∆|A|−1 to the vertices of P [54], the π-coherent subdi-

visions here are well known as the regular subdivisions of P [104, Chapter 8]. The normal

fan of the secondary polytope is the secondary fan of P .

Let I be a homogeneous ideal in R = K[x1, . . . , xn] and let w ∈ Rn be a vector. The

monomial term order <w orders monomials in R by xα <w xβ whenever w · α < w · β.

By [104, Theorem 1.11], each monomial initial ideal of I is equal to in<w(I) for some

w. By grouping vectors in Rn according to the initial ideals they induce, we obtain the

the Gröbner fan of I , where its full-dimensional cones correspond to the monomial initial

ideals of I by C ↔ in<w(I) for any w ∈ C◦. It can be proven that the Gröbner fan is the

normal fan of certain polytope known as the state polytope [104, Chapter 1–2].

Let A be an r × m integer matrix. The Lawrence polytope of A is the polytope in

Rr+m whose vertices are the columns of Â =

A 0

I I

, here both identity matrices are of

size m ×m [69]. The Lawrence ideal J of A is the (homogeneous) ideal in 2m variables

x1, . . . , xm, y1, . . . , ym generated by xv+
yv− − xv−yv+’s for all v ∈ ker(Â) ∩ Zm [104,

Chapter 7]. Here v = v+ − v−, supp(v+) ∩ supp(v−) = ∅ is the decomposition of v into

position part and negative part.

When M is a regular oriented matroid, the Lawrence polytope and Lawrence ideal

associated to M are the Lawrence polytope and Lawrence ideal of any totally unimodular

realization A of M . Notice that in such case, every element v ∈ ker(Â)∩ZE is of the form

(u,−u) for some u ∈ ker(A) ∩ ZE , and the sign patterns of u’s are precisely the vectors

of M .

We have the following equivalence of fans (and polytopes).

Theorem 5.9.1 Let M be a regular matroid. Then the following four fans coincide up to

lineality spaces.
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1. The fan in V ∗(M) associated to the central hyperplane arrangement consisting of

C⊥’s for each cocircuit C of M .

2. The fiber fan of the projection [0, 1]E → ZM∗ .

3. The secondary fan of the Lawrence polytope of M∗.

4. The Gröbner fan of the Lawrence ideal JM∗ of M∗.

PROOF: The equivalence of (3) and (4) is [104, Proposition 8.15(a)]. The equivalence of

(2) and (3) can be deduced using a special case of the “Cayley trick” [69], which gives

a bijection between (coherent) fine zonotopal tilings and (coherent) triangulations of the

Lawrence polytope via an explicit polyhedral construction, and in particular it implies the

fiber fan in (2) is equal to the secondary fan in (3) up to lineality spaces [103, Theorem

5.1].

Now we prove the equivalence of (4) and (1). By [90, Proposition 7.8], a minimal

universal Gröbner basis of the Lawrence ideal is given by {xC+
yC
− − xC

−
yC

+
: C ∈

C∗(M)}. Therefore to specify a full-dimensional open cone C◦ ⊂ R2m in the Gröbner

fan of JM∗ is the same as to specify the initial term of each basis element with respect to

the corresponding monomial term order <ŵ, ŵ ∈ C◦, which is equivalent to specifying

the orientation of each cocircuit of M picked out by <ŵ. For a cocircuit of M , <ŵ picks

out the term xC
+
yC
− if and only if w · C > 0, where w ∈ Rm is the vector given by

wi := ŵxi − ŵyi . Therefore two generic vectors ŵ1, ŵ2 ∈ R2m induce different initial

ideals if and only if πV ∗(w1), πV ∗(w2) ∈ V ∗ are separated by some hyperplane of the form

C⊥, thus the fan in (1) is the Gröbner fan of JM∗ quotiented by its lineality space. �

Remark. The lineality space of the Gröbner fan in (4) is of dimension 2m − r, m

of these dimensions are accounted by the fact that the behavior of <ŵ only depends on

the differences ŵxi − ŵyi’s, while the fact that the cocircuit signature induced by w is

independent of its circuit part accounts for the remaining m− r.
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Next we study the relation between the fans in (1) and (2) directly, which can be thought

as a special case of the Bohne–Dress theorem. Since the zonotopal tiling of ZM∗ induced

by w changes only if the acyclic cocircuit signature of M induced by w changes, the fan

in (1) is a refinement of the fiber fan in (2). Using the setup of geometric bijections, we can

give a perhaps more intuitive proof of the fact that they are actually equal. As a corollary,

one can replace any step in the above proof by the following argument.

For technical reasons, we will assume the matroid has no loops nor isthmuses. It is not

a serious compromise as such elements can be handled separately easily.

Let w1,w2 ∈ V ∗(M) be two vectors in the interior of two adjacent cones of the fan

in (1), separated by the hyperplane C⊥. Denote by σ1, σ2 the cocircuit signatures of M

they induce. Fix an arbitrary acyclic circuit signature τ of M , we claim that βτ,σ1 , βτ,σ2 :

B(M) → G(M) are different bijections. Pick any basis B of M in which C is a fun-

damental cocircuit respect to it, the cell CB associated to B in the zonotopal tiling (of

ZM ) induced by τ has two facets parallel to C⊥. Let O (as a τ -compatible orientation)

be the vertex that get shifted into CB along −w1. From the geometry of parallelotopes,

the τ -compatible orientation O′ that get shifted into CB along −w2 differs from O by pre-

cisely one element, which meansO andO′ are not circuit-cocircuit equivalent, in particular

βτ,σ1(B) = [O] 6= [O′] = βτ,σ2(B). By duality, βσ1,τ , βσ2,τ : B(M∗) → G(M∗) are dif-

ferent bijections as well. But since the shifting parts are the same, it must be the case that

the zonotopal tilings of ZM∗ induced by σ1 and σ2 are different, and w1,w2 are in different

cones in the fiber fan.

Finally, we mention an application of the connections above by giving an algebraic

proof of Proposition 5.4.8; the idea and certain special cases were previously studied in

[5, Section 4]. Given an acyclic circuit signature σ, there exists a generic monomial term

order < corresponding to−σ by Theorem 5.9.1. Encode an orientationO as the monomial

xO
+
yO
− . Given a signed circuit C, a division by xC

+
yC
− − xC

−
yC

+ using xC
+
yC
− as

the leading term produces a new remainder if and only if C is compatible with O, and
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such remainder is a monomial representing the orientation obtained from reversing C inO.

From this, we can see that an orientation is σ-compatible if and only if the corresponding

monomial is a standard monomial with respect to <, and Proposition 5.4.8 follows from

the existence and uniqueness assertion of remainder of division by a Gröbner basis [36,

Section 1.3].

96



CHAPTER 6

BERNARDI PROCESSES

6.1 Setup of Bernardi Processes

Bernardi introduced a combinatorial process [19, 20] to study the sandpile model on graphs.

The key notion used in his work is ribbon graphs (also known as combinatorial maps or

rotation systems). We will assume all graphs we consider here connected, unless otherwise

specified.

Definition 6.1.1 A ribbon structure on a graph G is a cyclic ordering of edges incident to

v for each vertex v of G. A graph together with a ribbon structure is a ribbon graph.

If G is embedded on an orientable surface, then the orientation of the surface induces a

ribbon structure. A non-trivial fact in topological graph theory is that the converse is true.

Theorem 6.1.2 [61, Section 3.2] The ribbon structures on a graph G are in one-to-one

correspondence with the embeddings ofG onto some closed orientable surface up to home-

omorphism.

A ribbon graph is planar if the surface the graph is embedded onto is a sphere.

Now we describe Bernardi process. Fix a ribbon structure of a graph G and a starting

pair (v, e), where e is an edge and v is a vertex incident to e. For any spanning tree T

of G, the Bernardi process produces a tour (v0, e0, v1, . . . , vk, ek) of the vertices and edges

of G. Informally, the tour is obtained by walking along edges belonging to T and cutting

through edges not belonging to T , beginning with e and proceeding according to the ribbon

structure. Explicitly, start with v0 = v, e0 = e, and in each step, determine vi+1, ei+1 using

vi, ei as follows: if ei 6∈ T , then set vi+1 = vi and set ei+1 to be the next edge of ei around
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vi in the cyclic order; otherwise set vi+1 to be the other end of ei and set ei+1 to be the next

edge of ei around vi+1. The process stops when every edge is traversed exactly twice.

Figure 6.1: Bernardi processes on two different spanning trees, using the same (planar)
ribbon structure and starting pair ([13, Figure 2]).

Such tour produces a total ordering <T (depending on T ) of E(G) according to the

visiting order by the walk, that is, f <T f
′ if the first appearance of f in the tour is earlier

than the first appearance of f ′. In particular, we can define Bernardi activities similar to

the classical counterpart using <T ’s. An edge f 6∈ T (resp. f ∈ T ) is externally Bernardi

active (resp. internally Bernardi active) if f is the smallest edge in the fundamental cy-

cle (resp. cut) of f with respect to <T . Bernardi gave another description of the Tutte

polynomial using his notion of activity.

A Bernardi process produces two natural maps from spanning trees to divisors. Let T

be a spanning tree and consider the Bernardi tour obtained from performing the Bernardi

process on T . In the first map, we associate a divisor to the tour as follows: each edge not

in T appears twice as ei, ej , i < j in the tour, for each such edge, add a chip at vi. The

second map is similar to the first, except that we only consider contribution from edges

not in T that are not externally Bernardi active, and that for the sake of convenience, we

normalize the divisor to degree 0 by modifying the number of chips at v. Bernardi proved

the following theorem concerning the two maps.
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Theorem 6.1.3 [20] Given any ribbon graph G and starting edge (v, e). The first map is

a bijection between spanning trees and break divisors, and the second map is a bijection

between spanning trees and degree 0 v-reduced divisors.

In view of Theorem 6.1.3, we call both maps Bernardi bijections, and we will specify

which one are we referring to upon using the term.

Remark. In the original language of Bernardi, spanning trees are mapped to v-critical

configurations in the second case, but there is a natural correspondence between critical

configurations and reduced divisors [11, Lemma 5.6], so we will use the latter convention.

6.2 Bernardi Bijections as Geometric Bijections

All Bernardi bijections in this section are of the first type. We will prove that every Bernardi

bijection of a planar ribbon graph is a geometric bijection coming from the ABKS decom-

position, such relation was a conjecture by Baker [13, Remark 5.2]. We will also sketch a

partial converse for the non-planar case.

6.2.1 Planar Case

In this section, G will always be a bridgeless planar ribbon graph, in which we implicitly

assume it is a plane graph, i.e., a graph already embedded onto R2 as a geometric object

(cf. [44, Section 4.2]). We first prove that for any Bernardi bijection of G, there exists

some cycle signature σ of G so that the bijection is equal to βσ (cf. Corollary 5.7.3). We

call maps of the form βσ with cycle signature σ (not necessarily acyclic) cycle orientation

maps.

We adopt the convention that the ribbon structures on plane graphs are induced by the

counter-clockwise orientation of the plane. The only exception is when we are working

with planar duals, in which case we assume that the ribbon structures of dual graphs are

induced by the clockwise orientation of the plane.

99



Proposition 6.2.1 The Bernardi bijection with starting pair (x, e = xy) is a cycle orien-

tation map. More explicitly, the cycles are oriented as follows: if e is outside C, orient

C clockwise; if e is inside C, orient C counter-clockwise; if e is on C, orient C as the

opposite of −→xy.

PROOF: Let C = x1x2 . . . xr be a cycle with vertices indexed in counter-clockwise order,

and let T be a spanning tree for which C is a fundamental cycle. Without loss of generality,

T is missing the edge ê := xrx1 from C. Suppose e is outside C. Then the Bernardi tour

starting from e, when restricted to C, traverses the “outside” of C in a counter-clockwise

manner before going to the “inside” of C by cutting through ê. Hence the tour will put a

chip at xr, which corresponds to orienting C clockwise. See Figure 6.2 for illustration. The

analysis of the remaining cases are similar. �

x1

xi

xi+1

xr

C

es
Tx

e e1

1Figure 6.2: Illustration of Proposition 6.2.1. Picture by Emma Cohen.

One immediate observation is that a more correct way to index Bernardi bijections of a

plane graph is by faces rather than by starting pairs.
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Corollary 6.2.2 Let (v, e = uv) be a starting pair on G. Let F be the face to the right

of (v, e) (cf. Figure 6.3). Then the cycle signature described in Proposition 6.2.1 can be

interpreted as follows: a cycle is oriented into counter-clockwise if and only if F is in the

interior of the cycle. Conversely every face corresponds to some Bernardi bijection in such

manner. Denote by σF such cycle signature of G.

v  

u 

F' 

F 

e 

e 

Figure 6.3: Some conventions on the orientation of plane graphs. Here the orientation of
e induces the orientation of the dual edge e∗, and F is said to be the face on the right of
(v, e).

Now we prove Baker’s conjecture.

Theorem 6.2.3 Let G∗ be the dual graph of G. Let F be a face of G and denote by F ∗

the corresponding dual vertex of G∗. Then σF , as a cut signature of G∗, is equal to σF ∗ ,

the F ∗-connected signature of G∗ (cf. Example 5.1.5). In particular, σF is acyclic, and any

Bernardi bijection of G is a geometric bijection coming from the ABKS decomposition.

PROOF: Without loss of generality, F is the unbounded face of G, so σF orients every C

into clockwise. For any such directed cycle C, the dual edge of every edge e ∈ C will be
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oriented away from F , which makes C∗ a directed cut oriented from away from F ∗ in G∗.

�

Next, we give alternative proofs of several properties of planar Bernardi bijections,

which were proven using combinatorial arguments in [13]. Recall from Section 5.6 that

every bijection β : ST (G) → Pick(G) induces a group action ·β of Jac(G) ∼= Pic0(G)

on ST (G) by g ·β T := β−1(g + β(T )). We call those group actions induced by Bernardi

bijections the Bernardi torsors.

Theorem 6.2.4 [13, Theorem 5.1] Let G be a planar ribbon graph. Then all Bernardi

torsors are isomorphic.

We give two proofs of Theorem 6.2.4. While the first proof is more direct and gives

a more general result, the second proof provides a rather unexpected connection between

Bernardi processes and the ABKS decomposition.

Proposition 6.2.5 Let M be a regular matroid. Fix an arbitrary total ordering e1 < . . . <

em and an arbitrary reference orientation of E(M), and let σ be the acyclic circuit signa-

ture induced by such data (cf. Example 5.1.4). Define another acyclic circuit signature σ′

using the same ordering of E(M) and reference orientation of e2, . . . , em, but with an op-

posite orientation of e1. Then βσ,τ , βσ′,τ induce isomorphic Jac(M)-torsors for any acyclic

cocircuit signature τ . In particular, when specified to cycle orientation maps, βσ, βσ′ in-

duce isomorphic torsors.

PROOF: For every basis B of M , we compare the orientation O := β̂σ,τ (B) and O′ :=

β̂σ′,τ (B), here β̂’s are the bases to orientations maps defined in Theorem 5.4.2.

Case I: e1 6∈ B. e1 is the only element whose fundamental circuit (which respect to B)

involves e1, hence the only difference between O and O′ is the orientation of e1.

Case II: e1 ∈ B. The orientation of e1 remains the same in O,O′ as it only depends on

the fixed cocircuit signature τ . The fundamental circuit of an element f 6∈ B involves e1 if
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and only if f is in the fundamental cocircuit K := C∗(B, e1) of e1, hence O and O′ differ

precisely by the orientation of these elements. Both β̂σ,τ and β̂σ′,τ orient the elements of

K \ {e1} consistently opposite to the reference orientation of e1 with respect to K, so K

is a positive cocircuit of either O or O′. And O and O′ differ by a cocircuit reversal of K

followed by a reversal of e1.

Summarizing the above two cases, βσ,τ (B) and βσ′,τ (B) always differ by

[e1] ∈ C1(M)
Z1(M)⊕B1(M)

∼= Jac(M). By Lemma 5.6.2, they induce isomorphic torsors. �

FIRST PROOF OF THEOREM 6.2.4: We first claim that if q, q′ are two adjacent vertices

in a graph G, then the q-connected signature σq and the q′-connected signature σq′ can

be induced by data satisfying the assumption in Proposition 6.2.5. We follow the recipe

described in Example 5.1.5. First we pick any spanning tree T containing an edge e incident

to both q and q′, then we pick a depth-first-search ordering of edges in T starting with e

from q, it is easy to see that such ordering also extends the tree ordering of edges rooted at

q′. Concerning the reference orientation of edges, e will be oriented differently in the two

cases, but every other edge in T will be oriented in the same way.

By Corollary 6.2.2, every Bernardi bijection is a cycle orientation map of the form βσF ,

in which σF can be thought as a F ∗-connected signature of G∗ by Theorem 6.2.3. Since

G∗ is connected, repeatedly applying Proposition 6.2.5 yields the desired conclusion. �

SECOND PROOF OF THEOREM 6.2.4: Fix an arbitrary vertex q of G. By Corollary 5.7.3

and Corollary 6.2.2, every Bernardi bijection can be interpreted as βσF ,σq for some face F

of G, where σF can be thought as a F ∗-connected signature of G∗ by Theorem 6.2.3. Now

by the dual of Theorem 5.6.3, βσF ,σq and βσF ′ ,σq induce isomorphic group actions if and

only if the two extension tilings of ZG, induced by σF , σF ′ , respectively, are equivalent up

to translation. But by Theorem 5.7.2, any of these extension tilings is equivalent to the

ABKS decomposition of G∗ lifted to its universal cover. �
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The second proposition from [13] that we will be studying is the following duality

result.

Theorem 6.2.6 [13, Theorem 6.1] Let β, β∗ be some Bernardi bijections on G and G∗,

respectively. Then the following diagram commutes:

Jac(G)× ST (G)
·β−−−→ ST (G)yα0×αT

yαT
Jac(G∗)× ST (G∗)

·β∗−−−→ ST (G∗)

Here the map αT from ST (G) to ST (G∗) is the map T 7→ E(G) \ T , and the map α0

from Jac(G) ∼= C1(G)
Z1(G)⊕B1(G)

to Jac(G∗) ∼= C1(G∗)
Z1(G∗)⊕B1(G∗)

is the map induced by the isomor-

phisms between C1(G) and C1(G∗) (by
∑
ei 7→

∑
e∗i ), Z1(G) and B1(G∗), and B1(G)

and Z1(G∗) [3, Proposition 8].

We prove Theorem 6.2.6 by proving the commutativity of two finer diagrams separately.

In particular, our proof produces a stronger assertion than the proof in [13].

Proposition 6.2.7 The following diagram commutes:

Pic0(G)× Picg−1(G) −−−→ Picg−1(G)yα0×αg−1

yαg−1

Pic0(G∗)× Picg
∗−1(G∗) −−−→ Picg

∗−1(G∗)

Here g∗ = n− 1 is the genus of G∗, the horizontal arrows correspond to the addition map,

and the map αg−1 is [DO] 7→ [DO∗ ].

PROOF: Since the graph is connected, Pic0(G) is generated by elements of the form [(v)−

(u)], where u, v are adjacent vertices. Hence by linearity it suffices to prove

α0([(v)− (u)]) + αg−1([D]) = αg−1([(v)− (u)] + [D]),∀[D] ∈ Picg−1(G)
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for these [(v)− (u)]’s. Fix two such adjacent vertices u, v, say they are both incident to the

edge e. For a divisor class [D] ∈ Picg−1(G), we can interpret the addition [(v)− (u)] + [D]

as follows: pick an orientation O such that D ∼ DO and that e is oriented from v to u

(the latter is always possible by reversing a directed cycle/cut e is in), reverse e in O to

obtain O′, then [(v) − (u)] + [DO] = [DO′ ]. Using the convention in Figure 6.3, the dual

element of [(v) − (u)] is [(F ′∗) − (F ∗)] ∈ Pic0(G∗), and the dual element of [D] = [DO]

is [DO∗ ] ∈ Picg
∗−1(G∗), note that e∗ is oriented from F ′∗ to F ∗ in O∗. Denote by O∗′ the

orientation of G∗ obtained from reversing e∗ in O∗, then [(F ′∗)− (F ∗)] + [DO∗ ] = [DO∗′ ].

But it is easy to see thatO∗′ is the dual orientation ofO′, thus [DO∗′ ] is the dual element of

[DO′ ]. Summarizing we have the desired identity. �

Proposition 6.2.8 Let β = βF , β
∗ = βv∗ be Bernardi bijections of G,G∗, respectively.

Then the following diagram commutes:

ST (G)
β−[(v)]−−−−→ Picg−1(G)yαT yαg−1

ST (G∗)
β∗−[(F ∗)]−−−−−−→ Picg

∗−1(G∗)

PROOF: Let T be a spanning tree ofG. The divisor class β(T )−[(v)] contains an orientable

divisor DO in which O = β̂σF ,σv(T ). Dually, the divisor class β∗(E(G) \ T )− [(F ∗)] con-

tains an orientable divisor DO′ in which O′ = β̂σv∗ ,σF∗ (E(G) \ T ). By symmetry, we can

see that O′ is the dual orientation of O, thus [DO′ ] = αg−1([DO]). �

PROOF OF THEOREM 6.2.6: The diagram there factors through the diagram (and its rever-

sal) in Proposition 6.2.8 and the diagram in Proposition 6.2.7 as follows.

Jac(G)× ST (G)
id×(β−[(v)])−−−−−−−→ Pic0(G)× Picg−1(G) −−→ Picg−1(G)

β−1(·+[(v)])−−−−−−−→ ST (G)yα0×αT

yα0×αg−1

yαg−1

yαT
Jac(G∗)× ST (G∗)

id×(β∗−[(F ∗)])−−−−−−−−−→ Pic0(G∗)× Picg
∗−1(G∗) −−→ Picg

∗−1(G∗)
β∗−1(·+[(F ∗)])−−−−−−−−→ ST (G∗)

�
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Finally, by [13, Theorem 7.1], Theorem 6.2.4 and 6.2.6 concerning Bernardi torsors

of planar ribbon graphs can be translated to their counterparts concerning rotor-routing

torsors [30, 31].

6.2.2 Non-planar Case

We prove a partial converse of Baker’s conjecture (which is a theorem by Section 6.2.1).

That is, the Bernardi bijections of a non-planar ribbon graph are “almost never” geometric

bijections from the ABKS decomposition. The intuition is that cycles of a non-planar

ribbon graph need not partition the surface into “inside” and “outside”, hence do not have

a consistent orientation as in the planar case.

First we characterize non-planar ribbon graphs by forbidden subdivisions. We say a

ribbon graph Ĥ is a subdivision of the ribbon graph H if one can obtain Ĥ from H by

inserting degree 2 vertices (equipped with the unique cyclic ordering on two edges) inside

the edges of H while keeping the cyclic orderings of edges around the original vertices

the same. Also, we say a ribbon graph H is a subgraph of a ribbon graph G if graph-

theoretically H is a subgraph of G and the cyclic ordering of edges around each vertex of

H is inherited from the cyclic ordering of G. Finally, we say a ribbon graph G contains a

ribbon graph H as a subdivision if Ĥ is a subgraph of G for some subdivision Ĥ of H .

Definition 6.2.9 The first basic non-planar ribbon graph (BNG I) is a ribbon graph on

two vertices v1, v2 and three edges e1, e2, e3 so that the cyclic ordering of the edges around

each vertex is e1, e2, e3. The second basic non-planar ribbon graph (BNG II) is a ribbon

graph on three vertices u1, u2, u3, with two edges e′1, e
′
2 between u1, u2 and two edges e′3, e

′
4

between u1, u3, where the cyclic ordering of the edges around u1 is e′1, e
′
3, e
′
2, e
′
4.

The next proposition is known within the communities working in structural or topo-

logical graph theory. But we could not find an explicit reference in the literature so we

include a brief proof here.
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Figure 6.4: BNG I (left) and BNG II (right).

Lemma 6.2.10 Every non-planar ribbon graph contains at least one of the BNGs as a

subdivision.

PROOF: Given a ribbon graph G, we will demonstrate a way to either find a planar embed-

ding of G, or find a BNG as a subdivision in G. First we assume that G is 2-connected,

and we apply induction via an ear decomposition. The base case is a cycle and is trivial.

Suppose a subgraph G′ ⊂ G is embedded in the plane, and let P = u0− e1− . . .− ek−uk

be an ear to be added. Say inG′∪P the cyclic ordering of edges around u0 includes e, e1, f

consecutively. Then some cycle C containing e, f bounds a face F of G′ that e1 is to be

embedded in; similarly there is a face F ′ of G′ that ek is to be embedded in. If F = F ′

then we can embed P in F ; otherwise if we let Q ⊂ G′ be a shortest path (possibly trivial)

going from uk to any vertex v 6= u0 on C (the existence of such path is guaranteed by the

2-connectivity of G′), then P ∪Q ∪ C will be a subdivision of BNG I.

For the general case, we induct on the number of blocks. Let v be a cut vertex and let

G1, . . . , Gk be subgraphs corresponding to the components of T − v, where T is the block

decomposition tree of G. By induction, each Gi can be embedded in the plane, and we

may further assume that v is on the boundary of the unbounded face of each embedding if
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needed. If there exist some interlacing edges e, e′, f, f ′ in the cyclic ordering around v with

e, f ∈ Gi and e′, f ′ ∈ Gj , then by letting C ⊂ Gi, C
′ ⊂ Gj to be cycles containing e, f

and e′, f ′, respectively, we have C ∪ C ′ as a subdivision of BNG II in G. Otherwise, it can

be seen that for all subgraphs Gi’s except possibly one (say G1), all edges in Gi incident to

v are in some interval Ii of the cyclic ordering around v, so we can embed G1 in the plane

and then embed other subgraphs one by one according to the cyclic ordering of Ii’s. �

For the proof we adopt the following conventions: we say an edge f 6= e1, e2 in a

ribbon graph is in between e1 and e2 at v if v is a common endpoint of the three edges, and

f goes before e2 in the cyclic ordering of edges around v when listed starting with e1; given

a simple path P and vertices a, b ∈ V (P ), we denote by aPb the subpath of P between a

and b (inclusive); and given a spanning tree T and a subset V ′ of vertices such that T [V ′] is

connected, we say a vertex v not in V ′ is under a vertex v′ ∈ V ′ if the closest vertex from

V ′ to v in T is v′.

Theorem 6.2.11 Let G be a non-planar ribbon graph. If G is simple, then there exists

some Bernardi bijection of G that is not a cycle orientation map. Otherwise there exists

some subdivision G′ of G such that some Bernardi bijection of G′ is not a cycle orientation

map, and G′ can be chosen to have at most one more vertex than G.

PROOF: Let G be a non-planar ribbon graph containing a subdivision P1∪P2∪P3 of BNG

I, with P1, P2, P3 being internally disjoint paths sharing endpoints v1, v2; we assume P1 is

not an edge in the simple graph case by re-indexing. Without loss of generality, we may

assume there are no edges between (the last edge of) P1 and (the last edge of) P2 whose

endpoints are v2 and some internal vertex of P1 or P2: if there is such an edge f = v2t with

t ∈ V (Pi), i = 1 or 2, then we can replace Pi by v1Pit ∪ {f}, the process will eventually

stop because the number of edges between P1 and P2 decreases in every step. Note that in

the case of simple graphs, the process will keep at least one internal vertex of P1. Similarly

we may assume there are no edges between v1 and v2 that are between P1, P2 at the two
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ends, or otherwise we may replace P2 by such edge. By inserting a new vertex on P1 near

v2 in the non-simple case if necessary, we may assume P1 = v1 − . . .− e11 − u− e12 − v2

is of length at least 2, and there are no edges between u and v2 other than e12.

Denote by e3 the edge on P3 that is incident to v2, we extend the acyclic subgraph

(P1 − e11) ∪ P2 ∪ (P3 − e3) to a spanning tree T1 of G with the maximum number of

vertices under v2 with respect to V [P1 ∪ P2 ∪ P3]. Note that our assumption means the

other endpoint of any non-tree edge incident to v2 in T1 is either from V [P1 ∪ P2 ∪ P3] or

is a vertex under v2. Set T2 = T1 − e12 + e11. It is easy to see that the set of non-tree edges

incident to v2 in T2 is exactly the set of non-tree edges incident to v2 in T1 plus e12, and

those common non-tree edges have the same fundamental cycles in T1 and T2. Consider

the Bernardi tours of T1, T2 ⊂ G starting from (u, e11). A routine simulation shows that

each non-tree edge that contributes a chip to v2 in the first tour will also contribute a chip

to v2 in the second, while e12 and e3 will each contribute a chip to v2 in the second tour but

not in the first, so v2 received at least two more chips in the second tour than in the first.

But in any cycle orientation map, v2 can receive at most one more chip with respect to T2

than T1, so the Bernardi bijection is not a cycle orientation map.

The case when G only has subdivisions of BNG II is similar. Let C1 = u1 − e1 − u−

f − . . . − e3 − u1 (f could be equal to e3) and C2 = u1 − e2 − . . . − w − e4 − u1 be

two cycles of G whose union is a subdivision of BNG II, i.e., the two cycles are disjoint

except at u1, and the cyclic ordering of edges around u1 includes e1, e2, e3, e4 in order.

With a greedy procedure similar to the one in the case of BNG I, we may assume there

are no edges between e1 and e2 whose endpoints are u1 and some other vertex of C1 or

C2, nor edges between e2 and e3 whose endpoints are u1 and some other vertex of C1. By

inserting a new vertex in e1 near u1 in the non-simple case, we may further assume there

are no edges between u1 and u other than e1. Extend (C1 − f) ∪ (C2 − e4) to a spanning

tree T ′1 of G with the maximum number of vertices under u1 with respect to V [C1 ∪ C2],

and set T ′2 = T ′1 − e1 + f . Consider the two Bernardi tours of T ′1, T
′
2 starting from (u, f).
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u1 received at least two more chips (from e1 and e4) in the second tour than in the first, a

similar reasoning as above shows the Bernardi bijection cannot be a cycle orientation map.

�

Example 6.2.12 It can be checked that all Bernardi bijections on BNG I are coming from

its ABKS decomposition, so working with subdivisions is indeed necessary in Theorem

6.2.11.

6.3 Bernardi Bijections as Burning Algorithms

All Bernardi bijections in this section are of the second type, i.e., they map spanning trees

to v-reduced divisors. We interpret the Bernardi bijections as a variant of Dhar’s burning

algorithm (Proposition 2.2.8). Such idea was known in Bernardi’s original paper, but our

proof seems new. In particular, it uses idea closely related to the inverse of an edge ordering

map discussed in Section 5.8.3 as well as the proof of Proposition 6.2.5. In contrast to the

last section, the result here does not require the ribbon graph to be planar.

6.3.1 Cori–Le Borgne Processes

Cori and Le Borgne [34] gave a bijective proof to a theorem of Merino [86], which es-

sentially says that the statistics of q-reduced divisors can be used to characterize TG(1, y).

Formally, Merino’s theorem can be stated as

TG(1, y) = yg
∑
D

yD(q),

where the sum runs over all q-reduced divisorD of Div0(G). To achieve this, they modified

Dhar’s algorithm into a bijection from q-reduced divisors to spanning trees by introducing

a tiebreaking rule to the algorithm, namely a total ordering< of all edges. Instead of letting

the fire spread in an arbitrary order, in each step the largest unburnt edge that has exactly

one burnt end is set on fire, and if setting an edge f on fire causes the unburnt end of f to
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be burnt, include f into the output edge set. Cori and Le Borgne proved that the algorithm

always produces a spanning tree, and it is a bijection. Moreover, the edges not being burnt

in the end of the algorithm are externally active with respect to the output tree T and <,

that is, ε(T ) = g +D(q).

Input: A q-reduced divisor D ∈ Div(G), and a total ordering < of E.
Output: A spanning tree T of G.

Set X := {q}, R := ∅, T := ∅. (Burnt vertices, burnt edges and marked edges,
respectively)

while X 6= V do
f := max(G[X,X] ∩R)
v := the unburnt vertex incident to f
if D(v) = |R ∩ δ(v)| then

X := X ∪ {v}
T := T ∪ {f}

end
R := R ∪ {f}

end
Output T .

Algorithm 5: Cori–Le Borgne Algorithm

6.3.2 Statement and Proof

Theorem 6.3.1 Fix a ribbon structure and a starting pair (v, e) of G. Let T be a spanning

tree of a graph G. Perform Bernardi process on T to obtain a v-reduced divisor D as well

as a total ordering <T of edges. Then performing Cori–Le Borgne process on D using <T

produces back T .

PROOF: Apply induction on m. The case with no edges is vacuously true. So we assume

m > 0.

Case I: e is not in T . Let f be the edge following e around v. Consider a new Bernardi

process on T as a spanning tree of G− e with starting edge (v, f). Say the divisor and total

ordering the new process produces are D′, <′T , respectively. Since e 6∈ T , the new Bernardi

tour is the restriction of the original Bernardi tour onG−e. From this we can see that<′T is
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the same as <T restricted to E − e; also we have D′ = D because e is externally Bernardi

active hence does not contribute any chips to D. Performing Cori–Le Borgne process on D

as a divisor of G−e using <′T produces back T by induction, while performing the process

on D as a divisor of G using <T will follow the same initial steps, and before the algorithm

considers e (the only difference between the two instances), the algorithm would terminate

because a spanning tree (namely T ) is already found.

Case II: e is in T . Let T1, T2 be the two components of T − e, without loss of generality

v ∈ T2 and say the other vertex of e is u ∈ T1. Let V1 := V (T1), V2 := V (T2), G1 :=

G[V1], G2 := G[V2]. LetK := G[V1, V2] be the fundamental cut of e and writeK ′ := K−e.

Let f be the edge following e around v and let g be the edge following e around u. The

Bernardi process on T will first visit e, then visit all edges in G1 (twice) as well as all edges

in K ′ (once each), next it will visit e the second time, and finally visit edges in G2 (twice)

as well as edges in K ′ for the second time each. In particular, every edge in G2 is larger

than any edge in E(G1)∪K with respect to <T , and all chips contributed by K ′ are in G1.

Notice that the smallest edge e is contained in the fundamental cycle of every edge in K ′,

so every edge in K ′ is not Bernardi externally active and will contribute a chip. Therefore

D(x) ≥ outdegV1(x) for every x ∈ V1 \ {u} and D(u) ≥ outdegV1(u) − 1 (hence by the

v-reducedness of D, D(u) = outdegV1(u)− 1).

Consider two smaller Bernardi processes. One on T1 as a spanning tree of G1, starting

with (u, g); and another on T2 as a spanning tree of G2, starting with (v, f). Say the

divisors and total orderings produced by these two new processes are D1, <
1
T and D2, <

2
T ,

respectively. The Bernardi tours of the two small processes are the restriction of the original

Bernardi tour on G1 and G2, respectively. Therefore <1
T (resp. <2

T ) is <T restricted to

E(G1) (resp. E(G2)). We also have that D|V2 equals D2, while D|V1 equals D1 plus a chip

from each edge in K ′.

Now perform Cori–Le Borgne process on D (as a divisor of G) with <T . From the

observations regarding D(x) and outdegV1(x) for x ∈ V1, we know that as long as e is
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not burnt, none of the vertices in G1 would be burnt. Therefore the burning process will

proceed in three phrases:

1. At the beginning, the process only needs to burn along edges of G2 in order to burn

out every vertex in V2, which produces T2, both assertions follow from induction

hypothesis on G2.

2. Now the set of edges with exactly one end being burnt is precisely K. Since e is the

smallest edge in K while D(x) ≥ outdegV1(x),∀x ∈ V1 \ {u}, all edges in K will

be burnt and the first burnt vertex in V1 is u. This phase essentially exhausts all fire-

fighters coming from K ′ during the Bernardi process and reduces the configuration

of available firefighters in G1 from D|V1 to D1.

3. Finally by induction hypothesis on G1, the process will burn through all vertices in

V1 along edges in G1 to produce T1.

To summarize, the Cori–Le Borgne process will give back T1∪{e}∪T2 = T as claimed.

�

In the BIRS–CMO Workshop on sandpile groups, Hopkins asked whether one can clas-

sify all tiebreak rules for Dhar’s burning algorithm that yield bijections between spanning

trees and reduced divisors, as well as the corresponding statistics of spanning trees [68,

Question 1.4]. Our result provides another set of examples to Hopkins’ question.

Corollary 6.3.2 Fix a ribbon structure and a starting pair (v, e) of G. Then using <T as

the tiebreak rule for each (degree 0) v-reduced divisor D in the burning algorithm yields

a bijection, here T := T (D) is the unique spanning tree that corresponds to D in the

Bernardi bijection. Furthermore, such bijection relates the value of D at q and the external

Bernardi activity eB of T : we have eB(T ) = g +D(v).

The fact that both classical activity and Bernardi activity are special cases of ∆-activity

introduced by Courtiel [35] suggests there might be one variant of burning algorithms for

every ∆-activity, which would provide a family of examples to Hopkins’ question.
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CHAPTER 7

EXTENSIONS

7.1 Geometric Bijections for General Oriented Matroids

This section is based on joint work with Spencer Backman and Francisco Santos.

We will prove a generalization of Theorem 5.4.2 to include all oriented matroids. We

first start with the necessary background to state and prove the theorem.

Definition 7.1.1 Let M be an oriented matroid on ground set E. An oriented matroid M ′

is a single-element extension ofM if the ground set of M ′ is Et{f} for some new element

f and M = M ′ \ f . Dually, M̃ is a single-element lifting of M if the ground set of M̃ is

E t {g} and M = M̃/g.

Let M ′ be a single-element extension of M . By the definition of oriented matroid

deletion, for every signed cocircuitD ofM , there exists a unique signed cocircuitD′ ofM ′

such that D′|E = D. Therefore we can define a cocircuit signature of signs σ∗ : C∗(M)→

{+, 0,−} associated to the extension by setting D 7→ D′(f). Dually, every single-element

lifting is associated with a circuit signature of signs σ : C(M)→ {+, 0,−}.

We have a converse uniqueness statement.

Theorem 7.1.2 [23, Proposition 7.1.4] If M ′,M ′′ are single-element extensions of M on

the same ground set that induce the same cocircuit signature of signs, then M ′ = M ′′. A

dual statement for single-element liftings.

In general, not every circuit (resp. cocircuit) signature of signs is coming from an

actual single-element lifting (resp. single-element extension). For instance, we must have

σ(−C) = −σ(C) for every signed circuit C. A list of necessary and sufficient conditions

is given in [23, Theorem 7.1.8].
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The definition of circuit (resp. cocircuit) signatures in Chapter 5 is compatible with the

definition here. We say a signature of signs, as well as the single-element lifting or exten-

sion associating to the signature, is generic if the range is {+,−}. Every generic circuit sig-

nature of signs σ induces a signature σ : C(M)→ C(M) in the way that σ(σ(C)) = + for

every C ∈ C(M). Conversely, every signature σ : C(M)→ C(M) induces a generic circuit

signature of signs σ : C(M)→ {+,−} by setting σ(C) = + if and only if C = σ(C).

We will show that using the dictionary above, every acyclic circuit (resp. cocircuit)

signature is equivalent to a circuit (resp. cocircuit) signature of signs associated to certain

single-element lifting (resp. extension), and such lifting (resp. extension) can be described

explicitly.

Proposition 7.1.3 Let M be an oriented matroid realized by the r×m matrix A, which we

assume is of full row rank. Let w ∈ RE be a generic vector in the sense of Lemma 5.3.2.

We have that

1. The oriented matroid M ′ realized by

A′ =

(
A Aw

)

is a single-element extension of M . Let σ∗ : C∗(M) → {+, 0,−} be the associated

cocircuit signature of signs. Then σ∗ is generic, and the map σ∗ : C∗(M)→ C∗(M)

induced by σ∗ coincides with the acyclic cocircuit signature induced by w in the way

described in Lemma 5.3.2.

2. The oriented matroid M̃ realized by

Ã =

 A 0

wT −1


is a single-element lifting of M . Let σ : C(M)→ {+, 0,−} be the associated circuit
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signature of signs. Then σ is generic, and the map σ : C(M)→ C(M) induced by σ

coincides with the acyclic circuit signature induced by w.

PROOF: Let D be a signed cocircuit of M . By definition, D is the sign pattern of uTA 6= 0

for some u ∈ Rr. We claim that the sign pattern D′ of uTA′ =

(
uTA uTAw

)
is a

cocircuit of M ′: suppose the support of u′TA′ is properly contained in the support of D′,

then u′TA 6= 0 and its support is properly contained in the support of D, contradicting

the assumption that D is a cocircuit of M . Conversely, if D′ is a signed cocircuit of M ′,

realized as the sign pattern of uTA′, then uTA 6= 0 is a signed covector of M . Hence

M ′ is a single-element extension of M . Furthermore, by the generic assumption on w,

uTAw 6= 0 whenever uTA realizes some signed cocircuit, so σ∗ is generic. Finally, we

have D = σ∗(D) if and only if σ∗(D) = +, if and only if the last coordinate of D′ is

positive, if and only if uTAw > 0, which is the condition given in Lemma 5.3.2.

The dual statement can be proven in a similar manner. If C is a signed circuit of M ,

then it is the sign pattern of some v ∈ kerA, and

 v

wTv

 realizes a signed circuit C̃ of

M̃ . And C = σ(C) if and only if σ(C) = +, if and only if the last coordinate of C̃ is

positive, if and only if wTv > 0. �

Now we state the generalization of Definition 5.4.1 and Theorem 5.4.2.

Definition 7.1.4 Let M be an oriented matroid on ground set E. Let M ′, M̃ be a generic

single-element extension and a generic single-element lifting of M on ground sets E t{f}

and Et{g}, respectively. Let σ∗ (resp. σ) be the cocircuit (resp. circuit) signature of signs

associated to M ′ (resp. M̃ ). Then an orientation O of M is (σ, σ∗)-compatible if every

signed circuit (resp. cocircuit) compatible with O is oriented according to σ (resp. σ∗).

Then set of (σ, σ∗)-compatible orientations of M is denoted as χ(M ;σ, σ∗).

For an orientation O of M , O′− is the orientation of M ′ such that O′−|E = O and

O′−(f) = −; dually, Õ− is the orientation of M̃ such that Õ−|E = O and Õ−(g) = −.
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For the rest of this section, M,M ′, M̃ , σ, σ∗ will always be the same as in Defini-

tion 7.1.4, unless otherwise specified.

Theorem 7.1.5 Given a basis B ∈ B(M), let O(B) be the orientation of M in which we

orient each e 6∈ B according to its orientation in σ(C(B, e)) and each e ∈ B according

to its orientation in σ∗(C∗(B, e)). Then the map B 7→ O(B) gives a bijection β̂σ,σ∗ :

B(M)→ χ(M ;σ, σ∗).

In view of Proposition 7.1.3, Theorem 7.1.5 is indeed a generalization of Theorem 5.4.2.

Theorem 7.1.5 will be deduced from the following theorem, which was mainly formu-

lated and proved by Santos.. Recall from Section 4.1 that a circuit (resp. cocircuit) C ⊂ E

is positive with respect to an orientation O if one of the signed versions of C is compatible

with O.

Theorem 7.1.6 For every O ∈ χ(M ;σ, σ∗), there exists a unique basis B ∈ B(M) such

that B ∪ {f} is a positive circuit of O′− and (E \B) ∪ {g} is a positive cocircuit of Õ−.

We start with a few lemmas.

Lemma 7.1.7 [97, Lemma 1.10] There exists an oriented matroid M̃ ′ on ground set E t

{f, g} such that M ′ = M̃ ′/g and M̃ = M̃ ′ \ f .

Lemma 7.1.8 Let M be a matroid on ground set E and let M ′ be a generic extension of

M on ground set E t {f}. Then the set of circuits of M ′ containing f is {B ∪ {f} : B ∈

B(M)}. Dually, if M̃ is a generic lifting of M on ground set E t {g}, then the set of

cocircuits of M̃ containing g is {(E \B) ∪ {g} : B ∈ B(M)}.

PROOF: Let B ∈ B(M). We first claim that B is also a basis of M ′. Since every circuit of

M ′ not containing f is a circuit of M , B is independent in M ′; since every circuit of M is

a circuit of M ′, B ∪ {e} is dependent in M ′ for any e ∈ E \ B. So if B is not a basis of

M ′, it must be the case that X := B ∪ {f} is a basis of M ′. In such case, B = X \ {f}
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avoids the fundamental cocircuit D′ of f with respect to X in M ′. Since M ′ is generic, f

is not an isthmus and D′ \ {f} contains a cocircuit D′′ of M , now B avoids the cocircuit

D′′ in M , contradicting the basic property of bases.

Next we claim that the fundamental circuit C ′ of f with respect to B is the whole of

X . Suppose not, pick an arbitrary e ∈ X \ C ′ and let D be the fundamental cocircuit of e

with respect to B in M . On one hand, D′ := D ∪ {f} is a cocircuit of M ′ as the extension

is generic, so D′ must be the fundamental cocircuit of e with respect to B in M ′. On the

other hand, since e 6∈ C ′ = C(B, f), f cannot be in D′ = C∗(B, e), a contradiction. This

shows {B ∪ {f} : B ∈ B(M)} ⊂ C(M ′).

Conversely, let C ′ ∈ C(M ′) be a circuit containing f . Then Y := C ′ \ {f} is inde-

pendent in M ′ thus in M . If Y is not a basis of M , then it is properly contained in some

B ∈ B(M), but by the above containment, B ∪ {f} is a circuit of M ′ properly containing

C ′, a contradiction. The dual statement can be proven similarly. �

Lemma 7.1.9 An orientation O of M is σ∗-compatible if and only if O′− is totally cyclic.

Dually, O is σ-compatible if and only if Õ− is acyclic.

PROOF: Suppose O′− is compatible with some signed cocircuit D′. By [23, Proposition

7.1.4 (ii)], D := D′|E is either (i) a signed cocircuit of M , in which f ∈ D′, or (ii) equal

to the conformal composition D1 ◦ D2 of signed cocircuits of M , in which σ∗(D1) =

−σ∗(D2) 6= 0. For case (i), D is a signed cocircuit compatible with O, but it is not

compatible with σ∗ as D′(f) = O′−(f) = −; for case (ii), both D1, D2 are compatible with

O, but at least (exactly) one of them is not compatible with σ∗ as σ∗(D1) = −σ∗(D2).

Conversely, if D is a signed cocircuit compatible with O but not σ∗, then (D −) is a

signed cocircuit of M ′ that is compatible withO′−, henceO′− is not totally cyclic. The dual

statement can be proven similarly. �

Next we clarify the relation between several classes of orientations which have appeared

so far.
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Proposition 7.1.10 Let B be a basis of M and let O = β̂σ,σ∗(B). Then B ∪ {f} is a

positive circuit of O′− and (E \ B) ∪ {g} is a positive cocircuit of Õ−. This gives an

alternative description of the map β̂σ,σ∗ .

PROOF: By Lemma 7.1.8, X := B ∪ {f} is a circuit of M ′. Denote by C the signed

circuit of M ′ whose support is X and satisfies C(f) = −. For every e ∈ B, let De

be the fundamental cocircuit of e with respect to B in M , oriented according to σ∗. By

the definition of σ∗, the signed subset D′e := (De +) is a signed cocircuit of M ′, and

X ∩D′e = {e, f}. By orthogonality of signed circuits and cocircuits as well as the fact that

D′e(f) = −C(f), we must have O(e) = De(e) = D′e(e) = C(e). Therefore X is oriented

as C in O′− and thus a positive circuit. The second statement is the dual of the first one. �

Proposition 7.1.11 Let O be an orientation of M . If there exists a basis B ∈ B(M) such

that B ∪ {f} is a positive circuit of O′− and (E \ B) ∪ {g} is a positive cocircuit of Õ−,

then O ∈ χ(M ;σ, σ∗).

PROOF: By Lemma 7.1.9, it suffices to show that O′− is totally cyclic and Õ− is acyclic.

Suppose D is a signed cocircuit compatible withO′−. Since B is also a basis of M ′ (cf. the

proof of Lemma 7.1.8),X := D∩B is non-empty, but thenX will be simultaneously in the

circuit part and cocircuit part of O′−, contradicting Proposition 4.1.1. The dual statement

can be proven similarly. �

The proof of Theorem 7.1.6 relies on the theory of oriented matroid programming, we

assume the basic terminology and results from [23, Chapter 10].

PROOF OF THEOREM 7.1.6: “Uniqueness”. Suppose both B1 and B2 are bases satisfying

the condition. Let C1, C2 be the signed circuits of M ′ obtained from restricting O′− to

B1 ∪ {f} and B2 ∪ {f}, respectively; let D1, D2 be the signed cocircuits of M̃ obtained

from restricting Õ− to (E \ B1) ∪ {g} and (E \ B2) ∪ {g}, respectively. Let M̃ ′ be the

119



oriented matroid containing both M ′ and M̃ as guaranteed by Lemma 7.1.7 and consider

the lift C̃1 of C1 in M̃ ′.

Case I: C̃1(g) = +. Let D′1, D
′
2 be the extensions of D1, D2 in M̃ ′. We must have

D′1(f) = D′2(f) = − by orthogonality, which in turn forces the lift C̃2 of C2 to take value

+ at g. Apply the circuit elimination axiom to C̃1 and −C̃2 and eliminate f . Denote by

C the resulting signed circuit. We have C ∩ D′1 ⊂ (B2 \ B1) ∪ {g}, but C is conformal

with −D′1 over B2 \ B1 as D′1|B2\B1 = O|B2\B1 = C2|B2\B1 , so C(g) = D′1(g) = − by

orthogonality. However, the same orthogonality argument applied to C andD′2 implies that

C(g) = −D′2(g) = +, a contradiction.

Case II: C̃1(g) = −. The analysis is similar to Case I.

Case III: C̃1(g) = 0. This case is impossible as well, as C̃1 cannot be orthogonal to

D′1, D
′
2 in the first place.

“Existence”. Let O ∈ χ(M ;σ, σ∗). By reorienting M if necessary, we may assume

O ≡ +. For the sake of matching convention in the literature, we also reorient f, g in M̃ ′,

so the all positive orientationO′+ ofM ′ is totally cyclic and the all positive orientation Õ+ is

acyclic by Lemma 7.1.9. Now we consider the oriented matroid program P := (M̃ ′, g, f).

P is both feasible and bounded from our assumption on Õ+ andO′+: Õ+ itself is a pos-

itive covector of M̃ , which corresponds to a (full-dimensional) feasible region; any positive

circuit of M ′ whose support is of the form B ∪ {f}, B ∈ B(M) provides a bounded cone

B containing the feasible region. By the main theorem of oriented matroid programming

[23, Theorem 10.1.13], P has an optimal solution Y , which is a covector of M̃ ′.

By definition, Y is feasible and optimal, i.e., Y (g) = +, Y |E ≥ 0, and Y ◦ Z|E 6≥ 0

for every covector Z (of M̃ ′) that is 0 at g and + at f . Since Y is a covector containing

g in M̃ ′, Y \ {f} is a covector of M̃ containing g. By Lemma 7.1.8, Y \ {f} contains a

cocircuit (of M̃ ) whose support is of the form (E \B0)∪ {g} for some B0 ∈ B(M). If the

containment is proper, then Y \ {f} contains some cocircuit Z0 of M . Since the extension
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is generic, the extension Z ′0 of Z0 in M ′ contains f . By abusing notation, we consider Z ′0

as a signed cocircuit of M ′ (hence M̃ ′) in which Z ′0(f) = +. Now we have a contradiction

as Y ◦Z0|E ≥ 0. Therefore Y \{f} = (E \B0)∪{g}, and it is a cocircuit of M̃ . We claim

that B0 is the basis of M we want.

The second assertion is immediate as Y |E∪{g} ≥ 0 (recall that after reorienting f, g, we

are working with O′+ and Õ+ instead). By Lemma 7.1.8, B0 ∪ {f} is a circuit of M ′. De-

note by X the signed circuit of M ′ supported on B0 ∪ {f} such that X(f) = +, it remains

to show X ≥ 0. Suppose X(e) = −. Let Ze be the fundamental cocircuit of e with respect

to B0 in M , and let Z ′e be its extension in M ′. Since the extension is generic, f ∈ Z ′0, and

again we can abuse notation to consider Z ′e as a signed cocircuit ofM ′ (hence M̃ ′) in which

Z ′e(f) = +. From the choice of Z ′e, Z
′
e ∩X = {e, f}, so Z ′e(e) = + by orthogonality. In

particular, Y ◦ Ze|E ≥ 0, which is a contradiction. Therefore B0 ∪ {f} is a positive circuit

of O′+ as well. �

PROOF OF THEOREM 7.1.5: By Proposition 7.1.10 and 7.1.11, the images of β̂σ,σ∗ are

(σ, σ∗)-compatible. Injectivity follows from Proposition 7.1.10 and the uniqueness asser-

tion of Theorem 7.1.6. Surjectivity follows from Proposition 7.1.10 and the existence as-

sertion of Theorem 7.1.6. �

As a straightforward corollary, we have the following generalization of Theorem 4.3.6.

Corollary 7.1.12 The number of (σ, σ∗)-compatible orientations of an oriented matroid

M equals the number of bases of M .

7.2 Simplicial and Cellular Trees

A graph can be thought as a 1-dimensional simplicial complex, and spanning trees are

subcomplexes that satisfy certain conditions in terms of algebraic topology. A higher di-

mensional analogue of spanning trees was studied by Duval, Klivans and Martin [47]. We
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give a brief introduction of their theory, focusing its matroidal side and connections with

our work. We will be using basic terminology and theory in algebraic topology, which can

be found in standard texts such as [64].

We fix some notations first. Throughout this section, ∆ will be a finite, pure cell

complex of dimension d. The collection of i-dimensional faces of ∆ will be denote by

∆i , and ∆≤i :=
⊔
j≤i ∆j is the i-skeleton of ∆. The module of i-chains Ci(∆;R)

is the free R-module generated by ∆i; denote by ∂i : Ci(∆;R) → Ci−1(∆;R) and

∂∗i : Ci−1(∆;R) → Ci(∆;R) the usual boundary map and coboundary map in cellular

(co)homology, respectively. Finally, given an abelian group G, denote by T(G) the torsion

subgroup of G.

Definition 7.2.1 A subcomplex Υ of ∆ is a maximal cellular spanning forest of ∆ if

1. Υ≤d−1 = ∆≤d−1.

2. H̃d(Υ;Z) = {0}.

3. dimQ H̃d−1(Υ;Q) = dimQ H̃d−1(∆;Q).

In general, a subcomplex is a cellular spanning forest if it satisfies the first two conditions.

If ∆ itself is connected, that is, dimQ H̃d−1(∆;Q) = 0, then a maximal cellular spanning

forest of ∆ is called a cellular spanning tree.

Remark. The definition of connectedness here is different from the usual topological

sense that H̃0(∆;Q) = {0}. So unlike the case of graphs where one can study maximal

spanning forests by studying spanning trees of each connected component, one has to work

with spanning forests as inseparable objects.

By fixing a reference orientation for every face of ∆, the boundary map ∂i can be

expressed as a ∆i−1 ×∆i (integer) matrix in which the (F ′, F )-th entry is the multiplicity

of F ′ on the boundary of F , and the coboundary map ∂∗i can be expressed as the transpose
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of ∂i. The topological definition above can be translated into a more direct definition using

matroidal language.

Proposition 7.2.2 [47, Proposition 2.13] A collection of facets, together with ∆≤d−1, form

a cellular spanning forest if and only if the collection is an independent set of the matroid

M(∆) := M(∂d). Hence a collection of facets is a maximal cellular spanning forest if and

only if it is a basis of M(∆).

By applying Theorem 5.4.2 to M(∆), we have the following formal corollary.

Corollary 7.2.3 Let σ (resp. σ∗) be an arbitrary acyclic circuit (resp. cocircuit) signature

ofM(∆). The number of cellular spanning forests of ∆ equals the number of σ-compatible

orientations of M(∆); the number of maximal cellular spanning forests of ∆ equals the

number of (σ, σ∗)-compatible orientations of M(∆), in which the map β̂σ,σ∗ defined in

Theorem 5.4.2 provides an explicit bijection.

We emphasize that while the corollary is presented in matroidal terms, these terms have

certain topological intuition. Every element ρ ofM(∆) corresponds to a d-dimensional cell

of ∆, which is a copy of the disk Dd glued to ∆≤d−1 along boundary, and the orientation

of ρ ∈M(∆) corresponds to the usual topological orientation of the cell ρ ∈ ∆.

Now we discuss a bit on the topological meaning of the map β̂σ,σ∗ . The fundamental

circuit of a facet ρ with respect to a maximal spanning forest Υ in M(∆) corresponds to

a non-trivial top homology class of Υ ∪ ρ, which, roughly speaking, can be thought as a

collection of facets enclosing a (d+ 1)-dimensional “hole”. Such “hole” can be filled in by

a (d + 1)-dimensional cell, and the orientation of the circuit is induced by the orientation

of such phantom cell.

Dually, the matroidal notion of a signed fundamental cocircuit can be interpreted as

follows: for any other facet ρ′ in the fundamental cocircuit of ρ with respect to Υ, Υ ∪ ρ′

encloses a (d + 1)-dimensional “hole” whose boundary includes both ρ and ρ′, and an
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orientation of ρ induces an orientation of ρ′ via the orientation of the “hole” and vice versa,

this gives a topological way to assign consistent orientation across the cocircuit.

A theme in the theory of cellular forests is that one usually counts the number of max-

imal spanning forests according to multiplicities. More precisely, the tree number τ(∆)

is the sum
∑

Υ |T(H̃d−1(Υ;Z))|2 taken over all maximal spanning forests Υ of ∆. Tree

number was introduced by Gil Kalai [71] to formulate a generalization of Cayley’s for-

mula, namely that the tree number of the d-skeleton of a n-simplex is n(n−2
d ). Tree number

is a more well-behaved invariant than the direct count of maximal spanning forests in many

senses. As an example, counting the number of maximal spanning forests is #P-Hard [101],

while the tree number can be computed efficiently.

We have the following generalization of Laplacians and Jacobians, as well as general-

ization of the Matrix–Tree theorem, known as the Cellular Matrix–Tree Theorem.

Definition 7.2.4 The (up-down) Laplacian L := L∆ is defined as ∂d∂∗d . The critical group

K(∆) of ∆ is T(kerZ ∂d−1/ imZ L).

The flow lattice F and the cut lattice C of M are kerZ ∂d and imZ ∂
∗
d , respectively. The

cutflow group of ∆ is Cd(∆;Z)/(F ⊕ C).

Theorem 7.2.5 [46, Proposition 3.5, Theorem 8.1] Pick an arbitrary Γ ⊂ ∆d−1 such that

the rows of ∂d corresponding to ∆d−1 \ Γ form a basis of the row space (such Γ should

be thought as a root of the cellular forest). Let L∆\Γ be the restriction of L to the faces of

∆d−1 \ Γ. Then

τ(∆) =
|T(H̃d−1(∆;Z))|2

|T(H̃d−1(∆,Γ;Z))|2
detL∆\Γ.

In terms of critical groups, we have the following equations.

τ(∆) = |K(∆)| = |Cd(∆;Z)/(F ⊕ C)||T(H̃d−1(∆;Z))|.

Because of the extra data in Theorem 7.2.5, namely the cardinality of the homology
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groups, M(∆) should be considered as an arithmetic matroid [40]. There are two natural

arithmetic structures onM(∆). The first one is induced by the matrix ∂d, so the multiplicity

of a maximal spanning forest Υ equals the greatest common divisor of the maximal minors

of ∂d|Υ, which is precisely |T(H̃d−1(Υ;Z))| [14], such an arithmetic structure is realizable.

The second one associates the multiplicity |T(H̃d−1(Υ;Z))|2 to each maximal spanning

forest Υ [41].

As an application of our work, we have the following reduction for a case of the sam-

pling question posed at the end of [47, Section 5.4], which is of similar flavor as Proposi-

tion 5.8.3. Given a zonotope Z and a generic direction v (not contained in the affine span

of any facet of Z), the half-open zonotope (with respect to v) consists of the points in Z

that remain in Z after being shifted by εv for some sufficiently small ε > 0.

Proposition 7.2.6 The problem of sampling a random maximal cellular spanning forest,

using the distribution proportional to the cardinality of the torsion of its top homology

group, is polynomial-time reducible from each of the following two problems:

1. uniformly sampling a lattice point from a half-open Z∂d , and

2. uniformly sampling a point from Z∂d ⊂ R∆d−1 with respect to the relative volume in

the affine span of Z∂d .

PROOF: Pick an arbitrary generic shifting vecotr v and an arbitrary fine zonotope tiling

of Z∂d induced by some acyclic circuit signature. Each paralleletope CΥ corresponds to

a maximal spanning forest Υ, and the number of lattice points in the half-open CΥ (with

respect to v) is equal to |T(H̃d−1(Υ;Z))| [39]. Given a lattice point in the half-open Z, we

can find the half-open paralleletope (thus which maximal spanning forest) it is in using a

similar inverse algorithm as described in Section 5.8.1, so we can convert a random lattice

point into a random maximal spanning forest as stated in the proposition.
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The second part follows from the fact that the relative volume of CΥ is equal to the

number of lattice points in its half-open version [15, Lemma 9.2], and that the same inverse

algorithm converts a random point to a random maximal spanning forest. �

On the other hand, the second arithmetic structure on M(∆) is often non-realizable

[82], so finding the geometric meanings of such structure (and their algorithmic conse-

quences) is an interesting problem.

As a final note, almost all discussions in this section become nicer when ∂d is a totally

unimodular matrix. Examples and properties of such complexes are studied in [14, 49].
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